
Constraint Modelling Constraint Modelling
Challenge 2005Challenge 2005

Ian GentIan Gent
Barbara SmithBarbara Smith
July 31, 2005July 31, 2005

ThanksThanks

Patrick ProsserPatrick Prosser
Workshop Organizing CommitteeWorkshop Organizing Committee

especially especially ZeynepZeynep KiziltanKiziltan

CSPLibCSPLib & Toby Walsh& Toby Walsh
Ian Miguel, Sylvain Ian Miguel, Sylvain SolimanSoliman & CP Pod& CP Pod
Judith UnderwoodJudith Underwood
And the Challenge EntrantsAnd the Challenge Entrants

13 Entries and 24 Entrants13 Entries and 24 Entrants

Philippe Philippe BaptisteBaptiste
Nicolas Nicolas BeldiceanuBeldiceanu
TierryTierry BenoistBenoist
Mats Mats CarlssonCarlsson
Maria Garcia de la BandaMaria Garcia de la Banda
Peter StuckeyPeter Stuckey
Emmanuel Emmanuel HebrardHebrard
BrahimBrahim HnichHnich
Toby WalshToby Walsh
Alice MillerAlice Miller
Patrick ProsserPatrick Prosser
Chris Chris Unsworth

Gilles Gilles PesantPesant
Steven Steven PrestwichPrestwich
Paul ShawPaul Shaw
Philippe Philippe LaborieLaborie
Helmut Helmut SimonisSimonis
RadoslawRadoslaw SzymanekSzymanek
Mark HennessyMark Hennessy
Charlotte Charlotte TruchetTruchet
JérémieJérémie BourdonBourdon
Philippe Philippe CodognetCodognet
NicNic WilsonWilson
Karen PetrieUnsworth Karen Petrie

Advice to Future OrganisersAdvice to Future Organisers

We hope there is a Challenge 2006 and beyond so here are some We hope there is a Challenge 2006 and beyond so here are some
tips… tips…
Somehow, magically, get entrants to read the rules Somehow, magically, get entrants to read the rules
Be clear on allowing (or not) non constraints approachesBe clear on allowing (or not) non constraints approaches

we view them as a plus for the challengewe view them as a plus for the challenge
but some participants found the name confusingbut some participants found the name confusing

Find someone young and energetic to check instances for Find someone young and energetic to check instances for
validity and difficultyvalidity and difficulty

some teething troubles with instancessome teething troubles with instances
possible ‘ceiling effect’ made judging hardpossible ‘ceiling effect’ made judging hard

Well defined results format a Well defined results format a mustmust
Write a report Write a report

we hope ours gives a useful summary of approacheswe hope ours gives a useful summary of approaches

The Challenge, 2005The Challenge, 2005

Announced on May 11, Closing date June 29Announced on May 11, Closing date June 29
Four page entry + appendices with results etcFour page entry + appendices with results etc
Small prize for best paper (not necessarily best results)Small prize for best paper (not necessarily best results)
The problem can be seen in a number of waysThe problem can be seen in a number of ways

pathwidthpathwidth
an order processing optimisation probleman order processing optimisation problem
a mailbag sorting problema mailbag sorting problem
……

We presented it as the second choiceWe presented it as the second choice
but notice the equivalence with but notice the equivalence with pathwidthpathwidth
why isn’t this completely understood?why isn’t this completely understood?

because there has never been a because there has never been a Challenge?Challenge?

The problemThe problem

Manufacturer has Manufacturer has stacksstacks of of
partially completed orderspartially completed orders
Wants to minimise the max Wants to minimise the max
number of stacks needednumber of stacks needed

given the set of ordersgiven the set of orders

Each Each orderorder consists of a consists of a
number of number of productsproducts
Each product is made only Each product is made only
onceonce
Solution is by choice of when Solution is by choice of when
to make each productto make each product

The problemThe problem

Manufacturer has Manufacturer has stacksstacks of of
partially completed orderspartially completed orders
Wants to minimise the max Wants to minimise the max
number of stacks needednumber of stacks needed

given the set of ordersgiven the set of orders
Each Each orderorder consists of a consists of a
number of number of productsproducts
Each product is made only Each product is made only
onceonce
Solution is by choice of when Solution is by choice of when
to make each product

For mailbag sorting…For mailbag sorting…
orders are the bags of mailorders are the bags of mail
products are the cities the products are the cities the
letters are going toletters are going to
stacks are the pigeonholes the stacks are the pigeonholes the
mail goes intomail goes into
want to minimise the number want to minimise the number
of holes neededof holes needed

For For pathwidthpathwidth … …
products are the nodes of the products are the nodes of the
graphgraph
orders are the adjacency lists orders are the adjacency lists
for each node

to make each product
for each node

ExampleExample

5 Products 5 Products
4 Orders4 Orders
How many stacks?How many stacks?

1 2 3 4 51 2 3 4 5
All 5 stacks needed!All 5 stacks needed!

1 2 4 5 31 2 4 5 3
Only 3 stacks neededOnly 3 stacks needed
obviously optimalobviously optimalfrom [Simonis]

PreprocessingPreprocessing

orders(P1) orders(P1) ⊆⊆ orders(P2)orders(P2)
Put P1 next to P2Put P1 next to P2
all the stacks necessary for all the stacks necessary for
P1 are needed for P2P1 are needed for P2
P1 incurs no costP1 incurs no cost

orders(P2) orders(P2) ⊆⊆ orders(P4)orders(P4)
orders(P5) orders(P5) ⊆⊆ orders(P4)orders(P4)from [Simonis]

PreprocessingPreprocessing

Just sequence P3 / P4Just sequence P3 / P4
Useful for many of the Useful for many of the
Challenge instancesChallenge instances
Used by many entrants Used by many entrants

Other Other preprocessingpreprocessing
steps possible but not as steps possible but not as
effective in Challengeeffective in Challenge

from [Simonis]

Lower Bounds Lower Bounds

Lower bounds very helpful for proving optimalityLower bounds very helpful for proving optimality
Trivial one: max number of orders for a productTrivial one: max number of orders for a product
More complicated ones abound in entriesMore complicated ones abound in entries

[[BaptisteBaptiste]]
[Garcia de la Banda, Stuckey][Garcia de la Banda, Stuckey]
[Miller][Miller]
[[PesantPesant]]
[Shaw, [Shaw, LaborieLaborie]]
[[SimonisSimonis]]

Symmetry BreakingSymmetry Breaking

Order of products can be reversed without costOrder of products can be reversed without cost
easy to break in most modelseasy to break in most models

Some models introduce symmetry in modellingSome models introduce symmetry in modelling
greater or lesser problem depending on the modelgreater or lesser problem depending on the model

Modelling the Open Stacks ProblemModelling the Open Stacks Problem

Entrants used the following techniques…Entrants used the following techniques…
Constraint Programming Constraint Programming

considerable variety within thisconsiderable variety within this

Mixed Integer ProgrammingMixed Integer Programming
Local SearchLocal Search
Model CheckingModel Checking
Dynamic ProgrammingDynamic Programming

We sketch the main techniques nextWe sketch the main techniques next

Constraint Programming (1)Constraint Programming (1)

Basic ModelBasic Model::
a variable for each producta variable for each product
values are positions in the sequencevalues are positions in the sequence
allall--different constraintdifferent constraint
secondary variables to count open stackssecondary variables to count open stacks
objective is to minimise max number of open stacksobjective is to minimise max number of open stacks

Nobody used a model aloneNobody used a model alone

Constraint Programming (2)Constraint Programming (2)

Dual ModelDual Model::
a variable for each position in the sequencea variable for each position in the sequence
values are productsvalues are products
can link to basic model by channelling constraintscan link to basic model by channelling constraints

[Miller, Prosser, [Miller, Prosser, UnsworthUnsworth]]
search from 1search from 1stst to last positionto last position
use dynamic bounds (but expensive)use dynamic bounds (but expensive)
schedule a product next if it can be done so for free schedule a product next if it can be done so for free

[Shaw, [Shaw, LaborieLaborie]]
partition products into two subsets P1, P2partition products into two subsets P1, P2

P1 will be sequenced before P2P1 will be sequenced before P2
each subset solved independently each subset solved independently
search decisions are whether to put products into P1 or P2search decisions are whether to put products into P1 or P2

[[HebrardHebrard, , HnichHnich, Walsh], Walsh]
only only the dual variablesthe dual variables
special purpose global constraints for propagationspecial purpose global constraints for propagation

Constraint Programming (3)Constraint Programming (3)

Permuting the customersPermuting the customers
optimal permutation of the ordersoptimal permutation of the orders

proposed by proposed by YanasseYanasse, EJOR 1997, EJOR 1997
consider the first order to be completed at time Tconsider the first order to be completed at time T

every product in that order must have been made by Tevery product in that order must have been made by T
there is no need to schedule any other product before Tthere is no need to schedule any other product before T
the max number of open stacks during the first order occurs at ethe max number of open stacks during the first order occurs at exactly time Txactly time T

generalise this idea to work for subsequent customersgeneralise this idea to work for subsequent customers
now search on now search on customer elimination orderingcustomer elimination ordering

[Wilson, Petrie] [Wilson, Petrie]
encode this idea into CPencode this idea into CP
variables are positions in customer elimination orderingvariables are positions in customer elimination ordering
value is customer order to be eliminated value is customer order to be eliminated
initial solutions are very good (often optimal)initial solutions are very good (often optimal)

similar heuristic used by [Miller]similar heuristic used by [Miller]

Constraint Programming (4)Constraint Programming (4)

Multiple viewpointsMultiple viewpoints
number of different models linked by channelling constraintsnumber of different models linked by channelling constraints

[[SzymanekSzymanek, Hennessy] , Hennessy]
main variables are for pairs of customer ordersmain variables are for pairs of customer orders

0 if the stack for one is closed before the stack for the other 0 if the stack for one is closed before the stack for the other is is
opened opened

so they could share a stack potentiallyso they could share a stack potentially
1 if they are both open at the same time1 if they are both open at the same time

also uses a permutation of ordersalso uses a permutation of orders
again dominance rules again dominance rules

[Shaw, [Shaw, LaborieLaborie] use many viewpoints] use many viewpoints

Constraint Programming (5)Constraint Programming (5)

SchedulingScheduling
we are scheduling, so it’s not surprising it is usefulwe are scheduling, so it’s not surprising it is useful
view each order as a view each order as a task task requiring a requiring a resource resource (stack)(stack)
use use start start and and end end of each taskof each task

these can give useful derived constraintsthese can give useful derived constraints
[[BeldiceanuBeldiceanu, , CarlssonCarlsson]]

started from the basic model started from the basic model
use use cumulative cumulative constraint in SICSTUS constraint in SICSTUS PrologProlog
order variables by decreasing number of customers requiring itorder variables by decreasing number of customers requiring it

[Shaw, [Shaw, LaborieLaborie]]
some derived constraintssome derived constraints

[[SimonisSimonis]]
again some derived constraintsagain some derived constraints

Constraint Programming (6)Constraint Programming (6)

Graph ColouringGraph Colouring
use the “couse the “co--demand” graphdemand” graph

node for each ordernode for each order
edge for orders needing the same productedge for orders needing the same product

need additional constraints for legalityneed additional constraints for legality
can get derived constraintscan get derived constraints

[[PesantPesant]]
based entirely on constrained graph colouring problem based entirely on constrained graph colouring problem
break symmetries by finding a large clique quicklybreak symmetries by finding a large clique quickly
from colourings, try to construct a legal orderingfrom colourings, try to construct a legal ordering

[Shaw, [Shaw, LaborieLaborie]]
turn up again with some more derived constraintsturn up again with some more derived constraints

Constraint Programming (7)Constraint Programming (7)

Putting products in orderPutting products in order
partial solution indicates order of products sequenced partial solution indicates order of products sequenced

but but not not their positions in the sequencetheir positions in the sequence

[[SimonisSimonis]]
real valued variables used for position real valued variables used for position

so that any number of others can be inserted between any twoso that any number of others can be inserted between any two
search tree is narrow at the root, broad at leavessearch tree is narrow at the root, broad at leaves

should help prove optimality quicklyshould help prove optimality quickly

choose products early needed by lots of customerschoose products early needed by lots of customers
partial search used to find good solutions quicklypartial search used to find good solutions quickly

Mixed Integer ProgrammingMixed Integer Programming

[[BaptisteBaptiste]]
MIP Formulation similar to Basic ModelMIP Formulation similar to Basic Model

with 0/1 variables instead of nwith 0/1 variables instead of n--valuedvalued
cuts act cuts act analagouslyanalagously to implied constraintsto implied constraints

Weakness is inability to break symmetriesWeakness is inability to break symmetries
e.g. permutations not affecting number of stackse.g. permutations not affecting number of stacks

“almost symmetries”“almost symmetries”

Local SearchLocal Search

[[PrestwichPrestwich]]
Similar model to [Similar model to [BaptisteBaptiste] MIP] MIP
Increase solution density to help local searchIncrease solution density to help local search

each solution to original problem transformed to many in new vereach solution to original problem transformed to many in new versionsion
each solution in new problem can be transformed back to originaleach solution in new problem can be transformed back to original solutionsolution

[[TruchetTruchet, Bourdon, , Bourdon, CodognetCodognet]]
get orders with no products in common to share a stackget orders with no products in common to share a stack
objective relaxed to be this potential instead of true valueobjective relaxed to be this potential instead of true value

in fact maximum of this can be used for true maximumin fact maximum of this can be used for true maximum
local search in this frameworklocal search in this framework

[Shaw, [Shaw, LaborieLaborie]]
put this into the mix as well, using Large Neighbourhood Searchput this into the mix as well, using Large Neighbourhood Search

Model CheckingModel Checking

[Miller][Miller]
sequence with M open stacks violates a safety sequence with M open stacks violates a safety
propertyproperty

model checking gives a counterexample which can model checking gives a counterexample which can
be translated to a solution of the stacks problembe translated to a solution of the stacks problem

uses this with lower bounds to prove optimalityuses this with lower bounds to prove optimality
some caching of visited states in Model Checkersome caching of visited states in Model Checker

Dynamic ProgrammingDynamic Programming

[Garcia de la Banda, Stuckey][Garcia de la Banda, Stuckey]
Consider state at time T, after some products orderedConsider state at time T, after some products ordered

open stacks are for orders involvingopen stacks are for orders involving
either product made at time Teither product made at time T
or any product made before T & a product made after Tor any product made before T & a product made after T

sequence of orders before/after T does not affect thissequence of orders before/after T does not affect this
reduces to search of subsets (before/after T)reduces to search of subsets (before/after T)

smaller search spacesmaller search space
suitable for dynamic programmingsuitable for dynamic programming

lower bounds usedlower bounds used
Do not use CPDo not use CP

but equivalent to CP with but equivalent to CP with memoizationmemoization

Conclusions on ProblemConclusions on Problem

Most successful entries were complex Most successful entries were complex
PreprocessingPreprocessing is vital is vital

irrelevant products/customers and lower boundsirrelevant products/customers and lower bounds
Sequencing customers better than productsSequencing customers better than products
Can divide and conquerCan divide and conquer

product sequence before time p does not affect optimal sequence product sequence before time p does not affect optimal sequence after after
time ptime p

Key is reKey is re--using stacksusing stacks
can only reuse if two orders have no products in commoncan only reuse if two orders have no products in common

Local search can perform very wellLocal search can perform very well
Harder benchmarks needed for this problemHarder benchmarks needed for this problem

to avoid to avoid overfittingoverfitting to benchmark setto benchmark set

Conclusions on ChallengeConclusions on Challenge

Far more successful than we expectedFar more successful than we expected
number & spread of entrantsnumber & spread of entrants
variety of approachesvariety of approaches
the challenge draws people in the challenge draws people in

thanks to Patrick again for proposing itthanks to Patrick again for proposing it
More and deeper analysis than most problemsMore and deeper analysis than most problems

not dominated by the first model suggested not dominated by the first model suggested
many entries of research paper qualitymany entries of research paper quality
and all from May 11 to June 29, 2005and all from May 11 to June 29, 2005

Entrants don’t know how others are doing!Entrants don’t know how others are doing!
fastest ones keep working on improvementsfastest ones keep working on improvements
slowest ones still write good reportsslowest ones still write good reports

There should be another Challenge in 2006There should be another Challenge in 2006

And the runners up are … And the runners up are …

… in alphabetical order… in alphabetical order
Paul Shaw & Philippe Paul Shaw & Philippe LaborieLaborie
Steven Steven PrestwichPrestwich
NicNic Wilson & Karen PetrieWilson & Karen Petrie

And the winner is …And the winner is …

Maria Garcia de la Banda & Peter StuckeyMaria Garcia de la Banda & Peter Stuckey

	Constraint Modelling Challenge 2005
	Thanks
	13 Entries and 24 Entrants
	Advice to Future Organisers
	The Challenge, 2005
	The problem
	The problem
	Example
	Preprocessing
	Preprocessing
	Lower Bounds
	Symmetry Breaking
	Modelling the Open Stacks Problem
	Constraint Programming (1)
	Constraint Programming (2)
	Constraint Programming (3)
	Constraint Programming (4)
	Constraint Programming (5)
	Constraint Programming (6)
	Constraint Programming (7)
	Mixed Integer Programming
	Local Search
	Model Checking
	Dynamic Programming
	Conclusions on Problem
	Conclusions on Challenge
	And the runners up are …
	And the winner is …

