
  

 1

June 2007 Ian Gent, ACP Summer School  1

A chess puzzle 
• 9 queens and 1 king of

each colour
• no piece on the same

line as a queen of the
opposite colour

• unique up to symmetry
• found by SBDS in ILOG

Solver
• Smith, Petrie & Gent, 04
• and it’s a legal chess

position!

Symmetry in Constraint
Programming

Ian Gent St Andrews

Symmetry in Constraint
Programming

Ian Gent St Andrews

Special thanks to …
Jean-François Puget ILOG, France



  

 2

Special thanks to
Karen Petrie Oxford
Barbara Smith Leeds
Ian Miguel St Andrews
Alan Frisch York
Colva Roney-Dougal St Andrews
Steve Linton St Andrews
Sarah Gent Castlehill School

“A project of this scope and importance could not be
achieved without the aid and assistance of many people…

…. or rather it could but it would be dumb to do it that
way when there are so many people around willing to give
their aid.”

- Peter Schickele

June 2007 Ian Gent, ACP Summer School  5

Shameless self promotion

• A most excellent survey has recently been written….
• “Symmetry in Constraint Programming”

• Ian Gent, Karen Petrie, Jean-François Puget
• In “Handbook of Constraint Programming”

• Ed. Rossi, van Beek, & Walsh
• Elsevier, 2006

• I can give you a copy if you are interested

• Error in paper: (noticed by Pedro Meseguer)
• Example 10.2 p 332
• Cyclic forms of r90 and r270 are wrong.
• r90 should be (1 7 9 3) (2 4 8 6)
• r270 should be (1 3 9 7) (2 6 8 4)

June 2007 Ian Gent, ACP Summer School  6

Summer Schools are Great…

• They can lead to untold happiness
• Joy
• Delight

• You think I’m kidding?
• How did a British person meet an American in

Germany in 1991?



  

 3

June 2007 Ian Gent, ACP Summer School  7

June 2007 Ian Gent, ACP Summer School  8

How to get here:
Giving Lectures at Summer School

1. Do a PhD in something else.
2. Go to a summer school in that.
3. Follow the stupidest dating strategy in the world (for

a man).
4. Change area and do something completely different.
5. Get into constraints.
6. Work on something completely different
7. Write a paper on symmetry.
8. Think that there is not much future in the area.
9. Work with people smarter than you.
10. Write lots of papers with them.

June 2007 Ian Gent, ACP Summer School  9

Free advice

• Dotted throughout lectures will be some free advice
on being an academic

• Well it’s not really free
• Since you paid to be here

• And you might have seen it before
• In doctoral programme of CP 06

• And it may be rubbish
• Check out my dating advice

• BUT without any question at all
• It is advice.



  

 4

June 2007 Ian Gent, ACP Summer School  10

Best free advice I can give

• Work with people smarter than you.
• Be the stupidest person you work with!

• Most people are scared of working with smarter people.
• They feel good if they are smarter than their colleagues.

• Think of it this way:
• Most computer scientists collaborate.
• The smarter the group the better the output tends to be.
• You can’t make yourself more intelligent quickly.
• Find the smartest people you can who don’t think it’s a waste of

their time working with you.
• Or think of it this way: 

• Will your paper be better if your co-authors are
• smarter than you or
• stupider than you?

• P.s. I applied this to my choice of wife as well :-)

June 2007 Ian Gent, ACP Summer School  11

Always be the stupidest person
you work with!

• So if you constantly feel you are the stupidest one in
the room
• Try to feel good about it!
• I should know ….

• Since I’ve worked with …
• Joe Culberson, Jeremy Frank, Enrico Giunchiglia, Warwick

Harvey, Holger Hoos, Chris Jefferson, Tom Kelsey, Steve
Linton, Inês Lynce, Ian Miguel, Massimo Narizzano, Pete
Nightingale, Karen Petrie, Patrick Prosser, Andrea Rendl, Colva
Roney-Dougal, Andrew Rowley, Kostas Stergiou, Paul Shaw,
Barbara Smith, Toby Walsh, …

• … and Judith Underwood.

June 2007 Ian Gent, ACP Summer School  12

Group Theory

• What is a group?
• Standard mathematical answer is:

• Group = pair of set and operation <G,*> with
1. For all g,h in G, g*h in G
2. There is 1 in G such that for all g in G, 1*g = g*1 = g
3. For all g in G, there is g-1 such that g*g-1 = g
4. For all g,h,j in G, (g*h)*j  = g*(h*j)

• What has this got to do with symmetry?

• Ordinary answer:
• A group is an organisation of people.
• Unfortunately not the answer we need!

• What’s the link between groups and symmetries?

Section 10.1, p331



  

 5

June 2007 Ian Gent, ACP Summer School  13

Group Theory

• Let’s start again.
• Mathematics deals with abstractions
• E.g.

• Abstraction of repetition   Integers
• Abstraction of continuous quantities   Real

numbers

• Similarly
• Abstraction of symmetry   Group Theory

June 2007 Ian Gent, ACP Summer School  14

Group Theory

• I want to explain tiny bits of group theory
• Explaining relevance to Constraints

• Eventually we’ll see why group axioms hold
• Introduce a few key concepts that come up

• I am going to focus on
• The action of group elements

• Not usually focus of simple introductions
• But what constraint programmers need to think about

• Group elements as permutations

June 2007 Ian Gent, ACP Summer School  15

8 symmetries of the square



  

 6

June 2007 Ian Gent, ACP Summer School  16

Rotation though 90 degrees: r90

987

654

321

369

258

147

•Two ways to think about this
• 1 moves to 3, 2 moves to 6 … 
• 1 is replaced by 7, 7 is replaced by 9 … 

• In the paper we used the second version
• sometimes getting it wrong, sorry. 

June 2007 Ian Gent, ACP Summer School  17

This defines an action on points

987

654

321

369

258

147

369258147

987654321

• This is a permutation
• Each point is mapped to exactly once
• Above is written in Cauchy form

June 2007 Ian Gent, ACP Summer School  18

This defines an action on points

987

654

321

369

258

147

369258147

987654321

•Presentations more normally written in cycle form
•(1 7 9 3) (2 4 8 6) (5)
•(1 7 9 3) (2 4 8 6)



  

 7

June 2007 Ian Gent, ACP Summer School  19

Where have we got to?
• A symmetry is a mapping of an object

• E.g. r90 is a function on a square

• Leaves some features unchanged
• It is still a 3x3 square

• We label the object with points
• The Symmetry possibly changes those points 
• E.g. 1 is replaced by 7

• A permutation summarises the changes made
• Where each point is moved to
• The permutation is a permutation of the points

• We say that the symmetry acts on the points
• E.g. 1r90 = 7
• Action can be extended to sets of points

• E.g. {1,3,8} r90 = {1 r90, 2 r90, 3 r90} = {7,1,6} = {1,6,7}

June 2007 Ian Gent, ACP Summer School  20

Composition of Permutations

• Two symmetries acting in a row compose
• Permutations compose in the same way

• E.g.
• r90 = (1 7 9 3) (2 4 8 6)
• x = (1 3)(4 6)(7 9)     (reflection about centre col)
• r90 * x = (1 9)(2 6)(4 8)

• NOTE: in r90 * x, r90 is done first
• 1 r90 * x = (1 r90 ) x = 7 x = 9

June 2007 Ian Gent, ACP Summer School  21

Identity and inverse

• Permutations make identity and inverse easy
• Identity:

• () in cycle form
• In Cauchy form
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

• Inverse
• Just reverse each (..) in cycle form
r90 = (1 7 9 3) (2 4 8 6)
r90 -1 = (3 9 7 1)(6 8 4 2) = (1 3 9 7)(2 6 8 4) = r270



  

 8

June 2007 Ian Gent, ACP Summer School  22

Associativity

•  (f * g) * h = f * (g * h)
• Basically function application always respects

this
• Doing (f and then g) and then h

• Is the same as doing f and then (g and then h)

• Because of the way we thought about
composition, there is nothing to say

June 2007 Ian Gent, ACP Summer School  23

Group Axioms again
• Group = pair of set and operation <G,*> with

1. For all g,h in G, g*h in G
2. There is 1 in G such that for all g in G, 1*g = g*1 = g
3. For all g in G, there is g-1 such that g*g-1 = g
4. For all g,h,j in G, (g*h)*j  = g*(h*j)

• G = set of permutations
• E.g. {1, r90, r180, r270, x, y, d1, d2}
• See?  Elements of the group are themselves functions.

They act on the points in our square

• * = composition of permutations
1. Composition of two permutations is another permutation
2. () is the identity permutation
3. We’ve seen how to get the inverse
4. Associativity is fundamental

June 2007 Ian Gent, ACP Summer School  24

Generators

• Number of elements is order of the group
• Closure and inverse lets us generate a group from a

small number of elements.
• E.g. chessboard from {r90,x}
• The maximum size of a (minimal) generating set for a group

of order n is log2 n
• Typically groups of arbitrary size can be generated by 2

elements!

• Use of generators fundamental in computational
algebra
• Can save exponential space
• Can be vital for time as well

• Don’t want to step through exponential elements.



  

 9

June 2007 Ian Gent, ACP Summer School  25

Moving right along

• Going to mention a few things briefly
• Subgroup

• <H,*> a subgroup of <G,*> if H subset of G and H closed under *
• Coset

• If H is a subgroup of G and g any element of G
• Then a left coset g * H = { g * h | h in H}

• Two cosets g * H, f * H are equal or disjoint
• All cosets are of size | H |

• Hence Lagrange’s theorem
• order of subgroup divides order of group

• A set of coset representatives is a set R subset of G
• Such that, for all g in G, g*H = r*H for some r in R

June 2007 Ian Gent, ACP Summer School  26

Orbit & Stabiliser

• The orbit of a point p in group G is
• pG  =  {pg | g in G}
• I.e. everywhere a point can be moved to by

elements of G

• The stabiliser of a point p in G is
• Gp = {g | g in G and pg=p}
• I.e. set of points that fixes p
• Stabiliser is always a subgroup of G.

June 2007 Ian Gent, ACP Summer School  27

Schreier Sims

• Key algorithm in computational algebra
• Akin to Arc Consistency in Constraint Satisfaction
• You may need to implement it one day

• Computers a stabiliser chain and a set of coset
representatives at each level
• Say we have listed points in order 1, 2, 3 … n

• G0 = G
• G1 = (G0)1

• G2 = (G1)2

• …
• Gi = (Gi-1)I

• …
• Gn = {1} (since only identity fixes every point)

• Schreier Sims computes the stabiliser chain efficiently AND
gives a data structure storing this and the set of coset
representatives at each level.

Section 10.1.2, p337



  

 10

Tip

Never read reviews the day your
paper is accepted or rejected

June 2007 Ian Gent, ACP Summer School  29

Never read reviews the day your
paper is accepted or rejected

• About 15 years ago Alan Bundy said …
• … getting reviews always ruined his day
• Even for accepted papers!

• For accepted papers?
• One reviewer is negative
• One is lukewarm
• One reviewer misses the point completely
• They suggest changing the title you love

• Get over the news first
• Enjoy it, celebrate, look forward to a trip, consider how clever you must be

to publish in International Symmetry Conference
• Get over it, get on with your life, consider how lucky you are not to have to

go to the International Symmetry Conference, what with stupid flights and
AAAI next year is a much better conference

• Then read the reviews the next day

June 2007 Ian Gent, ACP Summer School  30

8 symmetries of the square



  

 11

June 2007 Ian Gent, ACP Summer School  31

A chess puzzle 
• 9 queens and 1 king of

each colour
• no piece on the same

line as a queen of the
opposite colour

• unique up to symmetry
• found by SBDS in ILOG

Solver
• Smith, Petrie & Gent, 04
• and it’s a legal chess

position!

June 2007 Ian Gent, ACP Summer School  32

Symmetry Breaking in Constraint
Programming

• Many constraint problems have symmetry
• n-queens, colouring, golfers’ problem, …

• Breaking symmetry reduces search
• avoids exploring equivalent states
• not sure if “breaking symmetry” is right term, but

we’re stuck with it
• in fact preferring (using some method) a subset

(preferably singleton) of each equivalence classe

• Note that main goal is pragmatic
• make constraint programming more effective

June 2007 Ian Gent, ACP Summer School  33

Symmetries
• Isomorphisms

• 1-1 Mappings (bijections) that preserve problem structure.

• Variables can be permuted

• Values can be permuted

• Both

• Map solutions to solutions
• Potentially large number of isomorph variants

• Map trees search to tree search
• The same failure will be repeated many times



  

 12

June 2007 Ian Gent, ACP Summer School  34

Symmetry Definitions
• Not really sorted out until 2005!

• Cohen, Jeavons, Jefferson, Petrie, Smith
• What was going on until then?

• Can think of symmetries semantically or syntactically
• Solution Symmetry

• A permutation of the variable-value pairs which leaves the
set of solutions unchanged

• Problem Symmetry
• A permutation of the variable-value pairs which leaves the

set of constraints unchanged

• All problem symmetries are solution symmetries, but
not vice versa
• Cohen et al go into more detail with interesting results

Section 10.2, p337

June 2007 Ian Gent, ACP Summer School  35

Variable and Value symmetries

• Variable Symmetry
• A symmetry which only changes variables
• E.g. (x=1)g = (y=1) leaves the value 1 unchanged

• Value Symmetries
• A symmetry which only changes values
• E.g. (x=1)g = (x=7) leaves the variable x unchanged

• Various pieces of research in constraints focus on one
or the other.
• Sometimes for fundamental reasons
• Sometimes for convenience

June 2007 Ian Gent, ACP Summer School  36

Constraints and Group Theory

• Typically, points = set of variable-value pairs
• E.g. if n variables with m values, nm points.
• Sometimes only n if dealing with variable symms.
• Or only m if dealing with value symms

• Permutations act on these points (v-v pairs)
• Set of permutations defines the group

Section 10.1.1 p336



  

 13

June 2007 Ian Gent, ACP Summer School  37

Getting Symmetry in the System

• How does a constraint program know about symmetry?
• Most work assumed symmetries given by the

programmer
• Which isn’t realistic in practice

• Attempts to get simple language to express symmetries
• E.g. in ECLiPSe symmetry libraries

• Significant efforts on detecting symmetries
• Almost inevitably problem symmetries, not solution ones
• Use graph of some representation of the problem
• Use graph automorphism software on the result

• E.g. Aloul et al in SAT, Puget in CP

Section 10.8, p365

June 2007 Ian Gent, ACP Summer School  38

Symmetry Breaking in Constraint
Programming

• Three main approaches to symmetry breaking
• reformulate the problem
• adapt search algorithm to break symmetry
• add constraints before search

June 2007 Ian Gent, ACP Summer School  39

Symmetry Breaking in Constraint
Programming

• Three main approaches to symmetry breaking
• reformulate the problem
• adapt search algorithm to break symmetry
• add constraints before search



  

 14

June 2007 Ian Gent, ACP Summer School  40

Symmetry Breaking by Reformulation

• Reformulation can be the most effective
means to break symmetry

• As yet, there is very little general to say
about it
• general methods and/or theorems would be

welcome

• This is a common feature in AI
• we know problem representation is vital
• we don’t know how to exploit it except by magic

Section 10.3, p340

June 2007 Ian Gent, ACP Summer School  41

An example

• Crew assignment
• One variable per crew staff  : x[j]

• One value per crew : a[i]

• A size per crew : c[i]

x in a;

   distribute(x,card,a);

forall (i) card[i] <= c[i];

• Add
x[1] <= x[2] <=  … <= x[n] breaks variable permutations

card[1] >= card[2] >= … >= card[n] breaks value permutations

June 2007 Ian Gent, ACP Summer School  42

Problem reformulation

• Use set variables if possible
• For the crew example, use

A set variable s[i] per crew
A value per staff.
• This breaks permutations of people

• Add
card(s[1]) >= card(s[2]) >= … >= card(s[n])

• This breaks permutations of crews



  

 15

June 2007 Ian Gent, ACP Summer School  43

Reformulation example

• All Interval Series Problem
• Write down the numbers 0…n-1

• so that each difference 1...n-1 occurs between consecutive
terms

• e.g. 0 8 1 7 2 6 3 5 4
• diff    8 7 6 5 4 3 2 1
• now count number of solutions

• Symmetries: reverse sequence & complementation
• This problem is not important but there is a dramatic

reformulation

June 2007 Ian Gent, ACP Summer School  44

Reformulation example

• Reformulated All Interval Series Problem
• write down the numbers 0…n-1 in a cycle

• so that each difference 1...n-1 occurs between consecutive terms
and one difference occurs exactly twice

• e.g. 0 8 1 7 2 6 3 5 4
• diff    8 7 6 5 4 3 2 1 4
• now count number of solutions

• Symmetries: reverse sequence & complementation
• & rotation of sequence by j steps

• Each solution yields two solutions to the original
• e.g. 6 3 5 4 0 8 1 7

• We can break all symmetry very easily
• set first 3 terms to be 0 n-1 1

• Improved the state of the art by a factor of 50 in run time

Tip

Do read negative reviews



  

 16

June 2007 Ian Gent, ACP Summer School  46

Do read negative reviews

• There is always the amazing possibility that the person who wrote
the review…
• … is not an idiot

• Even if they are an idiot…
• … there may be other idiots out there
• … who will review your future papers!

• Try to make the changes they want
• Correct typos, redo experiments, clarify explanations…

• Look out for patterns in reviews
• You might be making the same mistake again and again

• After all this you will think your papers are better

June 2007 Ian Gent, ACP Summer School  47

Symmetry Breaking in Constraint
Programming

• Three main approaches to symmetry breaking
• reformulate the problem
• add constraints before search
• adapt search algorithm to break symmetry

June 2007 Ian Gent, ACP Summer School  48

Symmetry Breaking Constraints

• Probably the grandmother of symmetry breaking
constraints

• Added ad hoc since the beginning of time
• e.g.

• X <= Y <= Z … if S_n acts on variables
• the first queen is to the left of the second queen

• Difficult to be sure you have eliminated all symmetry
• Requires considerable insight from programmer
• Some symmetries require large constraints
• But easy for constraint programming systems to cope

with

Section 10.4, p343



  

 17

June 2007 Ian Gent, ACP Summer School  49

Lex-Leader

• Crawford, Ginsberg, Luks & Roy, 1996
• biggest single advance in symmetry breaking in

SAT & Constraints?

• Idea essentially simple
• Define a canonical solution and add

constraints to choose it

• Note: technically only applies to variable symmetries.
Recently extended by Puget and Walsh (separately, CP06).

Section 10.4.1, p343

June 2007 Ian Gent, ACP Summer School  50

Canonical solutions

• Assume an ordering on variables
• Define an ordering on solutions
• How to compare two solutions a and b?
• Use a lexicographic ordering:

• Write the values in the order given by the variable ordering
• Compare the two numbers obtained this way

• A canonical solution s is smaller than any of its
symmetrical variant

• S  ≤Lex g(s),   for all symmetries g.

June 2007 Ian Gent, ACP Summer School  51

Example: a 2x3 Matrix

• E.g. swap rows and first
and last column

• ABCDEF <= FEDCBA
• There are 12 elements

in the symmetry group

FED

CBA

ABC

DEF



  

 18

June 2007 Ian Gent, ACP Summer School  52

Example: a 2x3 Matrix

FED

CBA

1.  ABCDEF <= ABCDEF
2.  ABCDEF <= ACBDFE
3.  ABCDEF <= BACEDF
4.  ABCDEF <= CBAFED
5.  ABCDEF <= BCAEFD
6.  ABCDEF <= CABFDE
7.  ABCDEF <= DEFABC
8.  ABCDEF <= DFEACB
9.  ABCDEF <= EDFBAC
10. ABCDEF <= FEDCBA
11. ABCDEF <= EFDBCA
12. ABCDEF <= FDEABC

June 2007 Ian Gent, ACP Summer School  53

Lex-Leader

• One constraint for each symmetry
• Just like SBDS, and just as unscaleable
• So we have to choose subsets of symmetries
• Most research now is (or can be seen as) making

sensible choices of subsets
• Sensible means

• useful for commonly occurring symmetry groups
• amenable to efficient implementation

• Usually lose completeness of symmetry breaking
• except in some special cases

June 2007 Ian Gent, ACP Summer School  54

State some lex leader constraints

• State lex leader constraints for some
symmetries, not all

• State for generators only (Aloul et al)
• State for row and column swaps in matrix

models
• Double lex

• State for symmetries not yet broken
• STAB

Section 10.4.4, p348



  

 19

June 2007 Ian Gent, ACP Summer School  55

Matrix models

• Many problems can be modelled by matrices
of decision variables.
• E.g. Configuration, Scheduling, Design Problems:
• Rack Configuration.
• Social Golfers.
• Steel Mill Slab Design.

• Frequently these matrices exhibit row and/or
column symmetry.

June 2007 Ian Gent, ACP Summer School  56

Example: a 2x3 Matrix

• Lex leader for swap
adjacent columns Ci,
Ci+1
• Ci <=lex Ci+1

• Similarly
• Ri <=lex Ri+1

FED

CBA
Swap last 2 colums

2.  ABCDEF <= ACBDFE
becomes
2. BCEF <= CBFE
becomes
2. BE <= CF
i.e. 
Second col<=lex Third col

June 2007 Ian Gent, ACP Summer School  57

IHG001

FED010

CBA100

001000

010000

100000

G

D

A

1

0

0

HI001

EF010

BC100

00000

10000

01000

GHI001

DEF010

ABC100

001000

010000

100000

Incomplete Symmetry 
Breaking 

Figure 10.9 p. 351



  

 20

June 2007 Ian Gent, ACP Summer School  58

GAC-Lex

• We can always insist on <=lex in any number of
dimensions

• <=lex is complete in some special cases
• GAC-Lex propagates the <=lex constraints as much as

possible and in linear time
•  Frisch, Hnich, Kiziltan, Miguel, Walsh, CP 02

• Makes lexicographic ordering very attractive
• e.g. Used in ILOG research code to solve problems with

more than 10100 symmetries

• Other constraints researched in similar ways
• e.g. multiset ordering, lex-all-perm

Section 10.4.5, p348

June 2007 Ian Gent, ACP Summer School  59

Lex-Leader with All-Different
• Suppose we have an arbitrary group of variable

symmetries
• And all different applies to the set of n variables involved

• Then we can break all symmetries with no more than
n-1 constraints
• Puget, IJCAI 05

• Why?
• Lex-leader constraints are …

• <A,B,C,D>  <=  <A,C,B,D>
• But A=A, and B is different from C.  So constraint can be

simplified to
• B < C

• There are at most n(n-1)/2 constraints like this
• And more subtle reasoning gets it to n-1

Section 10.4.3, p346

June 2007 Ian Gent, ACP Summer School  60

Tip

• Do  (try to)  publish results that you think are
obvious



  

 21

June 2007 Ian Gent, ACP Summer School  61

Do publish obvious results

• I knew Puget’s result before Puget
• Because a PhD student told me about it
• S/he thought it was obvious!
• It wasn’t, it was new.
• Puget rightly gets credit for this result

• Try to publish stuff even if you think it’s obvious
• Unless there’s good evidence it is known
• The worst that happens is you get rude reviews

• That’s happened to me!

• You often think that
• “If I can do it, it must be simple and obvious.”

• Most ideas are obvious when you think of them
• Even if you have thought about them for years!

June 2007 Ian Gent, ACP Summer School  62

Symmetry Breaking in Constraint
Programming

• Three main approaches to symmetry breaking
• reformulate the problem
• adapt search algorithm to break symmetry
• add constraints before search

June 2007 Ian Gent, ACP Summer School  63

Adapting Search Algorithms

• Two main approaches to talk about
• Symmetry Breaking During Search

• add a constraint at each node to rule out symmetric
equivalents in the future

• Symmetry Breaking by Dominance Detection
• check each node before entering it, to make sure you have

not been to an equivalent in the past

• Any implementation of either is inevitably
implementing computation group theory

• We can benefit in both cases by using CGT
consciously

Section 10.5, p 350



  

 22

June 2007 Ian Gent, ACP Summer School  64

SBDS: Symmetry Breaking During
Search

• History…
• Symmetry Excluding Search Trees

• Backofen & Will, CP 98 Workshop, CP 99

• Symmetry Breaking During Search
• Gent & Smith, ECAI 2000
• leads to generic name SBDS
• as often happens, second paper more cited than first

• Implemented in Mozart (Backofen), Solver
(Gent/Smith), Eclipse (Harvey/Petrie)

Section 10.5.1 p351

June 2007 Ian Gent, ACP Summer School  65

Symmetry Breaking During
Search (SBDS)

• A symmetry can be eliminated if we describe its
effect on the assignment of a value to a
variable

• e.g. for n-queens, we can completely eliminate
all symmetry by describing the 7 symmetries
• we can ignore the 8th symmetry, the identity

June 2007 Ian Gent, ACP Summer School  66

Symmetries of n-queens

• Variable r[i] represents the queen on row i
• The values represent the columns (1 to n)

• x(r[i]=j) → r[n-i+1]=j
• y(r[i]=j) → r[i]=n-j+1
• d1(r[i]=j) → r[j]=i
• d2(r[i]=j) → r[n-j+1]=n-i+1
• r90(r[i]=j) → r[j] = n-i+1
• r180(r[i]=j) → r[n-i+1]=n-j+1
• r270(r[i]=j) → r[n-j+1]=i



  

 23

June 2007 Ian Gent, ACP Summer School  67

Symmetry Breaking on
Backtracking

A = set of assignments
made so far

var = val var != val

+ g(var!= val) for any unbroken
     symmetry g,  i.e. if g(A) is
           (or will be) true

June 2007 Ian Gent, ACP Summer School  68

Example – 8 queens

r[1]=2

x: r[8]=2
y: r[1]=7
d1: r[2]=1
d2: r[7]=8
r90: r[2]=8
r180: r[8]=7
r270: r[7]=1

x
x
x
x

r[2]=4 r[2] != 4

r90: if r[2]=8 then r[4] != 7
     r180: if r[8]=7 then r[7] != 5
          r270: if r[7]=1 then  r[5] != 2

The user need only write a function for each symmetry, 
describing its effect.  The rest is automatic. 

June 2007 Ian Gent, ACP Summer School  69

The graph K5 x P2 is graceful

18

4

0

19

25

23

14

63

1

23 9

8

3
2

22

4

14

1

6

25
24

10

16

12

2118
157

19

13
17

115
20

• Unique up to symmetry
• Petrie & Smith 03
• Found using SBDS



  

 24

June 2007 Ian Gent, ACP Summer School  70

SBDS pros and cons

• Key advantages of SBDS
• it is guaranteed to respect the heuristic

• i.e. the first solution found by any heuristic is never ruled out
• this advantage is shared by SBDD (to come later)
• adding constraints before search can conflict with heuristics

• we can delete symmetries when they are guaranteed broken
• Key problems with SBDS

• needs a separate function for each symmetry
• needs to be specified at compile time

• many duplicate symmetry constraints
• suppose there are n variables and m values

• no more than nm symmetry constraints possible at the root
• but we might add (say) n!, mainly duplicate, constraints

June 2007 Ian Gent, ACP Summer School  71

Computational Group Theory (CGT)

• Permutations groups
• Compact representation using stabilizer chain
• Stabilizer(G,x) = permutations of G that leave

x unchanged
• Orbit(G,x) = set of elements to which x can

be mapped be elements of G

June 2007 Ian Gent, ACP Summer School  72

The graph K5 x P2

2

1

0

3

4

5

6

78

9

• 240 graph symmetries = 5! x 2



  

 25

June 2007 Ian Gent, ACP Summer School  73

Stabilizer chain

• G0 = G, Orbit(G0, 0) = {0,1,2,3,4,5,6,7,8,9}
• G1 = Stab(G0, 0), Orbit(G1,1) = {1,2,3,4}
• G2 = Stab(G1,1), Orbit(G2,2) = {2,3,4}
• G3 = Stab(G2,2), Orbit(G3,3) = {3,4}
• G4 = Stab(G3,3), Orbit(G4,4) = {4}

June 2007 Ian Gent, ACP Summer School  74

Generators and Groups

• Consider simple problem
• A3 + B3 + C3 + D3 = E3 + F3 + G3

• A…G :: 1..50
• Given any solution, we can permute the values of ABCD

and of EFG, independently.
• (A B C D) is permutation cycling A through D

• (A D) swaps A and D
• (E F G) cycles E through G
• (E G) swaps E and G

• These four permutations generate the group of different
ways to construct one solution from another.
• there are 4!3! = 144 group elements

June 2007 Ian Gent, ACP Summer School  75

GAP and GAP-ECLiPSe

• GAP is world leading computational algebra package
• accepts generators and computes using the whole group
• e.g. we pass four elements (A B C D), (A D), (E F G), (E G)

• GAP computes with full group of size 144
• 144 is unusually small
• number of generators is at worst logarithmic in size of group

• GAP-ECLiPSe
• define generating elements and pass to GAP
• constraint problem searched in ECLiPSe
• dominance check written in GAP
• could be done in any pair of Algebra/Constraint packages



  

 26

June 2007 Ian Gent, ACP Summer School  76

SBDS using Computational Group
Theory

• Want to retain advantages of SBDS and
eliminate disadvantages

• Can easily remove need for lots of symmetry
functions [e.g. McDonald 01]
• just include generators of symmetry group
• i.e. enough symmetries so that an arbitrary

symmetry can be constructed of the generators
composed enough times

Section 10.5.4, p358

June 2007 Ian Gent, ACP Summer School  77

SBDS using Computational Group
Theory

• Now want to remove existence of duplicate
symmetries …
• again, pretty easy [McDonald 01]

• while retaining deletion of broken symmetries
• this is not so easy [Gent, Harvey, Kelsey, 02]
• will just sketch how to do this using CGT

• Key concepts are
• stabiliser chain
• right transversal

June 2007 Ian Gent, ACP Summer School  78

SBDS using Computational Group
Theory

• stabiliser chain
• form stabiliser of each search decision var=val

• in context of previous stabiliser in stabiliser chain
• starting from original group G at root of tree

• right transversal
• orbit of this stabiliser in previous element of chain

• no other element of group gives essentially different element

• all possible distinct SBDS constraints formed by navigating
transversals of stabiliser chain in all possible ways

• Now to avoid considering broken symmetries



  

 27

June 2007 Ian Gent, ACP Summer School  79

SBDS using Computational Group
Theory

• We no longer construct SBDS constraints
• We traverse stabiliser/transversal chain

• searching for values that would be removed for
constraints if we added them

• elements of transversal correspond to elements
of a SBDS constraint
• we do not continue searching if an element

corresponds to a broken symmetry
• this corresponds to removing broken symmetries

June 2007 Ian Gent, ACP Summer School  80

SBDS using Computational Group
Theory

• Further efficiency gains from lazy evaluation
• We do not continue search if we do not know the

value of an element
• unless it’s the last element in structure

• corresponding to a value that would be removed by an SBDS
constraint

• this saves huge amounts of search
• but reduces number of values removed by SBDS

constraints

• Lets us use groups up to 109 in BIBD’s
• compared to 104 using conventional SBDS

Tip

Be known for something



  

 28

Tip

Be idiosyncratic

Tip

Be odd

June 2007 Ian Gent, ACP Summer School  84

Be idiosyncratic

• If it’s something you would
do anyway…
• Juggle in talks
• Wear odd socks
• Wear Ben & Jerry’s t-shirts

• It gives you something to
talk to people about



  

 29

June 2007 Ian Gent, ACP Summer School  85

Be idiosyncratic

• P.s. it’s ok to get known for
your work too ..
• Oh yes, Geetha, she’s the

one who proved P=NP
• Chris wrote Minion

• But for mortals among us
juggling is a useful backup

June 2007 Ian Gent, ACP Summer School  86

SBDD: Symmetry Breaking by
Dominance Detection

• Symmetry Breaking by Dominance Detection
• Fahle, Schamberger, Sellmann, 2001
• Foccaci, Milano, 2001
• prefigured by Brown, Finkelstein, Purdom, 1988

• Do not search a node if you have searched its
equivalent before
• check before entering a node

Section 10.5.2, p357

June 2007 Ian Gent, ACP Summer School  87

SBDD: Past states as nogoods

Avoids generating states isomorph
to past states

S

X

     State
     Solution,  
X  Fail

If  ∃σ s.t. S =  σ(S’), S’ past state

then S can be pruned

S’

σ

X



  

 30

June 2007 Ian Gent, ACP Summer School  88

Generalized nogoods

S

Only look at the roots of left subtrees

S’

If  ∃σ s.t. S ⇒ σ(S’), S’ left child

then S can be pruned
σ

X      State
     Solution,  
X  Fail

June 2007 Ian Gent, ACP Summer School  89

Dominance Check

• Hand coded checking procedure
• Express check as a constraint problem

• State inclusion

• Use sub graph isomorphism
• Use graph isomorphism
• Use CGT

• Gent, Harvey, Kelsey, Linton wrote a generic dominance
checker

• works for any constraint problem
• user has only to define the group acting on the CSP

June 2007 Ian Gent, ACP Summer School  90

Using graph theory

• Each state is represented by a graph.
• Two states are equivalent if their graphs are

isomorph
• A state dominates another state if its graph is

isomorph
• Symmetries of the problem translate into

symmetries of the graph



  

 31

June 2007 Ian Gent, ACP Summer School  91

Example : BIBD

11000

00110
•All rows and all columns can be permuted
•0-1 variables
•Some constraints
•A partial state is shown

•On vertex per row, and one per column
•An edge if the variable is set to 1.

June 2007 Ian Gent, ACP Summer School  92

Dominance check

• Sub graph isomorphism
• Can be tackled as a separate CSP (Puget 02)
• Another approach is to store all past states

• Dominance is then graph isomorphism (Pearson
04)

June 2007 Ian Gent, ACP Summer School  93

Dominance Check using CGT

Root

X=a X ≠ a

Y=b

Z=c Z ≠c

W=d W ≠d

Can we proceed?

1. Deduce consequences of
X≠a, Y=b, Z≠c, W ≠d

2. Is X=a equivalent to anything
deduced?

3. Is Y=b, Z=c equivalent to
anything deduced?

4. Is Y=b, W=d equivalent to
anything deduced?

Section 10.5.5, p359



  

 32

June 2007 Ian Gent, ACP Summer School  94

Dominance Check using CGT

• failsets
• sets of decisions at failed nodes
• {X=a}, {Y=b,Z=c}, {Y=b,W=d}

• pointset
• set of assigned variables at current

node
• {Y=b,X=b,V=c}

• includes propagated values
• assume X=b, V=c set by inference

• It is a heuristic choice to have failsets
as small as possible, pointset as big
as possible.

Root

X=a X ≠ a

Y=b

Z=c Z ≠c

W=d W ≠d

Can we proceed?

June 2007 Ian Gent, ACP Summer School  95

Dominance Check as Search

• Dominance check is an algebraic search
• Aside: anyone who has written a dominance check

has written a computational algebra program!

• Seek group element g and failset S s.t.
• S g ⊆ Pointset

• Search process is essentially straightforward
• but omit most algebraic details here [talk to Steve

Linton for them!]
• critical to performance by several orders of magnitude

June 2007 Ian Gent, ACP Summer School  96

Dominance Check as Search

• Recursive backtracking search
• work through failset
• find ways of mapping first element of failset to elements of

pointset: try these in turn
• recurse for second element, fixing the mapping of the first

element

• GAP allows us to make computation efficient
• work in stabilizers, subgroups fixing work done so far
• use transversals, the places that elements can map to
• use Schreier vectors for efficiency



  

 33

June 2007 Ian Gent, ACP Summer School  97

Dominance Check as Search

• is there g, S with
S g ⊆ Pointset ?
• S in failsets: {X=a},

{Y=b,Z=c},
{Y=b,W=d}

• Pointset:
{Y=b,X=b,V=c}

• Use the fact that Y=b
shared between
second two failsets

• Can we map X=a into Pointset?
• no!

• Can we map Y=b into Pointset?
• Yes!

• Y=b  Y=b
• Use Stabilizer of Y=b
• Can we map Z=c into {X=b,V=c}?

• no!
• Can we map W=d into {X=b, V=c}?

• Yes!
• {Y=b,W=d}  {Y=b, V=c}

• Dominance detected so backtrack

June 2007 Ian Gent, ACP Summer School  98

Inference from Dominance

• Dominance can deduce domain removals
• Where a domain value would make dominance

succeed, it can be removed
• Already known (Fahle et al, Brown et al)
• Again generically implemented

• Work heuristically
• i.e. only report removals we find easily
• Petrie [SymCon03] shows this can increase search

compared to SBDS, which finds all removals

June 2007 Ian Gent, ACP Summer School  99

Symmetry Breaking Heuristics

• Meseguer and Torras,2001
• Break symmetry as early as POSSIBLE
• Use Heuristics to do this

• Branch into parts of the search space with little
symmetry

• M&T give a heuristic to do this

• This idea  has not been explored further

Section 10.5.3, p357



  

 34

Tip

Put up with your collaborators being
incredibly annoying

June 2007 Ian Gent, ACP Summer School  101

Put up with your collaborators
being incredibly annoying

• Working with other smart people is the best part of the job …
• I should know, I’ve worked with…

• ... Well, the same bunch of people.

• And sometimes they can be incredibly annoying!
• If you’ve collaborated you know what I mean.
• Odd, since you and I are never annoying!

• P.s. my wife is never incredibly annoying of course!

• Be nice to them anyway
• A research group can be like a family

• And I mean the good and bad ways
• Don’t be an abused partner

• But don’t be surprised at fights the day before paper deadlines

June 2007 Ian Gent, ACP Summer School  102

The definition of a GE-tree

● A Group Equivalence tree (GE-tree) for a CSP with
symmetry group G is any search tree T that satisfies
the following two rules

1 .  No node of T is isomorphic under G to any other node.

2 . Given a full assignment A, there is at least one leaf of T
which lies in the orbit of A  under G.

Section 10.5.6, p360



  

 35

June 2007 Ian Gent, ACP Summer School  103

A GE-tree for S_n on values 1,2,3,4 … n

1

1 2

1 2 1 2 3

1 2 1 2 3 12 3 1 2 3 1 2 3 4

X

Y

Z

W

June 2007 Ian Gent, ACP Summer School  104

S_n on values

• There’s a simple rule for this
case…

• For each variable,
• try each value used for

previous variables and one
more

• This and other cases given
by
• van Hentenryck et al 03

• Generalised by
• Roney-Dougal et al 04

4321
3321
2321
1321
3221
2221
1221
3121
2121
1121
3211
2211
1211
2111
1111

WZYX

June 2007 Ian Gent, ACP Summer School  105

Constructing GE-trees for value symmetries

• Suppose that the value group of a CSP consists
only of pure value symmetries.

• At each node N  we proceed as follows:
• Compute the pointwise stabiliser G_N of all values

occuring in the path from the root to N.
• Pick a variable X which has not yet been assigned.
• Compute the orbits of G_N  on the domain of X.
• For each orbit, select a representative, and make a

branch below N  that is labelled with that
representative.



  

 36

June 2007 Ian Gent, ACP Summer School  106

Constructing GE-trees for value symmetries

• S_n on values was a special case of this
• orbits are values assigned so far and all the rest
• so orbit representatives are

• all values assigned so far and one more
• Algorithm is completely general for arbitrary value symmetry

groups
• even if values move different variables differently

• Takes time O~((nm)4) in worst case
• So …

June 2007 Ian Gent, ACP Summer School  107

Constructing GE-trees for value symmetries

• Value symmetry breaking is
tractable for arbitrary value groups

June 2007 Ian Gent, ACP Summer School  108

S_n on variables

• GE-trees can be used on
arbitrary symmetries

• There won’t be such nice
general results for value
symmetries

• But for S_n on variables there is
still a simple rule

• For each variable,
• try each value >= value of

previous variable

• Note this is the same as the
naïve idea X <= Y <= Z

333
332
322
222
331
321
221
311
211
111

ZYX



  

 37

June 2007 Ian Gent, ACP Summer School  109

Combining methods

• When the order in which solutions are
searched is the same as the one used in lex
leaders, then

• SBDD, GE tree, and Lex leader can be
combined together
• E.g. see Puget, IJCAI 2005
• Care is needed (prove it’s correct!)

June 2007 Ian Gent, ACP Summer School  110

STAB

Use the group of symmetries that leaves
the current partial assignment unchanged
(the stabilizer)

Can use a subset of the stabilizer

Constraints are added BEFORE
backtracking

Different from SBDS/SBDD

Do not break all symmetries
Add constraints here

Add constraints before backtracking

Section 10.5.7 p361

June 2007 Ian Gent, ACP Summer School  111

Example : Matrix problem
All rows and all columns can be permuted

11000

00110
•Assume the first 10 variables are fixed

•One symmetry of the stabilizer is shown :
•The first two rows are swapped
•Columns 2 and 4 are swapped
•Columns 3 and 5 are swapped

•Variables are ordered as shown

X20X19X18X17X16

X15X14X13X12X11

X10X9X8X7X6

X5X4X3X2X1



  

 38

June 2007 Ian Gent, ACP Summer School  112

Example (Ct’d)

00110

11000

[X1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20]
<=
[x6,x9,x10,x7,x8,x1,x4,x5,x2,x3,x11,x14,x15,x12,x13,x16,x19,x20,x17,x18]

Since X1..x10 fixed, it can be simplified into

[x11,x12,x13,x14,x15,x16,x17,x18,x19,x20]
<=
[x11,x14,x15,x12,x13,x16,x19,x20,x17,x18]

X20X19X18X17X16

X15X14X13X12X11

X10X9X8X7X6

X5X4X3X2X1

Add a lexicographic ordering constraint

June 2007 Ian Gent, ACP Summer School  113

Sum of identical columns

020

200

[x11, x12+x13, x14+x15, x16, x17+x18, x19+x20]
<=
[x11, x14+x15, x12+x13, x16, x19+x20, x17+x18]

Very effective improvement

X19+X20X17+X18X16

X14+X15X12+X13X11

X9+X10X7+X8X6

X4+X5X2+X3X1

June 2007 Ian Gent, ACP Summer School  114

STAB

• At the root node, the stabilizer is the full
symmetry group

• Can state constraints for a subset
• For instance, double lex for matrix problems

• [Flener et al, CP’02]

• State that first row is smaller than all others

Root node



  

 39

June 2007 Ian Gent, ACP Summer School  115

Symmetry in Other Problems

• Symmetry affects search in many other
domains
• Model checking, planning, satisfiability, theorem

proving, integer programming…

• Some of the same techniques have been
used/reinvented in each domain.

• It is good to be aware of what’s been done
• But I won’t go into detail.

Section 10.9, p367

June 2007 Ian Gent, ACP Summer School  116

Symmetry in Satisfiability

• Lex-leader originates in a paper about SAT.
• In fact SAT is just a constraint problem in which

• Every domain has the two values T and F
• Every constraint has only one disallowed tuple

• Constraint propagation is really fast
• So lex-leader is almost universally used

• Work concentrates on detecting symmetry, finding good
subsets of lex-leader, etc.

June 2007 Ian Gent, ACP Summer School  117

Symmetry in Planning

• Main work is by Fox and Long
• Similarities and differences in approach
• Symmetry detection is important
• “Almost-symmetries” are important
• Breaking approach is a bit like SBDS.



  

 40

June 2007 Ian Gent, ACP Summer School  118

Symmetry in Model Checking

• Symmetry typically arises by use of duplicate
subcircuits.

• Has not traditionally used computational
algebra.

• CA has started to be used recently by
Donaldson et al

June 2007 Ian Gent, ACP Summer School  119

Symmetry in Theorem Proving

• Automated theorem proving is usually
undecidable
• Though SAT is an example of a propositional case

where it is NP complete

• Approach has usually been to devise proof
systems which incorporate symmetry in some
way.

• Quite a lot done in this area.

June 2007 Ian Gent, ACP Summer School  120

Symmetry in Mathematics

• This is almost a joke
• Group theory is a major research area in mathematics and is

exactly the study of symmetry
• The major free computational algebra system is GAP

• Mention a few relevant things
• nauty (Brendan McKay) for graph isomorphism
• GRAPE (Len Soicher) for graphs in groups in GAP
• www.designtheory.org (Soicher) for computational resources

in latin squares, designs in general, etc.
• Partition backtrack is a key and very hard algorithm



  

 41

June 2007 Ian Gent, ACP Summer School  121

Pros and Cons

• Three main approaches to symmetry breaking
• reformulate the problem
• adapt search algorithm to break symmetry
• add constraints before search

• Each has advantages and disadvantages

Section 10.10, p368

June 2007 Ian Gent, ACP Summer School  122

Pros and Cons

• reformulate the problem
• Pros

• Can lead to wonderful improvement in search
• Can be easy to combine with other methods

• Cons
• Can need magic
• No general method
• Can lead to complicated models

June 2007 Ian Gent, ACP Summer School  123

Pros and Cons

• adapt search algorithm to break symmetry
• Pros

• entirely general given only group generators
• gives unique solution from each equivalence class
• never conflicts with heuristic

• Cons
• complexity of dominance test can dominate
• constraint programmers can’t write generators



  

 42

June 2007 Ian Gent, ACP Summer School  124

Pros and Cons

• add constraints before search
• Pros

• can have extremely low overheads
• can be good tradeoff on amount of symmetry broken

• can deal effectively with commonly occurring
symmetry groups (e.g. matrix models)

• Cons
• doesn’t eliminate all symmetric versions
• can conflict with heuristics

June 2007 Ian Gent, ACP Summer School  125

Pros and Cons

• Combining Symmetry Breaking Methods
• Pros

• Get the best of all worlds
• Easy when combined with reformulation
• Can be done with great care in other cases

• Cons
• It is MUCH harder than you think
• Bad things happen when you are not looking
• It is MUCH MUCH harder than you think.
• Really, it’s hard.   I’m not kidding.  It’s difficult.

June 2007 Ian Gent, ACP Summer School  126

Tip

• Get good at writing papers
• Well, duhhhhhh
• But what I mean is

• Get good at all the boring stuff
• Judging the right content for a paper
• Writing it well
• Thinking of a good place to send it
• Meeting the deadline instead of not …



  

 43

June 2007 Ian Gent, ACP Summer School  127

Tip

• Get good at not writing papers
• Sometimes ideas don’t work out

• You know it in your heart of heart
• When you realise this, stop work

• Even if you have put serious work into it
• P.s. this does NOT apply to your PhD thesis

• Ever heard of the Concorde fallacy?

• Much better to use the time to do the other thing you
could be working on
• Instead of getting bad reviews
• OR getting a bad paper accepted

• Which can be worse for your reputation

June 2007 Ian Gent, ACP Summer School  128

Tip

• Get good at balancing the last two tips!

June 2007 Ian Gent, ACP Summer School  129

Nearly done!

• Now for some slightly more serious tips



  

 44

June 2007 Ian Gent, ACP Summer School  130

What should I do if ….

• I want to exploit symmetry in search
• But I don’t want to be a symmetry researcher?

• Understand a little about groups
• Understand lex-leader in principle
• Get used to the idea of adding lex-leader

constraints
• Be prepared NOT to break all symmetry

June 2007 Ian Gent, ACP Summer School  131

What should I do If …

• I want to do a PhD in symmetry?
• Read a most excellent survey that has recently been

written
• And catch up with literature published since

• Look for the holes
• And ones which are not too deep and technical

• Do some new research and get your PhD
• And visit St Andrews!

June 2007 Ian Gent, ACP Summer School  132

What can I do a Symmetry PhD on?

• Symmetry detection
• before and during search

• Symmetry in propagation
• Combination of symmetry breaking methods
• Automatic reformulation methods
• Symmetry introduction & relaxation

• almost symmetries

• Symmetry and implied constraints
• Constraint techniques for Group Theory
• And lots of other things.



  

 45

June 2007 Ian Gent, ACP Summer School  133

Two great long term results of
summer schools …

• If you have
been, thanks
for listening!

• John Ebdon, BBC Radio


