Constraint Modelling
Challenge 2005

[an Gent
Barbara Smith
July 31, 2005

Thanks

m Patrick Prosser
m Workshop Organizing Committee
m especially Zeynep Kiziltan
m CSPLib & Toby Walsh
m [an Miguel, Sylvain Soliman & CP Pod
m Judith Underwood
m And the Challenge Entrants

13 Entries and 24 Entrants

Philippe Baptiste
Nicolas Beldiceanu
Tierry Benoist

Mats Carlsson
Maria Garcia de la Banda
Peter Stuckey
Emmanuel Hebrard
Brahim Hnich
Toby Walsh

Alice Miller

Patrick Prosser

Chris Unsworth

Gilles Pesant
Steven Prestwich
Paul Shaw
Philippe Laborie
Helmut Simonis
Radoslaw Szymanek
Mark Hennessy
Chatlotte Truchet
Jérémie Bourdon
Philippe Codognet
Nic Wilson

Karen Petrie

Advice to Future Organisers

We hope there is a Challenge 2006 and beyond so here are some
tips. ..

Somehow, magically, get entrants to read the rules
Be clear on allowing (or not) non constraints approaches

= we view them as a plus for the challenge
= but some participants found the name confusing

Find someone young and energetic to check instances for

validity and difficulty

= some teething troubles with instances

m possible ‘ceiling effect’ made judging hard
Well defined results format a must

Write a report
= we hope ours gives a useful summary of approaches

The Challenge, 2005

Announced on May 11, Closing date June 29

Four page entry + appendices with results etc

Small prize for best paper (not necessarily best results)

The problem can be seen in a number of ways

pathwidth
an order processing optimisation problem

a mailbag sorting problem

We presented it as the second choice

but notice the equivalence with pathwidth

m why isn’t this completely understood?

B because there has never been a Challenger

The problem

Manutacturer has stacks of
partially completed orders

Wants to minimise the max
number of stacks needed
= oiven the set of orders

Each order consists of a
number of products

Each product is made only
once

Solution is by choice of when
to make each product

The problem

Manufacturer has stacks of
partially completed orders

Wants to minimise the max
number of stacks needed
m goiven the set of orders

Each order consists of a
number of products

Each product is made only
once

Solution is by choice of when
to make each product

m For mailbag sorting. ..
m orders are the bags of mail

= products are the cities the
letters are going to

m stacks are the pigeonholes the
mail goes into

B want to minimise the number
of holes needed
m For pathwidth ...
m products are the nodes of the
graph
m orders are the adjacency lists
for each node

Example

m 5 Products

® 4 Orders
-l-l.l.l-lﬂ ® How many stacks?
(O, | 1 |1]0]1]0 |
0, [0 [T [0 [1[I " 12345
“---- m All 5 stacks needed!
0, [0 [0 [T [0 [0
Os | 0 O] 11070 | m 12455

m Only 3 stacks needed

from [Simonis]

m obviously optimal

Preprocessing

m orders(P1) < orders(P2)

m Put Pl next to P2

-l-l.l-l-m m all the stacks necessary for
--- P1 are needed for P2

- m P1 incurs no cost

BHEHEH
0 10 [0 1 [0]0] m orders(P2) < orders(P4)
m orders(P5) € orders(PP4)

from [Simonis]

Preprocessing

m Just sequence P3 / P4

m Useful for many of the
Challenge instances

5 |
= m Used by many entrants
B
B

O, [1 |
u 1 0 ’
s | § [ﬂ--l O m Other preprocessing

Jrom [Simonis] steps possible but not as
etfective in Challenge

Lower Bounds

m [ower bounds very helpful for proving optimality
m Trivial one: max number of orders for a product

®m More complicated ones abound in entries
u [Baptiste]
m [Garcia de la Banda, Stuckey]
= [Miller]
m [Pesant]
® [Shaw, Laborie]

® [Simonis|

Symmetry Breaking

m Order of products can be reversed without cost

m casy to break in most models

m Some models introduce symmetry in modelling

m greater or lesser problem depending on the model

Modelling the Open Stacks Problem

m FEntrants used the following techniques...

= Constraint Programming

m considerable variety within this
= Mixed Integer Programming
® [.ocal Search

= Model Checking

® Dynamic Programming

m We sketch the main techniques next

Constraint Programming (1)

m Basic Model:

m a variable for each product

® values are positions in the sequence

m all-different constraint

® secondary variables to count open stacks

B objective 1s to minimise max number of open stacks

= Nobody used a model alone

Constraint Programming (2)

Dual Model:

m g variable for each position in the sequence
® values are products
® can link to basic model by channelling constraints

[Miller, Prosser, Unsworth]
m search from 1% to last position
® use dynamic bounds (but expensive)
m schedule a product next if it can be done so for free

[Shaw, Laborie]

® partition products into two subsets P1, P2
m P1 will be sequenced before P2
m cach subset solved independently
m search decisions are whether to put products into P1 or P2

[Hebrard, Hnich, Walsh]|
= only the dual variables
m special purpose global constraints for propagation

Constraint Programming (3)

® Permuting the customers

m optimal permutation of the orders
m proposed by Yanasse, EJOR 1997

m consider the first order to be completed at time T
m cvery product in that order must have been made by T
m there is no need to schedule any other product before T
m the max number of open stacks during the first order occurs at exactly time T

m generalise this idea to work for subsequent customers
m now search on customer elimination ordering

m [Wilson, Petrie]
encode this i1dea into CP
variables are positions in customer elimination ordering
value 1s customer order to be eliminated
initial solutions are very good (often optimal)
m similar heuristic used by [Miller]

Constraint Programming (4)

® Multiple viewpoints

= number of different models linked by channelling constraints

B [Szymanek, Hennessy]

B main variables are for pairs of customer orders

m (if the stack for one is closed before the stack for the other is
opened

® so they could share a stack potentially

m | if they are both open at the same time
® also uses a permutation of orders

® again dominance rules

m [Shaw, Laborie| use many viewpoints

Constraint Programming (5)

Scheduling
= we are scheduling, so it’s not surprising it 1s useful
m view each order as a task requiring a tesource (stack)
m use start and end of each task
m these can give useful derived constraints
[Beldiceanu, Carlsson]
m started from the basic model
= use cumulative constraint in SICSTUS Prolog
m order variables by decreasing number of customers requiring it

[Shaw, Laborie]

m some derived constraints
[Simonis]
® again some derived constraints

Constraint Programming (6)

® Graph Colouring

® use the “co-demand” graph
m node for each order
m cdge for orders needing the same product

= need additional constraints for legality
® can get derived constraints

B [Pesant]
® based entirely on constrained graph colouring problem
m break symmetries by finding a large clique quickly
= from colourings, try to construct a legal ordering

® [Shaw, Laborie]

® turn up again with some more derived constraints

Constraint Programming (7)

m Putting products in order

m partial solution indicates order of products sequenced

m but not their positions in the sequence
B [Simonis]
m real valued variables used for position

m so that any number of others can be inserted between any two

B scarch tree is narrow at the root, broad at leaves

m should help prove optimality quickly
m choose products early needed by lots of customers

m partial search used to find good solutions quickly

Mixed Integer Programming

m |Baptiste]

m MIP Formulation similar to Basic Model
m with 0/1 variables instead of n-valued
® cuts act analagously to implied constraints

m Weakness is inability to break symmetries

® c.g. permutations not affecting number of stacks

m “almost symmetries”

Local Search

m [Prestwich]
= Similar model to [Baptiste] MIP
m Increase solution density to help local search
m cach solution to original problem transformed to many in new version
m cach solution in new problem can be transformed back to original solution
m [Truchet, Bourdon, Codognet]
m get orders with no products in common to share a stack

= objective relaxed to be this potential instead of true value

B in fact maximum of this can be used for true maximum

m local search in this framework

m [Shaw, [Laborie]

= put this into the mix as well, using L.arge Neighbourhood Search

Model Checking

m [Miller]
m sequence with M open stacks violates a safety
property

® model checking gives a counterexample which can
be translated to a solution of the stacks problem

m uses this with lower bounds to prove optimality

m some caching of visited states in Model Checker

Dynamic Programming

m [Garcia de la Banda, Stuckey]

m Consider state at time T, after some products ordered

m open stacks are for orders involving
m cither product made at time T
m or any product made before T & a product made after T

m sequence of orders before/after T does not affect this

= reduces to search of subsets (before/after T)
m smaller search space

® suitable for dynamic programming
B Jower bounds used

® Do not use CP
= but equivalent to CP with memoization

Conclusions on Problem

Most successtul entries were complex
Preprocessing is vital

m irrelevant products/customers and lower bounds
Sequencing customers better than products
Can divide and conquer

m product sequence before time p does not affect optimal sequence after
time p

Key is re-using stacks
m can only reuse if two orders have no products in common

Local search can perform very well

Harder benchmarks needed for this problem

= to avoid overfitting to benchmark set

Conclusions on Challenge

Far more successful than we expected
= number & spread of entrants
m variety of approaches
= the challenge draws people in
m thanks to Patrick again for proposing it
More and deeper analysis than most problems
= not dominated by the first model suggested
= many entries of research paper quality
= and all from May 11 to June 29, 2005
Entrants don’t know how others are doing]
m fastest ones keep working on improvements
= slowest ones still write good reports

There should be another Challenge in 2006

And the runners up are ...

... in alphabetical order
m Paul Shaw & Philippe Laborie
m Steven Prestwich
® Nic Wilson & Karen Petrie

And the winneris ...

m Maria Garcia de la Banda & Peter Stuckey

	Constraint Modelling Challenge 2005
	Thanks
	13 Entries and 24 Entrants
	Advice to Future Organisers
	The Challenge, 2005
	The problem
	The problem
	Example
	Preprocessing
	Preprocessing
	Lower Bounds
	Symmetry Breaking
	Modelling the Open Stacks Problem
	Constraint Programming (1)
	Constraint Programming (2)
	Constraint Programming (3)
	Constraint Programming (4)
	Constraint Programming (5)
	Constraint Programming (6)
	Constraint Programming (7)
	Mixed Integer Programming
	Local Search
	Model Checking
	Dynamic Programming
	Conclusions on Problem
	Conclusions on Challenge
	And the runners up are …
	And the winner is …

