
Constraint Modelling Challenge 2005

In conjunction with The Fifth Workshop on
Modelling and Solving Problems with Constraints

Held at IJCAI 2005, Edinburgh, Scotland, 31 July, 2005

Barbara M. Smith and Ian P. Gent
Cork Constraint Computation Centre, University College Cork, Ireland
and School of Computer Science, University of St Andrews, Scotland

1 Introduction
The first Constraint Modelling Challenge was posed in May
2005; we challenged constraint programmers to solve a dif-
ficult optimization problem. There are a number of existing
papers on the problem that we chose, but it had not previously
been tackled using constraint programming, to our knowl-
edge. In this paper, we attempt to present the thirteen sub-
missions that we received, summarising the wide variety of
ideas that the Challenge entrants used, and pointing out dif-
ferences and similarities.

The statement of the problem follows:

A manufacturer has a number of orders from cus-
tomers to satisfy; each order is for a number of dif-
ferent products, and only one product can be made
at a time. Once a customer’s order is started (i.e.
the first product in the order is being made) a stack
is created for that customer. [Each customer places
exactly one order.] When all the products that a
customer requires have been made, the order is sent
to the customer, so that the stack is closed. Be-
cause of limited space in the production area, the
maximum number of stacks that are in use simulta-
neously, i.e. the number of customer orders that are
in simultaneous production, should be minimized.
More formally: we are given a Boolean matrix in
which the columns correspond to the products and
each row corresponds to the order of a particular
customer. The entrycij = 1 iff customer i has
ordered some quantity of productj (the quantity
ordered is irrelevant). The objective is to find a per-
mutation of the products such that the maximum
number of open orders at any point in the sequence
is minimized: orderi is open at pointk in the pro-
duction sequence if there is a product required in
order i that appears at or before positionk in the
sequence and also a product that appears at or after
positionk in the sequence.

The problem is one of a number of related sequencing
problems discussed by Fink & Voss[4]. Another problem
from this paper appears in CSPLib as prob039 (the rehearsal
problem) and has previously been tackled using constraint
programming. The rehearsal problem can be viewed as the
open stacks problem with a different objective (to minimize

the order spread, i.e. the total for all customers of the time that
their order is in production). The different objective changes
the character of the problem completely, however, and ex-
perience of solving the rehearsal problem cannot easily be
transferred.

Fink and Voss cite several papers on the open stacks prob-
lem, using a variety of Operations Research techniques. Lin-
hares and Yanasse[8] list several equivalent problems, in-
cluding graph path-width.

The Challenge instances were provided by the groups en-
tering the Challenge, and seem to present different kinds of
difficulty, depending on their source. Three of the instances
(SP2, SP3 and SP4) have not yet been solved optimally.

In the following sections, we first describe a number of pre-
processing steps that could be used to simplify the instances,
and a number of lower bounds on the number of open stacks
that can be derived to assist in proving optimality. We then
describe the different solution approaches that were tried in
the Challenge entries. We do not discuss the performance of
the models here; detailed results can be found in the individ-
ual submissions.

2 Preprocessing
There are a number of ways in which a given instance can be
preprocessed to make it simpler to solve. Many or all of these
have previously appeared in the literature on the open stacks
problem, but here we mainly cite their use in the Challenge
submissions.

The simplest reduction is to remove orders that require no
products and products that do not appear in any order, al-
though the Challenge instances should have been constructed
so that there are no such orders or products.

Let P be the set of products. LetC(p) be the set of orders
(or customers) requiring a productp andC(P ′) be the set of
customers requiring a set of productsP ′ ⊂ P .

If the orders requiring productj, C(j), are a subset of
those requiring productk, C(k), then productj can be re-
moved from the problem; once an optimal sequence is found,
productj can be inserted next to productk without affect-
ing the maximum number of open stacks. Many Challenge
entries remove dominated products in this way, e.g.[11; 13;
14]. Garcia de la Banda and Stuckey[5] and Miller et al.
prove the correctness of this reduction;[5; 11] credit it to Bec-
ceneriet al. [2], who did not give a proof. Shaw and Laborie

Constraint Modelling Challenge 2005

1

[13] note that it is effective on many Challenge instances and,
for one set of instances, removes on average half of the prod-
ucts, while in[5] it is calculated that 16% of products are
removed across the whole set of instances. Beldiceanu and
Carlsson[3] use a special case of this reduction in which two
products required for exactly the same orders are merged.

Szymanek and Hennessy[15] recognise that ifC(j) ⊆
C(k), then it is safe to insist that productj is sequenced be-
fore productk; however, they imposed this as a dominance
constraint, and found that it did not reduce search.

If the set of productsP can be partitioned into two setsP ′

andP ′′, such thatC(P ′) ∩ C(P ′′) = ∅, i.e. there are no or-
ders requiring products in bothP ′ andP ′′, then the subprob-
lems defined byP ′ andP ′′ can be solved separately. Garcia
de la Banda & Stuckey[5] note that this simplification was
used in[19], and was useful for some of the Challenge in-
stances. Simonis[14] found that the full decomposition was
only useful for Challenge instances that were not difficult to
solve anyway, but that a special case ofsingleton products
was useful: a singleton product is required for only one or-
der and that order requires no other products. Such a product
can be scheduled at the beginning of the production sequence
without affecting the maximum number of open stacks.

3 Lower Bounds
Finding a good lower bound on the maximum number of
open stacks is useful in proving optimality: if a solution is
found whose value is equal to the lower bound, the solution
is known to be optimal and the search can terminate. This ap-
plies even to incomplete search methods, which cannot prove
optimality in any other way, as well as to complete methods
where it may be possible, though time-consuming, to show by
exhaustive search that there is no solution with a better value.

The simplest lower bound is the maximum number of or-
ders requiring a product. Other lower bounds are derived by
considering theco-demand graphthat has a node for each of
them orders and an edge between nodesi andj iff there is a
product required by both orders. LetNi be the set of neigh-
bours of nodei in this graph.

Miller [9] states and proves a number of theorems on lower
bounds based on the co-demand graph. The simplest is that
if δ is the smallest degree of any node, thenδ + 1 is a lower
bound on the maximum number of open stacks. Garcia de
la Banda and Stuckey also use this bound, from[2] where
it is not proved. Miller gives similar results that improve
slightly on this bound. Another result from[9] calculates
πij = |(Ni ∪ Nj) − i − j|, 1 ≤ i, j ≤ m, i 6= j, i.e. πij

is the number of orders that share a product with eitheri or
j or both, excludingi andj themselves. Ifρ is the minimum
value ofπij over all pairs of nodesi andj, thenρ + 1 is a
lower bound.

Garcia de la Banda and Stuckey[5] also use a number of
bounds from[2] based on derivingminorsby removing nodes
or contracting edges in the co-demand graph.

Pesant[11] discusses the connection between the problem
and a constrained graph colouring problem. A solution to
the open stacks problem withk stacks corresponds to ak-
colouring of the co-demand graph, i.e. an allocation of one

of k colours to the vertices of the graph in such a way that
any pair of nodes linked by an edge have different colours.
The reverse is not necessarily true; Pesant shows that addi-
tional constraints are required to ensure that ak-colouring
can correspond to a product sequence with at mostk open
stacks. Hence, the chromatic number of the graph (the min-
imum number of colours) gives a lower bound on the min-
imum number of open stacks[13]. Although solving the
graph colouring problem simply to compute a lower bound
could be expensive, the size of any clique in the graph also
gives a lower bound. Shaw and Laborie[13] use a greedy
clique-finding algorithm to find a large clique in the graph;
they found this bound useful in proving optimality. Pesant
[11] notes that if the graph, after pre-processing to remove
dominated products, is a clique, then the minimum number
of stacks is the number of orders.

Simonis[14] finds lower bounds by solving small subprob-
lems consisting of 3 to 5 products. The optimal solutions for
these subproblems can be easily found by considering all per-
mutations of the products. However, only subsets of the first
few products are considered, where the products are ordered
by a weight function (also used to derive the initial static vari-
able ordering).

Baptiste[1] finds lower bounds by solving a small MIP
model for each position in the sequence. For each position
j, 1 ≤ j ≤ n, the division of products into before and af-
ter j that minimizes the number of stacks that are open atj
is found. The maximum of these optimal solutions gives a
lower bound on the value of the optimal solution to the origi-
nal problem.

4 Symmetry Breaking
As in many sequencing problems, reversing an optimal se-
quence of products gives another optimal sequence. Several
authors add a constraint to break the symmetry. For instance,
Shaw & Laborie[13] and Baptiste[1] choose one of the prod-
ucts requiring in the largest number of orders and constrain
this product to appear in the first half of the production se-
quence. Although using very different models, Simonis[14]
and Beldiceanu & Carlsson[3] both impose a fixed order on
the first two variables selected, corresponding in both cases
to two products.

5 Constraint Programming Models
5.1 A Basic Model
Possibly the most obvious viewpoint on which to base a con-
straint model has a variable for each product, whose values
are the positions in the production sequence:pk = i iff prod-
uct k is scheduled in positioni, 1 ≤ i, k ≤ n. There is an
allDifferent constraint on these variables, and other variables
are introduced to allow the number of open stacks to be de-
termined from the production sequence. Variablesfj andlj ,
for 1 ≤ j ≤ m can be defined as the first and last positions
in the sequence where the stack for orderj is open. This
can be expressed as the constraintsfj = min{pk|k ∈ Pj}
and lj = max{pk|k ∈ Pj}, wherePj is the set of prod-
ucts in orderj. A boolean variableoij indicates whether
or not the stack for orderj is open during theith time-slot

Constraint Modelling Challenge 2005

2

in the production sequence:oij = (fj ≤ i ∧ lj ≥ i),
1 ≤ i ≤ n; 1 ≤ j ≤ m.

The number of open orders during theith time-slot is∑
1≤j≤m oij . Finally, the objective is the maximum value

of this sum, over all values ofi, 1 ≤ i ≤ n.

5.2 A Dual Viewpoint

Since any production sequence can be seen as a permutation
of the products, a dual viewpoint has variables representing
the positions in the production sequence, whose values are
the products, so thatsi = k iff product k is scheduled in
positioni, 1 ≤ i, k ≤ n.

These two sets of variables can be linked by channelling
constraints:si = k iff pk = i. Miller, Prosser & Unsworth
[10] and Shaw & Laborie[13] use both sets of variables,
linked by these channelling constraints; in[13], the inverse
constraint in ILOG Solver is used to implement the chan-
nelling constraints efficiently.

The values assigned to thesi variables must be all differ-
ent; the channelling constraints in fact obviate the need for
an explicit allDifferent constraint on either set of variables to
ensure correct solutions[7], but specifying such a constraint
and maintaining generalized arc consistency can increase do-
main filtering. Shaw and Laborie[13] maintained GAC on
the allDifferent constraint for that reason.

Miller, Prosser and Unsworth[10] use a search strategy
that assigns values to the variabless1, s2, ..., sn in that order,
i.e. the sequence is built up chronologically. They use a num-
ber of lower bounds, analogous to those derived in[9] that
they use in preprocessing, but dependent on a partial assign-
ment. They note, however, that the cost of calculating these
bounds dynamically is very high. A probably more useful dy-
namic reduction is based on the observation that if the vari-
abless1, ...si have been assigned, then any product that does
not require a new stack can be scheduled next, without affect-
ing whether or not the sequence can be completed optimally.
Hence, all the products that are required only by customers
whose orders have already been started should be sequenced
next, in any order.

Shaw and Laborie[13] also describe this reduction, but fi-
nally used a different search strategy that they found more
robust. The products are partitioned into two subsets,P1 and
P2, such thatP1 will be sequenced beforeP2. Each subset
forms a subproblem that can be solved independently of the
other, and it is solved by recursively subdividing into two sub-
sets. If at any point either subproblem is insoluble (because
the current upper bound on the maximum number of open
stacks cannot be achieved) the search can backtrack. The
search decisions assign a product to one subproblem or the
other.

Hebrard, Hnich and Walsh[6] use a variant of the basic
model with only the dual variables. They instead use special-
purpose global constraints (one for each order) to link the
variablessi, 1 ≤ i ≤ n, defining the position of each product
in the production sequence, and the variablesoij , 1 ≤ i ≤ n;
1 ≤ j ≤ m, indicating whether or not the stack for orderj
is open during theith time-slot in the production sequence.
They describe the propagation of these global constraints.

They also use a heuristic to choose the variable (product)
to occupy the position in the middle of the sequence; their
reasoning is that the maximum number of open stacks tends
to occur in the middle of the sequence, and hence that the
products sequenced in the middle are the most important. For
each product, they consider placing that product in the middle
of the sequence (in positionm/2) and finding the minimum
number of open stacks at that point. To do this, they parti-
tion the other products into two sets, such that the number of
orders required by a product in both sets is minimized. Any
order that is required both by a product in the first half of the
sequence and by a product in the second half of the sequence
must have an open stack at positionm/2. They find the ‘Min-
Intersect’ partition of the remaining products for each prod-
uct j, by solving a subsidiary constraint optimization prob-
lem. These solutions are then used as a heuristic to guide the
search. The product which will give the minimum number
of open stacks is positioned atm2; this minimum number of
open stacks atm/2 is also a lower bound on the optimal so-
lution that can be found as a result of this (or any subsequent)
choice of ‘middle’ product. The bound is further tightened
by constraining the remaining products to be before or after
m/2 according to the optimal partition, and finding the opti-
mal sequence under those constraints. These bounds are then
passed to the complete method.

5.3 Permuting the Customers
Rather than finding a permutation of the products, as in the
basic model, Wilson and Petrie[17] solve the open stacks
problem by finding an optimal permutation of the orders (cus-
tomers). This idea was previously proposed by Yanasse[18].
If we consider the customer whose order is completed first,
and the point in the sequence of products when that happens,
every product that customer requires must be made before
that point in the sequence. Further, there is no advantage to
scheduling any other product before that point. So the max-
imum number of open stacks occurring while the first cus-
tomer’s stack is open occurs when the last product for the
customer is made, and is equal to the number of products the
customer requires. Reordering the number of products up to
this point in the sequence makes no difference to the maxi-
mum number of open stacks in the whole sequence.

This idea can be extended to the remaining customers. A
permutation of the customers can be defined from a permuta-
tion of the products, by considering the points in the sequence
at which the last product for each customer is made, breaking
ties for instance by the initial ordering of the customers. Wil-
son and Petrie also give a function mapping a permutation of
the customers to a permutation of the products, and show that
the maximum number of open stacks in this sequence is no
worse than in any other product sequence corresponding to
the same permutation of the customers. Hence, it is sufficient
to consider permutations of the customers. Such a permuta-
tion defines thecustomer elimination sequence, i.e. it defines
the order in which the stacks are closed.

(This idea is related to the dynamic reduction used by
Miller et al. [10]: as the sequence of products is built up, any
product that does not require opening a stack can be immedi-
ately added to the sequence. Hence, the next real decision is

Constraint Modelling Challenge 2005

3

effectively which stack to open next.)
Their CP model hasm variables,r1, ..., rm, constrained to

be all different: r1 is the customer whose order is fulfilled
first, and so on. Constraints relate the successive neighbour-
hoods of customers in the co-demand graph to the sets of open
stacks when customerr1 is eliminated, when customerr2 is
eliminated and so on. (When customerr1 is eliminated, there
is a stack open for each of its neighbours.) From the sets
of open stacks, the maximum number of open stacks can be
found.

Wilson and Petrie eliminate some equivalent sequences of
customers by using the idea of dominated customers. At any
point in the search, adding a customeri to the sequence as
the next customer to be eliminated entails opening stacks for
all the remaining customers who require products that are re-
quired by customeri, i.e. for all customers inNi, the neigh-
bourhood ofi in the co-demand graph, who are not in the
neighbourhood of any customer already sequenced. Cus-
tomer i dominates customeri′ if the set of new stacks re-
sulting from addingi to the sequence is a strict subset of the
set of new stacks resulting from addingi′, or the sets of new
stacks are the same andi < i′. This also gives a variable or-
dering heuristic: choose the customer which will result in the
smallest number of new open stacks.

They also discuss branching decisions based on whether
two customers overlap, or if not, in which order they appear,
and discuss implied constraints that can be derived.

Permuting the customers rather than the products clearly
reduces problem size when the number of customers is less
than the number of products; Wilson and Petrie also found
that it gives good results generally.

5.4 Multiple Viewpoints
Szymanek and Hennessy[15] use a number of different view-
points, including that of the basic model given earlier, linked
by channelling constraints. The principal search variables in
their model are boolean variablescpkl, representing the rel-
ative position of the stacks for customers (orders)k and l;
cpkl = 0 iff the stack for orderk is closed before the stack
for orderl is opened. For any two ordersk, l that have a prod-
uct in common,cpkl = cplk = 1. The importance of these
variables is that ifcpkl = 0, then ordersk and l can poten-
tially share a stack location.

Their model also views the problem as one of finding a
permutation of the orders. Since the stacks for two or more
orders may be started at the same time, if they require the
same product, two different permutations of the orders may
correspond to the same permutations of the products. Domi-
nance rules are introduced to distinguish some of these cases;
for instance, ifPj′ ⊂ Pj , then orderj is considered to appear
beforej′, even if the first product in the sequence required by
either of them is required by both. Szymanek and Hennessy
give a global constraint that is used to link thecpkl variables,
the permutation of the orders, and the objective. The search
assigns thecpkl variables first, then thepj variables of the
basic model (and then variablesfj andlj of the basic model;
but since the sequence has been fixed by the previous assign-
ments, there are presumably no decisions to be made at this
stage).

Although Szymanek and Hennessy have variables repre-
senting the sequence of customers as one viewpoint in their
model, they do not construct the product sequence from the
customer sequence, as Wilson and Petrie do, and so do not
appear to get the same benefits.

5.5 A Scheduling Model
Beldiceanu and Carlsson[3] use the basic model, but view
each order as a task requiring a resource (its stack) and use
thecumulativeconstraint provided in SICStus Prolog to link
the sets of variablessj , fj , 1 ≤ j ≤ m to the objective, which
on this view is the maximum number of resources in simulta-
neous use.

They use a static variable ordering, arranging the product
variables in descending order of the number of customers re-
quiring each product. The value ordering chooses values as
close to the middle of the sequence as possible; hence, the
search strategy tries to build up the sequence from the middle
to the ends, and puts the products most in demand in the mid-
dle of the sequence. Beldiceanu and Carlsson comment that
the weakness of the model is the poor propagation of the max
amd min constraints, defining the variablesfj and lj . They
suggest that this could be improved by developing a global
constraint, with appropriate filtering algorithm, to constrain a
variable to be the maximum or minimum of a set of variables
that are all different.

Shaw and Laborie[13] also use a scheduling viewpoint,
as well as the variables of the basic model and their duals.
They define variables representing the start and end of each
activity (order stack) and relate these to the variablesfj , lj .
Constraint-based scheduling algorithms are used to reason
about the starts and ends of the activities and the resource
usage, and these inferences can propagate to the other vari-
ables.

The scheduling viewpoint leads to some implied con-
straints that can be expressed in terms of the start and end
variables. Beldiceanu and Carlsson[3] define thedurationof
the stack for orderj, as the number of products it requires;
this then gives a constraint on the start and end times of the
activity. An equivalent constraint onfj andlj is given by[13;
14]: lj ≥ fj + |Pj | − 1, 1 ≤ j ≤ n. Simonis[14] extends
this to subsets ofPj .

Shaw and Laborie give further constraints of this kind. If
two ordersj andk share at least one product (Pj ∩ Pk 6= ∅),
then the corresponding activities must overlap for a duration
at least|Pj ∩Pk|. Further, ifPj ⊂ Pk, then the activity corre-
sponding to orderj can start no later and finish no earlier than
the activity corresponding to orderk. These constraints could
be expressed either in terms of the start and finish variables
in the scheduling model, or in terms of thefj , fk, lj , lk in the
basic model.

5.6 A Graph Colouring Model
As described earlier, the open stacks problem can be viewed
as a constrainted graph colouring problem, and this can be
useful in deriving lower bounds on the optimal solution.
Shaw and Laborie[13] include a graph colouring viewpoint
in their model in order to use this perspective on the prob-
lems dynamically during the search. The aim is to colour

Constraint Modelling Challenge 2005

4

the co-demand graph so that if two customers both have their
stacks open at some point during the product sequence, their
nodes in the graph are assigned different colours. Clearly,
if two nodes are neighbours in the graph, they must be as-
signed different colours (there is at least one product that they
both require). Shaw and Laborie introduce new variables,
hj , 1 ≤ j ≤ m, wherehj represents the colour assigned
to node (customer)j. If nodesj, j′ are neighbours in the co-
demand graph, the constrainthj 6= hj′ is added at the start.
Otherwise, the colour variables are related to the other vari-
ables of the problems by the constraints: iffj ≤ lj′∧fj′ ≤ lj
thenhj 6= hj′ . The colours are interchangeable, and to reduce
this symmetry, the large clique in the co-demand graph that is
found during pre-processing, in order to provide a bound on
the optimal value, is coloured at the start.

(Although using a very different approach, Truchet, Bour-
don and Codognet[16], as described below, consider the pos-
sibility that two customers can possibly share the same stack,
in a similar manner.)

Whereas Shaw and Laborie use the graph colouring per-
spective in conjunction with other viewpoints, Pesant[11]
bases his model entirely on solving the constrained graph
colouring problem. He finds initial upper and lower bounds
on the objective value (the upper bound being one less than
the number of customers, since it is easy to detect if the co-
demand graph is a clique, and otherwise, the number of stacks
required is less than the number of customers). He does a
binary search to find the smallest value ofk for which ak-
colouring that can correspond to an product sequence usingk
stacks exists.

As in [13], the colour symmetries are partly broken by pre-
colouring a large clique in the co-demand graph. Further
symmetry-breaking constraints are also added, by ordering
the sets of nodes assigned to each of the remaining colours.

Having found ak-colouring of the graph, it has to be con-
verted, if possible, into a feasible product sequence. For each
colouri, Pesant first searches for a sequence of the customers
in the colour classCi that have been assigned to that colour;
this is the order in which these customers will use their com-
mon stack location. This order in turn constrains the product
sequence. The variablespj , 1 ≤ j ≤ n of the basic model are
used, together with an allDifferent constraint on these vari-
ables. The search backtracks if it proves impossible to find a
product sequence.

Unary constraints can be added on the variablespj corre-
sponding to the products required by the customer currently
being considered that uses stack locationi. Since none of the
customers assigned to colouri can have any products in com-
mon, the number of products required by the customers using
stack locationi previously, and the number required by the
customers using this location subsequently, give lower and
upper bounds on the position in the product sequence of any
product required by this customer.

Pesant comments that the expertise that has been developed
in solving graph colouring problems makes this a potentially
fruitful approach to solving the open stacks problem.

5.7 Putting the products in order

Simonis [14] develops a model in which at any point dur-
ing the search, the partial solution already built up indicates
the order in which the products already considered will be
sequenced but not their positions in the sequence. This is
implemented by a real-valued variableyi for each producti;
a complete solution can be translated into a production se-
quence by arranging the products in ascending order of the
values assigned to the corresponding variables. The domains
of the variables are an arbitrary real interval, with two sen-
tinel values, saystart andend, marking the start and end of
the interval. Once values in this interval, sayv1, v2, ..., vk

with v1 < v2 < ... < vk have been assigned to a subset of the
variables, the next variable considered is assigned a value in
one of the sub-intervals defined by this assignment, i.e. in ei-
ther(start, v1) or (v1, v2) or ... or(vk, end) Hence, the new
assignment represents a decision as to how the corresponding
product should be placed in the sequence in relation to those
already placed.

Simonis notes that the advantage of this model, in compari-
son with a model in which the variables represent the position
in the sequence of each product, or the product to be placed
in each position in the sequence, is that the branching factor
of the search tree is small at the top of the tree. The first two
variables are assigned arbitrarily, and the third has three pos-
sible choices. Eventually, the final product can go in one of
n + 1 subintervals. In contrast, if the variables correspond to
the positions in the sequence, for the first variable assigned
there aren choices,n− 1 choices for the second variable and
so on.

The products are initially ordered by a weight function,
where a product has a high weight if it is required by many
customers, each of whom requires few other products. Simo-
nis also uses an expensive shaving technique during search
that combines a dynamic variable and value ordering heuristic
with domain filtering. At each choice point, for every unas-
signed product variable and every sub-interval that it could
be placed in, the increase in the cost function that would
result from placing the product in that sub-interval is com-
puted. This may remove some inconsistent values; thereafter
the variable that causes the greatest increase in cost and the
value that causes the smallest increase in cost is selected.

Simonis also uses a partial search (usingcredit-based
search) to find good solutions quickly, combined with the
complete search.

The values assigned to theyi variables are hard to interpret
in this model; we might think of them as something like a
time. Variablesf ′j , l

′
j and so on are defined in a similar way

to the basic model; for instance,f ′j = min{yk|k ∈ Pj}, and
hence the objective can be defined using similar constraints.

It seems that this model would be similar to using the basic
model with a search strategy that chooses the relative order
of the products, rather than their positions in the sequence,
by adding inequality constraints between them, so that at a
choice point during search, the choice might be betweenp1 <
p2 andp1 > p2. However, Simonis considered this search
strategy and concluded that it did not allow the constraints to
propagate well.

Constraint Modelling Challenge 2005

5

6 A Mixed Integer Programming Approach
Baptiste[1] gives a MIP formulation for the problem that is
similar to the basic CP model given earlier, but uses 0/1 rather
than integer variables. So instead ofpk = i iff product k is
scheduled in positioni, he hasxki = 1 iff productk is sched-
uled in positioni. The constraints

∑n
k=0 xki = 1, 1 ≤ i ≤ n

and
∑n

i=0 xki = 1, 1 ≤ k ≤ n ensure that exactly one prod-
uct is scheduled in any position, and every product is sched-
uled somewhere; the latter constraint replaces the allDifferent
constraint.

For every orderj and sequence positioni, three 0/1 vari-
ables are defined. Instead of variablesfj andlj , variablesbij ,
aij are defined such thatbij = 1 iff order j starts production
in position i or before, andaij = 1 iff order j ends pro-
duction at positioni or after. The constraints defining these
variables are:bi+1,j ≥ bij andaij ≤ ai−1,j . With these vari-
ables, the variablesoij of the basic model can be defined by
oij = bij + aij − 1. These variables are linked to the de-
cision variablesxki: for any orderk and productj such that
cjk = 1, xki ≤ oij , since if productk is scheduled in position
i and orderj requires that product, then the stack for orderj
is open at positioni. Hence, the objective can be defined as
before.

The formulation allows cuts analogous to the implied con-
straints derived from the scheduling model discussed earlier;
for instance, if two ordersj andj′ are such thatPj′ ⊆ Pj ,
i.e. all products required byj′ are also required byj, then
bij ≤ bij′ andaij ≥ aij′ , for all i, 1 ≤ i ≤ n.

Baptiste comments that the weakness of the MIP model
is that many symmetries (apart from the obvious reversal of
the sequence) cannot easily be broken. He tried a secondary
objective that found a solution with the minimum number of
stacks that gave the lexicographically smallest sequence of
products, to break other symmetries that arise from permuting
products without changing the number of open stacks, but this
was not successful.

7 Local Search
Two of the submissions use local search to solve the prob-
lems; a few other cases use local search in conjunction with
complete search.

Prestwich[12] uses a similar model to Baptiste’s MIP
model, which can similarly be seen as a 0/1 version of the ba-
sic CP model described earlier. He proposes to increase the
solution density of the model in order to improve the perfor-
mance of local search, by adding “pseudo-solutions” in such
a way that any pseudo-solution can be transformed into a true
solution that is at least as good.

The pseudo-solutions are obtained by relaxing the con-
straints

∑n
k=0 xki = 1 and

∑n
i=0 xki = 1 to

∑n
i=0 xki ≥ 1,

for 1 ≤ k ≤ n, i.e. each product can appear more than once
in the sequence, and the number of product assigned to a po-
sition in the sequence can be 0, 1 or more. An alternative
relaxation also has the constraints

∑n
k=0 xki ≥ 1 i.e. every

position in the sequence must have at least one product. Prest-
wich shows that a solution satisfying these constraints can be
converted into a dominating solution representing a permuta-
tion of the products, and that there can be super-exponentially

more solutions satisfying either set of relaxed constraints than
there are to the original model. A local search algorithm
related to WalkSAT is used with all three models, and the
relaxed models are shown to be much faster than the origi-
nal model on an artificial instance for which optimal pseudo-
solutions exist. On Challenge instances, the second relaxation
is found to give best results.

Truchet, Bourdon and Codognet[16] use an idea reminis-
cent of one of the viewpoints in[15]: to reduce the maxi-
mum number of open stacks, it is important to ensure that as
far as possible, two orders that have no products in common
can share a stacking space. (Of course, two orders that do
have a product in common must both have their stacks open
when that product is made and so cannot share a stacking
space.) They define a relationSep(j, j′) = (Pj ∩ Pj′ = ∅):
Sep(j, j′) is true for two productsj, j′ if they can potentially
be separated i.e. can share a stacking space. They define a
surrogate for the objective,g, defined to be the number of
pairs of orders,j, j′ such that (in terms of the basic model)
fj > lj′ ∨ fj′ > lj , i.e. the stack for orderj opens after
the stack for orderj′ closes, or v.v. They show that find-
ing a permutation that maximizesg is equivalent to finding
a permutation that minimizes the maximum number of open
stacks.

The advantage of defining the new objective function is
that g has a greater range of values than the original objec-
tive and is more suitable for use as an error or cost function
in local search.

Truchetet al. use a local search method (Adaptive Search
implemented for permutation problems) to find improved
configurations by identifying a variable that can be consid-
ered (partly) responsible for the poor quality of the current
configuration, and trying another value in this variable’s do-
main.

Shaw and Laborie[13] combine the constraint model de-
scribed earlier with local search, although only for the larger
Challenge instances. Whenever a new (and therefore better)
solution is found, Large Neighbourhood Search is used to try
to improve it further. A sub-sequence of the product sequence
is selected at random and LNS attempts to reassign the prod-
ucts in these positions using a smaller number of open stacks.

8 A Model Checking Approach
Miller [9] solves the open stacks problem by viewing a prod-
uct sequence with at mostM open stacks as a violation of a
safety property; if such a violation is found, model checking
provides a counter-example that can be converted into a solu-
tion to the open stacks problem with at mostM open stacks.

Because proving that no solution exists for a givenM is
very difficult or in some cases impossible with this approach,
Miller derives a number of lower bounds on the value of the
optimal solution; if a solution can be found with value equal
to the lower bound, then this is sufficient proof that no better
solution exists. These bounds are also used by Miller, Prosser
and Unsworth[10].

Miller also gives a heuristic method for constructing solu-
tions, which she reports often find the optimal solutions im-
mediately, and otherwise gives a good starting point. This

Constraint Modelling Challenge 2005

6

is based on constructing primarily a sequence ofcustomers
from which the product sequence can be derived, in such a
way as to keep the number of open stacks low. This approach
is reminiscent of the complete method used by Wilson and
Petrie[17].

Miller comments that an advantage of the model checking
system used (SPIN) is the backtracking that it provides. In
this case, if at some point during search, the firsti products in
the sequence have been chosen, and more thanM stacks have
been opened, the search will immediately backtrack. Fur-
ther, if this sub-sequence used at mostM open stacks, but
the search has previously extended a sub-sequence consisting
of thesei products in a different order, then the search must
previously have failed because at some later point it was im-
possible to use no more thanM stacks. Hence, the current
sub-sequence should again fail. This is recognised by SPIN,
because the state of the system at this point is identical to the
previously visited state. The notion of identical states appears
in a different guise in the approach described in the next sec-
tion.

9 A Dynamic Programming Approach
Garcia de la Banda and Stuckey[5] use a dynamic program-
ming formulation to solve the open stacks problem. They
point out that if a subsetP ′ of the products has been sched-
uled at the beginning of the sequence, with the last product in
this sub-sequnce beingp, the customers that have open stacks
at this point are those who ordered productp, as well as those
who ordered any other product inp as well as any product that
has not been sequenced. This does not depend on the order in
which the previous products,P ′−{p}, are scheduled, nor on
the order of the remaining products,P − P ′.

If the minimum number of stacks required to schedule the
set of productsS, given that the products inP − S have
already been sequenced, isstacksP (S) and the set of cus-
tomers with open stacks at that point isA(p, P − S − p),
wherep is the last product sequenced inP − S, Garcia de
la Banda & Stuckey give the basic dynamic programming re-
cursion:

stacksP (S) = min
p∈S

max{A(p, S−{p}), stacksP (S−{p})}

They suggest that this is potentially a much more efficient
approach than, say, the basic CP model given earlier, because
rather than implicitly considering every permutation of the
products, it is only necessary to consider the subsets ofP .

They use a number of lower bounds on the optimal value,
some of which are discussed earlier. They find an optimal
solution by either trying every possible value from the lower
to the upper bound, or by doing a binary search in this range
(as does Pesant[11]).

They comment that although their approach does not use
constraint programming, it is equivalent to a constraint pro-
gramming approach in which states visited are memoized.

10 Summary and Conclusions
A number of key ideas emerge from the the approaches
adopted in the various submissions to the Challenge. We list

here some of the ideas that appear in different submissions,
in various guises:

• Instances can often be reduced by preprocessing them, to
remove products or customers that cannot affect the so-
lution. Lower bounds on the optimal solution can also be
calculated in various ways ahead of search; this appears
to be crucial in proving optimality for many instances.

• Although the problem is ostensibly one of finding a per-
mutation of the products, in fact, focussing on the se-
quence of the customers can be a more fruitful way to
consider the problem. This has been done either by
specifically sequencing the customers, or by recognising
that while sequencing the products, the real decisions are
only those that involve opening a new stack.

• If building up the product sequence chronologically, re-
arranging the products before timep cannot affect the
optimal arrangement of the products afterp, and v.v.
This observation has been recognised in various ways,
from a dynamic programming approach, to various ways
of splitting the sequence and dealing with the two parts
separately.

• Two orders can share the same stack location only if they
have no products in common; the products that they each
require must also be separated in the product sequence.
Since it is only by sharing stack locations that the num-
ber of open stacks can be reduced, some Challenge sub-
missions have focussed on orders that can potentially be
separated in this way as the key to minimizing the num-
ber of open stacks.

The Challenge entrants had only limited time (around six
weeks) to devise models to solve the open stacks problem.
Given that, we were gratified to receive so many excellent
entries. The variety of approaches and the number of interest-
ing ideas in the submissions is impressive. The Challenge has
conclusively shown that constraint programming is a fruitful
approach to solving the open stacks problem. We plan to sub-
mit the problem, with the Challenge instances, to CSPLib and
hope to see further development of the models described here.

11 Thanks, and Advice to Future Organisers
We especially thank Patrick Prosser for proposing the Mod-
elling Challenge as a part of the 2005 Workshop. It was also
his idea that it be a challenge, not a competition or evaluation.
We think this is very important: we do not feel that constraint
programming is at a point where winners can be determined
purely by cpu time given the large variety of tools and tech-
niques used.

We thank the organising and programme committees of the
IJCAI 05 Workshop on Modelling and Solving Problems with
Constraints, and most especially Zeynep Kiziltan for her ex-
tensive help. We thank Toby Walsh for agreeing to enter the
results of the Challenge into CSPLib. For other help in var-
ious ways we would like to thank Ian Miguel, Sylvain Soli-
man, and members of the CP Pod research group. We would
like to thank the UK’s Symmetry and Search network, which
sponsored the prize for best paper.

Constraint Modelling Challenge 2005

7

Of course we very much thank all the entrants to the Chal-
lenge, and especially those who also submitted instances dur-
ing the first phase.

We hope that modelling challenges can be run in the future,
perhaps annually. We do not think it appropriate to keep the
challenge in our hands, so we thought it might be useful to
offer advice to future organisers.

The first point is to emphasise that we always intended the
challenge to allow non-constraint based approaches, and a
number of such entries appeared. We think this was very ben-
eficial to the Challenge and for comparing constraints with
other approaches, and it should be preserved. The name of
the Challenge (i.e.Constraintmodelling) worried some en-
trants who checked with us before submitting, but it is hard to
see how to rename the Challenge which is about constraints
and comparison with other approaches.

The second is that there are certain points in the pro-
cess that we perhaps needed to put more work into. First
among those would have been the selection and distribution
of the Challenge instances. Some work double checking them
would have been useful, and also solving them with a simple
solver to filter out very easy ones. The obvious reason we did
not do this is pressure of time.

A third point is that the two phase approach to the Chal-
lenge seemed to work well. In the first phase entrants were
able to submit their own instances for use in the second phase.
In fact we used all instances that were submitted (barring one
omitted by error), and they were pleasingly diverse. We didn’t
concern ourselves if instances were hand crafted to be easy
for a particular solver and hard for others, since all other en-
trants had the chance to construct instances like this too.1

We do hope that this report is useful to others interested in
this problem, and again hope this will be repeated in future
years: but it does take some time to complete, so be warned!

References
[1] P. Baptiste. Simple MIP Formulations to Minimize the

Maximum Number of Open Stacks. IJCAI05 Constraint
Modelling Challenge entry.

[2] J. C. Becceneri, H. H. Yanasse, and N. Y. Soma. A
method for solving the minimization of the maximum
number of open stacks problem within a cutting process.
Comput. Oper. Res., 31(14):2315–2332, 2004.

[3] N. Beldiceanu and M. Carlsson. AcumulativeModel
for a Pattern Sequencing Problem. IJCAI05 Constraint
Modelling Challenge entry.

[4] A. Fink and S. Voss. Applications of modern heuristic
search methods to pattern sequencing problems .Com-
puters & Operations Research, 26:17–34, 1999.

[5] M. Garcia de la Banda and P. J. Stuckey. Dynamic Pro-
gramming to Minimize the Maximum Number of Open
Stacks. IJCAI05 Constraint Modelling Challenge entry.

1However, note that we required source code to be entered un-
der a promise of confidentiality, meaning that we could if necessary
check for entries which had a database of known instances with so-
lutions, which we would have been unhappy with.

[6] E. Hebrard, B. Hnich, and T. Walsh. Partition with Min-
imal Intersection. IJCAI05 Constraint Modelling Chal-
lenge entry.

[7] B. Hnich, B. M. Smith, and T. Walsh. Dual Models of
Permutation and Injection Problems.JAIR, 21:357–391,
2004.

[8] A. Linhares and H. H. Yanasse. Connections between
cutting-pattern sequencing, vlsi design, and flexible ma-
chines.Comput. Oper. Res., 29(12):1759–1772, 2002.

[9] A. Miller. Improved lower bounds for solving the min-
imal open stacks problem. IJCAI05 Constraint Mod-
elling Challenge entry.

[10] A. Miller, P. Prosser, and C. Unsworth. A Constraint
Model and a Reduction Operator for the Minimising
Open Stacks Problem. IJCAI05 Constraint Modelling
Challenge entry.

[11] G. Pesant. Trying Hard to Solve the Simultaneously
Open Stacks Problem with CP. IJCAI05 Constraint
Modelling Challenge entry.

[12] S. Prestwich. Open Stack Minimisation by Local Search
and Reverse Dominance Reasoning. IJCAI05 Con-
straint Modelling Challenge entry.

[13] P. Shaw and P. Laborie. A Constraint Programming Ap-
proach to the Min-Stack Problem. IJCAI05 Constraint
Modelling Challenge entry.

[14] H. Simonis. Modelling Challenge: Benchmark Results.
IJCAI05 Constraint Modelling Challenge entry.

[15] R. Szymanek and M. Hennessy. Modelling Challenge
– Open Stack Problem. IJCAI05 Constraint Modelling
Challenge entry.

[16] C. Truchet, J. Bourdon, and P. Codognet. Tearing cus-
tomers apart for solving PSP-SOS. IJCAI05 Constraint
Modelling Challenge entry.

[17] N. Wilson and K. Petrie. Using Customer Elimination
Orderings to Minimise the Maximum Number of Open
Stacks. IJCAI05 Constraint Modelling Challenge entry.

[18] H. H. Yanasse. On a pattern sequencing problem to min-
imize the maximum number of open stacks.European
Journal of Operational Research, 100:454–463, 1997.

[19] B. J. Yuen and K. V. Richardson. Establishing the
optimality of sequencing heuristics for cutting stock
problems.European Journal of Operational Research,
84:590–598, 1995.

Constraint Modelling Challenge 2005

8

Simple MIP Formulations to Minimize the Maximum Number of Open Stacks

Philippe Baptiste
Ecole Polytechnique

Laboratoire d’Informatique LIX, CNRS
F-91128 Palaiseau

Philippe.Baptiste@polytechnique.fr

Abstract
We consider a manufacturing scheduling problem
in which the sequence of products to be manufac-
tured has to be determined so as to minimize the
number of customer orders that have been started
and are waiting to be completed. We describe a
straightforward local search method together with
a powerful lower bound based on a MIP formula-
tion. Finally we introduce another MIP with spe-
cific cuts that allows us to optimally solve medium
size instances. Experimental results are reported.

1 Introduction
We consider the manufacturing scheduling problem as de-
scribed in the 2005 Constraint Modeling Challenge web-
pages.

“A manufacturer has a number of orders from customers
to satisfy; each order is for a number of different products,
and only one product can be made at a time. Once a cus-
tomer’s order is started (i.e., the first product in the order has
been made) a stack is created for that customer. When all the
products that a customer requires have been made, the order
is sent to the customer, so that the stack is closed. Because of
limited space in the production area, the number of stacks that
are in use simultaneously,i.e., the number of customer orders
that are in simultaneous production, should be minimized.”

We use the following notation. The Boolean matrixK is
used to identify the products required by customers. The en-
try Kcp is 1 if and only if customerc requires productp. m
andn respectively denote the total number of customers and
the total number of products. Customers are numbered from
0 to m − 1 and products are numbered from0 to n − 1. We
say that a customerc starts (respectively ends) att if and only
if the first (resp. last) product required byc is sequenced in
positiont.

We refer to the web pages of the challenge
www.dcs.st-and.ac.uk/ ipg/challenge/index.html
for a complete description of the problem and for a brief
bibliography.

2 Lower Bound
The most basic lower bound is the maximum over all products
p of

∑m−1
c=0 Kcp. To improve this bound, we introducelb(t) a

MIP based bound associated tot ∈ {0, ..., n− 1}. Our lower
bound is then the maximum over allt of lb(t).

Informally speakinglb(t) corresponds to the problem of
deciding which products are sequenced before/after position
t in the sequence. Indeed, a productp is either sequenced
before or after positiont. Let thenxp ∈ {0, 1} denote the
binary variable corresponding to this alternative (xp = 1 if
and only ifp is sequenced strictly beforet, xp = 0 otherwise).
As exactlyt products must be sequenced in position0, ..., t−
1, we have

∑n
p=0 xp = t.

Now let us introduce, for each customerc ∈ {0, ...,m−1},
three binary variablesbc, ac, ic ∈ {0, 1}.
• bc equals one if and only if customerc starts beforet.

• ac equals one if and only if customerc ends after or att.

• ic equals one if and only if customerc starts beforet and
ends after or att (“ i” stands for In process).

We can link these 3 variables as follows:ic ≥ bc + ac − 1
since (1)ic equals 1 if the customer starts before and ends
after t and (2) a customer must start beforet or end after
t hencebc + ac is never 0 in a solution. Our objective is
to minimize the number of customers for whichic = 1 so,
the objective of the MIP is exactly

∑m−1
c=0 ic. It now re-

mains to link the customer variables to the product variables:
∀c ∈ {0, ...,m − 1}, (

∑n−1
p=0 Kcp)bc ≥

∑n−1
p=0 Kcpxp and

(
∑n−1

p=0 Kcp)ac ≥
∑n−1

p=0 Kcp(1 − xp). In the above equa-

tion, (
∑n−1

p=0 Kcp) plays the role of a big “M ” (this is the
smallest possible one). Altogether, this leads to:

min
m−1∑
c=0

ic

∑n−1
p=0 xp = t

∀c ∈ {0, ...,m− 1}, ic ≥ bc + ac − 1
∀c ∈ {0, ...,m− 1}, (

∑n−1
p=0 Kcp)bc ≥

∑n−1
p=0 Kcpxp

∀c ∈ {0, ...,m− 1}, (
∑n−1

p=0 Kcp)ac ≥
∑n−1

p=0 Kcp(1− xp)
∀p ∈ {0, ..., n− 1}, xp ∈ {0, 1}
∀c ∈ {0, ...,m− 1}, ac, bc, ic ∈ {0, 1}

Computinglb should be easy since the MIP containsO(n +
m) variables andO(n+m) constraints. Experimental results
show that this is true for most of the instances.

Constraint Modelling Challenge 2005

9

3 Upper Bound

We use a very simple local search method to compute an up-
per bound of the optimal solution. As this procedure is not
the major contribution of the paper, we mention it briefly.

Through out the local search, our criterion is a lexicograph-
ical combination of the number of open stacks and of the sum
of the staring times minus the completion times. The sec-
ondary criterion is extremely useful to guide the search to-
wards promising regions. The local search is based on a ran-
dom insertion “move” (remove a product in the sequence and
insert it somewhere else). Such a move is always accepted
if the objective function is improved. Based on a probabil-
ity that decreases over time (like in simulated annealing), the
move is also accepted if it does not deteriorate the objective
function too much. The total number of iterations is exactly
50000.

4 MIP Formulation

We first describe a basic model and we then introduce some
cuts to improve the search for the solution.

4.1 Basic Model

We use the following variables:

• Product Assignment.For each productp and each se-
quence positiont (0 ≤ t < n), xpt is the binary assign-
ment variable that equals 1 if and only ifp is sequenced
in positiont.

• Customer Variables. For each customerc and each
sequence positiont, we have three binary variables
sct, ect, ict ∈ {0, 1} that equal 1 if and only if the cus-
tomer respectively starts before or att, ends after or att,
or is in process att.

• Stack Variable.The variableσ ∈ {0,m} represents the
number of stacks simultaneously open in the solution.

The objective is to minimizeσ. We now describe the con-
straints that ensure we reach an optimal solution.

• One product at a time. For all sequence position
t ∈ {0, ..., n − 1}, we have exactly one product,i.e.,∑n−1

p=0 xpt = 1.

• Products are sequenced.All products are sequence
somewhere,i.e., ∀p ∈ {0, ..., n− 1},

∑
t xpt = 1.

• Bounding the number of open customers.At any posi-
tion t, the number of customers in process is not greater
thanσ, i.e., ∀t ∈ {0, ..., n− 1},

∑m−1
c=0 ict ≤ σ

• Start and end Variables.Sincesct equals 1 iff,c starts
before or att, we have∀c ∈ {0, ...,m − 1},∀t ∈
{0, ..., n − 1}, sct ≥ sc t−1. For the same reason,
∀c ∈ {0, ...,m − 1},∀t ∈ {0, ..., n − 1}, ect ≤ ec t−1.
Finally, ict = sct + ect − 1.

• Linking customers and products.For any customerc and
productp such thatKcp = 1, we havexpt ≤ ict.

Altogether this leads to the following MIP.

minσ

∀t ∈ {0, ..., n− 1},
∑n−1

p=0 xpt = 1
∀p ∈ {0, ..., n− 1},

∑n−1
p=0 xp = 1

∀t ∈ {0, ..., n− 1},
∑m−1

c=0 ict ≤ σ
∀c ∈ {0, ...,m− 1},∀t ∈ {0, ..., n− 1},

sct ≥ sc t−1

∀c ∈ {0, ...,m− 1},∀t ∈ {0, ..., n− 1},
ect ≤ ec t−1

∀c ∈ {0, ...,m− 1},∀t ∈ {0, ..., n− 1},
ict = sct + ect − 1

∀c ∈ {0, ...,m− 1},∀p ∈ {0, ..., n− 1} s.t., Kcp = 1,
∀t ∈ {0, ..., n− 1}, xpt ≤ ict

∀p ∈ {0, ..., n− 1},∀t ∈ {0, ..., n− 1}, xpt ∈ {0, 1}
∀c ∈ {0, ...,m− 1},∀t ∈ {0, ..., n− 1}, sct, ect, ict ∈ {0, 1}

4.2 Some nice properties of the MIP
Our MIP containsO(n(m + n)) binary variables and
O(n(m + n)) constraints. We believe this is rather low and
can lead to small search trees. The nice property of the MIP is
that when the sequence of products is known (i.e., whenxpt

variables are fixed), the remaining problem does not require
any branching so, the last line of the MIP can be replaced by

∀c ∈ {0, ...,m− 1},∀t ∈ {0, ..., n− 1}, sct, ect, ict ∈ [0,1].

Interestingly, we could also do the opposite. Indeed, when
sct, ect, ict values are fixed, it is easy to see that the remaining
problem is a pure assignment problem. So it does not require
any branching. Hence, we could alternatively replacexpt ∈
{0, 1} by xpt ∈ [0,1].

In practice, this does not prove to be very efficient and it is
much better to state to the MIP that all variables are indeed
binary. However, this shows that our formulation is relatively
tight.

4.3 Cuts
First, we try to “tighten” e and s variables. Consider a
customerc. It requiresq =

∑n−1
p=0 Kcp products hence

ec q−1 ≥ 1 and∀t ≥ q, ect ≥ 1− sc t−q For the same reason,
sc n−q ≥ 1 and∀t < n− q, sct ≥ 1− ec t+q.

Second, we add a redundant constraints on “aggregated”
customers. Consider two customersc and c′ and letq de-
note the number of products required byc or by c′. There
areq products sequenced before the end ofc or of c′ hence,
ec q−1 + ec′ q−1 ≥ 1 and for the same reason,sc n−q +
sc′ n−q ≥ 1.

Third, we add a constraint of “included” customers. Con-
sider two customersc andc′ such that all products required by
c′ are also required byc. Then, for anyt, we havesct ≥ sc′t

andect ≥ ec′t.
Finally, we add a simple constraint to break symmetry. To

do so, we chose a product required by a maximum number of
customers and we constrain it to be sequenced in the first half
of the sequence.

4.4 Things that do not work!
We have tried to use the lower and upper bounds computed in
Sections 2 and 3 to tightenσ. The outcome of the resulting

Constraint Modelling Challenge 2005

10

MIP is either infeasibility (in this case the initial upper bound
is optimal) or an optimal solution. Surprisingly, the behavior
of this new MIP is much worse than the initial one.

We have also tried to replace the constraints∀c ∈
{0, ...,m − 1},∀p s.t., Kcp = 1,∀t ∈ {0, ..., n −
1}, xpt ≤ ict by ∀c ∈ {0, ...,m − 1},∀t ∈ {0, ..., n −
1},

∑
p:Kcp=1 xpt ≤ ict. This formulation more compact and

should be more efficient. Preliminary tests have shown that it
increases the average number of nodes by more than 50!

Finally, we have implemented a rather complex MIP for-
mulation to look for an optimal solution that lexicographi-
cally minimize the sequence of products. This MIP is also
using a quadratic number of variables and constraints and al-
lows to break many symmetries (much more than in the initial
MIP) because of the secondary objective function. Unfortu-
nately, this does not work either.

4.5 Experimental Results
All experiments were run on PC Dell Latitude D600 running
XP. Cplex 9.0 has been used to solve the MIPs. We have fol-
lowed the guidelines of the Challenge to report experiments.
The values required in the tables are well suited to CP ap-
proaches but are less relevant to MIP approaches. Indeed,
it is impossible to distinguish the time spent to find an opti-
mal solution from the time spent for the proof itself. For this
reason, we have slightly modified the tables. In the following,
the “search effort” always denote the number of nodes in MIP
search trees.

We first report our results on a small set of instances with
various sizes Miller19, GP1, GP2, GP3, GP4, GP5, GP6,
GP7, GP8, NWRS1, NWRS2, NWRS3, NWRS4, NWRS5,
NWRS6, NWRS7, NWRS8, SP1, SP2, SP3 and SP4. As
both the lower bound computation (Section 2) and the search
for an optimal solution are based on MIP (Section 4) they
might require a large amount of CPU time. So, we have de-
cided to ignore instances GP5, GP6, GP7, GP8, SP3 and SP4.
We first ran our MIP on the remaining instances with a time
limit of 1200.0 seconds. Within this time limit, the optimal
solution has been found (and proven) for GP1, GP4, NWRS1,
NWRS2, NWRS3, NWRS4 and NWRS5. For the remaining
instances, we ran our small MIP that provides a lower bound
and our simple local search algorithms. The cpu time and the
number of nodes reported are then related to this small MIP
only.

We have also ran our algorithms on the instances clustered
by size (Table 2). Given the huge number of instances, the
search for an optimal solution was stopped after 300 seconds.
The lower bound (Section 2) and the Upper bound (Section 3)
have been computed for all instances that could not be solved
within 300 seconds. We have added two columns to the table:

• “Av. Gap” provides the average relative gap between the
upper and the lower bound

• “Av. Runtime” provides the average runtime over all in-
stances (both solved and unsolved).

5 Conclusion
The major weakness of this approach is that we are not able
to break many symmetries. It seems that adding cuts to re-

move symmetries is both complex and ineffective for the MIP
approach. We believe that this strange behavior should be
deeply investigated.

Constraint Modelling Challenge 2005

11

Instance Best objective
value found

Best lower
bound found

Proved
optimal ?

Total
Runtime

Total search
effort

Miller19 13 12 No 26.64 9543
GP1 45 45 Yes 686.81 183
GP2 41 40 No 922.77 27975
GP3 41 40 No 1169.25 27055
GP4 30 30 Yes 252.5 0
GP5 n.a n.a n.a n.a n.a
GP6 n.a n.a n.a n.a n.a
GP7 n.a n.a n.a n.a n.a
GP8 n.a n.a n.a n.a n.a

NWRS1 3 3 Yes 0.14 0
NWRS2 4 4 Yes 0.28 0
NWRS3 7 7 Yes 3.31 24
NWRS4 7 7 Yes 10.36 193
NWRS5 12 12 Yes 204.18 1106
NWRS6 12 10 No 8.03 589
NWRS7 10 6 No 21.97 569
NWRS8 16 13 No 39.16 3231

SP1 9 6 No 5.87 153
SP2 20 16 No 99.28 25987
SP3 n.a n.a n.a n.a n.a
SP4 n.a n.a n.a n.a n.a

Table 1: Individual results (Ph. Baptiste)

Constraint Modelling Challenge 2005

12

F
ile

%
so

lv
ed

op
tim

al
ly

w
ith

in
th

e
cu

to
ff

lim
it

M
ea

n
be

st
va

lu
e

fo
un

d
To

ta
lr

un
tim

e
pe

r
in

st
an

ce
S

ea
rc

h
ef

fo
rt

pe
r

in
st

an
ce

to
fin

d
op

tim
al

so
lu

tio
n

To
ta

ls
ea

rc
h

ef
fo

rt
pe

r
in

st
an

ce
A

v.
G

ap
%

A
v.

R
un

tim
e

m
ea

n
m

ed
ia

n
m

ax
m

ea
n

m
ed

ia
n

m
ax

m
ea

n
m

ed
ia

n
m

ax
pr

ob
le

m
10

10
10

0.
00

8.
03

1.
90

1.
62

9.
07

n.
a.

n.
a.

n.
a.

53
.1

4
0.

00
0.

00
0.

00
1.

90
pr

ob
le

m
10

20
99

.0
9

8.
92

8.
89

3.
57

25
3.

83
n.

a.
n.

a.
n.

a.
12

12
.4

2
0.

00
0.

00
0.

19
11

.5
7

pr
ob

le
m

15
15

95
.8

2
12

.8
7

36
.4

3
11

.6
4

30
3.

30
n.

a.
n.

a.
n.

a.
34

73
.6

7
0.

00
0.

00
0.

82
47

.5
8

pr
ob

le
m

15
30

11
.3

6
14

.0
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

8.
71

6.
23

pr
ob

le
m

20
10

99
.2

7
15

.8
8

20
.5

8
9.

22
27

5.
10

n.
a.

n.
a.

n.
a.

16
46

.7
7

0.
00

0.
00

0.
20

22
.6

3
pr

ob
le

m
20

20
1.

82
17

.9
7

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

8.
45

6.
46

pr
ob

le
m

30
10

0.
73

23
.9

5
3.

51
3.

54
3.

76
n.

a.
n.

a.
n.

a.
18

2.
00

0.
00

0.
00

9.
70

3.
62

pr
ob

le
m

30
15

0.
91

25
.9

7
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
7.

01
8.

60
pr

ob
le

m
30

30
3.

64
28

.3
4

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

5.
02

48
.2

4
pr

ob
le

m
40

20
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
sh

aw
0.

00
13

.6
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

11
.2

0
5.

39
w

bo
p

10
10

10
0.

00
6.

75
5.

79
3.

60
28

.7
8

n.
a.

n.
a.

n.
a.

11
44

.1
5

0.
00

0.
00

0.
00

5.
79

w
bo

p
10

20
60

.0
0

8.
07

11
3.

93
87

.2
6

29
8.

45
n.

a.
n.

a.
n.

a.
70

64
.6

3
0.

00
0.

00
7.

99
18

9.
64

w
bo

p
10

30
0.

00
8.

57
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
13

.4
7

4.
93

w
bo

p
15

15
70

.0
0

10
.3

7
10

1.
09

86
.2

7
27

3.
07

n.
a.

n.
a.

n.
a.

67
08

.9
0

0.
00

0.
00

4.
91

16
1.

77
w

bo
p

15
30

0.
00

12
.2

0
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
10

.7
1

10
.3

3
w

bo
p

20
10

92
.5

0
14

.2
8

43
.6

3
21

.1
8

29
5.

90
n.

a.
n.

a.
n.

a.
41

10
.7

8
0.

00
0.

00
1.

75
63

.0
5

w
bo

p
20

20
0.

00
14

.8
7

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

11
.0

5
7.

18
w

bo
p

30
10

0.
00

22
.4

8
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
11

.6
3

3.
80

w
bo

p
30

15
0.

00
22

.3
8

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

9.
93

8.
30

w
bo

p
30

30
0.

00
24

.0
0

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

8.
69

12
2.

86
w

bo
10

10
10

0.
00

5.
92

3.
75

3.
10

17
.8

3
n.

a.
n.

a.
n.

a.
39

2.
15

0.
00

0.
00

0.
00

3.
75

w
bo

10
20

62
.5

0
7.

35
11

1.
25

77
.5

2
29

6.
77

n.
a.

n.
a.

n.
a.

67
71

.9
6

0.
00

0.
00

7.
15

18
3.

25
w

bo
10

30
0.

00
8.

22
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
16

.3
0

4.
64

w
bo

15
15

63
.3

3
9.

37
98

.1
4

80
.8

3
29

2.
84

n.
a.

n.
a.

n.
a.

42
93

.3
9

0.
00

0.
00

6.
53

22
2.

58
w

bo
15

30
0.

00
11

.6
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

12
.7

4
8.

76
w

bo
20

10
98

.5
7

12
.9

0
39

.1
0

22
.9

4
24

5.
60

n.
a.

n.
a.

n.
a.

24
36

.5
4

0.
00

0.
00

0.
54

42
.8

6
w

bo
20

20
0.

00
13

.7
0

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

14
.4

0
5.

79
w

bo
30

10
1.

00
20

.0
5

3.
77

3.
77

3.
77

n.
a.

n.
a.

n.
a.

52
6.

00
0.

00
0.

00
11

.9
7

3.
60

w
bo

30
15

0.
00

20
.9

6
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
10

.4
4

6.
56

w
bo

30
30

0.
00

22
.6

7
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
10

.7
3

49
.5

7
w

bp
10

10
10

0.
00

7.
28

2.
04

1.
71

5.
19

n.
a.

n.
a.

n.
a.

12
3.

20
0.

00
0.

00
0.

00
2.

04
w

bp
10

20
92

.8
6

8.
71

23
.4

2
5.

67
30

0.
91

n.
a.

n.
a.

n.
a.

38
89

.3
7

0.
00

0.
00

1.
26

43
.3

9
w

bp
10

30
0.

00
9.

31
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
16

.1
9

3.
80

w
bp

15
15

86
.6

7
11

.0
5

56
.9

3
32

.3
6

20
1.

00
n.

a.
n.

a.
n.

a.
69

58
.8

7
0.

00
0.

00
2.

30
89

.7
6

w
bp

15
30

0.
00

13
.1

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
11

.5
0

6.
65

w
bp

20
10

97
.5

0
15

.1
3

27
.2

2
19

.5
9

25
3.

82
n.

a.
n.

a.
n.

a.
33

99
.4

1
0.

00
0.

00
0.

83
34

.1
0

w
bp

20
20

0.
00

15
.4

1
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
16

.4
0

6.
06

w
bp

30
10

0.
00

23
.1

8
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
13

.7
9

3.
79

w
bp

30
15

0.
00

22
.9

8
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
13

.1
5

7.
37

w
bp

30
30

0.
00

24
.5

4
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
11

.2
1

76
.8

6

Ta
bl

e
2:

A
gg

re
ga

te
re

su
lts

(P
h.

B
ap

tis
te

)

Constraint Modelling Challenge 2005

13

A cumulative Model
for a Pattern Sequencing Problem

Nicolas Beldiceanu1 and Mats Carlsson2

1 LINA FRE CNRS 2729, École des Mines de Nantes, FR-44307 Nantes Cedex 3, France.
Nicolas.Beldiceanu@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden.
Mats.Carlsson@sics.se

Abstract. This note presents a constraint model for the pattern sequencing prob-
lem proposed at the first constraint modelling challenge at IJCAI. This model is
based on a cumulative constraint. We get a model with a linear number of vari-
ables and constraints according to the number of products and customers. Results
with SICStus Prolog are reported on the benchmark suite provided by the orga-
nizers of the challenge.

1 Problem Description

Given a 0-1 matrix M in which each column j (1 ≤ j ≤ p) corresponds to a product
required by the customers and each row i (1 ≤ i ≤ c) corresponds to the order of a
particular customer1, the objective is to find a permutation of the products such that the
maximum number of open orders at any point in the sequence is minimized. Order i
is open at point k in the production sequence if there is a product required in order i
that appears at or before position k in the sequence and also a product that appears at or
after position k in the sequence.

2 Contribution and Model

Given a p ·c 0-1 matrixM , our contribution is a compact model for the pattern sequenc-
ing problem. We came up with a model involving p variables in [1, p], 3 · c variables
taking their values in [1, p], 2 variables taking their values in [0, c], and one cumulative,
one alldifferent, one arithmetic as well as c minimum and maximum constraints. We
first provide an example of the pattern sequencing problem and recall the definition of
the cumulative constraint. We then present our model and illustrate it on the example
initially introduced.

Consider the matrix depicted by part (A1) of Fig. 1. Part (B1) gives its correspond-
ing cumulated matrix obtained by setting to 1 each 0 which is both preceded and fol-
lowed by a 1. The cost 3 of this solution corresponds to the maximum number of 1 in the
cumulated matrix. But observe that we can get a lower cost by permutting the fourth and
the last columns. The corresponding matrix is depicted by part (A2) of Fig. 1. Finally,

1 The entry cij = 1 iff customer i has ordered some quantity of product j.

Constraint Modelling Challenge 2005

14

1 1 1 1 0 1 1 0 1
0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

(A1)

1 2 3 4 5 6 7 8 9

(A2)

1 2 3 5 6 7 8 9 4

1 1 1 0 1 1 0 1 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1

1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1

1 2 2 3 3 2 2 2 1 1 2 2 2 1 2 2 2 2

(B1) (B2)

Fig. 1. A first matrix (A1) and its corresponding cumulated matrix (B1). A second matrix (A2)
where we permute two columns of (A1) and it corresponding cumulated matrix (B2).

part (B2) shows its corresponding cumulated matrix from which we conclude that we
have a solution of cost 2. Before presenting our model we shortly recall the definition
of the cumulative constraint.

Given a set of tasks, where each task has an origin, a duration, an end and a resource
consumption, the cumulative constraint enforces that at each point in time, the cumu-
lated height of the set of tasks that overlap that point, does not exceed a given fixed
limit. It also imposes for each task the fact that the end is the sum of the origin and of
the duration of that task.

As depicted by Fig. 2, the key idea of our model is to associate to each row (i.e. cus-
tomer) i of the cumulated matrix a stack task which start at the first 1 on row i and ends
just after the last 1 of row i. Then the cost of a solution is simply the maximum height
on the corresponding cumulated profile.

For each column j of the 0-1 matrix initially given we create a variable Vj ranging
from 1 to the number of columns p. The value of Vj gives the position of column j in
a solution. Since V1, V2, . . . , Vp must be assigned to distinct positions we first have an
alldifferent([V1, V2, . . . , Vp]) constraint.

For each row (i.e. customer) i of the 0-1 matrix initially given we create 3 variables
Oi, Di and Ei which respectively correspond to the stack opening time, the stack open
duration and the stack closing time of customer i. Thus Oi +Di = Ei.

We create a minimum(Oi, [Vi,1, Vi,2, . . . , Vi,ki]) and a maximum(Ei− 1, [Vi,1, Vi,2,
. . . , Vi,ki]) constraints for linking the opening time Oi and the closing time Ei with
those permutation variables which correspond to those columns of the 0-1 matrix ini-
tially given having a 1 on row i. The minimum of the stack open duration Di is set to
the number of 1 on row i of the initial 0-1 matrix.

Finally we put all the stack tasks in a cumulative constraint, telling that each stack
task uses one unit of the ressource during all it execution. Since we want to have the
same model for different limits on the number of open stacks we create one extra
dummy task which starts at 1, ends at p + 1 and with a height H in [0, c]. We link
H with the number of open stacks Cost by the constraint H + Cost = c.

3 Additional Constraints and Enumeration

Symmetry breaking Va < Vb, where Va and Vb are the first two variables in the static
order.

Constraint Modelling Challenge 2005

15

1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0

1 2 2 3 3 2 2 2 1

1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1

1 2 2 2 1 2 2 2 2

(A1) (A2)

Fig. 2. Stack tasks associated to each row (i.e. customer) and corresponding cumulated profile for
the two matrices of the previous example.

Subset row Suppose the 1s in row i form a subset of the 1s in row j. Then we have
Di ≤ Dj , Oi ≥ Oj , Ei ≤ Ej .
Dominance constraints First, we give two ways of transforming a valid solution S ′ to
another valid solution S ′′ with the same or lower cost. We say that S ′′ dominates S′.
Then, we express constraints that suppress solutions S ′, taking care not to suppress any
solutions S′′. The transformations apply to columns i, j and row q such that the set of
1s in column i equals the set of 1s in column j, except M [q, i] = 0 and M [q, j] = 1.
Transformation 1: Suppose S ′ is a solution with Oq < Vi < Vj . We obtain S′′ by
swapping columns i and j. There are two cases: a) If j is the last column with a 1 in
row q, thenEq and Dq will decrease. b) Otherwise,Eq and Dq remain unchanged. The
other rows are unaffected. The maximum peak cannot increase; it might decrease.
Transformation 2: Suppose S ′ is a solution with Eq > Vi > Vj . We obtain S′′ by
swapping columns i and j. There are two cases: a) If j is the first column with a 1 in
row q, then Oq will increase and Dq will decrease. b) Otherwise, Oq and Dq remain
unchanged. The other rows are unaffected. The maximum peak cannot increase; it might
decrease.

We don’t want to apply Transformation 2 in case (b), as the obtained S ′′ would
match the precondition of Transformation 1, leading to an infinite sequence of trans-
formations. Hence we add the conjunct Vj = Oq to the precondition of Transforma-
tion 2. We obtain the following dominance constraints, which suppress solutions S ′:
¬(Oq < Vi ∧ Vi < Vj) and ¬(Eq > Vi ∧ Vi > Vj ∧ Oq = Vj).
Enumeration We use the following strategy for the enumeration:

– Identical columns are merged.
– Variable choice: Columns are ordered by decreasing total number of 1s.
– Value choice: From the middle to both extremities. For example, for 15 columns

we get the following ordering of the values: 8, 9, 7, 10, 6, 11, 5, 12, 4, 13, 3, 14, 2,
15, 1. The intuition being that columns with higher number of 1s should be placed
nearer the middle of the schedule. This value choice heuristics was more successful
than simpler variants for the most difficult instances.

Weakness of the Model It seems that the propagation related to the minimum and
maximum constraints is rather weak since it does not directly takes into account the
fact that the permutation variables should take distinct values. One idea for the future
could be to create the constraint (and a filtering algorithm achieving arc-consistency)

Constraint Modelling Challenge 2005

16

min max(MIN, MAX, [V1, V2, . . . , Vn]) where MIN is the minimum value of V1, V2, . . . , Vn,
MAX is the maximum value of V1, V2, . . . , Vn, and V1, V2, . . . , Vn are all different.

4 Results

We run our solver with a 15 seconds time cutoff limit on a 3GHz Pentium 4 with SIC-
Stus Prolog on all the instances provided by the organizers of the challenge. The next
table summarizes our results. Columns A, B, C, D, E, F, G, H, I, J of the table presented
next page respectively provide

• A: The percentage of solved instances to optimality within the cutoff limit of 15
seconds,
• B: The mean best value found for all instances,
• C: The mean total time for finding the optimal solution and for proving optimality

for those instances for which we could prove optimality,
• D: The median total time for all instances,
• E: The maximum time for all instances,
• F: The mean total number of backtracks for finding the optimal solution and for

proving optimality for those instances for which we could prove optimality,
• G: The median total number of backtracks for all instances,
• H: The maximum number of backtracks for all instances,
• I: The total number of instances,
• J: The number of instances solved to optimality.

All reported times are expressed in milliseconds. A -1 in columns C and F indicates
that we could not solve to optimality any instance of a group corresponding to the first
column.

Constraint Modelling Challenge 2005

17

File A B C D E F G H I J
Harvey wbo 10 10 97.50 5.92 765.38 200 15000 5879.79 1466.0 46452 40 39
Harvey wbo 10 20 2.50 8.22 4050.00 15000 15000 20840.00 116235.5 20840 40 1
Harvey wbo 10 30 0.00 8.87 -1.00 15000 15000 -1.00 112653.5 0 40 0
Harvey wbo 15 15 11.67 10.12 1340.00 15000 15000 7869.57 86656.5 23970 60 7
Harvey wbo 15 30 0.00 13.37 -1.00 15000 15000 -1.00 86195.5 0 60 0
Harvey wbo 20 10 71.43 12.96 5396.40 7150 15000 28902.16 36668.0 74038 70 50
Harvey wbo 20 20 1.12 15.68 4370.00 15000 15000 19625.00 65653.5 19625 90 1
Harvey wbo 30 10 10.00 20.77 9797.00 15000 15000 38710.00 46435.5 50062 100 10
Harvey wbo 30 15 0.00 23.16 -1.00 15000 15000 -1.00 45319.5 0 120 0
Harvey wbo 30 30 0.00 25.96 -1.00 15000 15000 -1.00 46454.0 0 140 0
Harvey wbop 10 10 100.00 6.75 3167.25 1435 13740 24003.47 13824.0 100746 40 40
Harvey wbop 10 20 0.00 8.80 -1.00 15000 15000 -1.00 107799.5 0 40 0
Harvey wbop 10 30 0.00 9.42 -1.00 15000 15000 -1.00 111199.5 0 40 0
Harvey wbop 15 15 3.33 11.42 775.00 15000 15000 4134.00 85696.5 5389 60 2
Harvey wbop 15 30 0.00 13.93 -1.00 15000 15000 -1.00 88745.0 0 60 0
Harvey wbop 20 10 45.00 14.57 6716.11 15000 15000 36210.50 60876.0 73901 40 18
Harvey wbop 20 20 0.00 17.21 -1.00 15000 15000 -1.00 62415.0 0 90 0
Harvey wbop 30 10 10.00 23.32 11875.00 15000 15000 54780.25 41399.0 69201 40 4
Harvey wbop 30 15 0.00 24.55 -1.00 15000 15000 -1.00 41844.5 0 60 0
Harvey wbop 30 30 0.00 27.53 -1.00 15000 15000 -1.00 49053.5 0 140 0
Harvey wbp 10 10 100.00 7.27 211.50 85 1480 1239.10 463.5 9987 40 40
Harvey wbp 10 20 42.86 8.91 3376.33 15000 15000 12292.03 45963.5 59432 70 30
Harvey wbp 10 30 21.00 9.49 3299.52 15000 15000 11614.19 36407.0 75663 100 21
Harvey wbp 15 15 23.33 11.48 2631.43 15000 15000 12081.57 60864.0 27010 60 14
Harvey wbp 15 30 5.00 13.94 4828.33 15000 15000 11137.83 41508.5 34109 120 6
Harvey wbp 20 10 90.00 15.12 3403.33 3470 15000 16412.83 16051.5 48931 40 36
Harvey wbp 20 20 2.22 17.05 13390.00 15000 15000 138564.00 62686.0 140004 90 2
Harvey wbp 30 10 40.00 23.57 6535.62 15000 15000 27417.44 43974.0 56478 40 16
Harvey wbp 30 15 0.00 24.73 -1.00 15000 15000 -1.00 55268.0 0 60 0
Harvey wbp 30 30 0.00 27.07 -1.00 15000 15000 -1.00 47983.5 0 140 0
Simonis problem 10 10 100.00 8.03 95.53 20 2590 408.95 16.0 13481 550 550
Simonis problem 10 20 67.27 9.03 1722.89 1500 15000 5532.77 3441.0 79736 550 370
Simonis problem 15 15 58.00 13.06 2153.20 6475 15000 9169.26 25392.5 89755 550 319
Simonis problem 15 30 37.28 14.38 1229.27 15000 15000 2411.34 27862.0 33803 220 82
Simonis problem 20 10 99.09 15.88 1660.86 625 15000 7599.73 3089.5 76284 550 545
Simonis problem 20 20 30.90 18.55 1251.76 15000 15000 3901.53 41040.5 52262 220 68
Simonis problem 30 10 79.45 24.09 3919.72 4330 15000 14941.28 16701.0 62324 550 437
Simonis problem 30 15 24.09 26.84 2144.90 15000 15000 10059.94 49759.0 96676 220 53
Simonis problem 30 30 21.82 29.18 132.92 15000 15000 288.96 39811.0 4893 110 24
Simonis problem 40 20 16.36 37.83 395.00 15000 15000 1172.44 34265.0 11890 110 18
Miller Miller19 0.00 20.00 -1.00 6900 15000 -1.00 6581.0 0 1 0
Wilson gp50by50 25.00 46.50 6900.00 15000 15000 6581.00 23722.5 6581 4 1
Wilson gp100by100 0.00 95.75 -1.00 15000 15000 -1.00 15260.5 0 4 0
Wilson nwrsSmaller4 50.00 7.75 7155.00 15000 15000 17922.00 19043.0 35105 4 2
Wilson nrwsLarger4 0.00 20.75 -1.00 15000 15000 -1.00 24236.5 0 4 0
Wilson sp4 0.00 46.50 -1.00 15000 15000 -1.00 15390.0 0 4 0

Shaw ShawInstances 0.00 16.28 -1.00 15000 15000 -1.00 39345.0 0 25 0

Constraint Modelling Challenge 2005

18

5 Appendix: source code
solve(Matrix, Ps, NbStacks) :-
problem(Matrix, Ps, PsL, NbStacks, ValOrder), min_max(1000, NbStacks, [], PsL, Ps, ValOrder).

min_max(NbStacks0, NbStacks, PsL0, PsL, Ps, ValOrder) :-
NbStacks #< NbStacks0,
findall(f(PsL,Ps,NbStacks), label(PsL,NbStacks,ValOrder,PsL0), [f(PsL1,Ps1,NbS1)]), !,
format(’new incumbent Ps=˜q Cost=˜q\n’, [Ps1,NbS1]),
min_max(NbS1, NbStacks, PsL1, PsL, Ps, ValOrder).
min_max(NbStacks, NbStacks, PsL, PsL, _, _).

label(Ps, NbStacks, ValOrder, Oracle) :- middle_out_labeling(Ps, ValOrder, Oracle), indomain(NbStacks), !.

middle_out_labeling([], _, _).
middle_out_labeling([X|Xs], Order1, []) :- !,
select(X, Order1, Order2),
middle_out_labeling(Xs, Order2, []).
middle_out_labeling([X|Xs], Order1, [O|Oracle1]) :-
suffixchk(Order1, [O|AfterO]),
(X=O, Oracle2 = Oracle1
; member(X, AfterO), Oracle2 = []
),
selectchk(X, Order1, Order2), middle_out_labeling(Xs, Order2, Oracle2).

split(N, N, []) --> !.
split(I, N, [X|Xs]) --> [X], {J is I+1}, split(J, N, Xs).

problem(Matrix, PsOrig, Ps4, NbStacks, ValOrder) :-
nonzero_rows(Matrix, Rows1),
length(Rows1, NbO), transpose(Rows1, RowsT1),
length(RowsT1, NbCols), length(PsOrig, NbCols),
keys_and_values(RowsT2, RowsT1, PsOrig), !,
keysort(RowsT2, RowsT3), keyclumps(RowsT3, RowsT4),
merge_clumps(RowsT4, RowsT5, Ps1), transpose(RowsT5, Rows5),
% Rows5 is the original matrix, lex-sorted by column, identical columns removed.
% PsOrig are the permutation variables corresponding to the original matrix.
% Ps1 are the permutation variables corresponding to Rows5.
length(Ps1, NbP), domain(Ps1, 1, NbP),
Mid is (NbP+2)>>1, Mid1 is Mid-1, NbP1 is NbP+1,
for(Mid, 1, NbP1, L1, []), for(Mid1, -1, 0, L2, []), splice(L1, L2, ValOrder, []),
all_distinct(Ps1, [on(minmax),consistency(bound)]), NbP1 is NbP+1,
orders_tasks(Rows5, Ps1, NbP1, Tasks, [task(1,NbP,NbP1,H,1)]),
tag_by_sum(RowsT5, Ps1, Ps2), % order Ps by decreasing #1s
keysort(Ps2, Ps3), keys_and_values(Ps3, _, Ps4), Ps3 = [(_-LB)-P1,_-P2|_],
P1 #> P2, % symmetries, V. 2
NbStacks in LB..NbO, NbStacks + H #= NbO, % lower bound
cumulatives(Tasks, [machine(1,NbO)], [bound(upper)]),
dominance(RowsT5, Ps1, Tasks), row_subsets(Rows5, 0, Pairs, []), post_subsets(Pairs, Tasks),
% redundant_cumulatives(0, NbP, RowsT5, Ps1, Tasks),
true.

nonzero_rows([], []).
nonzero_rows([R|Rs1], [R|Rs2]) :- memberchk(1, R), !, nonzero_rows(Rs1, Rs2).
nonzero_rows([_|Rs1], Rs2) :- nonzero_rows(Rs1, Rs2).

for(End, _, End) --> !.
for(Cur, Step, End) --> [Cur], {Next is Cur+Step}, for(Next, Step, End).

splice([], []) --> [].
splice([A], []) --> !, [A].
splice([A|As], [B|Bs]) --> [A,B], splice(As, Bs).

row_subsets([], _) --> [].
row_subsets([Row|Rows], I) --> {J is I+1}, row_subsets(Rows, Row, J, J), row_subsets(Rows, J).

row_subsets([], _, _, _) --> [].
row_subsets([Row2|Rows], Row1, I1, I2) -->
{J2 is I2+1}, ({subset_01(Row1, Row2, 0, _)} -> [I1-J2] ; []), row_subsets(Rows, Row1, I1, J2).

post_subsets([], _).
post_subsets([I-J|Pairs], Tasks) :-
nth1(I, Tasks, task(O1,D1,E1,_,_)), nth1(J, Tasks, task(O2,D2,E2,_,_)),
D1 #=< D2, O1 #>= O2, E1 #=< E2, post_subsets(Pairs, Tasks).

redundant_cumulatives(NbP, NbP, _, _, _).
redundant_cumulatives(I, NbP, Cols, Ps, Tasks1) :-
J is I+1, nth1(J, Cols, Col), sumlist(Col, H),
ps_of_supersets(Cols, Ps, Col, Pxs, []), length(Pxs, W),
(W=:=1 -> true
; H=<1 -> true
; min_and_max1(Pxs, Org, End),

Dur in W..1000,
redundant_cumulatives_tasks(Col, Tasks1, Tasks2, [task(Org,Dur,End,H,1)]),
length(Col, NbO),
cumulatives(Tasks2, [machine(1,NbO)], [bound(upper)]),
% format(’redundant cumulatives, column=˜d #rows=˜d #columns=˜d\n’, [J,H,W]),
true

),
redundant_cumulatives(J, NbP, Cols, Ps, Tasks1).

Constraint Modelling Challenge 2005

19

ps_of_supersets([], [], _) --> [].
ps_of_supersets([Col2|Cols], [P|Ps], Col1) -->
({subset_01(Col1, Col2, 0, _)} -> [P] ; []), ps_of_supersets(Cols, Ps, Col1).

redundant_cumulatives_tasks([], [T]) --> [T].
redundant_cumulatives_tasks([0|Col], [T|Ts]) --> !, [T], redundant_cumulatives_tasks(Col, Ts).
redundant_cumulatives_tasks([1|Col], [_|Ts]) --> redundant_cumulatives_tasks(Col, Ts).

% Dominance constraints for any two columns i,j such that
% orders(i) + q = orders(j):
% NOT(First(q)<Pi<Pj)
% NOT(First(q)=Pj<Pi<Last(q))
dominance(RowsT5, Ps1, Tasks) :-
dominance_items(RowsT5, Ps1, Tasks, Items, []), dominance_constraints(Items).

dominance_items([], [], _) --> [].
dominance_items([Coli|Cols], [Pi|Ps], Tasks) --> dominance_items(Cols, Ps, Coli, Pi, Tasks).

dominance_items([], [], _, _, _) --> [].
dominance_items([Colj|Cols], [Pj|Ps], Coli, Pi, Tasks) -->
({subset_01(Coli, Colj, 0, [Q])}
-> {nth1(Q, Tasks, Task)},

[item(Pi,Pj,Task)]
; []
), dominance_items(Cols, Ps, Coli, Pi, Tasks).

subset_01([], [], _, []).
subset_01([X|L1], [X|L2], I, L3) :- !, J is I+1, subset_01(L1, L2, J, L3).
subset_01([0|L1], [1|L2], I, [J|L3]) :- J is I+1, subset_01(L1, L2, J, L3).

dominance_constraints([]).
dominance_constraints([item(Pi,Pj,task(O,_,E,_,_))|Items]) :-
Pi #=< Pj #=> O #>= Pi, Pi #>= Pj #/\ O #= Pj #=> E #=< Pi,
dominance_constraints(Items).

merge_clumps([], [], []).
merge_clumps([Clump|Clumps], [Col|Cols], [P|Ps]) :-
Clump = [Col-P|R], merge_vars(R, P), merge_clumps(Clumps, Cols, Ps).

merge_vars([], _).
merge_vars([_-X|Xs], X) :- merge_vars(Xs, X).

tag_by_sum([], [], []).
tag_by_sum([Col|Cols], [P|Ps1], [(W-Sum)-P|Ps2]) :-
sumlist(Col, Sum), W is -Sum, tag_by_sum(Cols, Ps1, Ps2).

tag_by_weighted_sum([], [], [], _).
tag_by_weighted_sum([Col|Cols], [P|Ps1], [(W-Sum)-P|Ps2], Weights) :-
sumlist(Col, Sum), weighted_sum(Col, Weights, 0, WSum), W is -WSum,
tag_by_weighted_sum(Cols, Ps1, Ps2, Weights).

weighted_sum([], [], S, S).
weighted_sum([X|Xs], [Y|Ys], S1, S3) :- S2 is S1 + X*Y, weighted_sum(Xs, Ys, S2, S3).

rows_sums([], []).
rows_sums([Row|Rows], [Sum|Sums]) :- sumlist(Row, Sum), rows_sums(Rows, Sums).

orders_tasks([], _, _) --> [].
orders_tasks([O1|Os], Ps, NbP1) --> [task(Org,Dur,End,1,1)],
{order_task(O1, Ps, Org, End)}, {sumlist(O1, LB)}, {Dur in LB..NbP1},
orders_tasks(Os, Ps, NbP1).

order_task(Bs, Ps, Org, End) :- order_ps(Bs, Ps, Ps1, []), min_and_max1(Ps1, Org, End).

order_ps([], []) --> [].
order_ps([0|Bs], [_|Ps]) --> !, order_ps(Bs, Ps).
order_ps([1|Bs], [P|Ps]) --> [P], order_ps(Bs, Ps).

suffixchk(List, List) :- !.
suffixchk([_|List], Suffix) :- suffixchk(List, Suffix).

min_and_max1(Ps1, Org, End) :- min(Ps1, Org), max1(Ps1, End).

min([X], X) :- !.
min(Row, Min) :- element(_, Row, Min), ge_each(Row, Min).

max1([Max], Max1) :- !, Max+1 #= Max1.
max1(Row, Max1) :- element(_, Row, Max), le_each(Row, Max), Max+1 #= Max1.

ge_each([], _).
ge_each([X|Xs], Min) :- X #>= Min, ge_each(Xs, Min).

le_each([], _).
le_each([X|Xs], Max) :- X #=< Max, le_each(Xs, Max).

Constraint Modelling Challenge 2005

20

Constraint Modelling Challenge 2005
A dynamic programming approach

Thierry Benoist

Bouygues e-lab, 1 av. Eugène Freyssinet,
78061 St Quentin en Yvelines Cedex, France

tbenoist@bouygues.com

The problem

A manufacturer has a number of orders from customers to satisfy; each order is for a number of different
products, and only one product can be made at a time. Once a customer's order is started (i.e. the first
product in the order has been made) a stack is created for that customer. When all the products that a
customer requires have been made, the order is sent to the customer, so that the stack is closed.
Because of limited space in the production area, the number of stacks that are in use simultaneously i.e.
the number of customer orders that are in simultaneous production should be minimized.
More formally: we are given a Boolean matrix in which the columns correspond to the products required
by the customers and each row corresponds to the order of a particular customer. The entry c_ij = 1 iff
customer i has ordered some quantity of product j (the quantity ordered is irrelevant). The objective is to
find a permutation of the products such that the maximum number of open orders at any point in the
sequence is minimized: order i is open at point k in the production sequence if there is a product
required in order i that appears at or before position k in the sequence and also a product that appears
at or after position k in the sequence

We have n customers (indexed by i) and m products (indexed by j). We have to find a permutation of
{1,…m}. Let σj be the position of product j in the sequence.
P(i) is the set of products of customer i
C(j) is the set of customers ordering product j

Dynamic Programming

Given a solution (permutation) σ, the number of open commands at position t only depends on the
product j attached to position t and on the set of products St attached to previous positions (up to t-1).
Indeed open commands are C(j) ∪ O(St) with O(St)={i ∈ [1..n] , P(i)∩St ∉ {∅ ,P(i)}}, in other words
commands containing product j (namely C(j)) and commands with some products in St but not all
(namely O(St)). It is important to note that the actual permutation of St has no impact on the number of
open commands at position t.
Therefore we can design a dynam ic program with 2m states, corresponding to all possible subsets of
[1..m]. Any state S can be reached from |S| different states1 with one product less. If we denote by f(S)
the objective value corresponding to the best permutation of products of S, then S can be recursively
written as:

{ } { }()






=∅

−∪−=
∈

0)(

)()(),(max()(min
f

jSOjCjSfSf
Sj ,

and f([1..m]) is the optimal solution of the problem.

Complexity

Space complexity is 2m. More precisely, for problems of size n<64, m=30, we need 6x109

 bits in
memory.
The computation algorithm reads as follows:

For S in subsets ([1..m]) // 2m subsets
 Compute O(k), scanning all commands and intersecting their set of product with k
 Then for all products j (at most m, m/2 in average), compute the union of O(k) and P(j)
 Then get the cardinality of this set and update f(S∪{j}) if necessary

The time complexity of this algorithm is O(nm2m). However since space complexity limits the size of
tractable instances (with this approach) it is intersecting to focus on the case n and m < 64 since in most
programming languages it allows performing intersections, union and even cardinality2 operations in
constant time. For such instance the number of operations is around (n+m)2m. In practice computations

1 |X| representing the cardinality of set X
2 Having precomputed the number of bits of all 256x256 bitvectors of size ≤ 16

Constraint Modelling Challenge 2005

21

times are <1ms when m=10, around 1s when m=20, around 30mn when m=30. Larger problem cannot
be solved with this approach.

Future work

This dynamic program may help solving larger instances. For instance it could explore in one second
nodes of depth m-20 in a chronological branch and bound [Benoist & Cambazard, ongoing work]. Or it
could optimize any window of 20 columns in a local search approach…

Table 1. Aggregate results (Thierry Benoist)

• Java Program on PC 2.4Ghz, 1Go RAM.
• One run per instance.
• No measure of search effort (no backtrack)
• Max runtime 2 seconds.

All sets of instances with m ≤ 20 are solved. For results on problems with m=30 see table 2.

Total runtime per instance
in milliseconds

File % solved
optimally within
the cutoff limit

Mean best
value found

mean median max
problem_10_10.dat 100% 8.0309 0.56909 0 31
problem_10_20.dat 100% 8.9218 830.309 828 1031
problem_15_15.dat 100% 12.869 24.4364 16 78
problem_15_30.dat
problem_20_10.dat 100% 15.878 0.87636 0 16
problem_20_20.dat 100% 17.973 993.545 985 1219
problem_30_10.dat 100% 23.953 0.98727 0 31
problem_30_15.dat 100% 25.968 31.1818 31 63
problem_30_30.dat
problem_40_20.dat 100% 6.4727 1296.17 1297 1469
ShawInstances.txt 100% 13.68 992.52 985 1047
wbo_10_10.txt 100% 5.925 2.79487 0 16
wbo_10_20.txt 100% 7.35 835.175 829 860
wbo_10_30.txt
wbo_15_15.txt 100% 9.35 24.75 31 47
wbo_15_30.txt
wbo_20_10.txt 100% 12.9 0 0 0
wbo_20_20.txt 100% 13.689 993.189 985 1016
wbo_30_10.txt 100% 20.05 0.48 0 16
wbo_30_15.txt 100% 20.958 31.675 31 62
wbo_30_30.txt
wbop_10_10.txt 100% 6.75 0.8 0 16
wbop_10_20.txt 100% 8.075 838.625 828 937
wbop_10_30.txt
wbop_15_15.txt 100% 10.367 24.4833 16 62
wbop_15_30.txt
wbop_20_10.txt 100% 14.275 0.775 0 16
wbop_20_20.txt 100% 14.867 1009.69 1000 1110
wbop_30_10.txt 100% 22.475 0.775 0 16
wbop_30_15.txt 100% 22.383 33.8333 31 63
wbop_30_30.txt
wbp_10_10.txt 100% 7.275 1.95 0 47
wbp_10_20.txt 100% 8.7143 830.8 828 875
wbp_10_30.txt
wbp_15_15.txt 100% 11.05 24.95 16 62
wbp_15_30.txt
wbp_20_10.txt 100% 15.125 2.675 0 31
wbp_20_20.txt 100% 15.411 1009.36 1000 1578
wbp_30_10.txt 100% 23.175 1.175 0 16
wbp_30_15.txt 100% 22.983 33.3167 31 63
wbp_30_30.txt

Table 2. Individual results (Thierry Benoist)

Constraint Modelling Challenge 2005

22

Same program as in section 1. Complete search method

Instance Best objective

value found
Proved
optimal?

Runtime Search effort to
find optimal solution

Total search effort

Miller19
GP1
GP2
GP3
GP4
GP5
GP6
GP7
GP8
NWRS1 3 Yes 0.7s
NWRS2 4 Yes 0.8s
NWRS3 7 Yes 31s
NWRS4 7 Yes 30s
NWRS5 12 Yes 24mn
NWRS6 12 Yes 21mn
NWRS7
NWRS8
SP1 9 Yes 36s
SP2
SP3
SP4

Constraint Modelling Challenge 2005

23

Dynamic Programming to Minimize the Maximum Number of Open Stacks

M. Garcia de la Banda
School. of Comp. Sci. & Soft. Eng.
Monash University, 6800, Australia

mbanda@csse.monash.edu.au

P. J. Stuckey
NICTA Victoria Laboratory

Dept. of Comp. Sci. & Soft. Eng.
University of Melbourne, 3010, Australia

pjs@cs.mu.oz.au

Abstract
We argue that a complete method for the Open
Stacks problem should be based on dynamic pro-
gramming. Starting from a call based dynamic pro-
gram, we show a number of ways to improve the
dynamic programming search, preprocess the prob-
lem to simplify it, and to determine lower and upper
bounds. We then explore a number of search strate-
gies for reducing the search space. The final dy-
namic programming solution is, we believe, highly
effective.

1 Introduction
The Open Stacks problem can be phrased as follows: LetP
be a set of products,C a set of customers, and let us assume
that the products ordered by customerci ∈ C are placed in
stacki satisfying∀ci, cj ∈ C, ci 6= cj : i 6= j. Customerci

is active (or stacki is open) from the time the first product
ordered byci is built until the last product ordered byci is
built. The Minimization of Open Stacks Problem (MSOP)
[3] aims at finding an order for building the products inP
which minimises the maximum number of customers active
(or of open stacks) at any time.

2 Dynamic Programming Formulation
The MSOP problem is naturally expressible in a dynamic pro-
gramming formulation. Letc(p) be the set of customers or-
dering productp ∈ P , andc(S) = ∪p∈Sc(p) be the set of
customers ordering products from setS ⊆ P . Assume that
productp is built immediately before any product from set
A ⊂ P , and after any other remaining product (P −A−{p}).
Then, the set of active customers at the timep is built are

a(p, A) = c(p) ∪ (c(A) ∩ c(P −A− {p}))
i.e., those who orderedp, plus those whose orders include
some products scheduled beforep and some scheduled after.
Crucially,a(p, A) does not depend on any particular order of
the products in A orP − A − {p}. Let stacksP (S) be the
minimum number of stacks required to schedule the set of
productsS assuming that those inP−S are scheduled earlier.
Dynamic programming can be used to definestacksP (S) as:

stacksP (S) = min
p∈S

max{a(p, S−{p}), stacksP (S−{p})}

Dynamic programming is so effective for this problem be-
cause it reduces the raw search space from|P |! to 2|P |, since
we only need to investigate minimum stacks for each subset
of P . Note also that dynamic programming is completely
equivalent to a constraint logic programming approach with
memoing. Although our implementation does not use a CP
system, it certainly can be considered a CP approach.

The following code illustrates ourA? call based dynamic
programming algorithm, which improves over a naive dy-
namic programming formulation by taking into account lower
L and upper boundsU :

stacks(S, L, U)
if (S = ∅) return 0

if (stack[S]) return stack[S]
min := U + 1
T := S
while (min > L and T 6= ∅)

p := indexmin{a(p, S − {p}) | p ∈ T}
T := T − {p}
if (a(p, S − {p}) ≥ min) break
sp := max(a(p, S − {p}), stacks(S − {p}, L, U))
if (sp < min) min := sp

stack[S] := min

if (min > U) FAIL := FAIL ∪ {S}
elseSUCCESS := SUCCESS ∪ {S}

return min

The algorithm starts by checking whetherS is empty, in
which case 0 stacks are needed. Otherwise, it checks whether
the minimum number of stacks forS has already been com-
puted (and stored instack[S]), in which case it returns the
previously stored result (code shown in light grey). If not, the
algorithm basically computes insp the valuemax(a(p, S −
{p}), stacks(S − {p}), L, U) for eachp ∈ S, and updates
the current minimum inmin if required. Note, however, that
this computation is avoided (thanks to thebreak) for prod-
ucts whose active set of customers is greater or equal than
the current minimummin, since they cannot improve on the
current solution. As a result, the order in which the products
in S are tried will affect the amount of work performed by
the algorithm. The simple heuristic embedded in our algo-
rithm selects the productp which would have the least active

Constraint Modelling Challenge 2005

24

customers if scheduled immediately. The loops also stops as
soon as the current solution equals the lower bound, since we
are only interested in finding one best solution.

The dark grey code stores inSUCCESS the sets which
resulted in finding a solution within the bounds, and inFAIL
those which did not. We will make use of these later.

Calling stacks(P,L,U) returns the minimal number of
stacks required to schedule the productsP assuming a lower
boundL and upper boundU . Extracting the optimal solu-
tion found fromstack[] is straightforward, and standard for
dynamic programming.

We can improve the code above by noticing that when
computingstacksP (S), the open stacks initially are given by
o(S) = c(P − S) ∩ c(S). If we have a productp ∈ S where
c(p) ⊆ o(S), then there must be a solution tostacksP (S)
which starts withp.

Lemma 1 If there existsp ∈ S wherec(p) ⊆ o(S) then there
is an optimal order forstacksP (S) beginning withp.

Example 1 Consider the following open stacks problem

p1 p2 p3 p4 p5 p6 p7
c1 X . . . X . X
c2 X . . X . . .
c3 . X . X . X .
c4 . . X X . X X
c5 . . X . X . .

Consider schedulingS = {p1, p2, p3, p4, p6} after{p5, p7}
have been scheduled. Then,o(S) = {c1, c4, c5} and an opti-
mal schedule can begin withp3 sincec(p3) ⊆ o(S). 2

We can improve the search further using the following ar-
gument about the minimal number of stacks required. Define
thecustomer graphG = (V,E) for an open stacks problem
as:V = c(P) andE = {(c1, c2) | ∃p ∈ P, {c1, c2} ⊆ c(P)}.
That is, nodes represent customers, and nodes are adjacent if
they order the same product. LetdG(c) be the degree of node
c in G.

Lemma 2 The minimal number of stacks required for set of
productsS is at leastb(S) = |o(S)| + min{dG′(c) | c ∈
c(S), G′ = (V,E − {(c1, c2)|{c1, c2} ⊆ c(P − S)})}.

Example 2 The customer graph for Example 1 is

c1 c2

c3c4c5

Consider scheduling the setS = {p2, p3, p4, p5, p6, p7} after
{p1}. The open stacks areo(S) = {c1, c2}. The reduced
customer graph removes the dashed arc betweenc1 andc2.
The remaining degrees are: 2,2,2,4,2 respectively.b(S) =
|{c1, c2}| + 2 = 4. This is a lower bound on a schedule for
S, since closing any customer requires at least this many open
stacks. 2

We can use this to improve theA? algorithm above. We
replace the calculationa(p, A) with

a′(p, A) = max{a(p, A), b(A)}
which gives an improved lower bound on the future number
of stacks required.

3 Preprocessing
Our methodology attempts to simplify the problem by apply-
ing two preprocessing steps to the initialP . The first step
removes fromP any productp′ such thatc(p′) ⊆ c(p) for
somep appearing in the reduced problem. Solving the re-
duced problem gives an optimal value forP , and optimal so-
lutions to the reduced problem can be extended to give op-
timal solutions toP by simply placing eachp′ immediately
after thep that subsumed it.

This was also noted (although not proved) in Becceneriet
al. [1]. We can prove it using Lemma 1. Simply note that
if c(p′) ⊆ c(p) then any order forS including p′ but not
includingp must havec(p′) ⊆ o(S). Because the problem is
the same when considering the reverse order, the same holds
for orders withp′ beforep.

Example 3 Consider the open stacks problem from Exam-
ple 1. Sincec(p2) ⊆ c(p4) andc(p6) ⊆ c(p4), the two prod-
ucts can be removed. Inserting them afterp4 in an optimal
order for the reduced set of products, gives an optimal order
for the original problem.

p5 p7 p3 p1 p4 p2 p6
c1 X X – X . . .
c2 . . . X X . .
c3 X X X
c4 . X X – X – X
c5 X – X

2

Our second preprocessing step is more obvious: ifP can
be partitioned into two setsP = P1 ∪ P2 such thatc(P1) ∩
c(P2) = ∅, then we can independently orderP1 followed by
P2. This is noted by Yeun and Richardson[3]. We thought
this was too unrealistic to occur, but it does occur in several
benchmarks, including some of the mildy difficult ones.

Becceneriet al [1] reference techniques for handling tree
like sub-graphs of the customer graph independently, but the
paper is not available (and is in Portugese!).

4 Bounds
OurA? algorithm uses both upper and lower bounds to reduce
the number of subsets visited. Trivial lower and upper bounds
areL = max{|c(p)| | p ∈ P} andU = |C|.

Our approach tries to improve the lower bound by
analysing the customer graph.

Lemma 3 If Q ⊆ C is clique in the customer graphG, the
minimal number of open stacks is at least|Q|

We independently determined this lower bound before
finding [1] where they explain a more general approach to
calculating lower bounds. They introduce the following lower
bound without proof.

Constraint Modelling Challenge 2005

25

Lemma 4 If d = 1 + min{dG(c) | c ∈ C} thend is a lower
bound on the open stacks for the problem.

A minor of an open stacks problem can be obtained by
either removing an entire customerc ∈ C (replacingc(p)
by c′(p) = c(p) − {c}), or merging two adjacent customers
(c1, c2) ∈ E (replacing each product orderc(p) by c′(p) =
(c(p) − {c2}) ∪ {c1} if c2 ∈ c(p), or by c′(p) = c(p) oth-
erwise). These operations correspond to edge contraction or
node elimination from the customer graphGc.

Lemma 5 Let m be the minimal open stacks for a problem
defined byc(p), andm′ be the minimal open stacks for the
problem defined byc′(p) wherec′ is a minor ofc. Thenm′ ≤
m.

With these two lemmas we apply any number of minor
steps and use the size of the minimum degree node + 1, as
a lower bound for the original problem. Note that we can
stop when the remaining customer graph is a clique.

Becceneriet al. [1] define a heuristic arc contraction ap-
proach (HAC) based on this, but provide no proof of correct-
ness. We built an implementation of Becceneriet al.’s algo-
rithm and a greedy clique finder (that doesn’t do contractions
but tries starting from each products set of customers).

In order to improve the upper bound we run a number of
greedy heuristics of the following general form.

heuristic(S)
min := 0
while (S 6= ∅)

heuristically selectp
S := S − {p}
if (a(p, S − {p}) > min) min := a(p, S − {p})

return min

We experimented with eleven heuristics, with the five most
successful over all benchmark instances being:
(1) Yuen’s hueristic 3[2]: selects at each stage the productp
whose intersection of customers with previous active stacks
minus the number of new stacks is maximized

indexmax
p∈S

|c(p) ∩ c(P − S)| − |c(p)− c(P − S)|.

(2) minimizes the number of active stacks and breaks ties in
favor of products that close greater number of stacks (are the
last product in those stacks)

indexmin
p∈S

(a(p, S − {p}),−|c(p)− c(S − {p})|).

(3) minimizes the number of active stacks except (a) all ac-
tive stack numbers less than the currentmin are considered
equivalent, and (b) ties are again broken in favor of products
that close more stacks.

indexmin
p∈S

(max(min, a(p, S−{p})),−|c(p)−c(S−{p})|).

(4) minimizes the number of active stacks and breaks ties by
maximizing a cost given byΣc∈c(p)2−|n(S,c)| wheren(S, c)
is the number of productsp′ ∈ S for which customerc
appears inc(p′). This effectively assigns to each customer
with m ordered products a cost of (almost) 1 split amongst
its products as follows:2−m for the first scheduled product,

2−m+1 for the second, . . . ,2−2 for the second last, and2−1

for the last product.

indexmin
p∈S

(a(p, S − {p}),−Σc∈c(p)2−|n(S,c)|)

(5) minimizes the maximum of the number of active stacks
required using the improved formulaa′(p, A).

indexmin
p∈S

a′(p, S − {p})

We also implemented the minimal cost node heuristic
(which we’ll denote (6)) of Becceneriet al [1] which does
not follow the general greedy format since it selects arcs (not
products) in the customer graph to determine a product order.

5 Search Strategies
Our A? program is particularly effective when called with
L = U = n, where it only explores schedules which use ex-
actlyn active stacks. This is related to the fact that the prob-
lem isfixed parameter tractable. This immediately suggests
an extended search procedure where we successively try each
possible value from the lower to the upper bound:

stepwise(L,U)
for try := L to U

FAIL := ∅
min := stacks(P, try, try)
if (min ≤ try) return min
for (S ∈ FAIL) stack[S] := 0

Note that ifstacks returns a number different fromU+1, this
is the optimal value and can be reused in later computations.
We need to reset the memoed values for FAILed sets (when
stack[S] > U), since they must have failed because the upper
bound was too low.

We can improve upon this search using binary search. The
following code

binarychop(L,U)
gmin := U + 1
while (L ≤ U)

FAIL := SUCCESS := ∅
try := (L + U) div 2
min := stacks(P, try, try)
if (min ≤ try)

gmin := min
U := min− 1
for (S ∈ FAIL ∪ SUCCESS) stack[S] := 0

else
L := try + 1
for (S ∈ FAIL) stack[S] := 0

return gmin

repeatedly tries the midpoint of the current range. If success-
ful, it tries values below it after removing allstack[S] compu-
tations performed forstacks(P, try, try) (but not those pre-
viously calculated and used by this computation), since they
could be too high or too low. If unsuccessful, it tries values
above it, after removing FAILed stored values.

Finally, we noted that often the most expensive stack num-
ber to try was the stack number below the optimal, and those
above the optimal were usually easier than those below. This

Constraint Modelling Challenge 2005

26

motivated a backwards stepwise approach where the possible
stack numbers are tried in decreasing order:

backwards(L,U)
try := U
while (try ≥ L)

FAIL := SUCCESS := ∅
min := stacks(P, try, try)
if (min > try) return gmin
gmin := min
try := min− 1
for (S ∈ FAIL ∪ SUCCESS) stack[S] := 0

This has another advantage: we can stop at any time with
a (non-optimal) solution. Note that sincestacks can return
a value less thantry we do not just decrease thetry by one
each time, but to under the minimum we last found.

6 Experimental Results
In this section we briefly describe the effect of the prepro-
cessing approaches, lower and upper bounds approaches and
searching approaches.

We compare on all benchmarks except the most difficult:
SP2, SP3, SP4, which none of our versions can finish in time.
In order to compare the different search approaches we show
the total number of calls tostacks to optimally solve each
instance (except SP2, SP3, SP4) for each search strategy with
all optimizations enabled, and thenbackwards with some
optimizations disabled individually. The appendix shows the
results for all benchmarks.

Total calls Total time
Search method tostacks (secs)
A? 56,231,534 1386
stepwise 29,887,854 880
binarychop 25,351,370 715
backwards 21,271,366 572
backwards −definite 33,992,526 1,260
backwards −a′(p, A) 169,638,021 441
backwards −redundant 30,166,640 850
backwards −red−def 70,759,348 2231
backwards −partition 21,275,426 573
backwards −upper 21,298,294 570
backwards −lower 21,452,365 575

The dynamic programming code is written in C, with no
great tuning or clever data structures, and many runtime flags
to allow us to compare the different versions easily.

First of all the definite choice optimization of Lemma 1 is
highly beneficial. The total number of calls tostacks reduces
by 1/3 but the time halves since we avoid search for the best
possible candidate.

The improved search offered by the use ofa′(p, A) instead
of a(p, A) is massive. The search reduces by an order of mag-
nitude. But because we havent attempted a very clever imple-
mentation ofa′(p,A) execution is slower, since usinga(p, A)
we can have a very tight inner loop.

Removing redundant productsp′ where c(p′) ⊆ c(p)
for another productp is an important first step. Over the
benchmark suite we remove 16305 redundant products out
of 101385 total products, a 16% reduction in size on average.

Given that each extra product could in the worst case double
the search space, this is vital. This is masked by using the
definite choice optimization, if both are removed the program
fails to solve NWRS8 which has 20 redundant products out
of 60.

There are 113 instances where the products are separable
(which surprised us somewhat), with 2.42 separate parts on
average. In most cases the result of separating is not much
better than not, since the separable partitions are usually tiny
singletons. But there are examples such as Warwick1711
where the search space reduces from 1853 calls tostacks to
183, even though the separable parts are size 1, 1 and 5 out of
29 nonredundant products.

The effect of the upper bound heuristics are not too great
once we usebackwards. They improve the number of sets
in 884 cases, but the percentage improvement is tiny overall
(0.0012%) since they do not improve any of the really hard
benchmarks by more that a tiny fraction. Comparatively, the
heuristics rank in the order (1) to (6) (worst to best). Of 5964
partitions of products for 5803 problems, the following table
shows the number of times each heuristic returned the (equal)
bestanswer of all heuristics, theuniquebest answer (bettered
all others), the number of times the answer was theoptimal
answer to the problem (of 5803), and the totalsumof the
heuristic results is shown.

heur (1) (2) (3) (4) (5) (6)
best 3046 3596 3615 3840 5073 5446
unique 29 1 7 43 159 514
optimal 2733 3231 3248 3458 4608 4986
sum 98167 96798 96769 96462 94592 94093

Although the lower bounds approaches are very successful
at finding good lower bounds, the only time they can improve
thebackwards approach is when the lower bound is the op-
timal. While this occurs frequently it does not occur on the
hard benchmarks so there is little benefit. The HAC heuristic
is never improved by the clique approach. The clique lower
bound gives the optimal answer in 2718 benchmarks of 5803,
while the HAC approach gives the optimal on 3380.

While the lower and upper bounds are not that useful for
backwards, this is certainly not the case forA?, stepwise or
binarychop. Similarly, without usinga′(p, A) the lower and
upper bounds are much more important.

References
[1] J.C. Becceneri, H.H. Yannasse, and N.Y. Soma. A

method for solving the minimization of the maximum
number of open stacks problem within a cutting pro-
cess.Computers & Operations Research, 31:2315–2332,
2004.

[2] B.J. Yuen. Improved heuristics for sequencing cutting
patterns. European Journal of Operational Research,
87:57–64, 1995.

[3] B.J. Yuen and K.V. Richardson. Establishing the optimal-
ity of sequencing heuristics for cutting stock problems.
European Journal of Operational Research, 84:590–598,
1995.

Constraint Modelling Challenge 2005

27

A Appendix
All experiments were run on a Pentium IV 3.4Ghz with 2GB
RAM running Linux Fedora Core 3. The dynamic program-
ming software was written in C, compiled with gcc 3.4.2 us-
ing -O3. The runs are performed using allA? improvements,
all preprocessing steps, all lower and upper bounds heurisitics
(using the best value found), and thebackwards stepwise
search approach. In fact the backwards stepwise approach is
fairly insensitive to upper and lower bounds unless the lower
bound is the optimal which can save substantial computation.

Since the program is deterministic the search results are
the same on each run of a benchmark. The timing results
for each suite are aggregates over 10 runs of each individual
benchmark in the suite. For the individuals the time shown
is the average over ten runs of the individual benchmark.
The time calculated is sum of user and system time given by
getrusage , it accords well with wall clock times for these
CPU intensive programs. For the problems that take signifi-
cant time we observed around 10% variation in timings across
different runs of the same benchmark.

The measure of search effort is the number of calls to
stacks that do not immediately return, because of cache hit
or S = ∅. This is the same as the number of non-symmetric
calls to labeling if we consider this as a constraint pro-
gramming approach with memoing. Note that since we use
the backwards stepwise approach, between each successive
stack number tried we empty the cache, so the total num-
ber of calls is just the sum of the calls made for each stack
number. The maximum search effort per instance was set at
225 = 33554432 calls tostacks.

Note that we always run the dynamic programming search
even if the calculated lower and upper bounds agree (in which
case we know we have the optimal solution already)

The software found the opimal solutions for all problems
except SP2, SP3 and SP4 which hit the search limit. It finds a
solution of size 19 for SP2 using 25785 calls tostacks before
hitting the limit trying 18 stacks. The runtime shown for SP2,
SP3 and SP4 is the time to find the best solution. The best
lower bounds we have for SP2, SP3, and SP4 calculated using
lower bound heuristics and usingstepwise are 18, 15 and 22
respectively.

Constraint Modelling Challenge 2005

28

File %solved mean Total runtime per instance (ms) Search to find optimal Total search effort
best mean med. max mean med. max mean med. max

problem10 10 100% 8.03 0.09 0 2 7.01 7 23 8.21 7 86
problem10 20 100% 8.92 0.13 0 4 10.45 10 46 15.66 11 419
problem15 15 100% 12.87 0.37 0 7 13.75 13 89 39.19 14 584
problem15 30 100% 14.02 2.49 1 43 25.17 22 487 260.09 23 6031
problem20 10 100% 15.88 0.52 0 4 12.99 10 92 36.96 28 179
problem20 20 100% 17.97 5.83 1 86 29.31 19 561 428.12 20 6634
problem30 10 100% 23.95 1.63 1 9 17.59 10 178 57.62 52 280
problem30 15 100% 25.97 7.48 3 46 35.45 15 384 282.63 113 1634
problem30 30 100% 28.32 718.36 3 10074 999.80 30 64954 31473.85 30 379396
problem40 20 100% 36.38 96.89 8 607 90.69 20 1329 2454.55 147 14757
Shaw20 20 100% 13.68 12.43 11 42 45.80 19 474 812.76 667 3020
wbo 10 10 100% 5.92 0.14 0 1 9.82 10 11 14.00 10 60
wbo 10 20 100% 7.35 0.33 0 6 20.27 19 57 47.98 19 629
wbo 10 30 100% 8.20 1.27 0 21 26.32 27 30 147.53 28 1621
wbo 15 15 100% 9.35 1.11 1 7 15.57 15 31 103.60 71 579
wbo 15 30 100% 11.58 28.34 2 213 85.82 30 1936 2496.88 30 17724
wbo 20 10 100% 12.90 0.51 0 3 11.74 10 25 40.26 40 96
wbo 20 20 100% 13.69 8.72 7 42 38.48 20 338 540.33 363 2894
wbo 30 10 100% 20.05 1.78 2 5 14.52 10 70 60.79 58 117
wbo 30 15 100% 20.96 8.08 7 30 28.54 15 155 280.28 253 859
wbo 30 30 100% 22.56 1108.10 306 8686 608.63 30 14230 41707.21 16392 319162
wbop 10 10 100% 6.75 0.10 0 1 9.82 10 10 14.22 10 42
wbop 10 20 100% 8.07 0.56 0 8 21.02 19 105 69.78 20 715
wbop 10 30 100% 8.55 1.07 1 25 28.98 28 70 113.22 29 2464
wbop 15 15 100% 10.37 0.77 0 6 15.25 15 32 71.92 15 313
wbop 15 30 100% 12.15 18.63 2 197 162.52 30 2890 1593.28 30 18177
wbop 20 10 100% 14.28 0.49 0 3 11.82 10 28 32.30 25 85
wbop 20 20 100% 14.87 7.99 2 58 40.24 20 659 473.01 20 3428
wbop 30 10 100% 22.48 1.21 1 5 10.78 10 22 39.48 39 83
wbop 30 15 100% 22.38 7.50 5 38 25.13 15 166 249.48 156 1070
wbop 30 30 100% 23.84 986.12 87 8770 1113.31 30 35735 31250.81 2973 300677
wbp 10 10 100% 7.28 0.08 0 1 7.60 7 18 11.68 8 70
wbp 10 20 100% 8.71 0.17 0 2 11.93 12 36 25.07 13 330
wbp 10 30 100% 9.31 0.20 0 2 14.03 14 21 25.43 15 268
wbp 15 15 100% 11.05 0.56 0 6 13.82 13 54 59.75 15 509
wbp 15 30 100% 13.09 5.02 1 60 28.75 23 308 539.16 26 6580
wbp 20 10 100% 15.12 0.52 0 3 11.97 10 45 41.12 40 96
wbp 20 20 100% 15.41 7.26 2 83 50.58 19 1000 468.31 31 5136
wbp 30 10 100% 23.18 2.03 2 8 23.68 10 100 73.33 66 185
wbp 30 15 100% 22.98 10.56 7 45 57.48 15 651 377.62 270 1348
wbp 30 30 100% 24.46 1203.78 5 17097 2071.78 30 132556 45069.34 61 765944

Table 1: Aggregate results: Garcia de la Banda and Stuckey

Constraint Modelling Challenge 2005

29

Instance best value found Proved optimal? Runtime (ms) Search to find optimal Total search effort
Miller 20 40 13 ✔ 610 40 39656
GP1 45 ✔ 8.4 42 42
GP2 40 ✔ 11.2 48 48
GP3 40 ✔ 12.6 50 50
GP4 30 ✔ 10.5 37 37
GP5 95 ✔ 84.8 208 208
GP6 75 ✔ 138.0 100 100
GP7 75 ✔ 118.8 99 99
GP8 60 ✔ 174.3 96 96
NWRS1 3 ✔ 0.2 8 8
NWRS2 4 ✔ 0.1 11 11
NWRS3 7 ✔ 0.0 13 13
NWRS4 7 ✔ 0.1 15 15
NWRS5 12 ✔ 1.4 20 20
NWRS6 12 ✔ 1.0 23 23
NWRS7 10 ✔ 3.0 32 32
NWRS8 16 ✔ 2118.6 40 86869
SP1 9 ✔ 26.4 17 1269
SP2 19 ✘ 1650 (?) 25785 (?) —
SP3 36 ✘ 1 hour (?) 949523 (?) —
SP4 56 ✘ 4 hours (?) 3447816 (?) —

Table 2: Individual results: Garcia de la Banda and Stuckey

Constraint Modelling Challenge 2005

30

B Proofs
Lemma 1 If there existsp ∈ S wherec(p) ⊆ o(S) then there
is an optimal order forstacksP (S) beginning withp.

Proof: Take any optimal orderΠ1p
′Π2pΠ3 of S.

Consider the orderpΠ1p
′Π2Π3. We show that the

active stacks for each product can only decrease.
Consider products inΠ3 have the same active sets
since the set of products before and after is an un-
changed. Now consider any productp′ (as a gen-
eral representative of those products beforep in
the original order). In the original orderap′ =
c(P−Π2−{p}−Π3)∩c({p′}∪Pi2∪{p}∪Π3). In
the new orderap′′ = c(P−Π2−Π3)∩c(Pi2∪{p}∪
Π3). Nowc(P−Π2−{p}−Π3) = c(P−Π2−Π3)
sincec(p) ⊆ c(P−S) ⊆ c(P−Π2−{p}−Π3). and
c(Pi2 ∪ {p} ∪ Π3) ⊆ c({p′} ∪ Pi2 ∪ {p} ∪ Π3).
Henceap′′ ⊆ ap′. We also have to examine the
stacks forp. In the new ordera(p, S−{p}) ⊆ o(S)
ando(S) is a lower bound on the number of stacks
in any order. Hence orderpΠ1p

′Π2Π3 has a mini-
mal number of stacks. 2

Lemma 2 The minimal number of stacks required for set of
productsS is at leastb(S) = |o(S)| + min{dG′(c) | c ∈
c(S), G′ = (V,E − {(c1, c2)|{c1, c2} ⊆ c(P − S)})}.

Proof: At the beginning ofS the remaining cus-
tomersc(S). We argue about the minimal num-
ber of stacks required to close any open customer
c ∈ c(S). In order to close a customerc we need
to have open stacks for the customer and all cus-
tomersc′ adjacent in the customer graph (sincec
andc′ share some productp which needs to be com-
pleted before we can closec). The reduced cus-
tomer graphG′ removes edges fromG which cor-
respond to customer-customer dependencies which
may already have been completed (since they may
only occur in products inP − S). In order to close
any customerc, we need to open at leastdG′(c)
new customers (since these edges only connect to
unopened customers). Hence the bound holds.2

Lemma 3 If Q ⊆ C is clique in the customer graphG, the
minimal number of open stacks is at least|Q|

Proof: Assume to the contrary. Eliminating all the
customers except those inQ (i.e., replacingc(p) by
c(p) ∩Q) gives a problem which clearly is a lower
bound on the original problem. Imagine we have
a schedule on this reduced problem with|Q| − 1
stacks. Then clearly there must be one customerc1

which becomes inactive before another customerc2

becomes active. Contradiction since then the prod-
uct wherec1 andc2 are jointly required cannot be
scheduled. 2

Lemma 4 If d = 1 + min{dG(c) | c ∈ C} thend is a lower
bound on the open stacks for the problem.

Proof: In order to close a stack we need to have
active a customer, and all its neighbours in the cus-
tomer graph. Since the customer shares at least one

product with each of these. In order to close the first
stack we need to have at leastd active customers.
2

Lemma 5 Let m be the minimal open stacks for a problem
defined byc(p), andm′ be the minimal open stacks for the
problem defined byc′(p) wherec′ is a minor ofc. Thenm′ ≤
m.

Proof: Take an optimal orderΠ for c. Now since
(c1, c2) ∈ E there is a product that sharesc1 andc2

and hence their open lifetimes intersect. Consider
the same orderΠ for c′. Sincec2 is replaced byc1,
the lifetime ofc1 is now exactly the union of the
lifetimes of c1 andc2 for c. Hence the number of
open stacksm′′ given byΠ is such thatm′′ ≤ m.
The minimal number forc′ is m′ ≤ m′′ ≤ m. 2

Constraint Modelling Challenge 2005

31

Partition with Minimal Intersection

Emmanuel Hebrard
NICTA and UNSW

Sydney, Austalia
ehebrard@cse.unsw.edu.au

Brahim Hnich
University College Cork

Ireland
b.hnich@4c.ucc.ie

Toby Walsh
NICTA and UNSW

Sydney, Austalia
tw@cse.unsw.edu.au

1 Introduction

Our approach relies on interleaving a complete and a heuristic
method. We therefore introduce two models: The first one is a
complete model that channels the permutation of the products
with a matrix of Boolean variables standing for open stack at
a given time and for a given customer. We detail the propa-
gation algorithm for the channelling constraint. The second
model is an approximation approach, the idea is that given a
product p that we schedule at the middle rank (m/2) in the or-
dering, we can approximate the best permutation by the best
partition of products around p. This relies on the observa-
tion that having many non-open stacks is harder to achieve
at mid-schedule than at the start or the end. When there is a
high enough demand, then the number of open stacks tends to
increase and then decrease only once, the rank m/2 is there-
fore critical. The second observation is that once a product is
chosen for the middle rank, the number of open stacks at the
time this product is manufactured depends only on the parti-
tion of the other products before or after, and not on the ac-
tual permutation. Moreover, if we solve this problem for each
product then the best number of stack closed at rank m/2 is a
lower bound for the whole problem. We therefore solve one
such problem for each product, and from this preprocessing
we get a lower bound and also an approximate solution. We
also found that, once each one of these partition problems is
solved, giving this partition as starting point for the complete
method is usually a good improvement. When the prepro-
cessing is completed, then the upper and lower bounds are
handed to the complete method (when they are not already
equal) to hopefully prove optimality.

2 Complete Model

We refer to the matrix containing the data as demand. Then
for any permutation of the columns (products) of demand,
we can construct a matrix openOrders that represents which
orders are open for which products. For instance, let the fol-
lowing matrices represent demand ⇒ openOrders for two
possible permutations. The first permutation of the products
has 4 orders opened at once for product 2, whilst the second
permutation has never more than 2 open orders at the same
time:

P1 P2 P3

C1 0 1 0
C2 1 0 1
C3 1 0 1
C4 0 1 0

⇒

P1 P2 P3

C1 0 1 0
C2 1 1 1
C3 1 1 1
C4 0 1 0

P1 P3 P2

C1 0 0 1
C2 1 1 0
C3 1 1 0
C4 0 0 1

⇒

P1 P3 P2

C1 0 0 1
C2 1 1 0
C3 1 1 0
C4 0 0 1

Suppose that we have n customers and m products. We
declare an array permutation of m variables, ranging in
[1..m] with an alldiff constraint. The semantic of
permutation[i] = j is that product i comes jth in the or-
dering. We also declare a matrix openOrders of n × m
0/1 variables. The semantic of these variables corresponds
to the second and fourth matrices (open orders) in the ex-
ample above. openOrders[i, j] = 1 iff there exists k, l
such that permutation[k] ≤ j ≤ permutation[l] and
customer i demands products k and l. Then we minimise
the maximum sum on the rows of openOrders, that is
maxi(

∑
j openOrders[i, j]).

The most important part of this model is the way
permutation and openOrders are channelled. We devised
a global constraint for that purpose.

Definition 1 SEQUENCECHANNEL([B1, . . . , Bn], X1, . . . , Xk) ⇔
alldiff(X1, . . . , Xk) ∧
∀1 ≤ i ≤ k, BXi = 1 ∧

∀i ≤ j ≤ k, (Bi = 1 ∧ Bk = 1) ⇒ Bj = 1

We need one SEQUENCECHANNEL constraint for each
customer. The Boolean variables [B1, . . . , Bn] correspond
to one row of openOrders, and the integer variables
X1, . . . , Xk to those variables in permutation such that the
corresponding product is demanded by the customer we con-
sider. For instance, on the small example we have:

• SEQUENCECHANNEL(openOrders[1], P2)

• SEQUENCECHANNEL(openOrders[2], P1, P3)

• SEQUENCECHANNEL(openOrders[3], P1, P3)

• SEQUENCECHANNEL(openOrders[4], P2)

Now we give some rules to propagate
SEQUENCECHANNEL([B1, . . . , Bn], X1, . . . , Xk). Let

Constraint Modelling Challenge 2005

32

α0 (resp. β0) be the smallest (resp. greatest) index of a
Boolean variable that contains the value 1, and α1 (resp. β1)
be the smallest (resp. greatest) index of a Boolean variable
that does not contain the value 0. The propagation rules that
we present here first compute the values of α0, β0, α1, β1,
then propagate to the integer variables and conversely, use
the result to refine α0, β0, α1, β1 and prune the boolean
variables:

Propagation Resulting from α0, β0: The first observation
is that if there exists i such that Bi = 0 and i − α0 < k then
we have α0 = i + 1. This is because there is not enough
room for all the 1’s between α0 and i, and they must be all
consecutive. Of course, the same reasoning can be applied to
β0.

Then we look at the Xi’s. We can prune the bounds of any
Xi to [α0..β0]. When this is done we enforce:

α0 = mini(min(Pi)) & β0 = maxi(max(Pi))

We have three cases:

1. β0 − α0 + 1 < k: we fail.

2. β0 − α0 + 1 = k: then we can set α1 and β1 to α0 and
β0 respectively.

3. Otherwise: For all i such that Xi is ground, we enforce:

α1 = min(α1, i) & β1 = max(β1, i)

Moreover, if the total number of values in the domains
of the Xi’s is equal to k, then we have:

α1 = α0 & β1 = β0

Propagation Resulting from α1, β1: We have the follow-
ing inequalities:

α1 ≤ mini(max(Pi)) & β1 ≥ maxi(min(Pi))

Since some indexes lower than or equal to mini(max(Pi))
(resp. greater than or equal to maxi(min(Pi))) will be set to
one.

α1 ≤ β0 − k + 1 & β1 ≥ α0 + k − 1

Since there will be at least k 1’s.
Finally we have Bi = 0 for all 1 ≤ i ≤ α0 or n ≥ i ≥ β0

and Bi = 1 for all α1 ≤ i ≤ β1.

3 Heuristic model
The basic idea here is that the product that we choose to put in
the middle of the ordering is the most constrained. It is easy
to see that when the first product is manufactured, we need
no more stacks than the demand for that product. This is also
the case for the last product. Most of the time, the number of
open stacks will follows a regular distribution with a unique
peak (or plateau). Moreover, given a product that we choose
to be manufactured in the “middle” of the sequence, only the
partition of the other products before or after the rank m/2 is
important to know how many stacks will be necessary at time
m/2. To understand why this method gives good results, it is

important to notice that for a stack to be closed at time m/2,
it must be closed for either 0..m/2 or m/2..m. Therefore,
consider a product manufactured at time m/2, and a partition
that ensure k closed stacks at that time. This ensure at least
km/2 closed stacks (0’s in openOrders) for any permutation
that respects this partition. The problem that we want to solve
can be formulated as follows:

Given a product p, what is the minimum number of open
stacks at time m/2 if we schedule p to rank m/2 ?

The exact rank of other columns does not matter, this value
depends only on how we partition the columns, either be-
fore or after j. Indeed, for any i, if we schedule product
j to rank m/2, then we have openOrders[i][m/2] = 1
iff either demand[i][j] = 1 or there exists k, l such that
demand[i][k] = 1 and demand[i][l] = 1 and the products
k and l are scheduled on both sides of m/2, and the exact
ranking of k and l are not important. We give an equivalent
definition of the problem using set notations:

Definition 2 MININTERSECTPARTITION: given m sets
s1, . . . sm, we must partition those sets into 2 groups G1 =
{s11, . . . s1m/2}, G2 = {s21, . . . s2m/2} such that |G1| =
|G2| and the size of the intersection between the union of all
sets within each group is minimised:

min(|
⋃

si∈G1

∩
⋃

sj∈G2

|)

Indeed, given a product j that is scheduled to the rank m/2,
we can represent each product k as the set of customers i that
demand k and does not demand j (sk = {i | demand[i, k] =
1∧demand[i, j] = 0}). Now if two of those sets share a “cus-
tomer” i and are not put into the same group (before/after),
then the stack for product j will be open at rank m/2.

We give a constraint program to solve this problem:

1. A set of at most n Boolean variables Z1, . . . Zd, one for
each initial 0 in the column j of demand.

2. m−1 Boolean variables P1, . . . Pm−1, one for each col-
umn (product) apart form j. We pose Pk = 0 iff Pk goes
before the rank i (given to the column j).

3. We post a sum constraint
∑

k∈[1..m−1] Pk = m/2, to
enforce the partition.

4. For each columns c1, c2 and row r such that
demand[r, c1] = 1, demand[r, j] = 0 and
demand[r, c2] = 1, we post a constraint to enforce that
if these two columns are partitioned in different sides,
then Zr should equal 1:

(Pc1
⊕ Pc2

) ⇒ Zr

5. We minimise the sum
∑

k∈[1..dj]
Zk, i.e., the number of

“preserved” 0’s (or intersections between columns).

This problem is in practice small (at most n + m − 1
Boolean variables) and easy to solve for instances up to a
certain size. However, it is NP-hard, and for really large in-
stances (say for instance 50 products and customers), solv-
ing this partition problem to optimality is difficult. Here is a
sketch of a proof of NP-hardness:

Constraint Modelling Challenge 2005

33

Proof: We reduce MAX-2SAT to the problem of partition-
ing the collection of sets {S1, . . . , Sn} into two collections
G1, G2 of equal size such that |⋃Si∈G1

∩⋃
Sj∈G2

| is mini-
mum.

Let φ be a 2SAT formula with n atoms and m binary
clauses. We introduce two sets Si and S̄i for every atom xi.
For every pair of literals xi, xj there are 3 possibilities:

1. They are opposites (xj = x̄i), then we do nothing.

2. There is a clause ck = (x̄i, x̄j), then we introduce n + 1
elements ek1, . . . ek(n+1) in both Si and Sj .

3. Otherwise, for the kth such pair, we introduce n + 2
elements fm+k1, . . . fm+k(n+2) in both Si and Sj .

We first show that partitioning Si and S̄i in the same col-
lection is never optimal. Consider such a solution, since the
two groups have equal size, there exists j such that Sj and S̄j

are in the second collection. Now if we swap Si and Sj , we
will remove at least 2n(n + 1) intersections, and add at most
2(n − 1)(n + 2). It thus always is an improvement.

As a consequence, any optimal solution corresponds to a
valid 2SAT assignment, moreover, since allowed combina-
tions are less penalised it corresponds to an optimal 2SAT
solution.

3.1 Algorithm
In this section we detail how we combined these two ap-
proaches.

• We solve m times the problem MININTERSECTPARTI-
TION, once for each product.

We collect the intersection size and keep it iff it is
the lowest so far.

Then we consider the partition, and we repre-
sent the problem using the complete model, but modi-
fied as follows: We set permutation[j] = m/2, and
for each i 6= j, we add permutation[i] < m/2 or
permutation[i] > m/2 according to the partition com-
puted earlier.

We collect the value returned by the complete
method and keep it iff it is the lowest so far.

• Then we pass the bounds to the complete method, for
completeness.

4 Implementation and Discussion
We implemented these models using HalCSP1. The heuristic
model we actually used for most instances is a slight variation
on the one introduced earlier. The only difference is that in-
stead of choosing one product, we chose a pair of products to
put at rank m/2−1 and m/2. The benefits both on lower and
upper bounds usually compensated the fact that O(n2) prob-
lems were to be solved instead of O(n). We usually imposed
no cutoff when solving MININTERSECTPARTITION, but we
imposed time cutoff for the complete method both for solv-
ing “partitioned” problems and the “total” one. The value of
the cutoff varies according to the instances. It is worthwhile
to note that MININTERSECTPARTITION being usually small

1available at http://www.cse.unsw.edu.au/ ehebrard/codef.htm

and involving only Boolean variables, the number of back-
tracks can be huge for a given duration. On the other hand, the
complete model makes much less backtracks for similar prob-
lem size and duration. For instance, on wbo 30 30.txt we
will have 75,000 backtracks per second in one case and 900 in
the other. Therefore the search effort column should be taken
with great care, as the search effort corresponding to the com-
plete method is underestimated in comparison with that of
the heuristic model. All the experiments were run on desktop
with an Intel Pentium 4 CPU 3.20GHz and 1Gb of memory.
The “K”, “M” and “G” in the tables correspond respectively
to “Thousands”, “Millions” and “Billions” of Backtracks.

5 Appendix

Constraint Modelling Challenge 2005

34

File solved value Total cpu time (s) Best solution backtracks Total backtracks
mean mean median max mean median max mean median max

problem 10 10.dat 100% 8.03 0.6 0.0 41.7 1K 118 38K 7K 564 511K
problem 10 20.dat 64% 8.74 32.7 6.0 606.4 1M 22K 38M 1M 116K 38M
problem 15 15.dat
problem 15 30.dat
problem 20 10.dat 99% 15.88 1.1 0.2 32.1 2K 1K 104K 7K 2K 128K
problem 20 20.dat 60% 17.98 76.0 33.7 662.0 3M 40K 49M 3M 203K 49M
problem 30 10.dat 100% 23.99 1.5 0.4 38.1 3K 1K 101K 7K 3K 132K
problem 30 15.dat 53% 25.98 17.1 7.9 128.1 100K 4K 3M 140K 57K 3M
problem 30 30.dat 20% 28.47 365.4 289.6 4590.0 27M 253K 763M 27M 2M 763M
problem 40 20.dat 30% 36.43 54.0 35.0 352.8 4M 43K 90M 4M 199K 90M
ShawInstances.txt 44% 13.76 79.9 41.0 519.1 43K 24K 347K 172K 81K 1M
wbo 10 10.txt 100% 5.92 0.1 0.1 0.2 484 340 1K 983 926 2K
wbo 10 20.txt 97% 7.35 8.0 4.1 59.0 7K 3K 33K 33K 26K 215K
wbo 10 30.txt 77% 8.20 138.3 126.1 723.2 144K 64K 1M 327K 246K 1M
wbo 15 15.txt 80% 9.35 13.8 5.1 103.1 8K 851 85K 35K 11K 434K
wbo 15 30.txt 11% 11.65 169.5 92.6 828.4 180K 25K 1M 482K 488K 1M
wbo 20 10.txt 100% 12.90 0.3 0.2 2.5 1K 988 25K 3K 2K 28K
wbo 20 20.txt 65% 13.74 35.3 24.7 307.1 25K 10K 449K 91K 78K 449K
wbo 30 10.txt 100% 20.05 1.6 0.7 9.0 8K 3K 58K 10K 5K 58K
wbo 30 15.txt 59% 20.99 37.1 31.4 238.8 14K 11K 144K 52K 24K 489K
wbo 30 30.txt 2% 22.73 401.4 348.1 1135.4 625K 110K 16M 3M 1M 20M
wbop 10 10.txt 100% 6.75 0.1 0.1 0.3 767 724 1K 1K 1K 4K
wbop 10 20.txt 95% 8.07 10.7 3.8 118.2 9K 8K 28K 41K 26K 389K
wbop 10 30.txt 62% 8.57 62.4 55.6 149.1 64K 48K 347K 200K 155K 539K
wbop 15 15.txt 90% 10.37 11.7 1.1 229.4 7K 1K 124K 35K 4K 871K
wbop 15 30.txt 22% 11.20 92.7 80.0 279.9 140K 39K 1M 697K 705K 1M
wbop 20 10.txt 100% 14.47 0.1 0.1 0.4 1K 1K 3K 1K 1K 3K
wbop 20 20.txt 85% 14.88 22.2 17.5 168.6 41K 22K 397K 146K 108K 556K
wbop 30 10.txt 100% 22.50 0.5 0.4 1.6 4K 4K 10K 5K 5K 10K
wbop 30 15.txt 73% 22.38 28.3 8.6 274.0 11K 4K 72K 46K 21K 581K
wbop 30 30.txt 20% 23.94 791.6 551.4 4715.1 71M 795K 1G 78M 5M 1G
wbp 10 10.txt 100% 7.28 1.6 0.1 14.3 1K 668 46K 18K 1K 162K
wbp 10 20.txt 58% 8.73 48.0 5.2 447.6 226K 17K 2M 367K 32K 2M
wbp 10 30.txt 62% 9.31 172.1 37.4 1207.2 863K 220K 9M 1M 661K 9M
wbp 15 15.txt 40% 11.08 38.9 34.6 221.3 13K 2K 91K 200K 44K 1M
wbp 15 30.txt 29% 13.15 534.2 66.2 29668.6 43M 66K 4G 43M 505K 4G
wbp 20 10.txt 100% 15.18 1.4 0.3 12.3 2K 2K 13K 9K 3K 77K
wbp 20 20.txt 47% 15.50 69.9 35.9 466.4 110K 30K 738K 239K 109K 1M
wbp 30 10.txt 100% 23.27 2.7 0.5 24.0 5K 3K 57K 12K 3K 87K
wbp 30 15.txt 20% 23.13 32.5 36.2 56.2 6K 2K 37K 21K 15K 61K
wbp 30 30.txt

Table 1: Aggregate results

Instance Value Proved Runtime Best solution Total
Miller19 13 YES 9043 139K 13M
GP1 46 NO 640 47M 78M
GP2 45 NO 47339 17K 2G
GP3 44 NO 570 33M 35M
GP4 41 NO 4243.5 89M 1G
GP5
GP6
GP7
GP8
NWRS1 3 YES 65 340K 340K
NWRS2 4 YES 15 86K 87K
NWRS3 7 NO 365 27K 166K
NWRS4 8 NO 344 25K 119K
NWRS5 12 NO 305 14K 53K
NWRS6 12 YES 20 14K 82K
NWRS7 15 NO 5782 14K 29M
NWRS8 17 NO 5656 14K 60M
SP1 9 NO 212.4 13K 429K
SP2 22 NO 84936.7 24M 1G
SP3 51 NO 30192.8 600M 600M
SP4

Table 2: Individual results

Constraint Modelling Challenge 2005

35

Improved lower bounds for solving the minimal open stacks problem

Alice Miller,
Department of Computing Science
University of Glasgow, Scotland

alice@dcs.gla.ac.uk

Abstract

In this paper we demonstrate the benefit of calcu-
lating good lower bounds for the value of � , the
maximum number of concurrently open stacks, for
an optimal solution. We give several theoretical re-
sults and illustrate their use when applying a model
checking approach to find solutions. The improve-
ment afforded is equally valid when a constraints
modelling approach is taken.

1 Introduction
When an optimal solution to a problem is sought, whichever
modelling approach is used, failure to provide good initial
bounds for a solution can make finding a solution more diffi-
cult and, in some cases impossible. In this paper we prove
some theoretical results which provide some good lower
bounds in some cases. Indeed, we could not have solved
many of the final instances without these bounds. We also de-
scribe a construction technique, based on one of our theoreti-
cal results, which often provides us with the optimal solution
without the need for search. When the constructed solution
is not necessarily optimal (the maximal number of stacks is
not equal to the best lower bound) it often provides a very
good solution from which to start a search. We combine our
theoretical results together with a model checking approach
to find an optimal solution in almost all of the final instances.
It is important to note, however, that when using a constraints
modelling approach, the application of the theoretical bounds
is equally valid and, indeed, essential (see [1]).

2 The model checking approach
Model checking has been used efficiently to solve a prob-
lem that is very similar to the minimal open stacks problem
(MOSP), namely to solve the rehearsal problem [2].

We have adapted this model to investigate MOSP. Al-
though we have not exploited the major advantages of model
checking (concurrency, and communication for example), in
the smaller examples it provides an efficient method for find-
ing a solution with maximum number of open stacks less than
or equal to� , for given� , if such a solution exists.

Explicit state model checking with SPIN involves convert-
ing a description of a system (written in the specification lan-

guage Promela) into a finite graph, or state space, and per-
forming a depth-first search over the state space. The nodes
of the state space are the states, which are stored as tuples
consisting of the current values of every variable in the sys-
tem. Properties are checked by a depth-first search of the state
space. If a state is reached which has been previously visited
then the search will automatically backtrack. (This includes
self loops.)

As well as checking for deadlock, livelock and assertion
violations, SPIN allows us to verify properties expressed as
linear temporal logic (LTL) formulas. If a path is found for
which a given property is false, the search terminates and the
current path provided as a counter-example.

The property that we use in this example, is a safety prop-
erty (something bad will never happen). For a given � we
assert that no solution with maximum number of open stacks
less than or equal to � is possible. If there is a solution, we
can examine the associated counter-example to construct the
corresponding sequence of products. This sequence is con-
structed automatically using a Perl script, we do not provide
details here.

One of the features of SPIN that we exploit is automatic
backtracking, described above. If a subsequence of prod-
ucts has been generated in which the maximum number of
open stacks is already greater than � (and so the current
subsequence can not possibly lead to a solution), a delib-
erate self-loop is introduced, causing the search to back-
track and the current subsequence to be abandoned. In ad-
dition, if the current path has so far successively placed
products ��� ��� � � � � ����, then, because the associated states
at this point would be identical, if any path had previ-
ously been explored for which the first � products were also
��� ��� � � � � ���� (in any order), the search would again back-
track (the number of open stacks from this point onwards
would be the same in either path).

The Promela specification for a simple model (the first
��� �� �� example) is provided in Appendix 2. It is pro-
vided for the interested reader, and we are happy to provide
additional explanation upon request.

Model checking is a very efficient tool for finding bugs in
programs [3] but proving that no errors exist can be impos-
sible due to memory and time constraints. This is because
finding an error (or solution in our case) involves searching
only part of the state space, and proving no errors requires

Constraint Modelling Challenge 2005

36

the entire search space to be searched. As such, in the stacks
problem it is usually fairly easy to show that a solution for a
given� exists, (and to provide a solution) but - for the larger
examples - difficult (and in some cases impossible) to show
that no solution exists.

The basic approach involves initially setting � to be the
number of customers. We then produce a series of models,
reducing the value of� by � each time, until a model is pro-
duced for which no solution with maximum number of open
stacks less than or equal to � exists. We then increase �
by �, recreate the associated model, and find a solution. All
of these stages are performed automatically, using a template
model and a file containing the particular example.

For some of the larger examples however, it is either very
time-consuming, or impossible due to memory constraints, to
prove the case where no solution exists using model checking
alone. However, by precomputing a good lower bound for the
optimal solution, it is often possible to avoid this last step al-
together. If we have found a solution for which the maximum
number of open stacks is equal to a known lower bound �,
there is no need to investigate further.

In the following section, we give some theoretical results to
enable us to establish a set of lower bounds for each example,
from which we can choose the best.

3 Finding a good lower bound
The simplest lower bound for the number of concurrently
open stacks is given by the maximum number of customers
requesting a single product. In this section we give some re-
sults which help to improve on this lower bound.

First of all we introduce the idea of the degree of a given
customer.
Definition 1 For any customer �, the degree of �, 	
���� is the
number of customers � �� � for which � and � select the same
product. (We say that � and � are in a product.)

For example, in instance Miller19, every customer has de-
gree �� because they all appear in a products with �� other
customers.

In the following, when we say that � is a lower bound,
we mean that there is no ordering of products such that the
maximum number of concurrently open stacks is less than
� .

Theorem 1 If

� �
���	
���� � � � � � �� �� �����

���

then� � � is a lower bound.

Proof Suppose that � is the first customer to have all of its
orders satisfied. Then when the last order containing � is
filled, there are at least � � � stacks open. This is because
� has degree at least � , the orders containing � must have
involved opening � stacks for all of the customers adjacent
to � plus a stack for �, none of which can have been closed
as � is the first customer to have had all of its orders filled.
Corollary 1 If we list the degrees of the customers in
non-descending order, 	�� 	�� ���� 	� say, where � �
�� �� �����

�� � � and 	� � 	� � ���� � 	�, then a
lower bound is given by
���	� � �� ��.

Theorem 2 Suppose� is the minimum of the degrees of the
customers. If there is only one customer, � say, with 	
���� �
� , then� � � is a lower bound.

Proof If there is a solution with the maximum number of open
stacks less than� � � then by theorem 1 it follows that � is
the first customer to have all of its products filled. Suppose
that the first product in the sequence of products containing
� is ��, and the last product in the sequence containing �
is ��. Up to and including the point at which �� is made,
no customer (� say) not in a product with � can have had a
stack open. (Otherwise at �� there are at least � � � � � �
� � � stacks open – every customer in a product with �,
� itself, and �). Similarly, if we reverse the order in which
the products are made, since the maximum number of open
stacks will not increase, � must again be the first customer to
have all of its products filled, and there can be no products
containing a customer not in a product with � up to the last
product containing � (��). This means, going back to the
original order, if � is some customer not in a product with �,
� can not appear in any product either up to and including � �
or from �� to the final product inclusive. Thus � can never
appear. This is a contradiction.

Corollary 2 If there is only one customer, � say, with mini-
mum degree� , and all other customers have degree at least
� � �, then if there is some product � containing � of the
customers not in a product with �, then � � � is a lower
bound.

Proof As above, but this time we show that if there is a
sequence with the maximum number of concurrently open
stacks less than � � �, then the product � can not appear
anywhere in the sequence.

Theorem 3 For any pair of customers � and �, let ���� be
the size of the set of customers formed by taking the union of
the neighbours of � and the neighbours of � and (if necessary)
removing customers � and �. Let�� be the minimum���� for
all pairs of customers � and � (where � �� �). Then �� � �
is a lower bound.

Proof Let customers � and � be the first two customers to
have all of their products filled. If � and � have their last
product filled at the same time, and the last product containing
� and � is � say, then when � is placed, ���� � � customers
have orders open. Suppose � and � have their last product
filled at different times, and suppose � has all of its products
filled first. When the last product for � is filled, there are
���� � � customers with orders open. If �� is the minimum
such ����, clearly �� � � is a lower bound.

Corollary 3 Let �� be the minimum ������ for all triples
�� �� � where � �� � �� �, then�� �� is a lower bound. If we
define�� in a similar way for all � � � � �� �� �����

��
then
����� � � � � � � � �� �� �����

��� is a lower
bound.

The following result gives an easy way to find a solu-
tion with maximum number of open stacks at most � �

Constraint Modelling Challenge 2005

37

�� �����

����, provided all customers do not have degree
� .

Theorem 4 If at least one customer has degree less than� ,
there is a solution with maximum number of concurrently
open stacks at most � .

Proof Suppose that customer � has degree� � and � re-
quests � products. Then for any sequence in which all of the
� products containing � are placed first, the number of open
stacks will never exceed � . This is because for the first �
products the number of stacks is at most 	
���� � �, and for
the remaining products the stack for � is closed, and so there
are at most� open stacks.

Theorem 5 Let � and � be two products, such that the size of
the union of the customers requiring product � or � (�����)
say) is � . If all customers with degree � � � � belong to
both �� and ��, then� is a lower bound.

Proof If the first customer to have all of its products filled
has degree at least� � � then, by an argument similar to the
above,� is an upper bound. Assume w.l.o.g. that � is made
before �. Then, since all customers with degree � � � �
require both products � and �, they will not have their stacks
closed until after both � and � have been made. So no open
stacks will be closed until both � and � have been made. It
follows that there will be at least ��� ���� �� stacks open
when � is made. In all cases,� is an upper bound

Theorem 6 Let � and � be two products, such that � is made
before �, and the size of the union of the customers requiring
product � or � (�����) say) is� . Let �� and �� be the sets
of customers requiring product � but not �, and vice versa. If
either:

1. for every customer � � ��, � is in a product with every
customer in �� or

2. All customers in �� apart from some customer � satisfy
(1) and � is in a product with all but one of the customers
in ��, �� � ��� say, � is in a product with some � in
� � �� � ��, and � is in some product with �,

then � is an upper bound. If there is some customer � for
which the second case holds, but no suitable � exists, � � �
is a lower bound.

Proof Omitted for space reasons.

4 A Construction
The following construction is loosely based on observation
and Theorem 6. It often provides an optimal solution immedi-
ately (instances GP3 and GP4, for example), and in all cases
provides a good starting point. In some instances (GP7 for
example) it provided the best solution, where model check-
ing alone could not cope with such a large problem.

Construction 1 Let � be the minimum size of the pairwise
unions (see Theorems 5 and 6). Pick two customers � and �
such that the size of the union �� � �� is equal to � , and
	
���� � � . List the products ordered by � first, followed

by any (remaining) products on �, followed by any products
that are ordered only by customers belonging to �� � ��. It
can easily be shown that the number of open stacks at any
point so far is at most � � �. Henceforth, when we have
placed a product � , we say that a customer is finished if it
does not appear in any unplaced products (unfinished other-
wise), and spare if it has not yet appeared in a placed product.
For any customer �, let ���� equal the number of spare points
adjacent to �, then we define

��
� �

�
�� if � is not a spare point
�� � � otherwise

The construction proceeds as follows: If the number of un-
finished customers is at most the maximum stack size so far,
stop. Otherwise, pick a customer � such that ��
� is mini-
mal. Add all remaining products ordered by � followed by all
products which are ordered only by customers which are not
(now) spare. Repeat as often as necessary.

4.1 Results
Our experiments were performed on a PC with a 2.4GHz In-
tel Xenon processor, 3Gb of available main memory, running
Linux (2.4.18), with SPIN version 4.2.3.

In Table 1 below, we give results of the preprocess to find
the greatest lower bound and the first theorem to find this
bound, for the single detailed examples considered in Table
4 of Appendix 1. �� is the greatest lower bound. Bound �
is the maximum number of �s in a column, and bounds � to
	 correspond to Theorem 1, Corollary 1, Theorem 3, Corol-
lary 3 (three-way unions), Theorem 2, Corollary 2, Corollary
3 (four-way unions), Theorem 5 and Theorem 6. We decided
to not implement bound 7, as it proved to be too time con-
suming. In each case an example pair is provided to construct
a good initial solution using Construction 1, if such a pair ex-
ists. The customer with the smaller degree is given first in
each case.

Our results for the grouped data sets are given in Tables 2
and 3 of Appendix 1. Note that we only record the percentage
solved, the mean value and the average time taken to solve
completely. The time is in seconds, and includes the time
taken to compute the best lower bound in each case. In order
to achieve better, more accurate results, the theoretical results
achieved in this paper have been applied to a Constraint pro-
gramming approach in [1], where results have been recorded
more accurately. We initially limited our search time to �
hour per data set. However, for some of the data sets, due to
time constraints, where we were unlikely to achieve an opti-
mal solution within our time limit, we have not tried to find
a solution at all. In cases where we believe we could have
found optimal solutions to all instances, but did not (because
we would have missed the submission deadline!) we have
marked all fields with a ‘T’.

In table 4 we give our results for the single, larger in-
stances. In many cases we have used the construction ap-
proach to find the best solution. Note that in each case, if the
constructed solution is optimal, the time, number of fails etc.
both up to and including the solution is zero (no search is re-
quired). In cases where the constructed solution is one more

Constraint Modelling Challenge 2005

38

File Lower bound Bound used Example pair
Miller19 13 bound 4 ��� ��

GP1 45 bound 3 �
� ���
GP2 40 bound 9 ���� ��
GP3 40 bound 1 ��
� ���
GP4 30 bound 0 ���� ���
GP5 95 bound 3 ���� ���
GP6 75 bound 1 ��	� ��
GP7 75 bound 3 �
�� �
�
GP8 60 bound 4 ���� ���

NWRS1 3 bound 0 ��� ��
NWRS2 4 bound 0 ��� ��
NWRS3 7 bound 9
NWRS4 7 bound 1 ��� ��
NWRS5 11 bound 9 �	� �	�
NWRS6 12 bound 9 �
� 	�
NWRS7 10 bound 9 ����
�
NWRS8 12 bound 3 ���� ��

SP1 8 bound 0
SP2 9 bound 0 ��	� ��
SP3 12 bound 4 ����
��
SP4 13 bound 0 ����
��

Table 1: Best lower bounds for the larger instances

than the greatest lower bound, the time etc. up to the best so-
lution is �, but the time etc. to prove the optimum solution is
not. The number of fails recorded is the number of matched
states in each case (when the search is forced to backtrack).

References
[1] A. Miller, C. Unsworth and P. Prosser. A constraint

model and a reduction operator for the minimising open
stacks problem. In Ian Gent and Barbara Smith, editors,
Proceedings of the 4th Workshop on modelling and solv-
ing problems with constraints. Held in conjunction with
IJCAI’05. Edinburgh, July 2005.

[2] P. Gregory, A. Miller, and P. Prosser. Solving the re-
hearsal problem with planning and with model checking.
In Brahim Hnich and Toby Walsh, editors, Proceedings
of the 3rd Workshop on modelling and solving problems
with constraints. Held in conjunction with the 16th Euro-
pean Conference on Artificial Intelligence (ECAI 2004).,
pages 157–171, Valencia, Spain, August 2004.

[3] Gerard J. Holzmann. The logic of bugs. In Proceed-
ings of the 10th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering (SIGSOFT’02, pages 81–
87, Charleston, South Carolina, USA, November 2002.
ACM Press.

Constraint Modelling Challenge 2005

39

Appendix 1

File % solved mean value mean time
problem 10 10.dat 100 8.04 2.05
problem 10 20.dat 100 8.93 2.72
problem 15 15.dat 100 12.88 2.83
problem 15 30.dat - - -
problem 20 10.dat T T T
problem 20 20.dat T T T
problem 30 10.dat - - -
problem 30 15.dat T T T
problem 30 30.dat - - -
problem 40 30.dat - - -
ShawInstances.txt 100 13.72 10.56

wbo 10 10 100 6.03 3.43
wbo 10 20 100 7.4 3.05
wbo 10 30 100 8.23 72.38
wbo 15 15 100 9.35 5.35
wbo 15 30 - - -
wbo 20 10 100 12.9 6.5
wbo 20 20 100 13.7 9.02
wbo 30 10 100 20.06 9.41
wbo 30 15 100 20.98 9.7
wbo 30 30 - - -

Table 2: Times to find the optimal solution for each data set

Constraint Modelling Challenge 2005

40

File % solved mean value mean time
wbop 10 10 100 6.78 1.4
wbop 10 20 100 8.1 2.5
wbop 10 30 - - -
wbop 15 15 100 10.4 4.35
wbop 15 30 - - -
wbop 20 10 100 14.3 5.2
wbop 20 20 100 14.88 7.1
wbop 30 10 100 22.5 7.25
wbop 30 15 100 22.38 8.53
wbop 30 30 - - -
wbp 10 10 100 7.3 2.53
wbp 10 20 100 8.73 3.1
wbp 10 30 - - -
wbp 15 15 100 11.05 4.0
wbp 15 30 - - -
wbp 20 10 100 15.13 4.65
wbp 20 20 100 15.40 10.56
wbp 30 10 100 23.18 6.83
wbp 30 15 100 23.0 8.32
wbp 30 30 - - -

Table 3: Times to find the best solution for each data set

File solved best time to best fails to best time to fails to
value solution solution prove prove

Miller19 Yes 13 0 0 0 0
GP1 Yes 45 0 0 0 0
GP2 Yes 40 0 0 1.79 29888
GP3 Yes 40 17.34 668 0.18 1675
GP4 Yes 30 0 0 0 0
GP5 Yes 95 0 0 0 0
GP6 No 76 0 0 - -
GP7 No 76 0 0 - -
GP8 No 61 0 0 - -

NWRS1 Yes 3 0 0 0 0
NWRS2 Yes 4 0 0 0.01 47
NWRS3 Yes 7 0.58 27616 0.88 182412
NWRS4 Yes 7 0 0 0 0
NWRS5 Yes 12 1.093 970 23.82 79984
NWRS6 Yes 12 0 0 - -
NWRS7 Yes 10 0 0 0 0
NWRS8 No 16 0 0 - -

SP1 Yes 9 0.375 282 277.79 1135110
SP2 No 22 0 0 - -
SP3 No 35 0 0 - -
SP4 No 54 0 0 - -

Table 4: Times and number of fails to prove the best solution for each problem

Constraint Modelling Challenge 2005

41

Appendix 2
The Promela specification for a simple model (the first ��� �� �� example) is provided below. Note that we use a set of three
dots � � �, to indicate where code has been omitted, for space reasons.

The main process is the scheduler process, and the product order is decided non-deterministically. Note that�!" is set to

 here. This model is used to investigate the existence of a solution with maximum stack size at most
.

#define MAX 8
#define no_prods 10
/* prods labelled 0 to 9 */
#define no_custs 10
/* custs labelled 0 to 9 */

byte no_needed=9; bit STOP=0;
bit prod_made[no_prods]=0;
/*set to 0 if prod still not made*/

byte stacks=0; byte no_made=0;
/*no of prods currently made*/

byte orders_left[no_custs]=0;
/*no of prods left for each cust*/
/*set in init*/
bit order_started[no_custs]=0;
/*has custs order started*/
typedef array {bit prod[no_prods]};
hidden array orders[no_custs]=0;

inline choose_next_prod(choice)
{do
::atomic{prod_made[0]==0->

choice=0;break}
::atomic{prod_made[1]==0->

choice=1;break}
...

::atomic{prod_made[8]==0->
choice=8;break}

::atomic{((prod_made[9]==0)
&&(prod_made[0]==1))->

choice=9;break}
od}

inline make_prod(j)
{byte count1=0;
stacks=0;
do
::atomic{(count1==no_custs)->

prod_made[j]=1;
count1=0;break}

::atomic{else->
if
::((order_started[count1]==1)

&&(orders_left[count1]>0))->
stacks++;
if
:: (orders[count1].prod[j]==1)->

orders_left[count1]--
:: (orders[count1].prod[j]==0)->skip
fi;

::((order_started[count1]==0)
&&(orders[count1].prod[j]==1))->

stacks++;
order_started[count1]++;
orders_left[count1]--

Constraint Modelling Challenge 2005

42

::else->skip
fi;
count1++}

od}

proctype scheduler()
{byte count=no_prods;
byte mymax=0; stacks=0;
start:
do
::atomic{(stacks>MAX)->skip}
::atomic{((stacks<=MAX)

&&(no_made==no_needed))->break}
::atomic{else->choose_next_prod(count);

make_prod(count); no_made++;
printf("\n make prod %d\n",count);
if
::(stacks>mymax)->mymax=stacks
::else->skip
fi}

od;
printf("\n Max stacks %d now\n",mymax);
STOP=1
}

init{atomic{

orders[0].prod[3]=1;
orders[0].prod[7]=1;
orders_left[0]=2;

orders[1].prod[1]=1;
orders[1].prod[4]=1;
orders[1].prod[5]=1;
orders_left[1]=3;
...

orders[9].prod[2]=1;
orders_left[9]=1;

prod_made[0]=1; /* don’t need this prod */
run scheduler()
}
}

#define p (STOP==1)

#include "rehearsal.ltl"

Constraint Modelling Challenge 2005

43

A Constraint Model and a Reduction Operator for the Minimising Open Stacks
Problem

Alice Miller and Patrick Prosser and Chris Unsworth
Department of Computing Science
University of Glasgow, Scotland
{alice/pat/chrisu}@dcs.gla.ac.uk

Abstract

We present two constraint models for the Minimis-
ing Open Stacks Problem (MOSP). Our first model
is based on that reported in [1], and our second is
a refinement and is more space efficient. We also
present two reduction operators for the MOSP. One
reduction operator is applied as a pre-process to re-
move elements of the problem that are provably re-
dundant, the second dynamically reduces the prob-
lem during search. We also introduce conditional
lower bounds, which are lower bounds associated
with a partial assignment. Experiments are then
performed using the two reduction operators, and
our best constraint model using the lower bounds
reported in [2] and the conditional lower bounds.

1 Introduction
The minimising open stacks problem (MOSP) is in principal
very similar to the rehearsal problem, as described in [3]. The
MOSP is essentially a permutation problem. We are given m
products and n customers. A customer may demand a num-
ber of different products. Therefore we can think of a cus-
tomer as a 0/1 vector (or row) of length m and a product as
a 0/1 column, where the column has n elements correspond-
ing to customers. When the first product for a customer is
produced, a stack (or a pallet) is opened for that customer,
and that stack is closed when we have made the last product
for that customer. The products can be made in any order,
i.e. we can permute the columns in m! ways. By permuting
the columns we can then control when customer orders are
open and closed. The goal is then to find a permutation that
minimises the number of stacks/pallets open at any time.

Below we present two constraint encodings for the MOSP.
The first encoding is based on that in [1] and was imple-
mented in JChoco. Our second encoding is more compact, us-
ing less variables and less constraints, and allows us to model
larger problems. This model was then encoded in ILOG’s
JSolver.

We also present a reduction operator. This is a pre-
processing step in problem solving, i.e. the problem is pro-
cessed to produce a smaller representative problem that can
then be modelled and solved. The solution to this problem

can then be inflated, in linear time, to give a solution to the
original problem.

2 A Constraint Programming Encodings
Below we introduce the variables and the constraints (in ital-
ics). The main aspects of the model are to 1-fill rows of a 0/1
array, such that for a given row, say i, we locate the position of
the first 1 in that row and also the last 1 in that row, and then
fill the intermediate elements with 1’s. This corresponds to a
customer order being open from the first product demanded
up to and including the last product demanded.

M a two dimensional array. M[i][j] = 1 if and only if cus-
tomer i requires product j. The array M is essentially an
array of constants, i.e. M is the data read in initially and
does not change.

S a one dimensional array. If S[j] = k then product j will
be produced in time slot (column) k. That is, S gives us
the permutation of the columns. Each variable in S has
a domain 1 to m, and all the variables in S must take
different values.

P a one dimensional array. If P[k] = j then in time slot (col-
umn) k, product j will be produced. In order to force S
and P to maintain a permutation we use the channelling
constraints S[j] = k ↔ P [k] = j.

T is the timetable, and is a two dimensional array of 0/1
variables. S[j] = k → T [i][k] = M [i][j]. That is,
if product j is made in time slot k (i.e. S[j] = k) and
customer i demands product j (i.e. M[i][j]) then product
j is made for customer i in time k (i.e. T[i][k] = M[i][j]).

open is a two dimensional array of 0/1 variables. If open[i][k]
= 1 then something is made for customer i in time k or
earlier. Consequently, a stack is open for that customer
at time k and if a stack is open for customer i at time k
the stack is also open at time k+1. Therefore we have
a right-rippling constraint such that open[i][k] = 1 →
open[i][k + 1] = 1. This right-ripple is initiated when
T[i][k] = 1. We then have the following constraints,
T [i][k] = 1 → open[i][k] = 1.

nc is also a two dimensional array of 0/1 variables. This
array is symmetrical to the array above, stating when
a stack is not closed, and has a left-rippling constraint.
If nc[i][k] = 1 then something is made for customer i

Constraint Modelling Challenge 2005

44

in time k or earlier, consequently the stack for this cus-
tomer cannot be closed at time k, and neither can it be
closed at time k-1. Therefore we have the left-rippling
constraint nc[i][k] = 1 → nc[i][k − 1] = 1. Again, the
left-ripple is kicked off when T[i][k] = 1. The constraint
is then T [i][k] = 1 → nc[i][k] = 1.

Stacked is a two dimensional array, such that Stacked[i][k] is 1 if
and only if the ith customer’s order is stacked at time k
and the stack has not been closed at time k. Therefore we
have the constraint Stacked[i][k] = 1 ↔ open[i][k] =
1 ∧ nc[i][k] = 1.

soat is a one dimensional array of m variables with domains
0 to n, such that soat[k] is the number of stacks open at
time k. Therefore soat[k] is the sum of the variables in
the kth column of array Stacked. Therefore we have the
constraint soat[k] =

∑i=n−1
i=0 Stacked[i][k].

cost is the objective variable to be minimised, and is the
maximum of the values in the vector soat (stacks open
at time). That is, we want to minimise the maximum
number of stacks open at any time, consequently we
have the constraint maximum(cost, {soat[k] : 0 ≤
k < m}). The maximum constraint works as follows.
If the lower bound of some variable soat[k] increases
then lwb(cost) = max(lwb(cost), lwb(soat[k])). If
lwb(cost) increases then there is no effect. If the up-
per bound of some variable soat[k] decreases then we
find the variable soat[l] that has the largest upper bound
and set upb(cost) = min(upb(cost), upb(soat[l])). If
upb(cost) decreases then for all values of k (0 ≤ k <
m) upb(soat[k]) = min(upb(soat[k]), upb(cost)).
The maximum constraint can also be realised using
primitive constraints. Consider the case where we have
3 variables A, B, C and we constrain variable X to be the
maximum of A, B, and C. This can be done as follows:
X ≥ A∧X ≥ B ∧X ≥ C ∧ (X = A∨X = B ∨X =
C).

The above model was coded in JChoco using the S variables
as the decisions. Variables were instantiated in the static order
S[0], S[1], S[2], ... , S[m-1]. A symmetry breaking constraint
was applied, similar to that in [1], such that S[0] < S[m-1].

A second model was also coded up in JSolver. The P vari-
ables were used as decisions, and the arrays open, nc and
T were not used (and consequently the ripple constraints in
those arrays were not used). To replace the 2-dimensional
arrays T, open and nc, we introduced the following one di-
mensional arrays.

start a one dimensional integer array. If start[i] = k
then the first product for customer i is made in
time slot k. This is maintained by the constraint
minimum(start[i], {S[j] : 0 ≤ j < m ∧ M [i][j] =
1}). The minimum constraint can be realised either
as a n-ary constraint, similar to maximise above, or by
using primitives (also as above).

end a one dimensional integer array. If end[i] = k
then the last product for customer i is made in
time slot k. This is maintained by the constraint

maximum(end[i], {S[j] : 0 ≤ j < m ∧ M [i][j] =
1}).

The variables in the Stacked array are then maintained by the
constraint, Stacked[i][k] = 1 ↔ start[i] ≤ k ≤ end[i].
This (JSolver) model is significantly more compact than the
one first described (coded in JChoco) using less variables and
less constraints. This allows us to model larger problems.

3 A Reduction Operator
We now describe a reduction operator, and present a proof
that this reduction is sound. Essentially this operator is a pre-
process step where we input the data for the problem and re-
move from it products that have no effect on the optimal so-
lution. This delivers a new representative problem that has
less columns/products than the original. This reduced prob-
lem can then be solved to optimality and an optimal solution
to the original problem constructed in linear time.

3.1 Removing Subsumed Columns
Our reduction operator removes a product p i from the prob-
lem if there exists some other product pj such that all the
customers that demand product pi also demand product pj ,
i.e. we say that pi is a subset of pj . A practical example of
this might be two products, the first a dustbin and the second
a dustbin lid. No customer demands a dustbin lid if they have
not already demanded a dustbin. We can ignore the produc-
tion of the dustbin lid in constructing our schedule. We can
then re-insert the production of the dustbin lid into the sched-
ule immediately after the production of the dustbin without
altering the cost of that schedule.

Theorem 1 Let Pn be a problem (instance) consisting of n
products p1, p2, . . . , pn. If, for some i and j, pi ⊆ pj , P i

n−1

is the problem obtained from Pn by removing pi and si
n−1

an optimal sequence for P i
n−1, then si

n−1(i), the sequence
formed by inserting pi after pj in si

n−1, is an optimal se-
quence for Pn.

To prove the theorem, we use two lemmas:

Lemma 1 If sn−1 is a sequence corresponding to any prob-
lem with n−1 products, and sn a sequence formed by adding
a new product pi, then if R and R′ are the maximum number
of open stacks for sn−1 and sn respectively, R′ ≥ R.

Proof Suppose that the maximum number of stacks (R) for
sn−1 is achieved when product pk is placed. All of the cus-
tomers that have stacks open at that point have ordered prod-
ucts before (or at) pk. Regardless of where pi is placed, this is
still true, and so the number of stacks open when pk is placed
is still at least R.

Lemma 2 If sn−1 is a sequence corresponding to any prob-
lem with n−1 products, and sn a sequence formed by adding
a new product pi, which is a subset of some existing product
pj , directly after pj , then if R and R′ are the maximum open
stacks for sn−1 and sn respectively, R′ = R.

Proof We show that when pi is inserted after pj , the number
of stacks open when any product pk is placed is unchanged.

Constraint Modelling Challenge 2005

45

We also show that the number of open stacks when p i is
placed will be less than or equal to that of pj .

The number of open stacks open when pk is placed equals
the number of orders opened on or before p k minus the num-
ber or orders closed before pk. If pk is positioned before pi

then clearly these totals will be unaffected, thus the number
of open stacks will remain the same.

If pk is positioned after pi then the number of open or-
ders will remain the same as all orders that require pi will
already have been opened by pj . The number of closed or-
ders will also remain the same as any orders that where pre-
viously closed by pj that require pi will now be closed by pi.
Therefore the number of open stacks will remain the same.

Because pi will not open any new orders, the number of
open stacks when pi is placed will be the same as pj minus
the number of orders closed at pj .

Proof of Theorem 1 Suppose that si
n−1 is the optimal so-

lution of P i
n−1 and that R is the maximum number of open

stacks associated with si
n−1. By Lemma 2, the maximum

number of open stack for si
n−1(i), with pi placed directly af-

ter pj is R.
If there is no solution to Pn with maximum number of open

stacks less than R then we are done. Suppose then, that there
is some solution, sn with maximum number of open stacks
equal to R′ say, where R′ ≤ R. Removing pi from sn−1

will result in a sequence for P i
n−1 which must have maximum

number of open stacks R ′′ ≥ R since we know that R is the
optimal value for P i

n−1. But by replacing pi we must obtain
a sequence with maximum number of open stacks ≥ R ′′, by
Lemma 1. Thus R′ ≥ R′′. So we must have R′ = R′′, which
is a contradiction as R′′ ≥ R.

3.2 Dynamic Reduction
A variant of the reduction operator is used inside the search
process. This operator forces a product to be produced next,
based on the state of the partial solution. Assume the search
process is free to select the next product to produce, and we
have computed the current number of open stacks. If there is
an unselected product such that if selected next the number
of open stacks does not increase, then that decision is forced.
Furthermore, this selection will not increase the number of
open stacks in any subsequent time slots.

3.3 Lower Bounds
A set of lower bounds is calculated for each problem, dur-
ing a pre-processing stage. The first, bound0, is simply the
maximum number of 1s contained in any given column of
the input data, i.e. the maximum demand for a product. The
other bounds, together with the proof of their validity, are de-
scribed in full in [2]. We summarise them below. Note that,
for any customer i, deg(i) denotes the degree of i, defined as
the number of customers that order at least one of the same
products as i (i.e. the number of neighbours of i). Also, if n
is the number of customers, d0, d1, . . . , dn−1 is a list of the
degrees of the customers in non-decreasing order. For any
pair of customers i and j, i �= j, we define Ri,j to be the set
of neighbours of i and j, not including i or j. Similarly we
define Ri,j,k for any set of (distinct) customers i, j and k.

bound1 = d0 + 1
bound2 = max{di + 1 − i : 0 ≤ i < n}
bound3 =

{
d0 + 2 if d1 − d0 > 0
0 otherwise

bound4 = max{|Rx,y| + 1 : x �= y}
bound5 = max{|Rx,y,z| + 1 : x �= y �= z}

From this set of lower bounds we choose the maximum, G.
If we find a solution with cost G, we know that this must be
an optimal solution.

3.4 Conditional Lower Bounds
An additional set of lower bounds are calculated which take
into account a partial assignment. We define Da to be the set
of customers that require product a. We define R i to be the
set of neighbours of i. bounda is the lower bound for a partial
solution where a product a has been assigned to the first time
slot. bounda,b is the lower bound when products a and b have
been assigned to the first two time slots.

bounda
1 = max{|Rx ∪ Da| + 1 : x}

bounda
2 = max{|Rx,y ∪ Da| + 1 : x �= y}

bounda
3 = max{|Rx,y,z ∪ Da| + 1 : x �= y �= z}

bounda = max{bounda
1, bounda

2, bounda
3}

bounda,b
1 = max{|Rx ∪ Da ∪ Db| + 1 : x}

bounda,b
2 = max{|Rx,y ∪ Da ∪ Db| + 1 : x �= y}

bounda,b
3 = max{|Rx,y,z ∪ Da ∪ Db| + 1 : x �= y �= z}

bounda,b = max{bounda,b
1 , bounda,b

2 , bounda,b
3 }

These bounds are used by adding the following constraints.

{s[1] = a → cost ≥ bounda : 1 ≤ a ≤ m}
{cost < bounda → s[1] �= a : 1 ≤ a ≤ m}

{s[1] = a ∧ s[2] = b →
cost ≥ bounda,b : 1 ≤ a, b ≤ m ∧ a �= b}
{cost < bounda,b →

s[1] �= a ∨ s[2] = b → : 1 ≤ a, b ≤ m ∧ a �= b}

Our current implementation has a very high cost to calcu-
late these bounds. The worst of which being bounda,b, which
takes O(n4) time. We calculate this for all a and b therefore
the total time for this is O(m2n4). Because of the limited
time available for development our implementation is very
naive. As a result we have incorporated these bounds into the
model, but the cost to calculate the bounds has not been in-
cluded in the results. We do this to show the potential benefits
of the technique without the disadvantage of our naive time
restricted code. We have not measured the time to calculate

Constraint Modelling Challenge 2005

46

these bounds but we estimate the cost for a problem of size
n = 100 m = 100 to be a few minutes. For the problem
GP5 adding these bounds reduced the total time from one
and a half hours to 26 minutes, and reduced the number of
fails from 12324 to 3706.

4 The Experimental Model
Our experiments were performed using our second model,
implemented in ILOG’s JSolver. Problems are read in and
reduced, using the operator derived from Theorem 1 above.
The search process uses the dynamic reduction method de-
scribed in section 3.2. The optimal solution was then found
for this representative problem and proved to be optimal (ei-
ther using the greatest lower bound G discussed above, or by
showing that no solution with smaller cost exists). The ac-
tual optimal solution was then reconstructed by re-inserting
the subsumed products, and this was done in linear time.

5 Work Not Done
We have not fully explored the effectiveness of the reduction
operator. It would be interesting to measure the amount of
reduction achieved on each of the challenge problems. We
have only done an ad-hoc study, which demonstrated that the
use of the operator invariably reduced the time taken to obtain
a solution. Indeed in some cases the improvement was quite
dramatic.

We have not investigated the relative performances of the
various lower bounds, i.e. to measure which one is typically
best. Indeed, for each of the bounds there were example
instances where the bound gave the greatest lower bound.
It would also be possible to increase the number of lower
bounds checked. For example, extending the notation used
in bounds 4 and 5, max{|Rx,y,z,w| + 1} also gives an upper
bound, but is expensive to compute.

We have implemented two upper-bounds but we have not
incorporated these into our model. The first upper-bound
reads in the problem and takes the identity permutation as a
solution and then costs that. The second upper bound greed-
ily produces a solution in a “furthest-insertion” style. It was
considered that if the furthest-insertion upper-bound was rea-
sonably good then we could use this not only as an upper-
bound but also use that permutation as a static variable order-
ing heuristic.

We have not systematically investigated variable or value
ordering heuristics.

Acknowledgements
We are grateful to ILOG SA for providing us with the JSolver
toolkit via an Academic Grant licence. We would like to
thank Barbara and Ian for producing such an exciting chal-
lenge.

References
[1] P. Gregory, A. Miller, and P. Prosser. Solving the re-

hearsal problem with planning and with model checking.
In Brahim Hnich and Toby Walsh, editors, Proceedings
of the Workshop on modelling and solving problems with

constraints. Held in conjunction with the 16th European
Conference on Artificial Intelligence (ECAI 2004)., pages
157–171, Valencia, Spain, August 2004.

[2] Alice Miller. Improved lower bounds for solving the open
stacks problem. In Ian Gent and Barbara Smith, editors,
Proceedings of the 5th Workshop on modelling and solv-
ing problems with constraints. Held in conjunction with
IJCAI-05., 2005.

[3] B.M. Smith. Constraint Programming in Practice:
Scheduling a Rehearsal. Technical report, APES, 2003.

Appendix of results
Our experiments were performed on a Pentium4 2.8Ghz pro-
cessor with 512 Mbytes of RAM running Microsoft Windows
XP Professional and Java2 SDK 1.4.2.6 with an increased
heap size of 512 Mbytes. Our model was coded up in ILog’s
JSolver. For the experiments in Tables 1 and 2 we allowed 60
seconds per instance and for Table 3 7200 seconds (2 hours)
per instance. These times include model creation but do not
include the time to compute the lower bounds. In Tables 1
and 2 we give the average and max results for only those in-
stances that we found and proved optimality.

Constraint Modelling Challenge 2005

47

File % solved mean value time (sec) number of fails
mean median max mean median max

problem 10 10.dat 100 8.07 0.14 0.14 0.24 2 0 81
problem 10 20.dat 100 8.92 0.16 0.17 0.41 5 0 679
problem 15 15.dat 100 12.87 0.21 0.19 1.14 42 1 3440
problem 15 30.dat 92.73 14.02 0.65 0.22 35.25 446 0 40820
problem 20 10.dat 100 15.88 0.21 0.2 0.66 40 9 1422
problem 20 20.dat 85 17.98 0.85 0.23 36.47 1167 1 79327
problem 30 10.dat 100 23.95 0.27 0.24 2.89 128 27 10208
problem 30 15.dat 85.91 25.98 1.24 0.28 37.95 2583 26 125372
problem 30 30.dat 66.36 28.55 3.01 0.3 49.74 898 0 17141
problem 40 20.dat 62.73 36.49 7.03 0.42 59.77 6948 56 67796
ShawInstances.txt 68 13.68 0.87 0.33 9.64 1006 77 16015

wbo 10 10 100 5.95 0.18 0.19 0.23 11 6 60
wbo 10 20 100 7.35 0.24 0.22 0.56 45 5 1005
wbo 10 30 97.5 8.2 0.29 0.25 0.77 20 3 244
wbo 15 15 100 9.35 0.26 0.24 0.44 72 25 618
wbo 15 30 60 11.62 2.07 0.36 48.88 773 24 25680
wbo 20 10 100 12.9 0.23 0.22 0.33 49 28 342
wbo 20 20 81.11 13.7 1.58 0.39 34.75 2392 119 71762
wbo 30 10 100 20.05 0.29 0.27 1.06 119 66 2345
wbo 30 15 98.33 20.96 0.65 0.42 5.52 811 257 10234
wbo 30 30 32.14 22.99 4.09 0.63 39.92 1921 148 32462
wbop 10 10 100 6.75 0.17 0.17 0.2 6 6 21
wbop 10 20 100 8.07 0.26 0.22 1.72 48 0 1515
wbop 10 30 95 8.55 0.69 0.25 12.55 212 1 4813
wbop 15 15 100 10.37 0.24 0.25 0.39 54 31 494
wbop 15 30 75 12.27 1.85 0.33 42.33 608 11 14609
wbop 20 10 100 14.28 0.21 0.22 0.3 40 27 196
wbop 20 20 85.56 14.87 2.09 0.38 47.45 2811 113 97374
wbop 30 10 100 22.48 0.26 0.27 0.45 70 60 506
wbop 30 15 95 22.38 0.57 0.41 2.33 625 207 4578
wbop 30 30 47.86 24.37 4.32 0.49 53 2256 30 42519
wbp 10 10 100 7.33 0.15 0.16 0.2 5 2 73
wbp 10 20 100 8.71 0.17 0.17 0.28 6 0 106
wbp 10 30 100 9.31 0.19 0.19 0.45 13 0 545
wbp 15 15 100 11.05 0.22 0.2 0.42 44 14 365
wbp 15 30 87.5 13.1 0.91 0.25 27.59 605 1 20633
wbp 20 10 100 15.13 0.21 0.2 0.28 35 26 236
wbp 20 20 86.67 15.42 2.15 0.3 42.33 4660 60 209328
wbp 30 10 100 23.18 0.3 0.25 1.14 187 47 2794
wbp 30 15 75 22.98 1.65 0.42 23.59 3864 254 68342
wbp 30 30 47.86 24.96 3.64 0.36 59.2 2955 12 103704

Table 1: Times and number of fails to find the optimal solution for each data set

Constraint Modelling Challenge 2005

48

File % solved mean value time (sec) number of fails
mean median max mean median max

problem 10 10.dat 100 8.07 0.15 0.14 0.53 15 4 1665
problem 10 20.dat 100 8.92 0.21 0.17 12.52 159 4 35527
problem 15 15.dat 100 12.87 0.57 0.2 52.19 1234 9 160625
problem 15 30.dat 92.73 14.02 1.26 0.22 43.47 1803 4 29657
problem 20 10.dat 100 15.88 0.31 0.22 1.98 416 29 7988
problem 20 20.dat 85 17.98 3.66 0.22 54.13 9030 5 86966
problem 30 10.dat 100 23.95 0.57 0.33 6.45 1014 188 22108
problem 30 15.dat 85.91 25.98 6.54 0.28 54.72 15474 46 117260
problem 30 30.dat 66.36 28.55 1.68 0.3 49.74 265 5 6880
problem 40 20.dat 62.73 36.49 5.58 0.28 59.77 4268 5 26289
ShawInstances.txt 68 13.68 19 14.02 58.78 46529 35835 120177

wbo 10 10 100 5.95 0.19 0.19 0.31 26 17 262
wbo 10 20 100 7.35 0.78 0.22 17.41 624 21 17438
wbo 10 30 97.5 8.2 1.45 0.25 30.94 1260 10 24299
wbo 15 15 100 9.35 1.13 0.38 7.53 2793 252 26457
wbo 15 30 60 11.62 1.77 0.38 22.59 541 32 10375
wbo 20 10 100 12.9 0.3 0.28 0.77 284 176 2385
wbo 20 20 81.11 13.7 9.92 0.55 54.55 20594 283 94726
wbo 30 10 100 20.05 0.55 0.47 1.89 812 542 3755
wbo 30 15 98.33 20.96 8.06 2.64 51.77 21915 4539 142875
wbo 30 30 32.14 22.99 1.72 0.31 11.98 430 9 4409
wbop 10 10 100 6.75 0.18 0.19 0.28 21 14 234
wbop 10 20 100 8.07 1.4 0.22 24.11 2219 6 43075
wbop 10 30 95 8.55 0.72 0.25 12.55 228 6 4821
wbop 15 15 100 10.37 0.54 0.27 6.98 1034 63 16378
wbop 15 30 75 12.27 2.78 0.27 42.33 1439 8 15190
wbop 20 10 100 14.28 0.27 0.25 0.69 219 110 2020
wbop 20 20 85.56 14.87 5.12 0.39 57.14 9828 154 86323
wbop 30 10 100 22.48 0.37 0.36 0.84 358 242 1764
wbop 30 15 95 22.38 7 1.98 43.05 18200 4115 131457
wbop 30 30 47.86 24.37 1.56 0.3 36.69 280 7 6207
wbp 10 10 100 7.33 0.16 0.16 0.33 23 7 474
wbp 10 20 100 8.71 0.24 0.17 2.72 196 6 5901
wbp 10 30 100 9.31 0.3 0.19 3.75 310 4 7527
wbp 15 15 100 11.05 1.29 0.22 44.02 4457 31 183345
wbp 15 30 87.5 13.1 2.28 0.25 42.92 3678 7 36740
wbp 20 10 100 15.13 0.32 0.3 0.89 458 210 3095
wbp 20 20 86.67 15.42 7.23 0.34 58.73 21671 121 131545
wbp 30 10 100 23.18 0.73 0.5 2.64 1535 689 8030
wbp 30 15 75 22.98 8.34 0.89 58.75 24118 774 121667
wbp 30 30 47.86 24.96 1.56 0.3 33.42 841 6 7876

Table 2: Times and number of fails to prove the optimal solution for each data set

Constraint Modelling Challenge 2005

49

File solved best time to best fails to best time to fails to
value solution solution prove prove

Miller19 Yes 13 0.312 0 0.328 17
GP1 Yes 45 0.484 0 0.5 6
GP2 Yes 40 7.375 448 7.375 458
GP3 Yes 40 11.78 399 11.78 411
GP4 Yes 30 47.89 7523 47.89 7542
GP5 Yes 95 1329.71 3700 1329.73 3706
GP6 Yes 75 6812.98 81443 6813 81469
GP7 Yes 75 2020.32 428 20.32 453
GP8 No 84 2.985 22 7200 1105756

NWRS1 Yes 3 0.172 12 0.172 15
NWRS2 Yes 4 0.203 11 0.203 17
NWRS3 Yes 7 0.25 28 0.375 579
NWRS4 Yes 7 0.219 21 0.219 31
NWRS5 Yes 12 0.437 155 26.5 77122
NWRS6 Yes 12 1.015 354 203.01 615419
NWRS7 No 10 23.15 38377 7200 16551474
NWRS8 No 16 681.46 154359 7200 4554999

SP1 Yes 9 0.391 282 287.58 1134916
SP2 No 22 11.51 3415 7200 3009686
SP3 No 40 97.7 8115 7200 236553
SP4 No 65 31.72 1148 7200 219177

Table 3: Times and number of fails to prove the optimal solution for each problem

Constraint Modelling Challenge 2005

50

Trying Hard to Solve the Simultaneously Open Stacks Problem with CP∗

Gilles Pesant
Cork Constraint Computation Centre, University College Cork, Cork, Ireland

pesant@crt.umontreal.ca

Abstract

This short paper presents a constraint programming
approach to the Simultaneously Open Stacks Prob-
lem. It reformulates the problem as a constrained
graph colouring problem. The algorithm is de-
scribed in detail and experimental results are re-
ported.

1 Introduction
As part of the Fifth Workshop on Modelling and Solving
Problems with Constraints held during IJCAI 2005, a Mod-
elling Challenge was proposed. The object of the First Con-
straint Modelling Challenge is to model theSimultaneously
Open Stacks (SOS) problem as a constraint problem in the
constraint programming or constraint logic programming lan-
guage of your choice. Quoting the organisers:

A manufacturer has a number of orders from cus-
tomers to satisfy; each order is for a number of dif-
ferent products, and only one product can be made
at a time. Once a customer’s order is started (i.e.
the first product in the order has been made) a stack
is created for that customer. When all the products
that a customer requires have been made, the order
is sent to the customer, so that the stack is closed.
Because of limited space in the production area, the
number of stacks that are in use simultaneously i.e.
the number of customer orders that are in simulta-
neous production, should be minimised.

I believe the main constraint of this challenge is actually
to find a solution approach based on constraint programming.
In its original form, the problem consists of finding a permu-
tation of the products (corresponding to the production order)
that minimises the number of simultaneously open stacks.
Every permutation is a valid candidate solution i.e. any ele-
ment in the space of all permutations is feasible. Therefore
we are faced with an unconstrained optimisation problem,
which is doubly bad news for constraint programmers:

• Intuition and practice agree that constraint programming
tends to perform relatively better when the problem at

∗Research conducted while the author was on sabbatical leave
from École Polytechnique de Montréal.

hand has constraints that we can exploit. Some con-
straints may be harder than others to exploit well but
having no constraint at all gives us very little leverage.

• We much prefer solving satisfaction problems over op-
timisation problems. The natural approach to optimisa-
tion in constraint programming even recasts the problem
as a succession of satisfaction problems.

Pure local search would do well on this problem and is
probably the best line of attack, as evidenced by some of the
scientific literature on the subject. Unfortunately we are con-
strained to use constraint programming.

2 Problem Transformation
I started out implementing a local search approach, hoping
to find some role for constraint programming along the way.
Then I had an idea about a transformation of the problem
which would definitely involve constraint programming. In
this section, I describe a transformation of the SOS problem
into aconstrained graph colouring problem.

In minimising the number of stacks used, we are in fact
trying to find customers whose orders can share a stack (actu-
ally the physical space taken by a stack), given an appropriate
permutation of the products. Each timec customers share,
we “save”c − 1 stacks. Of course these savings can only be
combined if there is a permutation of the products which is
consistent with every such saving. So which customers can
possibly share a stack? A necessary condition is that their or-
ders do not have a product in common, otherwise they will
each require a stack when this product is being made. Con-
sider then a graphG = (V, E) whose vertices correspond
to customers and with an edge between two vertices if and
only if the corresponding orders have a product in common.
Such a graph has already been defined in the literature, e.g.
[1]. Any subset of customers sharing a stack must correspond
to a stable set in that graph. Actually, an admissible vertex
colouring of the graph corresponds to a potential solution to
the SOS problem, where a colour stands for a stack. It is a
potential solution because we must make sure that there ex-
ists a permutation which separates the orders in every shared
stack. In that sense it is a constrained graph colouring prob-
lem. Consider an instance withm orders andn products. Let
c : V 7→ {1, 2, . . . , k} represent a mapping of the vertices of
G to k colours (identified as integers). Such a mapping ef-

Constraint Modelling Challenge 2005

51

fectively partitionsV into colour classesC1, . . . , Ck. Let Pv

be the set of products required for the order corresponding
to vertexv ∈ V , πp ∈ {1, 2, . . . , n} represent the position
of productp in the production sequence, andρij ∈ Ci the
element of colour classCi whose rank isj on the stack (i.e.
the jth one to use that physical space). We must then find a
k-colouringc of G such that

c(u) 6= c(v) (u, v) ∈ E (1)

πp 6= πq 1 ≤ p < q ≤ n (2)

ρir 6= ρis 1 ≤ r < s ≤ |Ci|, 1 ≤ i ≤ k (3)

πp < πq p ∈ Pρij
, q ∈ Pρij+1

,

1 ≤ j ≤ |Ci| − 1, 1 ≤ i ≤ k (4)

Equation (1) is for the standard vertex colouring requirement,
(2) ensures that theπp’s represent a permutation of the prod-
ucts, and (3) similarly ensures a consistent ranking of the or-
ders in each colour class. It is Equation (4) that bring the con-
strainedness to the colouring: for every colour class and then
every pair of consecutively ranked orders on the stack cor-
responding to that class, there is a strict ordering constraint
between their respective products since these orders may not
overlap. This is a strong requirement that can significantly
reduce the number of feasible permutations of the products,
each time a colour class is fixed.

3 An Exact Algorithm
My exact CP algorithm solves successive constraint satisfac-
tion problems, looking each time for ak-colouring ofG with
a different value ofk. A colouring is only valid if it is compat-
ible with at least one product permutation constrained as de-
scribed above. The colouring is done one colour at a time and
the constraints on the product permutations are added gradu-
ally.

In the rest of this section I go into more detail. Constraint
programming actually comes into play in Section 3.3.

3.1 Preprocessing
Often we can reduce the size of an instance by disregarding
some of the products that are dominated. Producti dominates
productj when the set of orders requiringj is a subset of the
set of orders requiringi. Given any solution to the instance
without considering productj (and in particular any optimal
solution), we can construct a solution to the original instance
(i.e. includingj) using the same number of open stacks sim-
ply by insertingj immediately afteri in the production se-
quence: clearly whenj is being made, every order involved
already has an open stack from producti just before ([1]).

Once dominated products have been removed, I build
graphG as defined in the previous section. If that graph is
a clique then no two orders may share a stack so we can im-
mediately conclude that the minimum number of stacks is the
number of orders.

In the other, more interesting cases, lower and upper
bounds on the number of colours necessary to colour the
graph (i.e. the number of stacks necessary) are computed
once before the start of the search. The upper bound is very
simple and corresponds to the number of orders minus one: if

the graph is not a clique then there must be a pair of vertices
that are not adjacent and the corresponding orders can eas-
ily share a stack, using a production sequence which groups
their respective products, thus separating them. There are
many lower bounds possible and I essentially follow what is
described in[1] but initially proposed in[2]. They suggest
taking the minimum of three values:

• the maximum number of orders per product;

• 1+ the smallest degree of a vertex inG;

• the size of a clique which is a minor ofG.

For the latter, graph minors are computed by heuristic arc
contraction as described in[1]. To these, I add a fourth al-
ternative: the size of a subgraph ofG which forms a clique,
obtained through a simple constructive heuristic. That clique
is actually constructed to break some symmetries during the
graph colouring phase so I use it here “for free” and experi-
ments confirm that it is sometimes the best of the four.

3.2 Graph Colouring
The strategy to select the number of coloursk that we try is
fairly simple. We start at the lower bound and look for a valid
constrained colouring. If we prove that there is no solutionfor
k colours, the lower bound is set tok + 1 and we repeat the
process with a number of colours that is half way between the
current number and the upper bound. If a solution is found,
the upper bound is set tok and we repeat the process with
k−1 colours. Otherwise we have reached a given cutoff time
and we repeat the process with a number of colours that is
half way between the current number and the upper bound,
without updating the lower bound. We stop when the lower
and upper bounds coincide, in which case we have proven
optimality, or when a global cutoff time is reached.

The actual graph colouring proceeds one colour at a time
and selects all the vertices to share that colour. It is advanta-
geous to proceed in this way because as soon as a colour class
is closed, we can add constraints on the product permutation
(see Section 3.3). The colours are processed in lexicographic
order and so are the vertices.

In order to break some obvious symmetries, I preassign
vertices in some of the colour classes and impose a lexico-
graphic ordering on the rest of them. As indicated before,
a simple constructive heuristic identifies a hopefully large
clique inG. Each vertex from that clique{v1, . . . , vℓ} must
belong to a distinct colour class so I can safely preassignvi

to Ci. For the remaining colour classesCℓ+1, . . . , Ck, I add
constraintsCi ≺ Ci+1, ℓ + 1 ≤ i ≤ k − 1, meaning that the
smallest index of a vertex inCi should be less than the small-
est index of a vertex inCi+1. No doubt much more could be
done to break symmetries.

3.3 Product Permutation
As soon as a colour classCi is closed (i.e. all the vertices of
that colour have been selected), we have identified the corre-
sponding set of orders sharing a stack. This in turn constrains
the space of feasible product permutations: there must exist
an ordering of the elements ofCi consistent with an ordering
of the products which separates the orders. As each colour

Constraint Modelling Challenge 2005

52

class is closed, the number of feasible product permutations
decreases. If that number reaches zero (i.e. the domain of a
πp becomes empty), we can backtrack.

The basic CP model corresponding to (2)-(4) is:

alldifferent((πp)1≤p≤n) (5)

alldifferent((ρij)1≤j≤|Ci|−1) 1 ≤ i ≤ k (6)

πp < πq p ∈ Pρij
, q ∈ Pρij+1

,

1 ≤ j ≤ |Ci| − 1,

1 ≤ i ≤ k (7)

πp ∈ {1, 2, . . . , n} 1 ≤ p ≤ n (8)

ρij ∈ Ci 1 ≤ j ≤ |Ci| − 1,

1 ≤ i ≤ k (9)

I search this constrained solution space in the following
way. Constraints (5) and (8) are present from the start. When-
ever a colour class is closed, sayCi, we may add constraints
(6), (7), and (9) for thati. I then look for a feasible assignment
of the(ρij)1≤j≤|Ci|−1 variables (i fixed), which allows con-
straints (7) to do some filtering. This assignment may need
of course to be backtracked over. Only once the colouring is
complete do I seek a feasible assignment of the(πp)1≤p≤n

variables.
It is possible to tighten that model by adding implied unary

constraints. If the orders preceeding an orderv on a stack they
share involve a total oft products and since these products are
distinct, a product involved inv must be sequenced after these
t other products. The same reasoning applies for the orders
succeedingv, giving us:

j−1∑

ℓ=1

|Pρiℓ
| < πp ≤ n −

|Ci|∑

ℓ=j+1

|Pρiℓ
| p ∈ Pρij

,

1 ≤ j ≤ |Ci|,
1 ≤ i ≤ k (10)

We could go further than these “monochrome” constraints
and add more global unary inequalities that keep track, for
every productp, of all the other products necessarily before
or afterp in the sequence, based on the same reasoning but
applied collectively to every colour class closed so far. I have
tried this but limited experimentation seems to indicate that
even though it decreases the number of backtracks required,
it slows down the algorithm.

4 Results
The algorithm was run on all the instances provided for the
challenge. A single run was performed on each instance since
the algorithm is deterministic and identical parameters were
used throughout (except for the cutoff time, as indicated be-
low). The computer used was a Sunfire 4800 equipped with
900MHz processors and 8Gb of RAM. The constraint pro-
gramming library used was ILOG Solver 4.4. Because of the
great number of instances, I had to keep the cutoff time low.
Table 1 reports on the files containing multiple instances, with
a cutoff time of one minute. In order to see how sensitive
these results are to the choice of the cutoff time, I also ran
the same experiments with a five minute cutoff time (Table

2). For the individual instances, which are generally larger, a
cutoff time of one hour was selected.

Here are a few observations. The smaller instances are all
solved to optimality but that percentage goes down as the
size increases, as should be expected. For a fixed number
of orders, the performance generally increases with the num-
ber of products: this is not surprising since more products
mean fewer opportunities of sharing a stack between orders
and lower combinatorics for this algorithm. The very low
median values also indicate that a majority of instances are
very easily solved by the algorithm. One exception is the
set “ShawInstances.txt” which appears to be more balanced.
Its percentage of instances solved to optimality also climbs
quickly as more time is given (from a very low 16% within
one minute to 52% within five minutes). Upon further investi-
gation, the algorithm actually solves every instance of that set
to optimality within twenty minutes. Many of the individual
instances are solved to optimality quickly but the algorithm
also performs poorly on some of the larger ones.

5 Discussion
In this challenge, I aimed to design a solution approach in
which constraint programming plays a significant role at the
modeling level. I purposely directed most of my efforts to
the part that involved CP. I also generally kept it simple, no
bells and whistles, to make it easier to analyse and compare
the core ideas.

One consequence of this is that the graph colouring com-
ponent is very basic and there lies a potential source of im-
provement. I believe much of the vast expertise in solving
graph colouring problems could be added here and the al-
gorithm’s performance would greatly benefit from it. In my
opinion, this approach is interesting because it calls on a well-
studied problem, graph colouring, with an extra twist that CP
can handle well.

Acknowledgements
This research was conducted while I was on sabbatical leave
at the Cork Constraint Computation Centre (4C) and was sup-
ported in part by Science Foundation Ireland. I wish to thank
the other members of 4C who participated in this challenge
for stimulating discussions, comparison of results, and point-
ers to relevant literature.

References
[1] J. C. Becceneri, H. H. Yanasse, and N. Y. Soma. A

Method for Solving the Minimization of the Maximum
Number of Open Stacks Problem within a Cutting Pro-
cess.Computers & Operations Research, 31:2315–2332,
2004.

[2] H. H. Yanasse, J. C. Becceneri, and N. Y. Soma. Bounds
for a Problem of Sequencing Patterns.Pesquisa Opera-
cional, 19(2):49–77, 1999.

Constraint Modelling Challenge 2005

53

File % solved mean value time (sec) number of fails
mean median max mean median max

problem10 10.dat 100 8.03 0.01 0.01 0.30 63 0 8268
problem10 20.dat 100 8.92 0.01 0.01 0.17 22 0 2534
problem15 15.dat 99.27 12.87 1.05 0.01 57.02 15156 0 1136844
problem15 30.dat 100 14.02 0.26 0.01 12.23 951 0 46392
problem20 10.dat 80.36 16.00 2.69 0.01 56.41 40322 2 988414
problem20 20.dat 90.91 18.00 2.17 0.01 52.34 12073 0 312110
problem30 10.dat 60.73 24.60 2.37 0.01 58.83 29055 1 936763
problem30 15.dat 71.36 26.39 2.26 0.01 59.62 14581 0 378698
problem30 30.dat 86.36 28.50 0.79 0.01 28.65 1134 0 46246
problem40 20.dat 70.91 36.87 1.10 0.01 30.93 3847 0 113004
ShawInstances.txt 16.00 13.84 31.97 32.72 59.82 183205 206948 355744
wbo 10 10 100 5.93 0.05 0.01 0.54 1824 22 33509
wbo 10 20 100 7.35 0.11 0.01 2.58 695 2 13354
wbo 10 30 100 8.20 0.20 0.01 2.78 514.08 0 7158
wbo 15 15 76.67 9.53 5.77 0.03 47.64 109751 119 1383663
wbo 15 30 76.67 11.78 4.28 0.01 55.48 11158 0 234343
wbo 20 10 55.71 13.33 5.55 0.23 32.74 71561 2454 397844
wbo 20 20 55.56 14.81 1.23 0.01 15.54 4195 11 56077
wbo 30 10 30.00 21.32 4.73 1.21 35.51 56092 12499 447865
wbo 30 15 39.17 22.74 3.04 0.16 55.15 19841 783 386402
wbo 30 30 51.43 25.25 1.57 0.02 57.80 2203 0 87438
wbop 10 10 100 6.75 0.06 0.01 0.58 2481 32 32166
wbop 10 20 100 8.08 0.23 0.01 4.67 1121 1 23807
wbop 10 30 100 8.55 0.15 0.01 3.57 353 0 9753
wbop 15 15 73.33 10.60 2.33 0.05 41.63 37878 170 859363
wbop 15 30 85.00 12.22 5.66 0.01 39.26 12311 0 158432
wbop 20 10 52.50 14.60 2.19 0.08 44.62 25965 604 533277
wbop 20 20 66.67 16.06 4.52 0.01 49.06 18820 0 214185
wbop 30 10 50.00 24.00 1.07 0.69 4.45 9357 5007 42331
wbop 30 15 50.00 24.50 2.10 0.04 9.83 10543 178 49722
wbop 30 30 57.86 26.34 1.53 0.01 57.79 2019 0 81157
wbp 10 10 100 7.28 0.01 0.01 0.08 134 3 2677
wbp 10 20 100 8.71 0.02 0.01 0.73 123 0 7512
wbp 10 30 100 9.31 0.01 0.01 0.16 13 0 555
wbp 15 15 91.67 11.08 4.59 0.01 48.24 120432 48 2568624
wbp 15 30 94.17 13.11 2.16 0.01 45.91 10370 0 218073
wbp 20 10 72.50 15.30 5.89 0.04 30.85 74714 295 360531
wbp 20 20 67.78 15.80 1.98 0.01 48.75 10862 0 369693
wbp 30 10 50.00 24.33 1.11 0.12 11.72 10543 981 113464
wbp 30 15 50.00 24.23 1.03 0.03 8.44 5226 87 46843
wbp 30 30 63.57 26.09 2.20 0.01 54.98 3529 0 103541

Table 1: Performance of the algorithm for each data set givena one minute cutoff time.

Constraint Modelling Challenge 2005

54

File % solved mean value time (sec) number of fails
mean median max mean median max

problem10 10.dat 100 8.03 0.01 0.01 0.30 63 0 8268
problem10 20.dat 100 8.92 0.01 0.01 0.17 22 0 2534
problem15 15.dat 99.82 12.87 1.63 0.01 148.97 21990 0 1682021
problem15 30.dat 100 14.02 0.26 0.01 12.23 951 0 46392
problem20 10.dat 84.36 15.94 9.78 0.01 294.00 162810 4 6060689
problem20 20.dat 92.73 17.99 5.15 0.01 231.60 26999 0 1373590
problem30 10.dat 63.82 24.52 11.16 0.01 297.42 137742 3 3793694
problem30 15.dat 71.81 26.30 4.22 0.01 118.26 27776 0 888522
problem30 30.dat 89.09 28.48 5.12 0.01 208.91 8580 0 370158
problem40 20.dat 75.45 36.85 4.44 0.01 148.94 17039 0 622593
ShawInstances.txt 52.00 13.68 98.74 91.57 221.67 593952 516640 1509980
wbo 10 10 100 5.93 0.05 0.01 0.54 1824 22 33509
wbo 10 20 100 7.35 0.11 0.01 2.58 695 2 13354
wbo 10 30 100 8.20 0.20 0.01 2.78 514.08 0 7158
wbo 15 15 85.00 9.40 18.92 0.13 170.70 408472 668 6918121
wbo 15 30 86.67 11.72 21.80 0.02 207.86 41807 3 320574
wbo 20 10 57.14 13.20 10.20 0.24 190.18 153138 2454 3335626
wbo 20 20 64.44 14.57 27.88 0.02 287.45 135922 36 1298301
wbo 30 10 36.00 21.24 26.15 4.68 243.63 306058 48578 2793437
wbo 30 15 44.17 22.40 25.15 0.19 258.37 185333 1001 1956629
wbo 30 30 55.71 24.99 12.39 0.02 170.82 19021 1 253642
wbop 10 10 100 6.75 0.06 0.01 0.58 2481 32 32166
wbop 10 20 100 8.08 0.23 0.01 4.67 1121 1 23807
wbop 10 30 100 8.55 0.15 0.01 3.57 353 0 9753
wbop 15 15 88.33 10.42 36.54 0.15 274.62 682564 729 9306640
wbop 15 30 86.67 12.18 7.00 0.01 73.06 14487 0 158472
wbop 20 10 75.00 14.45 39.28 0.15 274.77 583197 1258 4719165
wbop 20 20 66.67 15.52 5.89 0.01 85.95 25251 0 420993
wbop 30 10 50.00 23.93 1.07 0.65 4.43 9357 5007 42331
wbop 30 15 50.00 23.95 2.10 0.04 9.81 10543 178 49722
wbop 30 30 63.57 26.15 14.11 0.01 280.10 22278 0 498671
wbp 10 10 100 7.28 0.01 0.01 0.08 134 3 2677
wbp 10 20 100 8.71 0.02 0.01 0.73 123 0 7512
wbp 10 30 100 9.31 0.01 0.01 0.16 13 0 555
wbp 15 15 98.33 11.05 18.15 0.02 282.00 540213 167 10230988
wbp 15 30 95.83 13.11 4.19 0.01 178.10 25740 0 1502581
wbp 20 10 75.00 15.28 7.65 0.03 60.09 97469 295 755475
wbp 20 20 68.89 15.66 4.53 0.01 161.24 25340 0 907633
wbp 30 10 50.00 24.18 1.12 0.12 11.72 10543 981 113464
wbp 30 15 53.33 24.20 7.01 0.03 175.87 55936 103 1101325
wbp 30 30 65.00 25.81 7.15 0.01 268.93 12353 0 528258

Table 2: Performance of the algorithm for each data set givena five minute cutoff time.

Constraint Modelling Challenge 2005

55

File solved best time to best fails to best time to fails to
value solution solution prove prove

Miller19 13 60.56 113521 3600.00 3295988
GP1

√
45 0.29 96 0.29 96

GP2
√

40 0.52 136 0.52 136
GP3

√
40 0.15 42 0.15 42

GP4
√

30 0.38 678 0.38 678
GP5

√
95 2.98 95 2.98 95

GP6
√

75 0.80 36 0.80 36
GP7

√
75 7.46 3292 7.46 3292

GP8 90 340.30 66188 3600.00 983359
NWRS1

√
3 0.01 4 0.01 4

NWRS2
√

4 0.01 13 0.01 13
NWRS3

√
7 0.01 45 0.01 45

NWRS4
√

7 0.04 194 0.04 194
NWRS5

√
12 0.01 13 0.01 13

NWRS6
√

12 0.01 8 0.01 8
NWRS7

√
10 17.95 49321 17.95 49321

NWRS8
√

16 36.94 40083 36.94 40083
SP1 12 60.42 1439078 3600.00 70878095
SP2 42 180.15 921702 3600.00 15123139
SP3 62 180.65 188937 3600.00 3904945
SP4 90 241.48 164766 3600.00 2506194

Table 3: Performance of the algorithm on individual instances given a one hour cutoff time.

Constraint Modelling Challenge 2005

56

Open Stack Minimisation by Local Search
and Reverse Dominance Reasoning

Steven Prestwich
Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
s.prestwich@cs.ucc.ie

Abstract

Dominance reasoning can be used to add con-
straints to a model, pruning the search space and
improving backtrack search. This paper proposes
the reverse approach for local search: reformula-
tion to add artificial solutions that are dominated
by true solutions. On the open stack minimization
problem this technique can super-exponentially in-
crease the solution density, significantly improving
local search performance. However, experiments
indicate that solution density is not the only impor-
tant model property.

1 Introduction
The idea that higher solution density1 makes a problem eas-
ier to solve seems natural, and is usually assumed to have
at least some effect on search performance [1; 3; 5; 11;
12]. But little has been done to exploit this conjecture. One
way to increase the solution density of a problem is to in-
crease problem symmetry by reformulation, and this super-
symmetry technique has been shown to improve local search
performance [7]. Any solution to a supersymmetric model is
either a true solution to the problem, or can be transformed to
one by applying a symmetry transformation.

Unfortunately supersymmetric reformulations have been
hard to find — perhaps because supersymmetry is the inverse
of symmetry breaking by reformulation, which is known to
be powerful but non-trivial to apply [2]. Moreover, problem
features other than solution density also seem to affect search
cost, and there seems to be no agreement on what these fea-
tures are. More than one CSP-to-SAT encoding (the totally
weakened and log encodings [8]) increases solution density
but can make the problem harder to solve by local search.
Nevertheless, it seems worth pursuing the idea of increasing
solution density by reformulation. Choosing a good model
can be as important as choosing a good search algorithm, and
new modelling techniques are of interest to the CP commu-
nity.

This paper extends supersymmetry to the more general
notion of dominance. The idea is to reformulate a prob-

1Defined as the number of solutions divided by the number of
total variable assignments.

lem in such a way that new, dominated “pseudo-solutions”
are added, increasing the solution density of the model and
boosting local search performance (we shall ignore backtrack
search). This might be done by simply removing or weak-
ening constraints in the model. However, this must be done
very carefully: we must ensure that any pseudo-solution can
be transformed to a true solution that dominates it. As with
supersymmetry this is non-trivial, but this paper demonstrates
that it is possible and can yield good results.

2 Modelling open stack minimisation
We use the following problem as an illustration. A manufac-
turer has a number of orders from customers to satisfy; each
order is for a number of different products, and only one prod-
uct can be made at a time. Once a customer’s order is started
a stack is created for that customer. When all the products
that a customer requires have been made the order is sent to
the customer, so that the stack is closed. Because of limited
space in the production area, the number of stacks that are in
use simultaneously should be minimized.

2.1 A matrix representation
We can model the problem as a matrix M of binary variables,
in which the columns correspond to the products required by
the customers, and the rows to the customers’ orders. Matrix
entry Mij = 1 if and only if customer i has ordered some
quantity of product j (the quantity ordered is irrelevant). Any
0 with a 1 in a column to its left, and another 1 in a column
to its right, is counted as a 1. A score is assigned to each
column: its number of 1s (including 0s counted as 1s). The
score of the matrix is the maximum of its column scores. The
problem is to permute the columns of the matrix to minimise
its score.

2.2 An integer model
The matrix representation can be modelled as an integer pro-
gram. Suppose the matrix has R rows and C columns. As-
sume that each customer orders at least one product (if not
then that customer can be removed from the problem), so that
every row has an open order of length at least 1. In the fol-
lowing, i is an integer with range 1 . . . R and j, k are integers
with range 1 . . . C. Define variables pjk such that pjk = 1
denotes that product j is placed in column k. Each product

Constraint Modelling Challenge 2005

57

must be placed in exactly one column and each column must
receive exactly one product:

∑

k

pjk = 1
∑

j

pjk = 1 (1)

(These two sets of constraints imply each other.) To model
the idea of 1s influencing 0s to their left and right, define
variables lij and rij such that lik = 1 if and only if Mik has a
1 to its left, and rik = 1 if and only if Mik has a 1 to its right.
We need constraints

pjk ≤ lik pjk ≤ rik (2)

where Mij = 1, and

lik ≤ li k+1 ri k+1 ≤ rik (3)

We also define variables oik such that oik = 1 denotes that
there is an open order on row i at column k:

lik + rik ≤ 1 + oik (4)

The l, r, o variables model the fact that any 0 between two
1s is counted as though it were a 1. The objective is to find
consistent values for the p, l, r, o variables while minimising

maxk

∑

i

oik

This optimisation problem can be solved as a series of con-
straint satisfaction problems (CSPs) with additional linear
constraints: ∑

i

oik ≤ Ω (5)

where Ω is an integer variable. We must minimise Ω: starting
with Ω = R a feasible solution is found; R is then decre-
mented and the search resumed with the same variable as-
signments (to exploit any solution clustering); and so on until
timeout occurs.

2.3 Creating new solutions
We would like to remove or weaken some constraints in order
to create new pseudo-solutions, thus increasing the solution
density of the problem. But we cannot simply remove arbi-
trary constraints, because solutions to the resulting problem
might not be solutions to the original problem, or they might
be solutions with larger scores. We must do it in such a way
that any pseudo-solution can be transformed into a true solu-
tion of equal or lower score: in other words pseudo-solutions
must be dominated by true solutions.

Suppose we weaken constraints (1) to
∑

k

pjk ≥ 1 (6)

Now each product may be placed in more than one position
in the sequence, and some sequence positions might receive
no products. At first sight this appears useless because so-
lutions might not be permutations. However, it can be seen
as a model for a generalised form of the problem: find a se-
quence of sets of products such that each product appears in
at least one set, and the orders are open in set k if there is a
product required in an order in another set i that appears in a
set before or after set k, or in k itself. Such a sequence is a
pseudo-solution for the original problem.

2.4 From pseudo-solutions to solutions
A dominating solution can be derived from a pseudo-solution
as follows. For any product that appears in more than one
set, remove all but one of its appearances. For example the
pseudo-solution

({4}, {4}, {4, 5}, {}, {1, 2, 3})
becomes

({4}, {}, {5}, {}, {1, 2, 3})
if we delete all but the first appearance of each product. We
now have the same number of products as sets, and can ob-
tain a permutation by moving products without violating the
ordering among sets. For example 5 can be moved one set to
the left to obtain

({4}, {5}, {}, {}, {1, 2, 3})
then 1 moved two sets to the left to obtain

({4}, {5}, {1}, {}, {2, 3})
and finally 2 moved one set to the left to obtain the permuta-
tion

({4}, {5}, {1}, {2}, {3})

2.5 Increase in optimal solution density
The effect on the density of optimal (pseudo-)solutions can
be spectacular. Consider a problem that we shall call AN ,
represented by a 2 × 2N matrix:

[
00 . . .0 1 . . . 11
11 . . .1 0 . . . 00

]

The column permutation shown has 1 open stack in any col-
umn, and this is optimal. We may permute the left and right
columns separately, and reverse all columns, to obtain another
optimal permutation. Thus there are 2(N !)2 optimal permu-
tations, and any other permutation such as

[
0 . . . 0101 . . . 1
1 . . . 1010 . . . 0

]

has at least one column with two open stacks (because of the
zeroes shown in bold). However, there are many more opti-
mal pseudo-solutions. Considering only those cases in which
all (0,1)-columns are in the N left (or right) columns and all
(1,0)-columns are in the N right (or left) columns, there are
2(2N − 1)2N optimal pseudo-solutions. So the number of
optimal solutions has been increased by a factor of at least

2(2N − 1)2N

N !
>

2N2

NN
=

2N2

2log
2

NN
= 2N2−N log

2
N ≈ 2N2

A super-exponential increase in solution density might be ex-
pected to have an effect on local search performance.

At the other extreme, for some problems there will be ex-
actly the same number of solutions in both models: in other
words the reformulation introduces no pseudo-solutions.
Consider a problem we shall call BN , represented by the
2N × N matrix [

UN

LN

]

Constraint Modelling Challenge 2005

58

where UN and LN are upper and lower diagonal N ×N ma-
trices respectively:

UN =





111 . . . 111
011 . . . 111
001 . . . 111

...
000 . . . 001




LN =





100 . . . 000
110 . . . 000
111 . . . 000

...
111 . . . 111





Notice that every column has exactly (N +1) 1s and no 0 has
a 1 to the left and the right, but in any other permutation this
is no longer true. For example with B4 if we exchange the
middle two columns:





1111
0111
0011
0001
1000
1100
1110
1111





−→





1111
0111
0101
0001
1000
1010
1110
1111





then both have 6 open stacks instead of 5. So the matrix has
two optimal solutions, each with (N + 1) open stacks: one is
with UN and LN as shown, the other is obtained by revers-
ing their columns. Notice also that each column has at least
one 1 where the other has a 0 in the same row. Therefore no
two columns can be placed in the same set without increas-
ing the maximum number of open stacks, and there are only
two optimal pseudo-solutions (corresponding to the optimal
solutions).

2.6 Discussion of the models
We shall refer to the original integer model as model 1, and
the new one as model 3. We shall also consider an intermedi-
ate model 2 in which all sets in the pseudo-solution must be
non-empty, which is obtained by replacing (1) with

∑

k

pjk ≥ 1
∑

j

pjk ≥ 1 (7)

Model 2 might also have super-exponentially more solutions
than model 1. Considering only optimal pseudo-solutions
to AN in which product 1 appears in every set, there are
2(2N−1 − 1)2(N−1) of them, which is still at least O(2N2

)
more than model 1 solutions.

The weakened constraints of models 2 and 3 are analogous
to the removal of “at-most-one” clauses in a well-known SAT
encoding of CSPs [9]. This allows a CSP variable to be as-
signed more than one domain value, thus creating pseudo-
solutions for the CSP. This is known to improve local search
performance (though it is not certain that increased solution
density is the explanation). Those pseudo-solutions are very
closely related to CSP solutions, which can be obtained sim-
ply by taking any assigned value for each CSP variable. The
pseudo-solutions of models 2 and 3 require a far less obvi-
ous transformation to obtain true solutions, are less closely
related in terms of Hamming distance, and are dominated by
true solutions in terms of the objective function in the open
stacks problem.

 100

 1000

 10000

 100000

 100

fli
ps

N

Model 1
Model 2
Model 3

Figure 1: Results on the AN benchmarks

All three models have O(R2) p, l, r variables and O(RC)
o variables, giving a total of O(R(R + C)). They have O(C)
constraints (1) or (6) or (7) of size O(R), O(∆RC2) con-
straints (2) of constant size where ∆ is the matrix density,2

O(RC) constraints (3) of constant size, O(RC) constraints
(4) of constant size, and O(C) constraints (5) of size O(R),
giving a total space complexity of O(RC(1 + C∆)). For
sparse matrices the space complexity is low, making the mod-
els suitable for large problems in which each customer orders
a small number of products.

3 Experiments

Integer programs can be solved by local search. We use an un-
published algorithm based on a recent SAT algorithm called
VW2 [6]. The new algorithm (and VW2) is related to Walk-
sat variant B [4; 10], and uses a modified objective function
that dynamically weights variables to improve search diversi-
fication. In the experiments in this section the Walksat noise
parameter p is set to 0.05, the VW2 s parameter is set to 0.1,
and the VW2 c parameter to 0.000001.

For the AN benchmark (with super-exponentially many
optimal pseudo-solutions) the results are shown in Figure 1.
The graph is a log-log plot so the straight lines show that the
search effort is polynomial in N . Models 2 and 3 are indis-
tinguishable, but model 1 has a steeper gradient and there-
fore a higher polynomial degree. We also experimented with
N = 500 and tuned the search algorithm parameters, and the
results were very similar: models 1 and 2 took tens of seconds
to solve while model 3 took tens of minutes.

For the BN benchmark (with no optimal pseudo-solutions)
the results are shown in Figure 2 and are quite different.
Model 1 is now the best, model 2 is slightly worse, and model
3 much worse. However, model 2 appears to scale better than
model 1 as N increases: unfortunately the crossover (if there
is one) occurs as the problems become expensive to solve.
Still, these small differences might vanish under more care-
ful tuning of the search algorithm. The main point about this
graph is that model 2 scales comparably with model 1, and
much better than model 3.

2Defined as the number of 1-entries divided by the total number
of entries.

Constraint Modelling Challenge 2005

59

 100

 1000

 10000

 100000

 1e+06

 10 100

fli
ps

N

Model 1
Model 2
Model 3

Figure 2: Results on the BN benchmarks

4 Conclusion
Model 2 emerged as the most robust in our experiments.
We used unrealistic problems that were solved in polynomial
time, but in experiments on some Challenge instances model
2 also gave the best results. It is hoped that the new model
and local search algorithm will perform fairly well on at least
some of the Challenge benchmarks. However, our main aim
was to demonstrate the idea of reformulating a problem to in-
crease its solution density, which generalises the technique of
supersymmetry.

References
[1] D. Clark, J. Frank, I. P. Gent, E. MacIntyre, N. Tomov,

T. Walsh. Local Search and the Number of Solutions. Sec-
ond International Conference on Principles and Practices
of Constraint Programming, Lecture Notes in Computer
Science vol. 1118, Springer, 1996, pp. 119–133.

[2] I. P. Gent, J.-F. Puget. Symmetry Breaking in Constraint
Programming. Tutorial, Tenth International Conference
on Principles and Practice of Constraint Programming,
Toronto, Canada, 2004.

[3] Y. Hanatani, T. Horiyama, K. Iwama. Density Condensa-
tion of Boolean Formulas. Sixth International Conference
on the Theory and Applications of Satisfiability Testing,
Santa Margherita Ligure, Italy, 2003, pp. 126–133.

[4] D. A. McAllester, B. Selman, H. A. Kautz. Evidence for
Invariants in Local Search. Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Appli-
cations of Artificial Intelligence Conference, AAAI Press
/ MIT Press, 1997, pp. 321–326.

[5] A. Parkes. Clustering at the Phase Transition. Fourteenth
National Conference on Artificial Intelligence and Ninth
Innovative Applications of Artificial Intelligence Confer-
ence AAAI Press / MIT Press, 1997, pp. 340–345.

[6] S. D. Prestwich. Random Walk With Continuously
Smoothed Variable Weights. Eighth International Confer-
ence on Theory and Applications of Satisfiability Testing,
Lecture Notes in Computer Science vol. 3569, Springer,
2005, pp. 203–215.

[7] S. D. Prestwich. Negative Effects of Modeling Tech-
niques on Search Performance. Annals of Operations Re-

search vol. 118, Kluwer Academic Publishers, 2003, pp.
137-150.

[8] S. D. Prestwich. Local Search on SAT-Encoded Colour-
ing Problems. Theory and Applications of Satisfiability
Testing, Lecture Notes in Computer Science vol. 2919,
Springer, 2004, pp. 105–119.

[9] B. Selman, H. Levesque, D. Mitchell. A New Method
for Solving Hard Satisfiability Problems. Tenth National
Conference on Artificial Intelligence, MIT Press, 1992, pp.
440–446.

[10] B. Selman, H. A. Kautz, B. Cohen. Noise Strategies for
Improving Local Search. Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, AAAI Press,
1994, pp. 337–343.

[11] J. Singer, I. P. Gent, A. Smaill. Backbone Fragility and
the Local Search Cost Peak. Journal of Artificial Intelli-
gence Research vol. 12, 2000, pp. 235–270.

[12] M. Yokoo. Why Adding More Constraints Makes a
Problem Easier for Hill-climbing Algorithms: Analyzing
Landscapes of CSPs. Third International Conference on
Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science vol. 1330, Springer-Verlag
1997, pp. 356–370.

A Experimental results
The results shown in Table 1 were obtained on a 733 MHz
Pentium II. We consider only the individual instances, not
the large families of problems. We performed one run per
instance, with a threshold of 108 local moves (flips) and the
following algorithm parameter settings: p = 0.05, s = 0.01
and c = 0.05/n where n is the number of variables in the
model. (In further experiments with more time and finer tun-
ing we found a 20-solution for SP2, a 35-solution for SP3,
and a 54-solution for SP4.)

Constraint Modelling Challenge 2005

60

No. of Objective value
File runs Best Worst flips secs

Miller19 1 13 13 168279 0.5
GP1 1 45 45 3216551 31
GP2 1 40 40 148422 2.4
GP3 1 40 40 1039508 7.2
GP4 1 30 30 1031501 15
GP5 1 95 95 3336715 74
GP6 1 76 76 5152962 117
GP7 1 79 79 1996366 41
GP8 1 60 60 4702041 92

NWRS1 1 3 3 27767 0.06
NWRS2 1 4 4 4540 0.02
NWRS3 1 7 7 148432 0.3
NWRS4 1 7 7 21939 0.09
NWRS5 1 12 12 39657 0.6
NWRS6 1 12 12 44284 0.2
NWRS7 1 10 10 201125 1.0
NWRS8 1 16 16 256892 1.2

SP1 1 9 9 155477 0.36
SP2 1 21 21 3569961 15
SP3 1 37 37 65277580 458
SP4 1 57 57 57188506 547

Table 1: Results on individual instances

Constraint Modelling Challenge 2005

61

A Constraint Programming Approach to the Min-Stack Problem

Paul Shaw Philippe Laborie
ILOG S.A., France

1 Introduction
This paper tackles the IJCAI-05 modelling challenge using
the constraint programming libraries Solver [ILOG, 2005b]
and Scheduler [ILOG, 2005a] from ILOG. The resulting
“min-stack” solver uses a combination of modelling, prop-
agation algorithms and search strategies, all of which con-
tribute to increased performance on the challenge instances.

2 Base model
Here, a foundation model is introduced which is sufficient to
model the problem. Later, redundant modelling methods are
described which do not change the optimal solution of the
problem, but can help to solve it more quickly.

In the problem, there are n products and m customers. The
set of products demanded by customer j (an order) is denoted
by Pj . The set of orders demanding product k is denoted by
Ok.

The problem is modelled using a constrained variable for
each manufacturing time slot. Variable pi ∈ {1 . . . n} in-
dicates which product is manufactured at slot i, where slots
range from 1 to n. A dual model is also created which repre-
sents the time slot of the manufacture of each product. Vari-
able sk ∈ {1 . . . n} indicates in which slot product k is pro-
duced. These two sets of variables are maintained in consis-
tency via an inverse constraint which specifies that spi

= i.
An all-different constraint [Régin, 1994] is also imposed on
the variables p which increases domain filtering.

Each order has a span of activity between the first and last
time slots involving a product demanded by the order. Vari-
ables for these first and last slots are defined for order j as
fj = min{sk|k ∈ Pj} and lj = max{sk|k ∈ Pj}. The
constraint lj ≥ fj + |Pj | − 1 is also imposed.

A Boolean variable (which will also be considered to be
0 − 1) αij indicates if order j is active at time slot i via the
constraint αij = (fj ≤ i ∧ lj ≥ i). Using this, the number
of active orders (number of open stacks) αi at time slot i is
given by αi =

∑
1≤j≤m αij . Finally, the objective is to min-

imize the maximum number of open stacks (active orders)
α = max1≤i≤n αi.

3 Problem simplifications
Before even attempting to resolve a problem, certain simpli-
fications can be made to it which reduce its difficulty. First

of all, any customer orders demanding no products can be re-
moved. Any products which are not ordered by any customer
can likewise be removed.

A further observation is that if two products are ordered by
exactly the same customers, then one of the products can be
removed without affecting the value of the optimal solution.
To see this, note that removing a product can never increase
the optimum. Also, for any solution not involving the re-
moved product, the removed product can be inserted directly
before or after its twin without increasing the number of open
stacks.

The final observation is the most powerful, and in practice
can aid search considerably. If for two products k and l, prod-
uct l is ordered by a subset of the customers of k (Ol ⊂ Ok),
then product l can be removed from the problem. This can be
seen in two ways. First, as above, for any solution without l,
l can be inserted next to k without increasing the number of
open stacks. Second, Ol could be modified by adding orders
(which can never decrease the optimum) to make it equal to
Ok, then product l removed using the equality rule.

The product removal rule is effective on many instances.
For example, on Simonis’s problem 10 20 instances, on av-
erage 10 of the initial 20 products are removed.

4 Lower bounds

Computing a lower bound on the minimum number of open
stacks can be useful in proving the optimality of a solution; if
a solution is found with a number of stacks equal to the lower
bound, search can be stopped.

Perhaps the simplest lower bound L1 is the maxi-
mum number of customers demanding a product: L1 =
max1≤k≤n |Ok|. A better lower bound can be found by ob-
serving that if any two customer orders involve the same
product, the two orders must be active together in at least
one slot: that is, the orders overlap in time. An ‘order’ graph
can be constructed with a node per order and an edge be-
tween two nodes when their corresponding orders share at
least one product. The chromatic number L3 of this graph
forms a lower bound on the minimum number of open stacks.

Instead of colouring the order graph optimally to find
bound L3, a bound L2 that is cheaper to compute is based
on finding a (large) clique in the order graph. The size of this
clique is a lower bound on L3. A greedy clique finding al-

Constraint Modelling Challenge 2005

62

gorithm is used in the solver, and the constraint α ≥ L2 is
added after finding it.

The bound L2 is indeed useful for proving optimality. All
large instances in gp100by100 were closed because a solution
was found with a number of open stacks equal to the size of
the maxiumum clique found in the order graph.

5 Redundant modelling
Redundant modelling is the addition of supplementary con-
straints and variables to the problem, which, although do
not reduce the solution space, help the search for solutions
by making deductions (filtering domains) more effectively.
Here, two redundant models are added to the original: one
based on graph colouring, and another based on resource-
constrained scheduling.

5.1 Colouring model
The previous section discussed how colouring the order graph
could be used to pre-compute a lower bound. A colouring
model which bounds the number of open stacks can also
increase domain filtering during search. A colour variable
cj ∈ {1 . . .m} is introduced for each customer order j. Each
pair of orders i, j that overlap must be coloured differently.
This is ensured by constraints of the form fi ≤ lj∧fj ≤ li ⇒
ci 6= cj . (Note that when orders i and j share a product, both
sides of the implication are added directly, as the orders must
overlap in this case.) Finally, the constraint that the number of
open stacks is at least the number of colours used is imposed:
α ≥ max1≤j≤m cj .

The colour variables are symmetric under any value per-
mutation. To break this symmetry, and to colour the max-
imum number of variables and thus aid domain filtering, a
large clique is found (the same one as was used in the bound-
ing function L2) and coloured with colours from 1 to L2. This
pre-assignment of the colour variables is done at the start of
search.

The redundant colouring model is extremely useful. For
example, when disabled, one instance in the ShawInstances
suite had to be stopped at over three million choice points,
when it is normally solved in a few thousand.

5.2 Scheduling model
From a scheduling perspective, each order i can be seen as an
activity over the time interval [fj , lj] that requires one unit of
a discrete capacity resource of total capacity α. The problem
is then to find a solution that minimizes the maximal usage
of the resource. Classical constraint-based scheduling algo-
rithms available in ILOG Scheduler [ILOG, 2005a] are used
to strengthen the propagation.

Let aj denote the activity representing order j. The follow-
ing constraints are imposed:
• The activity aj starts at the first slot of j (start(aj) =

fj) and ends at the last slot (end(aj) = lj + 1).1 These
1The additional +1 here is because in resource constrained

scheduling, activity execution intervals are normally open to the
right. That is, an activity of duration 3 starting at time 1 is said
to end at time 4. The activity executes in the interval [1, 4).

constraints allow the base model and the scheduling
model to communicate.

• Whenever two orders i and j share at least one product,
it means that the two activities ai and aj have to overlap
for a duration that is at least equal to oij = |Pi ∩ Pj |.
Thus, the two following temporal constraints can be
stated: end(ai) ≥ start(aj) + oij and end(aj) ≥
start(ai) + oij .

• Whenever two orders i and j are such that Pi ⊂ Pj it
means activity aj covers activity ai. Thus, the two fol-
lowing temporal constraints can be stated: start(ai) ≥
start(aj) and end(ai) ≤ end(aj).

On this scheduling model, resource propagation is en-
forced using the balance constraint. This constraint main-
tains the transitive closure of a precedence graph whose nodes
are the start and end time-points of activities and arcs repre-
sent precedence relations. The basic idea of the algorithm
is to compute, for each activity aj on the resource, a lower
bound on the resource usage at the start time of aj (symmetri-
cal reasoning can be applied to perform propagation based on
a lower bound on the resource usage at the completion time
of aj). Using the precedence graph a lower bound on the
resource utilization at date start(aj) + ε just after the start
time of aj can be computed assuming that all the resource re-
quirements that do not necessarily overlap start(aj) will not
overlap it.

Given this bound, the balance constraint is able to find dead
ends, to derive new bounds on activity start and end times,
and to find new precedence relations that are added into the
precedence graph.

Details of the balance constraint in the more general case
of reservoir resources are available in [Laborie, 2003]. What
is important is that the balance constraint reasons not only
on the time-bounds of activities but also on the precedence
relations between activities. It usually allows for a stronger
pruning when precedence constraints between activity time-
points are fairly dense as is often the case for the challenge
problems.

6 Symmetry breaking
Any solution can be mapped into another solution simply by
reversing the production sequence 〈p1, . . . , pn〉. In order to
break this evident symmetry, a product pk among the most
demanded ones (that is, such that |Ok| is maximal) is selected
and constrained to be produced in the first half of the produc-
tion sequence: sk ≤ b(n + 1)/2c.

7 Search strategies
The master search used is essentially constructive in nature,
although some local search is included (see section 7.3). The
standard constraint programming method of finding and prov-
ing an optimal solution is used, where the upper bound on the
cost function is continually maintained at one less than the
cost of the last solution found. Optimality is proven when the
complete search tree has been searched. Two search strategies
are described here, one quite classic, but with some iteresting
optimizations, and one more esoteric.

Constraint Modelling Challenge 2005

63

7.1 A search strategy
A natural way to search for solutions is to build up the
schedule chronologically; that is, instantiate the variables
{p1, . . . , pn} by increasing index. This can be reasonably ef-
fective, but a number of peculiarities of the problem allow its
efficiency to be significantly increased. These can be demon-
strated most easily by a transformation of the problem dur-
ing search. (This is a descriptive tool; in in reality, no actual
transformation takes place).

Consider that during a search, the schedule has been com-
pleted from slot 1 to slot h. Let Sh = ∪1≤i≤hpi be the
products already scheduled up to and including slot h. Let
Ah = {j|fj ≤ h ∧ lj > h} be the set of active orders just
after slot h. The remaining sub-problem (to schedule the re-
mainder of the products from slot h+1 onwards) can be trans-
formed into an equivalent one by creating a new problem with
the remaining products Rh = {1, . . . , n} − Sh and a single
new product, say product zh, with Ozh

= Ah. In the new
transformed sub-problem, product zh must be scheduled first.
This transformation essentially melds all the products already
scheduled into one single product representing the active or-
ders just after slot h.

There are two points to note here. First, the transformation
makes the sub-problem look like a form of the original prob-
lem; the partial assignment of products has been replaced by
a single product. Second, the solubility or otherwise of the
sub-problem does not depend on the order of product instan-
tiations made up to slot h.

The first of the above points can be exploited by recalling
the problem simplifications of section 3. If, for any product
k in the new problem, Ok ⊆ Ozh

, then product k can be
inserted next to product zh. What does this mean for the orig-
inal search? It means that if after scheduling up to and includ-
ing slot h, an unscheduled product k exists with Ok ⊆ Ah,
then product k can be placed in slot h + 1 without creating a
choice point.2

The second point can be exploited by cutting off search
when an identical sub-problem has already been encoun-
tered [Focacci and Shaw, 2002; Smith, 2005]. For instance,
suppose that for a given α, search has proved that there
is no feasible extension of the product assignment 〈1, 2, 3〉.
Then, by the ordering rule, none exists for any permutation
of 〈1, 2, 3〉. Each time the search backtracks, proving a sub-
problem insoluble, the set of products scheduled up to that
point is recorded in a set of no-goods. Then, at each point in
search, the set of currently scheduled products is looked up in
the set of no-goods; if it is found then the search is pruned.

These two rules vastly increase the speed of the simple gen-
eration scheme. However, another search strategy seems to be
more robust in practice.

7.2 A more robust search
In the current implementation, a different strategy is used
which was found to be more robust than the more standard

2If more than one such product can be committed, the lowest
indexed one should be placed at slot h + 1. The remainder of these
products will be placed in subsequent slots by re-application of the
rule at the next slot.

left-to-right scheduling already described. The method is
based on subdivision of the products to the left and right of the
schedule, then solving these two sub-problems recursively.
More precisely, to divide the products from slots l to r, a
midpoint m = b(l + r)/2c is chosen. Then, for each product
k for which min(sk) ≤ m ∧ max(sk) > m, a branch is made
with the choices sk ≤ m and sk > m. Once all products
have been divided, the two sub-problems from slots l to m
and slots m + 1 to r are solved recursively.

The method works in practice as subdividing the products
creates two independent sub-problems; no rearragement of
the products on the left hand side can affect the solubility or
otherwise of the problem on the right. The reasons are sim-
ilar to those already described for the left-to-right strategy;
the two sub-problems can be independently transformed to
smaller problems involving the products in their half plus one
other product z, with Oz = Am. (Again, these new prod-
ucts need to be placed at one extremity of the schedule of
the sub-problem.) Sub-problem independence makes search
much more efficient as search can backtrack if any of the two
sub-problems is independently insoluble.

Good decisions about how to partition the products can find
good solutions more quickly. The approach taken is to place a
product in the side which has least products already assigned.
To choose which product to assign, a calculation is made of
the increase to |Am| that would result in placing each prod-
uct at the chosen side. The product minimizing this value is
placed. On backtracking, the product is placed on the other
side.

7.3 Local improvement

Each time a new (better) solution is found, a local search is
launched using the new solution as a starting point. The local
search technique used is Large Neighborhood Search [Shaw,
1998], which is particularly adapted to constraint program-
ming.

One iteration of LNS undoes the assignments of all vari-
ables pk where i ≤ k ≤ j and i and j are chosen randomly in
[1 . . . n]. LNS then attempts to reassign these variables using
a reduced number of open stacks. This reassignment instan-
tiates the product variables by ascending slot and uses a ran-
dom value (i.e. product) choice in each slot. The size of this
search was limited to 100 backtracks. The choice points ex-
plored during LNS are counted just as choice points in com-
plete search, and the sum of all the choice points (from com-
plete search and from LNS) is reported in the final results.

LNS continues accepting improvements until m + n itera-
tions have passed without improving the current solution, at
which point search reverts to complete (constructive) search.
If a better solution was found during LNS, the new upper
bound found is used to constrain the search by reducing the
maximum allowed value of α.

LNS proved invaluable for solving larger instance classes,
such as gp100by100, and in general helps achieve a better
upper bound earlier in the search. However, for most smaller
instances, run time increases. LNS is disabled if the problem
is thought to be “easy”. In the current implementation, this is
when n < 20.

Constraint Modelling Challenge 2005

64

8 Results
The solver developed closes all problems in the challenge
suite except the three largest problems in class sp4. Search
effort was measured using run time and number of choice
points. For the results in table 2, a time limit of one hour
was set. Experiments were run on a Dell D610 Laptop with a
2GHz Pentium-M processor.

9 Comments
The time for this challenge was quite limited, and most of the
ideas presented in this paper have not been properly explored.
We believe that the results produced here can be greatly im-
proved and there is still much to investigate. For example:
deriving finer dominance rules, finding lower bounds during
search either by colouring or other methods, deriving a good
lower bound on Am while dividing products, applying sub-
problem simplification in the division strategy, and so on.

References
[Focacci and Shaw, 2002] F. Focacci and P. Shaw. Prun-

ing sub-optimal search branches using local search. In
Proceedings of CP-AI-OR ’02, pages 181–189. Springer,
2002.

[ILOG, 2005a] ILOG. ILOG SCHEDULER 6.1 Reference
Manual, 2005. http://www.ilog.com/.

[ILOG, 2005b] ILOG. ILOG SOLVER 6.1 Reference Man-
ual, 2005. http://www.ilog.com/.

[Laborie, 2003] P. Laborie. Algorithms for propagation re-
source constraints in AI planning and scheduling: Exist-
ing approaches and new results. Artificial Intelligence,
143:151–188, 2003.

[Régin, 1994] J.-C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings of the 12th
AAAI, pages 362–367. AAAI Press / The MIT Press, 1994.

[Shaw, 1998] P. Shaw. Using constraint programming and
local search methods to solve vehicle routing problems.
In M. Maher and J.-F. Puget, editors, Fourth Interna-
tional Conference on Principles and Practice of Con-
straint Programming (CP ’98), pages 417–431. Springer-
Verlag, 1998.

[Smith, 2005] B. M. Smith. Caching search states in permu-
tation problems. To appear in the Proceedings of CP 2005,
2005.

Constraint Modelling Challenge 2005

65

Table 1: Aggregated Result Summary
% Mean Total run time (s) Choice points to optimum Total choice points

File opt. Stacks Mean Median Max Mean Median Max Mean Median Max
ShawInstances 100 13.68 1.33 0.94 4.46 410.24 192.5 3577 1561.08 1187.5 5543
wbo 10 10 100 5.92 0.01 0.01 0.04 45.80 44.5 76 48.92 46 99
wbo 10 20 100 7.35 0.03 0.01 0.22 114.38 101.5 264 156.90 117 644
wbo 10 30 100 8.20 0.20 0.01 1.68 186.95 120 1147 424.50 120.5 2593
wbo 15 15 100 9.35 0.12 0.08 0.44 133.92 90 416 257.60 207.5 842
wbo 15 30 100 11.58 4.76 1.51 22.83 498.73 164 3067 4855.02 1835 18601
wbo 20 10 100 12.90 0.08 0.08 0.22 64.50 67 143 94.07 91.5 189
wbo 20 20 100 13.69 1.77 1.17 10.16 594.71 223.5 7326 1896.44 1377 11046
wbo 30 10 100 20.05 0.33 0.32 0.74 75.42 72 198 125.53 124 271
wbo 30 15 100 20.96 1.74 1.61 5.42 234.73 166.5 904 703.23 669.5 1870
wbo 30 30 100 22.56 97.52 75.82 390.54 5823.58 594 78248 42541.08 36650 208323
wbop 10 10 100 6.75 0.01 0.01 0.02 40.23 25 106 41.67 36.5 107
wbop 10 20 100 8.07 0.07 0.01 0.65 125.42 91 705 250.97 101 1505
wbop 10 30 100 8.55 0.40 0.01 7.53 199.47 119 1158 631.17 119 7629
wbop 15 15 100 10.37 0.12 0.07 0.56 140.25 107.5 631 292.30 225 1088
wbop 15 30 100 12.15 5.46 0.04 42.29 811.68 154 8471 6007.27 155.5 35292
wbop 20 10 100 14.28 0.07 0.04 0.18 58.48 48.5 113 86.62 69 216
wbop 20 20 100 14.87 1.82 0.62 8.58 474.56 203 3778 2174.44 922.5 10161
wbop 30 10 100 22.48 0.23 0.16 0.75 63.90 50.5 203 109.50 93 301
wbop 30 15 100 22.38 2.38 1.70 9.71 311.53 133.5 2886 1020.63 877.5 3942
wbop 30 30 100 23.84 130.69 14.34 969.29 9914.45 303.5 244192 56881.51 8463 475608
wbp 10 10 100 7.28 0.01 0.01 0.01 20.57 17 49 21.98 17 57
wbp 10 20 100 8.71 0.01 0.01 0.09 45.07 37 118 53.41 37 285
wbp 10 30 100 9.31 0.01 0 0.20 54.50 45 391 63.24 49 551
wbp 15 15 100 11.05 0.06 0.02 0.70 78.17 69 340 145.38 80.5 1211
wbp 15 30 100 13.09 0.76 0.02 18.57 209.22 103.5 2258 1281.26 109 25112
wbp 20 10 100 15.12 0.06 0.04 0.19 46.45 44 103 69.60 62 152
wbp 20 20 100 15.41 1.03 0.22 10.61 253.34 121.5 5106 1249.40 230 12572
wbp 30 10 100 23.18 0.28 0.17 0.80 68.60 49.5 188 116.55 99 299
wbp 30 15 100 22.98 2.62 1.42 16.03 283.57 133.5 3938 1086.27 629.5 6273
wbp 30 30 100 24.46 469.57 1.78 6776.43 18021.93 230 822249 180410.06 908.5 3911218
problem 10 10 100 8.03 0.00 0 0.02 18.77 16.5 70 19.26 17 73
problem 10 20 100 8.92 0.00 0 0.05 34.29 29 119 36.63 30 279
problem 15 15 100 12.87 0.02 0.01 0.29 59.93 44.5 297 80.55 49.5 540
problem 15 30 100 14.02 0.29 0.01 13.58 130.53 89 1799 515.85 89 21020
problem 20 10 100 15.88 0.04 0.02 0.23 49.93 46 166 64.41 56 215
problem 20 20 100 17.97 0.58 0.02 16.31 146.85 89 1684 748.96 91 21486
problem 30 10 100 23.95 0.18 0.12 0.91 67.47 57 231 99.99 90.5 301
problem 30 15 100 25.97 1.18 0.10 8.05 194.98 92 2659 606.39 150 3736
problem 30 30 100 28.32 221.65 0.02 4105.60 4079.43 119 175712 89314.88 119 1694494
problem 40 20 100 36.38 21.73 0.67 158.89 855.65 91 13085 5982.75 315 41003

Constraint Modelling Challenge 2005

66

Table 2: Individual Result Summary
Instance Best obj. Proven? Run time Choice points to optimum Total choice points
Miller 13 yes 295.45 992 144013
GP1 45 yes 0.61 328 328
GP2 40 yes 1.35 446 446
GP3 40 yes 1.97 475 475
GP4 30 yes 4.07 1153 1153
GP5 95 yes 12.57 1341 1341
GP6 75 yes 96.39 3788 3788
GP7 75 yes 47 2673 2673
GP8 60 yes 90.44 4146 4146
NWRS1 3 yes 0.01 66 66
NWRS2 4 yes 0 46 46
NWRS3 7 yes 0.01 68 68
NWRS4 7 yes 0.02 117 117
NWRS5 12 yes 0.09 168 169
NWRS6 12 yes 0.27 565 565
NWRS7 10 yes 1.1 712 712
NWRS8 16 yes 478.78 1485 302272
SP1 9 yes 4.66 414 1901
SP2 21 no 3600 N/A 956633
SP3 38 no 3600 N/A 157322
SP4 61 no 3600 N/A 19070

Constraint Modelling Challenge 2005

67

Modelling Challenge: Benchmark Results

Helmut Simonis
IC-Parc, Imperial College London

hs@icparc.ic.ac.uk

Abstract

In this note we present a model for the constraint
modelling challenge 2005 based on mixed finite do-
main and continuous variables implemented using
the IC library of ECLiPSe. We are interested in
proving optimality of our solutions, and therefore
choose a model which minimizes the width of the
search tree to be explored.The model is naive in that
it does not use any deep theoretical results on path
width to check consistency.

1 Introduction
We present a model for the open stack problem[Fink and
Voss, 1999] posed as the first constraint modelling challenge
[Gent and Smith, 2005]. Instead of just introducing the model
used for our evaluation, we try to explain the steps which led
to the selection of our method, and why we found other ap-
proaches less satisfactory.

We paraphrase the problem definition from[Gent and
Smith, 2005] as follows: We consider a problem withn prod-
uct types andm orders. All products of the same type are
made consecutively, but we can arrange the order of the prod-
uct types freely. A producti is required by orderj if the 0/1
integer entrycij is equal to one. A stack for an order is re-
quired (isopen) from the time the first product of the order
is made to the time the last product is made (inclusive). The
objective is to minimize the maximal number of open stacks.

2 Basic Model
The basic model of the problem is given by the following def-
initions and constraints. LetP be the set of production time
slots, i.e.Pi denotes the time point when producti is made.
Initially, we assume integer time points from1 to n. The sets
of variablesS andE denote the start and finish time points
for the orders, i.e.Sj (Ej) is the time point when production
of orderj starts (ends). These variables also range from1 to
n. For each time pointi and orderj we have a binary vari-
ableOij which denotes whether orderj is open at timei. The
variableUi denotes the number of open orders at time point
i, and the overall objective is to minimize the maximal uti-
lization Limit. We also use the constantscij which indicate

whether orderj requires producti. The model is shown in
table 3.

This model can be implemented easily with most finite
domain solvers, and can be combined with a search routine
which assigns theP variables. By propagation, all other vari-
ables are fixed and an optimal solution can be found by a
minimize or min max branching scheme[Prestwich, 1999].

Note that constraints 11 to 14 implement a form ofcumu-
lative [Aggoun and Beldiceanu, 1993] constraint, and that
the reified constraints over theO variables perform obliga-
tory part reasoning[Simoniset al., 2000]. In many constraint
languages it would be better to use a single cumulative con-
straint of the form1

cumulative(S, D, 1̄, E, Limit)

2.1 Redundant constraints
We can strengthen the model by adding a simple redundant
constraint, which uses the fact that all products must be as-
signed to different slots and that we know the number of prod-
ucts required for each order.

∀1≤j≤m : Ej ≥ Sj + (
∑

1≤i≤n

cij) − 1

This is a special case of a more generic redundant constraint,
which works for all subsets of the products required for an
order, as shown in table 4. Note that we don’t have to create
one constraint for each subset, it suffices to order the products
by earliest start (resp. latest end) and to count the number of
tasks which are placed later (earlier), as shown in table 11.

3 Labeling Choices
The basic model leaves us with different possibilities on how
to assign values to the variables. We explore three possible
alternatives:

3.1 Assigning slots to products
The most common search strategy will try to fix values for
the variables (see table 8). At each step, we deterministically

1To compute utilization profiles, it is preferable to redefinethe
end variables by adding one, to make them consistent with duration
variablesD.

Constraint Modelling Challenge 2005

68

choose a variable to be assigned next based on some heuris-
tic, and then non-deterministically try out all possible values,
until all variables are assigned. Due to thealldifferent con-
straint we know that a trivial bound on the size of the search
space isn!, we haven choices for the first variable, thenn−1
for the second variable, and so on, until the last variable has
only one value left.

3.2 Assigning products to slots
An alternative is to assign slots to variables, e.g. to select a
slot in the schedule, and then to try out all possible products
for this slot. We can for example (table 9) assign the slots left
to right, by selecting the product for the left-most slot first
(this means assigning it to value 1), then choosing a product
for the second slot, and so on. The trivial search tree size
bound again isn!, the first choice exploresn alternatives.

3.3 Partial ordering of products
A third alternative is not to instantiate the variables directly,
but to partially order them by enforcing inequality constraints
between them. This is similar to the technique used in
[Dincbaset al., 1990] to solve disjunctive scheduling prob-
lems. It is also related to MIP models for this problem, which
typically usen2 0/1 integer variables stating that one product
is made before another. If we decide the order of all pairs
of products consistently, we impose an order on the tasks
which instantiates the variables. Unfortunately, this search
strategy does not mix well with the constraint model, we only
achieve very limited constraint propagation until most tasks
are ordered. We could perhaps improve the interaction by
using constraint handling rules (CHR)[Frühwirth, 1998], but
choose not to follow that route.

4 Problems with model
The reified constraint model does not remove all inconsistent
values, as we will show on two examples. For both examples
we consider 5 products, 5 orders and a limit of 4 open stacks.
Table 5 shows the first instance. IfP2 is assigned to 2 and
P4 assigned to 4, thenP3 can no longer be assigned to 3. As
the stacks for ordersO4 andO5 are already open, there is no
room for the additional three stacks required by productP3.
Table 6 shows a different situation. IfP2 andP3 are already
assigned to 2 and 3 resp., then placingP4 to 4 is no longer
possible because this would require 5 stacks at time point 3.

The problem is caused by the interaction of multiple orders
when we fix a product to a time slot. The reified constraint
(but also the cumulative formulation) ignore this interaction
and therefore fail to detect the inconsistency. We can solve
these problems by implementing a stronger propagation for a
combined cumulative constraint, as shown in section 5.

A more fundamental problem is the shape of the search
tree. If we use a variable assignment method, we have to pick
the first product and assign a slot to it. The choice of the slot
will be rather uninformed, and for a proof of optimality we
will have to explore all alternatives. For the second variable,
we will still need to exploren−1 possible values. Unless our
estimation of the cost is very good, we will need to explore
a very large search tree even if we only consider the firstk

variables. A proof of optimality by enumeration seems very
unlikely even for modest problem sizes.

The same argument holds for the slot assignment, the situ-
ation is even worse in this case. We have to try all products
for the selected slot, but many of them will be non critical.
This means that the cost bound will only increase slowly, so
that we will have to explore more of the search tree.

Introducing a partial ordering between products seems to
be a good strategy. Unfortunately, we can not use the original
model to do this, as the added inequality constraints between
products do not interact sufficiently with the other constraints.
We need another model.

5 A combined cumulative global constraint
Due to time limitations, we could not fully develop the con-
straint, but we did build a simple variant which performs the
following pruning (table 12). At each invocation, we build a
profile of open orders at each time point. As starting point we
use theS andE variables. As soon as the upper bound of the
start is less or equal to the lower bound of the end variable
for an order, we know that we have an obligatory part for this
order. We add up all obligatory parts and obtain a profile of
overall stack usage. If the number of open stacks exceeds the
cost limit, we can fail. Otherwise, we check for each unas-
signed product and each value left in its domain, whether it
would fit in the space left in the profile. If this is not possible
we prune the value from the domain. This solves the problem
from table 5.

If the product can be placed in a given location, we then
check how this would modify the profile. We can update the
profile by comparing the slot value considered with the start
and end variables for the orders belonging to the product. We
then check if the generated profile exceeds the cost bound, in
which case we again can prune the value from the domain.
This solves the problem of table 6.

This constraint together with the redundant constraints (16)
and (17) drastically reduces the number of choices explored.
Unfortunately, this is not enough to prove optimality even for
medium sized instances.

6 IC Model
The key idea for our new model is the concept of a partial
order between products. If we arrange the products in a se-
quence, we can calculate the start and end times of the or-
ders, and compute the number of open stacks at each time
point. Instead of using values 1 ton for the variables, we use
an arbitrary real interval as their domain. The first two vari-
ables can be placed arbitrarily in the interval together with
two sentinels at the beginning and at the end of the interval.
This also eliminates the back-to-front symmetry in the prob-
lem. In our assignment routine (table 10 shows a simplified
form), we decide between which already placed products we
should place the selected product. As value we fix the middle
of the interval. If the initial interval is sufficiently large, we
can always find a number between two already selected val-
ues, even when using floating point arithmetic. We remove
the alldifferent constraint from the model, and satisfy itscon-
dition by construction of the search routine. When we have

Constraint Modelling Challenge 2005

69

obtained a solution, we can renumber the products in order of
their assigned values to the range 1 ton.

Note that it would be very difficult to obtain this splitting
behaviour with integer domains. We would have to use a very
large initial domain to make sure that there are enough integer
values left between any two already assigned variables to fit
in all remaining variables. If we are not extremely careful,we
might loose completeness of the search method.

The new model is given in table 7. This model has been
implemented using the IC library of the ECLiPSe[Wallaceet
al., 1997][Cheadleet al., 2003] system which allows a mix of
discrete and continuous variables.

Note that the search tree of this model has a very nice form.
The first two variables can be fixed arbitrarily, for the third
variable we have three possible choices, for the next one four
and so on. The tree is quite narrow at the top, but we have to
explore more choices the deeper we go in the tree. If we select
the initial products carefully, we can hope to limit our search
to the top part, exploring relatively few choices. The cumu-
lative constraint has been ported to the continuous domain,
but we found that the shaving technique described below is
performing slightly more pruning.

7 Search Strategy
For our search method (called cresha (credit+shaving)), we
have to define a variable selection routine and a value order-
ing. The variable selection decides which variable to assign
next, the value ordering defines the order in which different
values are tested during the search.

7.1 Variable selection
We use an initial static ordering and complement this by a dy-
namic selection which is computed at every step of the search.
We found experimentally that the following function is quite
successful as a static order:

wi =
∑

1≤j≤m

cij ∗
1∑

1≤k≤n ckj

The contributing value of an order is inversely proportional to
the number of products that are required by the order.

As the dynamic part we evaluate at each step the minimal
cost increase that would be caused by selecting a variable
and placing it in the schedule. We choose the variable which
causes the maximal increase of the cost. For ties we use the
“domain size”, the number of slots where the product can be
placed.

7.2 Value ordering
As value ordering heuristic we choose the positions in order
of minimal increase of the cost function. We break ties by
checking how manyS andE variables will be updated by
a given assignment value. In order to calculate these strate-
gies we have to test each remaining value for each unassigned
variable at every step. We use this quite expensive operation
at the same time to remove inconsistent values at each step
and to achieve a form of global forward checking. This is a
shaving technique[Torres and Lopez, 2000] applied over the
complete domain.

8 Problem Reduction
We will now discuss some additional techniques to reduce
the number of nodes that need to be explored. Ideally, these
methods would be used to create new, reduced problem in-
stances with fewer variables and constraints. For this evalua-
tion we did apply the reductions at runtime.

8.1 Lower Bounds

A trivial lower bound on the cost is given by the maximal
number of orders for some product.

Limit ≥ max
1≤i≤n

∑

1≤j≤m

cij

We can also obtain lower bounds by looking at subsets of the
products and considering all permutations in which they can
be arranged. We use subsets of 3 to 5 products. Instead of
testing all such subsets, which we deem too expensive, we
only use the first 7 products according to our weight func-
tion. These bounds can sometimes significantly increase the
lower bound, and so help to avoid some optimality proofs by
enumeration.

8.2 Preprocessing

There are a number of other preprocessing steps that can re-
duce problem size significantly, so that optimality proofs be-
come much simpler.

Subsumed Product
Productk is subsumed by producti if

{j|1 ≤ j ≤ m ∧ ckj = 1} ⊆ {j|1 ≤ j ≤ m ∧ cij = 1}

We can remove the subsumed productk from the problem
and schedule it directly before or after producti. It is easy to
see that this does not change the cost of the schedule.

Singleton Product
If a product is required by a single order and that order needs
no other products, then we have a singleton product. For-
mally, we can define the set of singleton products as

{i|
∑

1≤j≤m

(cij ∗
∑

1≤k≤n

ckj) = 1}

We can schedule such products at the very beginning of the
sequence without impact on the overall cost. This reduction
seems to occur quite frequently in randomly generated prob-
lems.

Problem Decomposition
More generally, the problem can be decomposed into multi-
ple subproblems if the graph induced by the matrixcij sep-
arates into multiple connected components[Cormenet al.,
2001]. The problems can be solved independently and can be
combined by piecing together the sub product sequences. Ex-
periments on the problem data have shows that this occurs on
a number of instances, but since these problems were easily
solved anyway, we did not implement the decomposition.

Constraint Modelling Challenge 2005

70

9 Incomplete Search
As initially indicated in[Van Hentenryck and Carillon, 1988],
it can be advantageous to consider two different search rou-
tines when solving a constraint optimization problem, e.g.
to provide an incomplete routine to heuristically find a good
solution quickly, and a complete routine which explores the
search space efficiently. We also use these two types of rou-
tines, the incomplete one is based on partial search, the com-
plete routine is limited by a timeout of 600 seconds.

The initial choices in our search are very important, but
quite uninformed. Later in the search the insertion points are
constrained by the previously placed products and the search
is effectively guided. We use a partial search technique called
credit-based search[Beldiceanuet al., 1997] to explore the
top of the search tree completely, while controlling the overall
effort expended. We also tried to use a constraint-based, large
neighborhood search routine to locally improve results, but
could not complete the tests in the given time frame. The
form of the neighborhood in the continuous model seems to
be very interesting for this type of local search.

10 Result tables
All experiments were run on Linux machines with ECLiPSe
5.82. The overview of the results is given in table 1. It shows
the problem set (Set) with author, strategy used, number of
products (Pr), number of customers (Cu) and number of in-
stances (In), the percentage of instances solved to optimal-
ity (Opt), information about the lower bound (LB), the num-
ber of solutions found (NrS) and the best solution (Sol). We
then show the number of assignment steps (Ass), the time
(Time) and the number of backtracking steps (BT) required
to find the best solution (Best) and to prove optimality (Opti-
mal). We give the average (Avg), geometric mean (Geom),
median (Median), and minimal (Min) and maximal (Max)
values where appropriate. The values for optimality are com-
puted from those instances for which optimality was proved
(by reaching the lower bound or by exhaustive search).

The results for individual problems are shown in table 2.
Values in italics show that the optimality proof timed out.
Solution values in parenthesis give better solutions which
were found with other search strategies. The time out for the
GP100 and SP sets (marked by *) was increased from 600 to
3600 seconds so that the search routine could find a first so-
lution. Two instances in the NWRS (marked with +) set were
modified by hand to remove illegal empty rows.

11 Summary
In this note we have presented our model for the constraint
modelling challenge. We use a mixed integer and continuous
variable model with the IC library of the ECLiPSe language.
The schedule is generated by defining an order of the products
on the real number axis, inserting new tasks between already
placed ones. This model leads to a nice search tree which
is rather narrow at the top, allowing proofs of optimality by
enumeration for medium sized problems.

2The IC library currently does not support holes in continuous
domains, we therefore had to simulate this in the user code

References
[Aggoun and Beldiceanu, 1993] A. Aggoun and

N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems.Mathematical and
Computer Modelling, pages 57–73, 1993.

[Beldiceanuet al., 1997] N. Beldiceanu, E. Bourreau,
P. Chan, and D. Rivreau. Partial search strategy in CHIP.
In 2nd Int. Conf. on Meta-Heuristics, 1997.

[Cheadleet al., 2003] A. M. Cheadle, W. Harvey, A. J.
Sadler, J. Schimpf, K. Shen, and M. G. Wallace. ECLiPSe:
An introduction. Technical Report IC-Parc-03-1, IC-Parc,
Imperial College London, 2003.

[Cormenet al., 2001] T. Cormen, C. Leiserson, R. Rivest,
and C. Stein. Introduction to Algorithms. MIT Press, 2
edition, 2001.

[Dincbaset al., 1990] M. Dincbas, H. Simonis, and P. Van
Hentenryck. Solving large combinatorial problems in
logic programming.J. Log. Program., 8(1):75–93, 1990.

[Fink and Voss, 1999] A. Fink and S. Voss. Applications
of modern heuristic search methods to pattern sequencing
problems. Computers and Operations Research, 26:17–
34, 1999.

[Frühwirth, 1998] T. Frühwirth. Theory and practice of con-
straint handling rules.Journal of Logic Programming, 37,
October 1998.

[Gent and Smith, 2005] I. Gent and B. Smith. Con-
straint modelling challenge 2005. http://www.dcs.st-
and.ac.uk/ ipg/challenge/, 2005.

[Prestwich, 1999] S. Prestwich. Three CLP implementations
of branch-and-bound optimization. InParallelism and
Implementation of Logic and Constraint Logic Program-
ming, volume 2. Nova Science Publishers, Inc, 1999.

[Simoniset al., 2000] H. Simonis, A. Aggoun,
N. Beldiceanu, and E. Bourreau. Complex constraint ab-
straction: Global constraint visualisation. In P. Deransart,
M. Hermenegildo, and J. Maluszynski, editors,Analysis
and Visualization Tools for Constraint Programming,
volume 1870 ofLecture Notes in Computer Science,
pages 299–317. Springer, 2000.

[Torres and Lopez, 2000] P. Torres and P. Lopez. Overview
and possible extensions of shaving techniques for job-shop
problems. In2nd International Workshop on Integration
of AI and OR techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’2000),
pages 181–186, March 2000.

[Van Hentenryck and Carillon, 1988] P. Van Hentenryck and
J.P. Carillon. Generality versus specificity: An experience
with AI and OR techniques. InAAAI, pages 660–664,
1988.

[Wallaceet al., 1997] M. Wallace, S. Novello, and
J. Schimpf. ECLiPSe : A platform for constraint
logic programming. ICL Systems Journal, 12(1), May
1997.

Constraint Modelling Challenge 2005

71

A Results

Best Optimal
K Set Opt Key LB NrS Sol Ass Time BT Ass Time BT
1 hs 100.00 Avg 7.9273 1.23 8.0309 80.43 0.23 0.98 93.58 0.24 2.85

cresha Geom 7.6572 1.16 7.7657 0.00 0.17 - 0.00 0.18 -
Pr 10 Median 8 1 8 70 0.28 0 70 0.28 0

Cu 10 Min 3 1 3 0 0.01 0 0 0.01 0
In 550 Max 10 3 10 434 0.53 29 736 0.73 59

2 hs 100.00 Avg 15.0673 1.57 15.8782 249.84 0.80 5.99 452.71 1.03 25.26
cresha Geom 14.5358 1.44 15.4085 225.36 0.78 - 347.66 0.96 -
Pr 10 Median 16 1 17 200 0.81 0 339 0.91 18

Cu 20 Min 6 1 7 44 0.19 0 44 0.20 0
In 550 Max 20 5 20 1507 1.76 129 12798 12.94 930

3 hs 100.00 Avg 22.1255 1.86 23.9527 398.88 1.42 17.28 1137.75 2.57 76.65
cresha Geom 21.2858 1.67 23.2988 319.28 1.36 - 784.75 2.24 -
Pr 10 Median 23 2 25 279 1.31 7 755 2.12 51

Cu 30 Min 8 1 9 104 0.67 0 104 0.68 0
In 550 Max 30 5 30 6427 9.79 495 12103 14.92 1006

4 hs 100.00 Avg 8.5018 1.26 8.9218 294.51 0.52 3.02 661.48 0.86 30.58
cresha Geom 8.2994 1.18 8.7720 193.89 0.45 - 253.30 0.56 -
Pr 20 Median 9 1 10 244 0.50 0 264 0.56 0

Cu 10 Min 4 1 4 4 0.03 0 4 0.04 0
In 550 Max 10 4 10 5506 4.30 230 60994 38.16 5233

5 hs 100.00 Avg 12.0836 1.45 12.8691 539.23 0.93 8.34 1167.92 1.59 44.54
cresha Geom 11.7352 1.32 12.6003 428.92 0.87 - 620.55 1.16 -
Pr 15 Median 13 1 14 429 0.86 0 573 1.02 16

Cu 15 Min 5 1 5 4 0.04 0 4 0.04 0
In 550 Max 15 4 15 7674 7.31 458 67312 62.83 2540

6 hs 99.55 Avg 22.9318 1.98 25.9682 5241.24 5.29 242.91 22116.69 21.63 1039.18
cresha Geom 22.1306 1.73 25.5447 1486.45 2.02 - 6300.03 7.93 -
Pr 15 Median 24 2 28 942 1.23 8 6357 7.21 253

Cu 30 Min 9 1 14 429 0.79 0 456 0.96 0
In 220 Max 30 6 30 278348 241.17 17507 551805 419.51 29328

7 hs 97.27 Avg 12.7545 1.40 14.0318 5979.43 4.37 165.01 19475.19 16.58 534.86
cresha Geom 12.4854 1.27 13.9369 2188.66 1.76 - 4466.01 4.08 -
Pr 30 Median 14 1 15 2254 1.67 0 3125 2.60 35

Cu 15 Min 6 1 9 104 0.29 0 104 0.29 0
In 220 Max 15 4 15 610546 417.07 28594 617707 424.54 28793

8 hs 98.64 Avg 16.0727 1.65 17.9773 6451.40 4.96 206.78 34178.23 26.92 1253.65
cresha Geom 15.5813 1.45 17.7574 2007.04 1.80 - 5382.35 5.08 -
Pr 20 Median 17 1 19 1500 1.34 0 3353 3.46 72

Cu 20 Min 6 1 10 340 0.51 0 340 0.51 0
In 220 Max 20 5 20 255303 198.54 13773 875385 554.73 49653

9 hs 54.55 Avg 30.6636 1.86 36.5909 17882.52 46.22 528.12 31674.18 104.19 921.68
cresha Geom 29.5883 1.60 36.3154 4006.93 13.63 - 11200.40 45.82 -
Pr 20 Median 33 1 39 1500 7.13 0 10187 46.04 262

Cu 40 Min 15 1 24 1292 4.36 0 1292 6.59 0
In 110 Max 40 5 40 175430 491.06 5630 183800 460.27 6318

10 hs 50.00 Avg 23.9000 1.41 28.6273 16223.35 28.73 237.74 22480.24 74.09 315.60
cresha Geom 23.2144 1.29 28.5375 7015.01 14.48 - 11303.57 30.56 -
Pr 30 Median 25 1 30 4900 10.52 0 7740 18.54 80

Cu 30 Min 12 1 22 3224 5.29 0 4004 9.07 0
In 110 Max 30 4 30 306566 447.20 8642 156794 560.15 2631

11 wbo 100.00 Avg 5.2250 1.60 5.9250 257.10 0.37 4.97 539.40 0.55 29.15
cresha Geom 4.8237 1.46 5.4219 235.03 0.36 - 350.93 0.45 -
Pr 10 Median 5 1 6 200 0.38 0 293 0.43 9

Cu 10 Min 2 1 2 104 0.20 0 104 0.20 0
In 40 Max 8 3 10 938 0.76 53 5533 3.16 439

12 wbop 100.00 Avg 5.1250 1.52 6.7500 245.18 0.37 4.38 1563.65 1.14 108.10
cresha Geom 4.5496 1.43 6.1393 231.98 0.36 - 777.71 0.77 -
Pr 10 Median 6 2 8 200 0.37 1 752 0.72 44

Cu 10 Min 2 1 3 147 0.23 0 147 0.25 0
Table 1: Summary (cont’d)

Constraint Modelling Challenge 2005

72

Best Optimal
K Set Opt Key LB NrS Sol Ass Time BT Ass Time BT

In 40 Max 8 3 10 757 0.70 42 7476 4.39 762
13 wbp 100.00 Avg 6.9500 1.27 7.2750 93.33 0.27 0.65 149.50 0.31 7.95

cresha Geom 6.4930 1.21 6.7652 83.14 0.24 - 104.77 0.26 -
Pr 10 Median 8 1 8 91 0.31 0 102 0.34 1

Cu 10 Min 3 1 3 25 0.04 0 25 0.05 0
In 40 Max 10 2 10 200 0.42 6 978 0.71 83

14 wbo 100.00 Avg 10.7571 2.04 12.9000 343.30 0.83 13.53 1363.89 1.98 90.07
cresha Geom 10.1709 1.86 12.3087 313.62 0.80 - 1084.27 1.74 -
Pr 10 Median 11 2 14 288 0.81 13 1127 1.76 71

Cu 20 Min 5 1 6 200 0.47 0 300 0.59 11
In 70 Max 17 4 19 1061 1.60 51 5788 6.04 456

15 wbop 100.00 Avg 10.6250 2.15 14.2750 731.58 1.23 45.45 6285.73 6.90 468.02
cresha Geom 9.7734 1.93 13.3796 438.94 1.00 - 3262.00 4.16 -
Pr 10 Median 12 2 16 393 0.83 26 3527 4.47 230

Cu 20 Min 5 1 6 200 0.51 0 261 0.57 21
In 40 Max 16 4 20 4348 4.99 337 50179 52.63 3739

16 wbp 100.00 Avg 13.3250 1.75 15.1250 284.88 0.78 10.38 1403.13 1.83 104.60
cresha Geom 12.6977 1.58 14.5042 235.47 0.75 - 746.04 1.38 -
Pr 10 Median 15 2 17 200 0.74 1 666 1.31 52

Cu 20 Min 7 1 8 70 0.46 0 70 0.46 0
In 40 Max 19 4 20 1300 1.79 84 15557 13.35 1343

17 wbo 100.00 Avg 16.2700 2.40 20.0500 635.57 1.70 38.99 3786.50 6.62 271.37
cresha Geom 15.4637 2.18 19.3414 456.30 1.53 - 2800.51 5.39 -
Pr 10 Median 16 2 21 392 1.33 24 2989 5.53 216

Cu 30 Min 8 1 10 200 0.77 0 489 1.25 30
In 100 Max 25 5 28 4454 6.57 369 19978 31.42 1459

18 wbop 100.00 Avg 16.3750 2.17 22.4750 1376.03 2.89 96.80 13750.42 22.38 979.15
cresha Geom 15.0397 1.91 21.5388 644.70 2.07 - 10926.39 18.52 -
Pr 10 Median 18 2 26 516 1.38 42 11414 18.98 767

Cu 30 Min 7 1 13 200 0.85 0 3200 5.87 191
In 40 Max 26 5 30 9133 16.23 623 45921 68.86 3328

19 wbp 100.00 Avg 19.1750 1.98 23.1750 1015.38 2.17 66.80 6376.65 9.90 472.10
cresha Geom 18.3156 1.81 22.4438 512.28 1.69 - 3478.32 6.32 -
Pr 10 Median 20 2 25 356 1.31 23 3421 6.00 219

Cu 30 Min 10 1 14 169 0.83 0 242 0.96 17
In 40 Max 27 4 30 6801 10.15 478 39688 52.02 3346

20 wbo 100.00 Avg 6.7667 2.05 9.3500 2888.00 1.66 98.72 22505.97 13.09 1020.38
cresha Geom 5.9933 1.86 8.3463 1261.54 0.88 - 6221.31 4.23 -
Pr 15 Median 7 2 10 934 0.65 11 5818 4.31 213

Cu 15 Min 2 1 3 532 0.40 0 532 0.40 0
In 60 Max 12 4 14 61010 28.86 2636 313222 181.56 15347

21 wbop 98.33 Avg 6.7667 2.22 10.3833 9726.05 6.05 428.68 131222.66 79.05 5923.10
cresha Geom 5.8449 1.99 9.1998 2048.01 1.46 - 44260.26 28.25 -
Pr 15 Median 7 2 12 967 0.72 20 79058 47.09 3244

Cu 15 Min 2 1 3 650 0.45 0 650 0.46 0
In 60 Max 12 6 15 133780 83.22 5952 728131 395.59 35566

22 wbp 100.00 Avg 9.4167 1.72 11.0500 702.28 0.54 17.68 7144.43 4.31 344.42
cresha Geom 8.6743 1.52 10.1101 507.88 0.46 - 1835.01 1.42 -
Pr 15 Median 10 1 12 429 0.45 0 1748 1.26 68

Cu 15 Min 3 1 3 147 0.20 0 147 0.20 0
In 60 Max 14 4 15 6621 2.71 357 130281 74.46 5531

23 wbo 97.50 Avg 5.0750 1.93 7.3500 3812.88 1.86 110.40 37503.54 19.01 1734.59
cresha Geom 4.6410 1.71 6.9127 2188.36 1.11 - 10622.69 6.30 -
Pr 20 Median 5 2 8 1707 0.86 9 7412 4.77 198

Cu 10 Min 2 1 3 609 0.32 0 614 0.35 6
In 40 Max 8 4 10 41830 20.30 1829 538568 184.02 36566

24 wbop 70.00 Avg 5.1000 1.58 8.1000 32196.22 14.65 1491.97 120702.39 63.20 4928.00
cresha Geom 4.5807 1.40 7.7854 2360.09 1.18 - 28923.86 16.42 -
Pr 20 Median 6 1 9 1500 0.75 0 33405 19.57 760

Cu 10 Min 2 1 4 784 0.48 0 1145 0.74 19
In 40 Max 8 4 10 628704 292.82 29222 724484 420.03 33028

25 wbp 100.00 Avg 7.7429 1.26 8.7143 427.31 0.31 3.94 6470.49 3.42 290.49
Table 1: Summary (cont’d)

Constraint Modelling Challenge 2005

73

Best Optimal
K Set Opt Key LB NrS Sol Ass Time BT Ass Time BT

cresha Geom 7.4901 1.19 8.5549 0.00 0.27 - 0.00 0.49 -
Pr 20 Median 8 1 9 340 0.28 0 558 0.43 21

Cu 10 Min 4 1 5 0 0.02 0 0 0.02 0
In 70 Max 10 3 10 3822 1.82 103 372784 188.41 16960

26 wbo 65.56 Avg 8.9111 2.50 13.8111 27438.20 35.19 1018.08 95476.02 156.21 2898.73
cresha Geom 7.5116 2.21 12.2172 6307.57 9.78 - 44176.78 74.82 -
Pr 20 Median 9 2 16 3546 5.87 62 65923 112.42 1791

Cu 20 Min 2 1 3 935 1.51 0 986 1.73 4
In 90 Max 16 6 20 455615 491.18 20321 295537 480.40 10359

27 wbop 26.67 Avg 8.9667 2.29 15.3667 26961.39 42.86 899.46 132009.00 151.20 3731.50
cresha Geom 7.5419 1.92 13.7934 5029.20 8.10 - 51583.01 64.03 -
Pr 20 Median 9 2 18 2317 4.77 32 73488 86.99 1921

Cu 20 Min 2 1 3 1500 1.74 0 2944 3.56 21
In 90 Max 16 8 20 347266 461.07 9908 560353 591.79 15010

28 wbp 85.56 Avg 12.3000 1.97 15.4556 8961.77 8.61 316.50 46275.01 46.88 1701.68
cresha Geom 11.2104 1.73 14.1546 2607.38 3.00 - 12892.73 15.72 -
Pr 20 Median 13 2 18 1500 1.68 5 14151 17.58 453

Cu 20 Min 4 1 4 264 0.54 0 269 0.55 1
In 90 Max 19 5 20 103050 90.22 4659 538036 421.26 24508

29 wbo 47.50 Avg 4.9500 1.55 8.3750 21851.75 18.13 509.02 118364.84 112.54 3580.84
cresha Geom 4.5332 1.42 8.1421 7479.11 5.51 - 49665.19 55.46 -
Pr 30 Median 5 1 9 4900 3.50 0 32678 37.52 496

Cu 10 Min 2 1 5 2254 1.65 0 12190 13.83 138
In 40 Max 8 4 10 270313 281.90 5969 859851 554.87 35187

30 wbop 35.00 Avg 4.9500 1.38 8.7500 23221.67 24.69 667.50 46058.71 66.34 1149.50
cresha Geom 4.5429 1.28 8.6002 6204.28 5.59 - 21772.23 30.85 -
Pr 30 Median 5 1 9 4437 4.29 0 20610 28.26 244

Cu 10 Min 2 1 5 1607 1.72 0 5271 7.82 81
In 40 Max 8 3 10 320114 410.74 11346 334300 430.15 11710

31 wbp 100.00 Avg 8.2200 1.21 9.3100 2344.85 2.06 69.77 4950.81 5.15 197.65
cresha Geom 8.0651 1.15 9.2406 0.00 0.66 - 0.00 1.44 -
Pr 30 Median 9 1 10 650 0.65 0 1152 1.16 26

Cu 10 Min 4 1 6 0 0.04 0 0 0.04 0
In 100 Max 10 3 10 164794 135.56 6471 173891 146.47 6719

32 wbo 21.67 Avg 6.5667 1.87 11.7833 37849.58 39.61 598.22 177203.38 228.80 2909.15
cresha Geom 5.7231 1.67 11.2386 10358.27 9.36 - 110578.67 145.07 -
Pr 30 Median 7 2 13 6281 4.94 2 142211 184.55 2122

Cu 15 Min 2 1 4 3224 2.94 0 9500 11.34 158
In 60 Max 11 5 15 374739 403.44 6460 443254 526.85 7583

33 wbop 10.00 Avg 6.6000 1.40 12.8167 12780.73 12.32 239.20 184943.67 260.64 2937.17
cresha Geom 5.7376 1.28 12.4216 5859.46 5.21 - 153923.29 209.77 -
Pr 30 Median 7 1 14 4900 4.41 0 229296 259.25 3464

Cu 15 Min 2 1 6 2875 3.01 0 76419 86.36 1096
In 60 Max 12 4 15 240524 250.97 7120 373416 533.51 6141

34 wbp 81.67 Avg 10.5750 1.58 13.1250 9835.32 10.13 267.42 47043.44 53.21 1414.51
cresha Geom 10.1160 1.43 12.8301 3028.60 2.88 - 11943.57 13.76 -
Pr 30 Median 11 1 14 2552 2.18 0 10488 13.22 199

Cu 15 Min 4 1 7 387 0.77 0 463 0.92 0
In 120 Max 15 4 15 433111 472.16 15024 478405 552.62 16340

35 wbo 86.67 Avg 14.5667 3.02 20.9833 17578.88 22.45 928.18 102742.73 139.78 4688.42
cresha Geom 13.1834 2.78 19.7089 3699.86 5.91 - 50765.00 74.55 -
Pr 15 Median 15 3 23 2230 3.47 77 60638 83.89 2542

Cu 30 Min 5 1 7 650 1.40 0 3290 6.19 98
In 120 Max 25 6 29 236502 277.56 14682 421350 548.72 22956

36 wbop 23.33 Avg 13.5167 2.67 22.5333 40699.43 71.71 2082.72 136558.21 275.94 5676.07
cresha Geom 11.9061 2.32 21.1790 5566.81 16.99 - 93146.43 208.80 -
Pr 15 Median 15 2 25 4221 12.11 195 101430 275.82 4659

Cu 30 Min 4 1 8 650 1.42 0 9106 32.59 373
In 60 Max 23 6 30 395895 582.38 21580 390955 599.35 15182

37 wbp 91.67 Avg 17.6333 2.63 23.0000 30253.63 37.39 1332.52 103805.02 133.66 5003.25
cresha Geom 16.2903 2.33 21.7611 4148.78 6.59 - 44501.15 61.64 -
Pr 15 Median 18 3 26 2283 3.61 83 69103 95.81 2982

Table 1: Summary (cont’d)

Constraint Modelling Challenge 2005

74

Best Optimal
K Set Opt Key LB NrS Sol Ass Time BT Ass Time BT

Cu 30 Min 6 1 9 532 1.18 0 1900 3.09 82
In 60 Max 27 6 30 471584 591.02 16879 554472 568.48 39190

38 wbo 6.43 Avg 12.6500 2.23 23.6357 33127.47 58.95 631.96 29021.11 81.22 368.33
cresha Geom 10.2571 1.91 21.2772 12092.61 21.44 - 16607.19 43.11 -
Pr 30 Median 13 2 27 7651 12.85 22 13804 35.02 92

Cu 30 Min 2 1 3 4437 7.88 0 7571 15.68 11
In 140 Max 24 5 30 333331 587.51 16381 146344 408.97 2251

39 wbop 2.14 Avg 12.6571 1.65 25.4000 12522.08 30.68 164.41 65826.00 251.47 1044.33
cresha Geom 10.2150 1.45 24.0354 7621.25 18.60 - 63787.06 238.13 -
Pr 30 Median 13 1 29 4900 13.42 0 68981 296.76 1105

Cu 30 Min 2 1 3 4437 8.48 0 45132 146.01 625
In 140 Max 24 6 30 199529 434.47 5786 83365 311.64 1403

40 wbp 27.14 Avg 17.7857 1.80 25.1786 17071.12 38.98 294.91 62200.24 145.16 1093.74
cresha Geom 15.8865 1.54 23.2492 7114.11 16.75 - 25298.37 70.54 -
Pr 30 Median 19 1 29 4900 12.30 0 35496 100.70 627

Cu 30 Min 4 1 4 1295 4.81 0 1295 4.83 2
In 140 Max 28 7 30 295597 459.45 8148 322076 588.20 5967

41 shaw 92.00 Avg 9.4800 2.44 13.6800 32579.40 25.84 861.36 61404.17 48.46 2442.83
cresha Geom 9.4329 2.12 13.6598 3241.43 2.74 - 23347.72 20.15 -
Pr 20 Median 9 2 14 2149 1.75 14 20660 18.44 611

Cu 20 Min 8 1 12 1104 1.07 0 3255 2.63 43
In 25 Max 11 5 15 717909 570.25 19249 603810 453.77 29028

Table 1: Summary

Best Opt
Problem N M Den LB NrSol Sol Ass BT Time Ass BT Time
Miller.1 40 20 0.20 4 1 14 (13) 11400 0 11.98 662304 6935 600.14
GP50.1 50 50 0.81 45 1 45 13160 0 67.74 13160 0 67.77
GP50.2 50 50 0.63 40 1 40 19504 0 81.03 19504 0 81.07
GP50.3 50 50 0.65 40 2 40 25765 1 96.04 25765 1 96.07
GP50.4 50 50 0.54 30 1 30 9065 0 48.39 9065 0 48.43

GP100.1 100 100 0.86 95 1 95 171500 0 3291.27 171500 0 3291.38*
GP100.2 100 100 0.68 75 1 75 171500 0 3137.39 171500 0 3137.51*
GP100.3 100 100 0.67 75 2 75 182940 1 2892.09 182940 1 2892.22*
GP100.4 100 100 0.54 60 2 60 157157 1 2495.84 157157 1 2495.97*
NWRS.1 20 10 0.23 3 2 3 142 7 0.19 142 7 0.19
NWRS.2 20 10 0.27 4 2 4 391 5 0.33 391 5 0.33
NWRS.3 25 15 0.24 7 3 7 677 36 0.73 677 36 0.74
NWRS.4 25 15 0.27 7 2 7 848 9 0.82 848 9 0.82
NRWS.1 30 20 0.26 11 3 12 2139 6 2.57 2481 32 2.95
NRWS.2 30 20 0.27 11 3 12 3525 2 3.45 3810 22 3.86
NRWS.3 59+ 25 0.15 10 5 10 11202 369 26.50 11202 369 26.53
NRWS.4 59+ 25 0.18 12 5 16 27312 352 39.86 151272 2081 294.36

SP.1 25 25 0.10 8 3 9 1472 6 1.89 1553 11 2.04*
SP.2 50 50 0.07 9 1 22 15092 0 48.89 887511 4641 3600.39*
SP.3 75 75 0.06 9 1 46 (42) 64680 0 304.12 748912 2571 3600.58*
SP.4 100 100 0.05 13 5 67 437413 566 2658.04 506807 793 3601.20*

Table 2: Individual Results

Constraint Modelling Challenge 2005

75

B Models and Code Segments

min Limit s.t. (1)

P [1..n] :: 1..n (2)

S[1..m] :: 1..n (3)

E[1..m] :: 1..n (4)

U [1..n] :: 1..m (5)

Limit :: 1..m (6)

O[1..n, 1..m] :: 0..1 (7)

alldifferent(P) (8)

∀1≤j≤m : Sj = min{Pi|cij = 1} (9)

∀1≤j≤m : Ej = max{Pi|cij = 1} (10)

∀1≤i≤n∀1≤j≤m : (11)

Oij = (Sj ≤ i) ∧ (i ≤ Ej) (12)

∀1≤i≤n : Ui =
∑

1≤j≤m

Oij (13)

Limit = max
1≤i≤n

Ui (14)

Table 3: Basic Model

∀1≤j≤m ∀PP ⊆ {Pi|cij = 1} : (15)

Ej ≥ min(PP) + |PP | − 1 (16)

Sj ≤ max(PP) − |PP | + 1 (17)

Table 4: Redundant Constraint

P1 P2 P3 P4 P5

O1 1 0 1 0 0
O2 0 0 1 0 1
O3 0 0 1 0 1
O4 1 1 0 1 0
O5 0 1 0 1 0

Table 5: Example 1

P1 P2 P3 P4 P5

O1 1 1 0 1 0
O2 0 1 0 1 1
O3 0 0 1 1 0
O4 0 0 1 0 0
O5 0 0 1 0 0

Table 6: Example 2

min Limit s.t. (18)

P [1..n] :: 0.0..1000.0 (19)

S[1..m] :: 0.0..1000.0 (20)

E[1..m] :: 0.0..1000.0 (21)

U [1..n] :: 1..m (22)

Limit :: 1..m (23)

O[1..n, 1..m] :: 0..1 (24)

∀1≤j≤m : Sj = min{Pi|cij = 1} (25)

∀1≤j≤m : Ej = max{Pi|cij = 1} (26)

∀1≤i≤n∀1≤j≤m : (27)

Oij = (Sj ≤ Pi) ∧ (Pi ≤ Ej) (28)

cij = 1 ⇒ Oij = 1 (29)

∀1≤i≤n : Ui =
∑

1≤j≤m

Oij (30)

Limit = max
1≤i≤n

Ui (31)

Table 7: IC Model

labeling([]).
labeling([H|T]):-

select_var(X,[H|T],Rest,strategy),
choose_val(X),
labeling(Rest).

Table 8: Assignment Method

labeling(L):-
left_to_right(L,1).

left_to_right([],_).
left_to_right([H|T],N):-

delete(N,[H|T],Rest),
N1 is N+1,
left_to_right(Rest,N1).

Table 9: Left to Right Assignment

Constraint Modelling Challenge 2005

76

labeling([]).
labeling([P1]):-

P1 = 200.0.
labeling([P1,P2|Rest]):-

P1 = 200.0,
P2 = 800.0,
insert_lp([0.0,P1,P2,1000.0],Rest).

insert_lp(Current,[]).
insert_lp(Current,[H|T]):-

select_var(X,[H|T],Rest),
insert(Current,X,New),
insert_lp(New,Rest).

insert([A,B|R],X,[A,X,B|R]):-
X is (A+B)/2.

insert([A|R],X,[A|S]):-
insert(R,X,S).

Table 10: Insertion Routine

spread(E,Orders):-
(foreach(Ex,E),
foreach(Set,Orders) do

prep_set(Set,SetN,MinSet),
sort(0,=<,MinSet,MinSorted),
(foreach(V,MinSorted),
for(J,SetN,1,-1),
fromto(0,A,A1,BoundE) do
A1 is max(A,V+J-1)

),
Ex #>= BoundE

).

Table 11: Spread Redundant Constraint

cumul(Assign,S,E,Limit):-
store_obligatory_parts(S,E,Obl),
create_events(Obl,Events),
sort(time of event,=<,Events,Sorted),
build_profile(Sorted,Profile),
check_resource(Profile,MaxUse),
Limit #>= MaxUse,
find_unassigned_vars(Assign,Unass),
get_max(Limit,LimitMax),
(foreach(X,Unass),
param(Obl,Sorted,LimitMax) do

get_assign_domain(X,DomList),
(foreach(V,DomList),
param(X,Obl,Sorted,LimitMax) do

addit_events(X,V,Obl,NEvents),
append(NEvents,Sorted,NAll),
sort(t of event,=<,NAll,NSorted),
build_profile(NSorted,NProfile),
check_resource(NProfile,NUse),
(NUse =< LimitMax ->

true
;

remove_value(X,V)
)

)
).

Table 12: Combined Cumulative Constraint

Constraint Modelling Challenge 2005

77

Modelling Challenge - Open Stack Problem

Radoslaw Szymanek and Mark Hennessy
Cork Constraint Computation Centre

Cork, Ireland
{radsz}{m.hennessy}@4c.ucc.ie

Abstract

The Open Stack minimization problem exhibits
many features which lead to an interesting CP
model for study. In this short paper, we will de-
scribe the main ideas behind one possible modeling
approach. The experimental results show that our
approach can solve the Open Stack instances pro-
posed for this modeling challenge. It is also able to
produce proof of optimality within a given search
cut-off limit for a large number of instances.

1 Introduction
A manufacturer has a number of orders from a customer to
satisfy; Once a customer’s order is started (i.e. any product in
the order has been made) a stack is created for that customer.
When all products required by a customer have been made, its
stack is closed and the order is sent to the customer. Because
of limited space in the production area, the number of stacks
that are in use simultaneously (i.e. the number of customer
orders that are in simultaneous production), should be min-
imized. This problem and possible local search approaches
are presented in detail in [Fink and Voss, 1999].

Our model consists of five different viewpoints which are
connected using channeling constraints. The model also
contains implied constraints, symmetry breaking constraints,
dominance constraints and a specially designed global con-
straint. For the purposes of clarity the variables in this paper
are represented with a lower case letter and a single or dou-
ble index while entities such as customers and products are
represented with an upper case letter.

2 Example
We will use example depicted in Figure 1 to explain our
model. It consists of five products and four customers. The
order matrix oij specifies what products are ordered by which
customers. For example, product P2 is ordered by customer
C4 only. The current ordering of products makes the number
of required stacks equal to the number of customers. How-
ever, if P5 is swapped with P2 then it is possible to decrease
the number of required stacks by one, which is the optimal
number of stacks for this example.

P1 P2 P3 P4 P5 P1 P5 P3 P4 P2
C1 1 0 0 0 1 1 1 0 0 0
C2 1 0 1 1 0 ----\ 1 0 1 1 0
C3 0 0 1 1 0 ----/ 0 0 1 1 0
C4 0 1 0 1 1 0 1 0 1 1

Figure 1: An example and its optimal solution

3 Viewpoints and Variables
A graphical representation of all viewpoints is depicted in
Figure 2. The first basic viewpoint looks at the positions of
products. The problem is described by variables pi, which
represent the positions of products. Knowledge about posi-
tions of products is sufficient to determine the number of re-
quired stacks. For our example, there are five variables p1,
p2, p3, p4, and p5. Each pi variable has a domain consisting
of p values, where p is the number of products.

The second viewpoint looks at the problem from a cus-
tomer perspective, however it still uses pi variables. The stack
for Ci is opened at position si and is closed at position ei. In
addition, we can introduce variable di which represents the
difference between a closing position and an opening posi-
tion. Initially, the domains of all variables will have p values.

The third viewpoint considers the customer positions. Vari-
able ci defines the position at which Ci is serviced. In our
example, there are four variables c1, c2, c3, and c4. Each vari-
able will initially have a domain consisting of c values, where
c is the number of customers. The positions of products and
the number of required stacks can be decided, given the posi-
tions for all customers. However, in our approach we also use
the cp matrix from the next viewpoint to improve the bound
on the number of stacks required given a partial solution.

1st viewpoint

cp

pp

ci

d
e

s

i

i
i

i

p
i

i

2nd viewpoint

3rd viewpoint

4th viewpoint

5th viewpoint

Figure 2: Graphical representation of different viewpoints

Constraint Modelling Challenge 2005

78

C1 C2 C3 C4
C1 1 1 0..1 1
C2 1 1 1 1
C3 0..1 1 1 1
C4 1 1 1 1

Figure 3: Customer precedence matrix for the example

The fourth viewpoint decides the relative positions of cus-
tomer stacks. A boolean variable cpij from customer prece-
dence matrix specifies if stack for Ci is not closed before
stack for Cj is opened. In our example, the optimal solution
makes variable cp13 equal to zero since the stack for C1 is
closed before stack for C3 is open. If customers Ci and Cj

overlap then both cpij and cpji are equal one. Please note that
any customers that share products will overlap. The cp ma-
trix for our example is depicted in Figure 3. This viewpoint
works very well if there are many ones in the order matrix.

The fifth viewpoint looks at the relative positions of prod-
ucts. A boolean variable ppij from the product precedence
matrix specifies that Pi is positioned after Pj . In our exam-
ple, the left solution will assign value zero to pp25 since P2 is
not positioned after P5. On the other hand, the right solution
will assign value one to pp25 since P2 is positioned after P5.
Each ppii is equal to one.

4 Constraints
This section presents the constraints that are required to guar-
antee the correctness of solutions for different viewpoints.
It does not include implied constraints nor channeling con-
straints. The simplest viewpoint is the product position one.
It imposes an alldifferent constraint to make all product
positions unique.

The second viewpoint requires constraints to express rela-
tions between products of Ci and si, ei, and di. First, si is
equal to the minimal position of any product of Ci. Second,
ei is equal to the maximal position of any product of Ci. Fi-
nally, di is larger or equal to the number of products of Ci

minus one.
The customer position (3rd) viewpoint requires an

alldifferent constraint to enforce that each customer is po-
sitioned differently. This constraint will put any two cus-
tomers at different positions even if they have the same set
of products.

The fourth viewpoint takes into account the precedence
relations between customers. It requires constraints which
make sure that there is no pair of customers Ci and Cj such
that Ci is closed before Cj and vice verse. Given any pair of
variables cpij and cpji only one can be equal to zero.

The fifth viewpoint models problem in terms of product
precedence relations. The constraints imposed by this view-
point make sure that for every pair of products Pi and Pj

variables ppij and ppji are not equal. This prevents a situa-
tion when Pi is positioned after Pj and at the same time Pj is
positioned after Pi.

5 Implied Constraints
There are additional constraints which may improve propaga-
tion within different viewpoints. For example, it is possible

to add implied constraints on si and ei variables after analy-
sis of order matrix o. For any pair of customers Ci and Cj ,
which require the same set of products, we can impose im-
plied constraint which forces si to be equal to sj and ei be
equal to ej . If Ci and Cj differ in only one product then the
weaker implied constraint is imposed which enforces that si

is equal to sj or ei is equal to ej . On the other hand, if two
customers Ci and Cj do not share any products then si has to
be different from sj and ei has to be different from ej .

We also add implied constraints which are imposed over
the customer precedence variables. For any pair of customers
Ci and Cj which do not share any products, if there exists
a customer Cm which is in parallel to Cj and Ci is closed
before Cm then Cj can not be closed before Ci. It is also
possible to add different types of implied constraints for the
same viewpoint which check any triplet of customers Ci, Cj ,
and Cm. If cpij = 0 and cpjm = 0 then it implies that Ci

is closed before Cm, so cpim = 0. However, the number
of constraints of this type grows quickly with the increase
of customers, which often renders those constraints of little
value if any. In order to reduce the size of the model we do
not include these constraints in a model.

Since the second viewpoint extends the first viewpoint, the
following constraints should be rather called implied con-
straints than channeling constraints. If si is equal to sj then
any Pm which does not belong to both customers can not be
placed at position equal to si. Similar constraints can be im-
posed if we substitute s with e. However, we did not include
these implied constraints in our model since they increased
search time.

6 Channeling Constraints

The most important channeling constraints are the ones be-
tween the fourth and the fifth viewpoint. They are expressed
as reified constraints which take as input boolean variable
cpij and the disjunction of constraints of type ppmv = 1,
where Pm is any product of Ci and Pv is any product of Cj .
In other words, it means that Ci can not be closed before Cj

if there is at least one product of Ci which is positioned later
than any product of Cj . These channeling constraints make it
possible to reason about the precedence relationship between
products implied by the customer precedence relationship and
vice verse.

The channeling constraint between the first and the fifth
viewpoint are expressed using a sum constraint. Variable pi

is equal to the sum of variables in ith row of pp matrix. On
the other hand, the channeling constraints between the second
viewpoint and the fourth viewpoint are expressed as reified
constraints which take as arguments constraint sj ≤ ei and
boolean variable cpij .

There are also single direction channeling constraints
which are imposed to improve propagation between models
for different viewpoints. For example, cpij = 0 implies that
ci < cj . In addition, ci < cj implies that ei ≤ ej . On
the other hand, ei < ej implies that ci < cj . Since one
product can close more than one open stack, the channeling
constraints are expressed as implication constraints.

Constraint Modelling Challenge 2005

79

7 Dominance Constraints
There are number of possible dominance constraints which
are imposed. The dominance constraint prevents exploration
of the search space which contains a wasteful solution if there
is a guarantee that there is a better or equally good solution
in different part of the search space. We refer the reader to
[Prestwich and Beck, 2004] for more elaborate explanation of
dominance constraints. In the case of the Open Stack prob-
lem, if for some special conditions the existence of the solu-
tion with the larger size of open stacks indicates the existence
of the solution with a smaller number of open stacks then
we can immediately cut the search space which contains the
wasteful solution.

The first dominance rule imposes additional constraints on
product positions. If the set of customers of Pi is a proper
subset of the set of customers of Pj then Pi can always be
safely positioned before Pj . In this case, constraint ppij = 0
is imposed. In our example, P3 would have a smaller posi-
tion than P4. We have not included this dominance rule in
our model since we are not certain that it does not conflict
with other dominance rules. In addition, these constraints
prolonged search on instances we have tested.

The second dominance rule imposes additional constraints
on customer positions. If the set of products of Ci is a proper
subset of the set of products of Cj then Ci is positioned earlier
than Cj . It is expressed using constraints ci < cj . In our
example, this dominance rule will position C1 before C2.

The third dominance rule is based on the customer neigh-
borhood. The neighborhood of Ci is defined as the set of
customers for which a variable from the ith row of the cp ma-
trix equals one. That is, Ci has a neighbor Cm if cpim = 1.
If there is a pair of customers Ci and Cj such that for all
k, cpik ≤ cpjk and there is a Cm for which cpim < cpjm

then Ci is positioned earlier than Cj . In other words, Ci is
positioned before Cj if the neighborhood of Ci is a proper
subset of the neighborhood of Cj . For efficiency reasons, a
constraint to discover this dominance rule is imposed only for
pairs of Ci and Cj where there exists a Cm, such that cpim is
not fixed and cpjm = 1 before search.

8 Symmetry breaking
The products of the first customer can be ordered in any way.
They could be assigned based on lexicographical ordering of
the products. The symmetry breaking will choose one possi-
ble ordering and enforce it. However, this symmetry breaking
can sometimes conflict with a product dominance rule, which
is explained in section 10.

The first three dominance constraints are not imposed in
case when sets under consideration are the same. However, in
such case we could apply symmetry breaking and still impose
dominance like constraints but only for pairs when i < j
given Ci and Cj or Pi and Pj . In other words, dominance
constraints could be strengthen by removing requirement for
proper subset if i < j. Applying similar approach to the third
dominance rule is of little practical use since constraints to
detect and enforce this dominance rule are expensive in terms
of time and memory. We observed the increase of the search
time when we included symmetry breaking to strengthen the
third dominance rule.

9 Special global constraint
We implemented special global constraint to obtain better
lower-bound estimate given partial solution. It involves cp,
c and limit variable which denotes the maximal number of
open stacks. We do do not describe the consistency algorithm
in full detailed. Due to space limitation a non incremental
version of the algorithm was presented in Algorithm 1. This
algorithm presents reasoning for the minimal number of open
stacks based on cp and c matrix only.

Algorithmus 1 Consistency function for the proposed global
constraint

1: for i = 0 to c do
2: lastPosition[i] = 0; minNeighbors[i] = 0;
3: for j = 0 to c do
4: if cpji.min() = 0 then
5: lastPosition[i]++;
6: end if
7: if cpij .min() = 1 then
8: minNeighbors[i]++;
9: end if

10: end for
11: end for
12: {open[i] - boolean value, initially false since Ci’th cus-

tomer is not open}
13: for i = 0 to c do
14: {i - currently considered position}
15: for j = 0 to c do
16: if lastPosition[j] ≤ i then
17: open[j] = true; { Cj becomes open since already

its last possible position is analyzed}
18: end if
19: end for
20: lowerbound = - i + 1; {number of closed customers}
21: if only Cm can be placed at position i then
22: for j = 0 to c do
23: if cpmj.min() = 1 then
24: open[j] = true; {Cm opens Cj}
25: end if
26: end for
27: else
28: compute the minimal additional open customers

(minAdd) given possible customers at position i
29: lowerbound = lowerbound + minAdd;
30: end if
31: for j = 0 to c do
32: if open[j] = true then
33: lowerbound++;
34: end if
35: end for
36: if lowerbound < minNeighbors[i]-i then
37: lowerbound = minNeighbors[i] - i;
38: end if
39: use lowerbound to update number of open stacks
40: end for

The lines from 1 to 11 compute the last possible position
at which Ci can be opened and the minimal number of cus-
tomers open if Ci is open. Given Ci the number of zero’s

Constraint Modelling Challenge 2005

80

in the ith column of the cp matrix gives the latest possible
position at which Ci is opened. On the other hand, the num-
ber of ones in the ith row specifies the number of customers
which are (were) open if Ci is open. The main loop, which
starts at line 13, computes the lowerbound of required stacks
taking into account every position separately. The for loop in
lines 15 to 19 opens a customer if its last possible open po-
sition is equal to current position i. If it is known that Cm

takes position i then mth row of cp matrix is used to update
open array. If it is not known which customer takes position
i then all candidates are examined and the candidate which
will open the smallest number of customers is used to com-
pute the lowerbound. Line 20 initiates the lowerbound with
value i − 1 since this reflects the number of customers which
are already closed at position i. The lines 32 to 35 simply
count the number of previously or currently open customers
at position i. The lowerbound for number of openstacks can
prune the domain of openstack variable or detect inconsis-
tency when partial solution exceeds the number of allowed
open stacks.

10 Model discussion
The complexity of the model depends on the number of cus-
tomers and number of products. The number of variables
and constraints grow quadratically with the number of cus-
tomers and products. The model uses many different view-
points therefore channeling constraints are a significant part
of the model. The third and fourth viewpoint require c2 and
p2 variables respectively. However, those variables are re-
quired to reason directly about the precedence constraints oc-
curring in the partial solution. The model uses few global
constraints, like alldifferent and the special global constraint
which is presented in section 9. They help to improve the rea-
soning, especially in the case when proving the optimality of
the solution. The dominance rules can make some instances
easy to prove since they indicate the search space which can
be omitted. The model uses also some symmetry breaking to
complement the dominance rules.

While it is often beneficial to add dominance and symme-
try breaking constraints to a model, in the case of the open
stack problem there can be a conflict between product dom-
inance constraints and symmetry breaking for the products
of the first customer. Consider only products P3 and P4 and
only customers C3 and C4 from the example. The customer
dominance rule will enforce that c4 < c3. The product dom-
inance rule will enforce that p3 < p4. Finally, the symmetry
breaking for the products of the first customer enforce that
p4 = 1 since it is the product of C4, which is the first cus-
tomer. Clearly, we can not have all three techniques applied
at the same time. The decision which technique should be
discarded is instance dependent. In our case, due to time lim-
itations we decided to discard the symmetry breaking as it
applies only to products of the first customer which can po-
tentially have an impact.

11 Search
The search approach is based on standard variable and value
ordering heuristic. The variable ordering heuristic uses for-
ward min domain as the first criteria and forward degree as

the second criteria. The ties are resolved based on lexico-
graphical ordering. The search variables consists of variables
from cp matrix, p variables, s variables, and finally e vari-
ables in such order. In addition variables within cp matrix are
ordered. The rows of the cp matrix that contain more unfixed
variables are considered first. Please note that search does not
use c variables as the position of the customer is decided by
the cp matrix. Similarly, the pp matrix is not included since
p variables denote the product positions. The c and pp vari-
ables are only used to improve the reasoning and discover in-
consistent partial solutions faster. The value ordering chooses
always the minimal possible value within a variable domain.
This value ordering will first choose the value zero for any
precedence variable, which prefers the situation when a cus-
tomer is closed before another one is open. This often leads
to good quality first solution. In order to be certain that our
global constraint is complete, we run additional search with
all variables.

12 Experimental setup
We measure the search effort in time and number of back-
tracks. We use JaCoP solver [Kuchcinski, 2003], which we
augmented with additional global constraint. The experimen-
tal results are presented in the appendix using the suggested
data format.

13 Conclusions and Future Work
The presented model for the open stack problem uses many
modeling techniques. It models the problem using multiple
viewpoints, channeling constraints, dominance constraints,
implied constraints, symmetry breaking, and a specially de-
signed global constraint. Future work will evaluate the in-
fluence of the particular model components on search. For
example, the removal of the second viewpoint could reduce
search time on average. The choice between conflicting dom-
inance rules and symmetry breaking constraints can be done
on a instance basis. In addition, different search algorithms
based on instance characteristics could be proposed.

Acknowledgments
We would like to thank Nic Wilson for interesting discus-
sions.

References
[Fink and Voss, 1999] A. Fink and S. Voss. Applications

of modern heuristic search methods to pattern sequencing
problems. Computers and Operations Research, 26:17–
34, 1999.

[Kuchcinski, 2003] K. Kuchcinski. Constraints-driven
scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
8(3):355–383, July 2003.

[Prestwich and Beck, 2004] Steven Prestwich and J. Christo-
pher Beck. Exploiting dominance in three symmetric
problems. In Proc. 4th Int. Workshop on Symmetry & Con-
straint Satisfaction Problems, 2004.

Constraint Modelling Challenge 2005

81

File proven best time to best backtracks to best time to backtracks to
optimal value solution solution prove prove

Miller19 Yes 13 1.5 67 926 77154
GP1 Yes 45 2.88 149 3.64 185
GP2 Yes 40 3.58 81 5.62 170
GP3 Yes 40 72 1552 72 1552
GP4 Yes 30 677r 13055 683r 13066
GP5 Yes 95 27.5 325 28.7 338
GP6 Yes 75 71.4 311 71.4 325
GP7 Yes 75 57.52 437 57.52 437
GP8 No 86 343.65 177 - -

NWRS1 Yes 3 0.84 49 0.84 49
NWRS2 Yes 4 0.78 26 0.78 26
NWRS3 Yes 7 0.97 34 1.03 39
NWRS4 Yes 7 1.14 107 1.14 107
NWRS5 Yes 12 1.24 109 1.28 118
NWRS6 Yes 12 1.18 49 1.21 50
NWRS7 Yes 10 2.88 112 11.13 450
NWRS8 Yes 16 2.35 118 8.62 396

SP1 No 11 96.0 21577 - -
SP2 No 22 13.6 287 - -
SP3 No 51 67.5 317 - -
SP4 No 71 486.35 521 - -

Table 1: Times and number of backtracks to prove the optimal solution for each problem

In order to measure the time to find an optimal solution, the solver is given a lowerbound which corresponds to the optimal
solution. This allows the solver to start backtracking to the first search node immediately after finding the solution with optimal
value. In other words, we have a two-pass experimental setup. The first time we look for an optimal solution with proof of
optimality within a given limit of the search effort. The second time we use the cost of the optimal solution to set the lowerbound
and measure the time required to find an optimal solution. The values for last three columns of Table 2 are computed only for
instances which were proven optimal. We have set the cut-off limit to 100.000 backtracks. The runtimes specify the amount of
CPU seconds as given by a time command from Linux. Due to a tight submission deadline we were not able to obtain results
for files wbo 30 15, wbo 30 30, wbop 30 30, and wbp 30 30.

Constraint Modelling Challenge 2005

82

File % mean time (sec) # backtracks # backtracks
solved value to find optimal per instance

mean median max mean median max mean median max
problem 10 10.dat 100 8.031 0.65 0.61 4.13 17 15 179 48 16 3809
problem 10 20.dat 100 8.9218 0.70 0.68 1.61 29 26 92 36 26 645
problem 15 15.dat 100 12.869 1.75 0.70 64.84 49 23 7541 486 24 28299
problem 15 30.dat 100 14.018 0.98 0.82 13.23 44 39 180 79 39 3994
problem 20 10.dat 100 15.878 7.89 0.89 261.00 1751 34 57611 97 19 4276
problem 20 20.dat 98.2 17.173 11.31 0.87 441.00 34 29 92 2690 31 96152
problem 30 10.dat 93.6 23.995 87.43 1.59 1305.00 455 27 28419 8187 94 99703
problem 30 15.dat 83.6 26.05 34.89 1.03 831.00 133 27 4964 3933 28 95281
problem 30 30.dat 92.7 28.336 8.79 1.23 404.00 41 33 92 836 44 33673
problem 40 20.dat 80.9 36.573 34.37 1.42 766.00 73 35 2373 2487 36 56064
ShawInstances.txt 100 13.680 22.97 10.11 128.00 164 70 1292 5069 2235 29124

wbo 10 10 100 5.925 0.71 0.65 1.31 26 19 128 79 29 491
wbo 10 20 100 7.35 0.77 0.67 1.40 45 30 233 65 32 339
wbo 10 30 100 8.2 0.82 0.75 1.35 46 41 110 59 41 216
wbo 15 15 86.7 9.383 12.79 0.98 179.00 268 45 8491 5392 95 82468
wbo 15 30 85 11.583 2.47 0.87 26.11 160 41 5473 440 42 6815
wbo 20 10 97.1 12.900 21.93 3.51 260.00 232 31 6637 5283 822 59325
wbo 20 20 76.7 14.044 26.62 1.05 287.00 620 36 20857 5682 66 67837
wbo 30 10 79.0 20.050 143.39 18.92 923.00 526 61 11811 14462 2400 86156

wbop 10 10 100 6.75 0.65 0.6 1.26 17 14 38 51 14 490
wbop 10 20 100 8.075 0.75 0.65 1.64 33 26 77 56 27 457
wbop 10 30 100 8.55 0.81 0.74 1.15 49 40 135 54 40 154
wbop 15 15 98.3 10.367 6.03 0.85 48.80 1186 22 19942 2161 36 19942
wbop 15 30 86.7 12.183 8.40 0.8 371.00 145 41 4684 2037 42 98515
wbop 20 10 97.5 14.275 24.53 0.76 236 157 23 3532 6417 32 63041
wbop 20 20 78.9 15.378 12.76 0.89 216.00 164 28 5146 2240 31 41430
wbop 30 10 75.0 22.475 13.37 1.43 78.99 36 21 217 1219 53 7370
wbop 30 15 66.7 22.917 31.8 1.19 222.00 59 22 533 2888 48 21740
wbp 10 10 100 7.275 0.64 0.57 1.17 17 13 69 50 16 469
wbp 10 20 100 8.714 0.69 0.65 1.21 29 26 82 36 27 207
wbp 10 30 100 9.31 0.76 0.74 1.01 41 40 82 43 41 103
wbp 15 15 91.667 11.05 10.289 0.71 170 2912 21 49800 4392 25 77695
wbp 15 30 100 13.092 4.24 0.81 79.35 336 40 13866 936 40 22361
wbp 20 10 100 15.125 9.20 0.9 65.68 87 17 1087 2371 31 17278
wbp 20 20 80 15.6 10.49 0.87 228.00 200 28 6186 1972 28 47192
wbp 30 10 80 23.175 38.06 1.49 504 1251 26 25711 3902 47 55423
wbp 30 15 66.7 23.467 13.66 1.19 116.00 94 33 1302 1247 43 11011

Table 2: Times and number of backtracks to find the optimal solution for each data set

Constraint Modelling Challenge 2005

83

Tearing customers apart for solving PSP-SOS

Charlotte Truchet1, Jérémie Bourdon1, Philippe Codognet2
1 LINA, Université de Nantes

2 rue de la Houssinère, BP92208, 44322 Nantes Cedex 03, France
2 LIP6, Université de Paris 6,

8, rue du Capitaine Scott, 75015 Paris, France
Charlotte.Truchet.95@normalesup.org, jeremie.bourdon@lina.univ-nantes.fr

Abstract

This article is about modelling and solving issues
for a Pattern Sequencing Problem, proposed as the
First Constraint Modelling Challenge. PSP-SOS
is difficult in that relevant information is not self-
contained in the variables’ values. A first model,
still global but less global, so to say, is proposed. A
derived second model, more precisely dedicated to
local search methods, is then implemented with the
Adaptive Search meta-heuristic.

1 Introduction
This paper intends to describe an entry to the First Constraint
Modelling Challenge. The goal is to model and solve, with
constraint programming techniques, a particular Pattern Se-
quencing Problem. PSP consist in finding a permutation of
some production patterns, optimizing some objective func-
tions dealing with store-house’s size or handling costs. The
particular PSP of the challenge is known as the simultane-
ously open stack problem, or PSP-SOS, as stated in[Fink
and Voss, 1999]. An expression of PSPs as graph pathwidth
problems can be found in[Linhares and Yanasse, 2002].

Let us recall the problem briefly and introduce our nota-
tions, see also figure 1. A delivery service has to satisfy the
demands ofn customersc1...cn. Each of them has ordered a
particular subset of some productsp1...pm. We will write si

the order of customeri, si ⊂ {p1...pm}. The goal is to find
the order in which the products should be delivered.

Suppose that the products are ranked by a permutationσ: it
gives a schedule where productpσ(1) is the first one delivered,
and so on. Most of our notations will depend on the orderσ
so we will not write it. Letsti (respfti) be the starting time
(resp finishing) of customerci in the scheduleσ. The delivery
service uses a stack per customer: this stack is closed before
sti, open fromsti to fti, and closed again afterfti.

The goal is to minimize the maximum number of simulta-
neously opened stacks, in order to realize the schedule in the
smallest storehouse as possible. With our notations, this can
be written as:

minimizeσf(σ)

wheref(σ) = {max1≤j≤m ♯{i ≤ n, sti ≤ σ(j) ≤ fti}}

Products in order σ

Cu
sto

me
rs

line 4 = order of customer c4

2 4 5 4 2 number of open stacks at each time
max=5

st4=2 ft4=5

1 0 0 1 0
0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
0 0 1 0 1

Figure 1: An example of theProb matrix, with the stacks
shown in grey and the number of open stacks for every time
unit given at the bottom.

A convenient solution for representing the problem, cho-
sen by the Challenge organizers as their instances’ format,is
to use a matrix of sizen × m, where thei-th row, j-th col-
umn contains a1 if customerci has ordered productpj , and0
otherwise. In the following, we will write this matrixProb.
Line Probi represents the order of customerci.

2 Modelling the PSP-SOS as a Constraint
Satisfaction Problem

We will discuss in this section some of the issues when
modelling PSP-SOS. The goal is to find a model that can
be expressed in an existing Constraint Programming Lan-
guage, then solve it with a classical solver. Several lan-
guages and generic solvers exist nowadays, like the Prolog
family with for instance GNU-Prolog with constraints[Diaz
and Codognet, 2001], CHIP[Aggoun and Beldiceanu, 1991],
Localizer and Localizer++[Michel and Hentenryck, 2001],
just to name a few. Their pros and cons in terms of expressiv-
ity, efficiency or genericity could be discussed for hours.

Let us very briefly recall that a distinction is made between
the complete methods, able of giving a proof of optimality,
and the incomplete ones which have been proved very effi-
cient in practice, but are unable to prove optimality.

Whatever language and solver are chosen, PSP-SOS has
some features which make it challenging to program. Mainly,

Constraint Modelling Challenge 2005

84

it gives an objective function to minimize that is expressedas
a maximum on some of the problem’s data. Moreover, the
variables are either subsets of{p1...pm} or sequences of0
and1 in the matrix model, anyway the cost not only depend
on their values, but on their values within the configuration:
a 0 in a column can mean that the stack is closed, or open,
depending on the before and after values. So to say, the prob-
lem structure is such that the relevant information is not self-
contained.

This appears as a major issue for solving PSP-SOS. With
complete method, filtering techniques are very efficient when
applied locally. Here we have the analoguous of a global con-
straint and they are well known to be difficult to deal with.
With incomplete methods, it leads to other issues that will be
discussed below.

2.1 Intrinsic issues of the PSP-SOS
As a first point, an obvious remark is that PSP problems are a
matter of finding an order on the products. A model will any-
how have to include an alldifferent constraint on thepj . Thus
a reasonnable choice is to state the maximum open stacks
problem as a permutation problem on the productsp1...pm.
Then, a possibility would be to keep the model with a per-
mutation CSP on theProb matrix columns, andf as objec-
tive function. Anyway, it is worth focusing on the problem’s
structure to understand better how this objective functionbe-
haves on the search space.

The second point concerns the customers. Unlikely to
many optimization problems, the PSP-SOS objective func-
tion ranges over a very small domain of values. The only way
to decrease it, is to tear apart two customers in the schedule.
Intuitively, thinking about the stacks: the goal is to minimize
the number of stacks needed to satisfy the customers’ orders,
which does well mean that the delivery service wants to re-
use as many stacks as possible. The more stacks are re-used,
the more likely we are to have a schedule with a minimum
number of SOSs.

In the orderσ, we will write ci1 ≪ ci2 ↔ ∀α ∈ si1 , ∀β ∈
si2 , σ(α) < σ(β), that is, customerci1 has been fully served
before customerci2 begins to be served. In that case they can
share a stack and the objective function may decrease of1,
depending on whether those two customers where situated on
the columns realizing the maximum or not.

Intuitively, the range ofg may be greater than the range of
f but they behave in the same way. See example on figure 2.
Think of an elementary step fromσ to σ′, g(σ) > g(σ′) →
f(σ) ≤ f(σ′) if g decreases,f may increase or not depend-
ing on the position whereg decreases w.r.t. the maximum.
Conversely,f(σ) < f(σ′) → g(σ) > g(σ′), except in rare
cases. Now our goal will be to maximizeg.

As a third point, we observe that, whatever the schedule
σ, it is not possible to tear apart two customers who share at
least one product. Such two customers can obviously never
share a stack and from a resolution point of view, we had best
not wasting any search effort on this couple. So it shall be
usefull to include this knowledge on the problem’s structure
in the model.

For this we define the relationSep on the customers in or-
der to distinguish the customers’ couple for which we may be

Column realizing
the maximum

a
bc

Figure 2: On this example, only the open stacks in the current
schedule are represented. Pairs of stacks(a, b) and(c, b) do
count inf as they are separated by the column, or time, real-
izing the maximum off . Pair of stacks(a, c) do count ing
but not inf .

able to decrease the objective function (separable customers),
from the ones for which we will certainly not (unseparable
ones):

Sep(ci1 , ci2) ↔ ∀α ∈ si1 , ∀β ∈ si2 , α 6= β

With the matrix representation, one hasSep(ci1 , ci2) ↔
Probi1 �Probi2 = 0, that is, the scalar product of the two lines
is equal to zero. This can be pre-computed once and for all
and accessed in constant time, let us writeSep the resulting
n × n boolean matrix.

All those remarks lead to the following model: find a per-
mutationσ on the productsp1...pm, such that:

maximizeσ ♯{(i1, i2), Sep(i1, i2) → (ci1 ≪ ci2∨ci2 ≪ ci1})

Or, writing it without all our notations and without con-
straints instead of errors:

• Variables Productsp1...pm

• DomainsPermutations of thepis

• External data Orders of the customers, that is a set ofn
subsets of thepis,s1...sn

From which we compute theSep matrix: Sep(j1, j2) =
(sj1 ∩ sj2 = ∅)

• Constraints For all j1, j2 ≤ n, if Sep(j1, j2) then state

∃ǫ ∈ {<, >}, ∀α ∈ si1 , ∀β ∈ si1 , αǫβ

At that time, we havem variables, a domain of sizen!
(which is equivalent as before), and a number of constraints
depending on the customers’ orders, of ordern2, but less than
before. Each constraint is a disjunction of conjonctions ofin-
equalities (when explicitely written). At least, we have got rid
of the starting times and finishing times which where partly
responsible of the problem’s difficulty. Of course, it stillhas
global constraints, and has probably no solution in general,
but that will be handled by an incomplete method.

2.2 Issues of PSP-SOS w.r.t. an incomplete method
Incomplete methods have been introduced a few decades ago.
They aim at either solve a constraint satisfaction problem or
CSP (such as famous SAT[Selmanet al., 1992]), or find

Constraint Modelling Challenge 2005

85

good solutions to optimization problems. Among them, lo-
cal search techniques consists, roughly speaking, in choos-
ing randomly an assignment of domain’s values to the vari-
ables, explore a neighbourhood of this configuration, trying
to improve an error (penalty, cost) function, eventually per-
form a move and iterate. Meta-heuristics such as Tabu Search
[Glover and Laguna, 1997] are added to prevent being stuck
in local minima of the error function. This error function is
chosen so that it expresses in some way the proximity to a
solution, usually by taking the number of violated constraints
in the case of a CSP, or the function to optimize in an opti-
mization problem.

Using an local search method for the PSP-SOS problem
may seem both natural and quite challenging. It is natural
because local search methods usually deal easily with permu-
tation problems (or problems with an alldifferent constraint
on all them variables, and all the variables have the same
domain, of sizem). They start with a permutation on the
domain’s values, and move by swaping two values. This en-
sures that the alldifferent constraint is kept satisfied without
any effort during the search process. We have chosen to use
a local search method for both their well-known efficiency
on optimization problems, and this ability of dealing with the
permutations problems.

The challenging part comes from the error function to
define. Obviously, the real objective functionf , given as
the maximum of simultaneously open stacks, is not accurate
enough. It is worth detailing why: the current configurationis
very likely to be realized not only for one column, but several.
Then the only way of improving the objective function would
be to modify all these columns, except in very particular local
cases1.

Improvingf thus cannot be done in one move (swap of the
variables’ values), except if a move is defined as the swaps
of several variables but there are two reasons for not trying
this: firstly, the neighbourhood would be rather big w.r.t. the
search space size, probably resulting in bad performances.
Secondly, the goal of the challenge is not to design a dedi-
cated algorithm for solving the PSP-SOS but to use existing
constraint programming techniques to solve it, and perform-
ing such unusual moves would not play fair, in our opinion.
To simply check, we have tried such an objective function
with a local search method where a move consists in a swap,
and it cycled as expected.

So, one issue in defining the error function is to find a way
to express the value of the current configuration more accu-
rately than byf . From the above discussion, we will take the
g function, that is, the errors w.r.t. the above constraints.In-
deed,g has a range greater thanf , resulting in moves that do
not decrease the real cost of the current configuration. This
should not be a problem for a local search method: all the
contrary, the idea is to guide the search more precisely, al-
lowing moves staying on the same value forf , but intuitively
improving the chances to find a better configuration. We thus
will base our error function ong.

1when there is only one variable realizing the maximum. But this
will not happen twice in a row, or the problem is trivial

3 Solving PSP-SOS with adaptive search
Adaptive Search is a local search method introduced in
[Codognet, 2000]. Although being a mere local search
method, it includes ideas close to greedy algorithms in the
way it defines the neighbourhood exploration. The main idea
is to rely on a projection of the error function on the variables.
Within the current configuration, the values of the different
variables are probably not the same: some variables may be
close to satisfy the constraints, while other ones may be re-
sponsible for a big part of the whole error (think about the
queens which attacks the most of the other queens in then-
queens problem, for instance). The idea is to select one of
these bad variables for the next move. The configuration’s
neighbourhood is the domain of this particular variable. Itis
explored trying to minimize the error function (the main one,
because of course we do still want to improve this error on
not only the ones on the variables). It can happen that mov-
ing the selected variable does not enable to decrease the error
function. In order to avoid cycling, a tabu-like memory is
added to mark those variables for a certain number of itera-
tions. A Tabu solving method for PSPs is also given in[Fink
and Voss, 1999], but with a very different coding (as a graph
in instanciation).

The adaptive search method has been implemented for per-
mutation problems by D. Diaz and P. Codognet as an open-
source C library, available online2. Details can be found in
[Codognet and Diaz, 2001], which shows that the method is
very efficient on classical benchmarks. The library includes
all of the functions to solve a CSP by adaptive search, pro-
vided the user defines the error functions corresponding to
his problem, both for the whole configuration and for the vari-
ables. Actually, the first one can be deduced from the second
one in a way we describe below.

3.1 Writing the model in adaptive search
Now the question is to compute the error at the variable level,
corresponding to the model described above where we have
discarded the inseparables couples of customers. Counting
the error corresponding to a customer is straightforward: just
take the number of other customers, separable with him, and
not separated. Question is, how to project this on a productj0
? In particular, should we count all the open stacks at instant
j0 ? For the rows having a1, obviously yes: swaping the
column may improve the cost. For the other ones, the rows
being open at instantj0 but not effective, it would introduce a
bias in the model, because swaping the column cannot result
in an improvement ofg, at least on this row (maybe in the
whole configuration, but this is not the point). So we take the
following error for columnj0:

e(j0) =
∑

1≤i≤n

[Probi,j0 = 1] ♯{1 ≤ i ≤ n, Sep(i, i′)}

with [P] = 1 if predicateP is true,0 otherwise.
Concerning the error function for the whole configuration,

the adaptive search method suggests to aggregate the vari-
ables’ error with an appropriate operator, coherent with the

2at http://pauillac.inria.fr/˜diaz/adaptive/

Constraint Modelling Challenge 2005

86

problem, such as addition or maximum. As we have made
enough efforts to get rid of the poor information given by the
maximum, this one is rejected. Although it would not give
back thef function, a risk still arises that a single swap may
not improve the global error function. The addition is thus a
better choice, keeping the accuracy of the model. The error
function is:

∑
1≤j≤m e(j). It is easily checked that this er-

ror function corresponds to the model described above with a
min-conflict way of counting.

At that point the reader may have the impression that we
simply have replaced the maximum by the addition in the ob-
jective functionf , which is not such a big deal. This belonged
to the possilibities that we initially studied in order to have a
more accurate objective function: counting the bad zeros in
the matrix (those within an open stack), couting the whole
number of open stacks, etc. None of them has been kept,
because the crucial property for the model to have the same
optima asf would not have been satisfied. Counter examples
are easily found.

3.2 Experiments and results

We have implemented the model and error functions de-
scribed above in the adaptive search library. A major draw-
back of this implementation is the fact that the errors are not
computed incrementally, although the library leaves the pos-
sibility to do it. It would probably improve the calculation
time. But it does not affect the number of iterations which is
maybe a more neutral measure of the implementation’s effi-
ciency.

Experiments have been conducted on the set of instances
proposed by the Challenge organization and the table of re-
sults is given in appendix A. A classical issue with the local
search methods is the parameter tuning. We have chosen a
maximal tabu tenure to try and force good minimas, and a
maximal percentage of resets variables to ensure diversifica-
tion. The maximum number of iterations has been chosen big
(as an order of hunders×m), which leads to a calculation
time of a few minutes per instance. More details on technical
issues is to be found in appendix A and code in appendix B.

Let us precise the complexity of the computation of the
different functions. We count the number of arrays’ accesses,
the number of operations being of the same order. For each
iteration, are computed:

• Error on them variables:m for the computation of the
sti andfti, m × n2 for the errors. That is,O(m × n2)

• Error on the solution: same

• Computation of the effective error (w.r.t.f): O(n × m)

• Updates after a swap:O(n × m) for storing the best
solution found so far (computation of its effective error).

In the end, the complexity of an iteration is inO(m × n2),
which is reasonnable.

Finally, the comparison with other solving methods can
hardly be made in this paper, as there is by now few litter-
ature on the PSP-SOS and will probably be far more after the
Challenge.

4 Conclusion
The maximum open stack definitely appears to be a challeng-
ing problem for the constraint community, as a model shall
present some features known to be difficult for constraint pro-
gramming, close the global constraint problems.

We have given a model for representing the maximum open
stack problem, and solved it with a local search method. The
strength of the model relies on two properties: firstly, it takes
into account the inner structure of the problem by focusing
on relevant information. Secondly, it modifies the objective
function in order to measure more accurately the value of a
configuration.

Acknowledgment
Thank you to Marc Christie, LINA, for his help.

References
[Aggoun and Beldiceanu, 1991] Abderrahmane Aggoun and

Nicolas Beldiceanu. Overview of the chip compiler sys-
tem. Proceedings of ICLP91, pages 775–789, 1991.

[Codognet and Diaz, 2001] Philippe Codognet and Daniel
Diaz. Yet another local search method for constraint solv-
ing. LNCS 2246, SAGA 2001, first Symposium on Stochas-
tic Algorithms : Foundations and Applications, 2001.

[Codognet, 2000] Philippe Codognet. Adaptive search, pre-
liminary results.BOOK of the 4th ERCIM/CompulogNet
Workshop, 2000.

[Diaz and Codognet, 2001] Daniel Diaz and Philippe
Codognet. Design and implementation of the gnu prolog
system. Journal of Functional and Logic Programming,
6, 2001.

[Fink and Voss, 1999] Andreas Fink and Stefan Voss. Appli-
cations of modern heuristic search methods to pattern se-
quencing problems.Computers and Operations Research,
26:17–34, 1999.

[Glover and Laguna, 1997] F. Glover and M. Laguna.Tabu
Search. Kluwer Academic Publishers, 1997.

[Linhares and Yanasse, 2002] Alexandre Linhares and Hara-
cio Hideki Yanasse. Connections between cutting-pattern
sequencing, vlsi design and flexible machines.Computers
and Operations Research, 29:1759–1772, 2002.

[Michel and Hentenryck, 2001] L. Michel and P. Van Hen-
tenryck. Localizer++: An open library for local search.
Technical Report, CS-01-03, Brown University, 2001.

[Selmanet al., 1992] Bart Selman, Hector Levesque, and
David Mitchell. A new method for solving hard satisfi-
ability problems.AAAI’92, pages 440–446, 1992.

Constraint Modelling Challenge 2005

87

A Results

A.1 Aggregate results (Truchet, Bourdon, Codognet)

We use the adaptive search C library proposed by Diaz and Codognet under public licence, available online at
http://pauillac.inria.fr/˜diaz/adaptive/ . The detailed code of our implementation is given in the next
appendix B. We do not have modified the solver, except for a minor part to add some time measurements for the benches.
The total code (our implementation plus this slightly modified adaptive search library) is sent to the Challenge Organization
separately. Experiments have been conducted on an Intel Pentium 4 at 2,66 GHz with 512 Mb RAM. The compiler is gcc
version 3.3.4.

The percentage of proved optimality is zero for all instances, due to the incomplete method we use. We thus leave the column
blank.

As we use a local search method, we define the search effort as the number of iterations. We recall from the paper that the
complexity order for one iteration isO(m × n2), wherem is the number of products andn the number of customers. The
cutoff limit we chose is defined as a maximal number of iterations depending onm, which explains why the next to last column
is quasi-constant for instances of same size.

The solver has been used with the following parameters. We only detail the most important ones, please refer to the code
and the adaptive search documentation for more details. We did not spend too much time in parameter tuning, in particulardid
not try and benefit from the plateau’s heuristic from adaptive search. It is possible that the results could be improved interms
of calculation time, by incrementally computing the costs,and in terms of search effort, by a finer parameter tuning.

• Number of iterations before a restart is triggered:100 × m. This choice is somehow arbitrary. Our first experiments
showed that the best solution had been found far before this limit for the small or easy instances, for example on the first
Harvey instances, after a few hundreds of iterations for problem of size10 and20. One could argue that it would have
been sufficient to fix this parameter to far less than100×m, say around20× m, to improve our results for the challenge.
Now our strategy has been to give the solver a reasonnable chance of finding good solutions. Anyway a run for a typical
30 instance lasts around a few minutes, which is reasonnable.

• Number of restarts:10, and only the best solution among the10 runs is kept

• Number of variables reset at a restart:100 %

• Number of runs:1. It would have been equivalent to perform10 runs fixing the number of restarts to0, but less convenient.

• Number of iterations a variables is frozen when it does not allow to improve the error:m the number of variables. We
have chosen to fix it to the maximum, in order to insist on promising neighbourhoods and get the best possible optima,
although it might slow the search (see adaptive search documentation and articles for explanations on the parameter)

Since the first parameter (search effort for one restart) hasvoluntarily been fixed to a high value, we add another column in
the table of results to give the computation time for finding the best solution.

Constraint Modelling Challenge 2005

88

Constraint Modelling Challenge 2005

89

A.2 Individual results (Truchet, Bourdon, Codognet)
We have chosen to run the program only once with some restartsfrom 2 to 10, and a number of iterations before restart from
10×m to 100×m, depending on the instances’ sizes and difficulty. Thus the best and worst objective values found are equal.

Total runtime Total search effort Runtime to find Search effort to find
File Number Objective value over all runs over all runs best solution best solution

of runs Best Worst (seconds) (number of iterations) (seconds) (number of iterations)
Miller19 1 20 20 39, 33 20 000 0, 09 50
GP1 1 45 45 387 13 470 387 13 470
GP2 1 40 40 1408 55 000 1, 14 44
GP3 1 40 40 304 11 903 304 11 903
GP4 1 30 30 1568 55 000 1, 54 53
GP5 1 98 98 888 2 000 12, 54 28
GP6 1 75 75 840 2 000 46, 62 111
GP7 1 75 75 6 176 15 000 4 320 10 491
GP8 1 60 60 830 2 000 50, 63 122
NWRS1 1 8 8 1, 87 10 000 0, 02 133
NWRS2 1 9 9 1, 9 10 000 0, 03 177
NWRS3 1 16 16 9, 27 15 000 0, 18 327
NWRS4 1 18 18 9, 29 15 000 0, 04 68
NWRS5 1 23 23 26, 93 20 000 0, 20 164
NWRS6 1 24 24 27, 96 20 000 7, 95 6 267
NWRS7 1 37 37 180 27 500 176 26 690
NWRS8 1 42 42 204 27 500 102 14 962
SP1 1 9 9 0, 42 500 0, 24 283
SP2 1 19 19 9, 24 1 000 0, 61 66
SP3 1 37 37 273 7 500 160 4 391
SP4 1 55 55 2 020 20 000 453 4487

B Code
Important remark: we have made the initial mistake to exchange the columns and rows of theProb matrix from the Challenge’s
definition. When we realized it, it was too late to correct it.Thus in our implementation the customers are on the columns,
and the products on the rows. Although it has no consequence on the resolution nor on the permutation finally provided by the
solver, it may affect the lisibility of the displayed matrixes for somebody who would run the code with displays. Anyway,it
does not affect the results as we have translated all the input matrixes. We apologize to the Challenge’s Organizers.

It is important to remark that we have not fully used the possibilities of the library, which can be seen in the Costif Swap
and ExecutedSwap functions. Defining these two functions better would allow to incrementally compute the errors.

Constraint Modelling Challenge 2005

90

Constraint Modelling Challenge 2005

91

Constraint Modelling Challenge 2005

92

Constraint Modelling Challenge 2005

93

Constraint Modelling Challenge 2005

94

Using Customer Elimination Orderings to Minimise the Maximum Number of
Open Stacks

A Submission for the First Constraint Modelling Challenge

Nic Wilson and Karen Petrie
Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
{n.wilson,k.petrie}@4c.ucc.ie

1 Introduction
The minimisation of the maximum number of open stacks
problem involves a set of customers, each which requires a
particular subset of a set of products. A solution is a total
ordering of the products; the aim is to find a solution which
minimises a particular cost function, the maximum number
of open stacks (see below). Equivalent problems, such as
minimisingpathwidth, have been studied in the literature (see
http://www.dcs.st-and.ac.uk/ ipg/challenge/).

The approach we describe in this paper is using a branch-
and-bound algorithm based on a remodelling of the prob-
lem. Instead of searching for orderings of products, we search
for orderings of customers, specifically, when they are elimi-
nated from the problem. Perhaps not surprisingly, this simple
idea has been suggested before for this problem, in: H. H.
Yanasse, On a pattern sequencing problem to minimize the
maximum number of open stacks,European Journal of Op-
erational Research, Vol. 100, 454–463, 1997. In this paper
we analyse this approach in some depth, and describe our im-
plementation using constraint programming. We also discuss
how the approach might be extended.

2 Problem and Notation
We first describe the problem with our notation. We have
a setC of n customers and a setP of m products, both of
which we totally order in some arbitrary way. Each customer
x requires a setprodx of products.

In the table below we consider an instance with customers
{a, b, c, d, e, f} and products{A,B,C, D, E, F}. The ele-
ments ‘1’ within the above table indicate which customer re-
quires which product. For example, the setprodc of prod-
ucts required by customer c is equal to{A,C}. There are
also m timepoints, {1, . . . ,m}. A solution states which
product is produced at which timepoint. Formally, a solu-
tion π is a function from the set of timepoints to the set
of products. Productπ(1) is made first, followed byπ(2),
and thenπ(3), . . . , π(m). Hence a solution can be consid-
ered as a sequence ofm products. ProductX is made at
timepoint π−1(X). The table illustrates the solutionπ =
(A,B, C, D, E, F), i.e.,π(1) = A, π(2) = B etc.

For customerx, let startπx be the timepoint in the solu-
tion π when the stack forx begins, i.e., when the first prod-
uct thatx requires is made. Similarly letendπx be the point

when the stack forx ends, when the last product thatx re-
quires is made. We will often abbreviatestartπx andendπx to
startx and endx, respectively. In the example,startc = 1
andendc = 3 since the first product in the solution sequence
required by customer c is placed at the first time point, and
the last product required by c is placed at the third time-
point. Formally,startπx = min {π−1(Y) : Y ∈ prodx} and
endπx = max {π−1(Y) : Y ∈ prodx}.

Given a solutionπ, for timepoint j ∈ {1, . . . ,m},
the set open(j) of open stacks atj is defined to be
the set of customers whose stack is open atj, i.e.,
{x : startx ≤ j ≤ endx}. The cost of solutionπ is de-
fined to be the size of the largest setopen(j), i.e.,
maxj∈{1,...m} |open(j)|. The aim is to find a solution with
minimal cost.

The entries∗ in the table indicate that a customer has
an open stack at a particular timepoint. For example, there
is an open stack for customerc at timepoint 2; this is be-
cause timepoint 2 is in the interval[startc, endc] = [1, 3].
There are five open stacks at timepoint 3, when product C is
made. The cost of this solution, i.e., of the product ordering
(A,B, C, D, E, F) is equal to 5, since the maximum number
of open stacks at any timepoint is 5.

Timepointsj: 1 2 3 4 5 6
A B C D E F

a 1 ∗ 1 ∗ 1
b 1 1 ∗ ∗ ∗ 1
c 1 ∗ 1
d 1 ∗ 1
e 1 1 1
f 1 1

|open(j)| 3 4 5 4 4 2
Eliminated c d a, e b, f

3 Customer Elimination
In this section we show how that it is sufficient to focus on a
special type of solution, based on an ordering of customers.

Generating a Customer Ordering from a Solution
We can generate a permutation of the customers from a solu-
tion, by considering the order in which customers are elimi-
nated, i.e., the ordering of the values ofendx over customers
x. This is not usually unique, but we can break ties using

Constraint Modelling Challenge 2005

95

the initial ordering of customers. In the example, customer c
is eliminated first, at timepoint 3, sinceendc = 3, thend at
timepoint 4, followed bya ande at timepoint 5, andb andf at
timepoint 6, sinceendb = endf = 6. We use the alphabetical
ordering to break ties giving a customer elimination ordering
(c, d, a, e, b, f).

This defines a functionf from solutions to customer or-
derings. (Formally, a customer ordering is defined to be a
function from{1, . . . , n} to C.) We write the effect off on
solutionπ asf(π). For customersx andy, customerx is or-
dered beforey by f(π) if and only if either (i)x is eliminated
beforey by π (i.e., endπx < endπy), or (ii) x is eliminated si-
multaneously withy by π (i.e., endπx = endπy), andx < y
(according to the input total order on customers).

Generating a Solution from an Ordering of Customers
We will generate a functiong that maps a customer orderingρ
to a solutiongρ. The idea is that the products required by the
first customer (according toρ) are introduced first, and then
additional products required by the second customer etc. Ties
are broken by the input ordering on products. In the exam-
ple, the customer orderingc, d, a, e, b, f generates a product
orderingA,C,B, D, E, F .

Let G(X) be the earliest position in the customer or-
dering ρ that requires productX, so that G(X) =
min {ρ−1(x) : prodx 3 X}. Thengρ is defined as follows:
X is ordered beforeY by gρ if and only if either (i)G(X) <
G(Y) or (ii) G(X) = G(Y) andX < Y ; that is, eitherX is
first required by an earlier customer (in orderingρ) thanY , or
they are both first required by the same customer, andX < Y
in the input product ordering.

The example illustrates that applyingf then g does
not necessarily give the same solution as we started with:
A,B,C, D, E, F is changed toA,C,B, D, E, F . In fact the
cost is even changed: the cost of the second solution is just 4,
as opposed to 5 for the first solution. The following proposi-
tion states that applyingf and theng can never increase the
cost of a solution.
Proposition 1 If we start with a solutionπ and generate the
associated customer elimination sequencef(π), and gener-
ate from that its associated solutiong(f(π)), then the cost of
this new solution is no worse than that of the original solu-
tion: cost(g(f(π)) ≤ cost(π).

Sketch of proof: Consider any solutionπ. Write the asso-
ciated customer elimination orderingf(π) asx1, x2, . . . , xn.
For i = 1, . . . , n, let ji = endxi be the position at which
customerxi is eliminated.

Let Prod1 be the sequence of products appearing in posi-
tions1, . . . , j1 in the solutionπ, i.e.,{π(1), . . . , π(j1)}. The
open stacks setsopen(j) occurring at positionsj correspond-
ing to elements ofProd1 are increasing in size (since no cus-
tomer is eliminated in this interval), so with the largest occur-
ring atj1, as customerx1 is eliminated. Permuting the prod-
ucts inProd1 cannot make the last such set any larger, and so
cannot increase the cost of the solution. We permuteProd1 to
put products required by customerx1 first, and putting those
products in input products order. Hence these products are in
the order dictated byg(f(π)).

Let Prod2 be the (possibly empty) set of products appear-
ing in positionsj1 + 1, . . . , j2 in the solutionπ. We per-
mute Prod2 to put products required by customerx2 first,
and putting those products in input products order. Again,
no customer is eliminated in this interval, so this cannot in-
crease the cost of the solution. We continue this process with
Prod3, . . . , Prodn.

Applying this sequence of operations generates solution
g(f(π)). None of the operations increases the cost of the
solution, socost(g(f(π)) ≤ cost(π), as required. 2

This result leads to the following result, which means that
we can search for customer elimination orderings, without
losing completeness. The costcost(ρ) of a customer elimi-
nation orderingρ is defined to becost(g(ρ)), the cost of the
associated product ordering.

Proposition 2 Suppose elimination orderingρ has minimal
cost, i.e., for all elimination orderingsρ′, cost(ρ′) ≥ cost(ρ).
Theng(ρ) is an optimal solution, i.e., for all solutionsπ,
cost(π) ≥ cost(g(ρ)) = cost(ρ).

Proof: Let π be any solution. By the previous proposition,
cost(π) ≥ cost(g(f(π)), which by definition is equal to
cost(f(π)), the cost of the elimination orderingf(π). By the
hypothesis,cost(f(π)) ≥ cost(ρ) = cost(g(ρ)), proving that
cost(π) ≥ cost(g(ρ)), Sinceπ was an arbitrary solution, this
proves the optimality of solutiong(ρ). 2

Cost in terms of neighbourhoods
TheneighbourhoodNbd(x) of a customerx is defined to be
the set of customers that share a common product with cus-
tomerx, i.e.,{y ∈ C : prodx ∩ prody 6= ∅}. In the example,
Nbd(c) = {a, b, c, e}; this is becausec requires productsA
andC, anda andb also requireA, and customersa ande also
require productC.

We say that a customer elimination orderingρ is feasi-
ble if there is some solution which hasρ as its associated
customer elimination ordering, i.e., if there exists solution
π with ρ = f(π). It can be checked that if we generate
an elimination orderingρ = f(π) from a solutionπ, then
generate a solutiong(ρ) from that, and an elimination order-
ing f(g(ρ)) from that, we get the same elimination ordering:
ρ = f(g(ρ)). This implies that a customer elimination order-
ing is feasible if and only ifρ = f(g(ρ)).

Consider a feasible customer elimination orderingρ =
(x1, x2, x3, . . .), and its associated solutiong(ρ). Whenx1

is eliminated, i.e., at timepointendx1 , the products required
by x1 have been made, which means that there is an open
stack for every neighbour ofx1. We write Stacks(x1) =
Nbd(x1) = Nbd(ρ(1)). Similarly, whenx2 is eliminated,
at timepointendx2 , (unlessendx2 = endx1) there is an open
stack for every neighbour ofx1 or of x2, except for customer
x1, which has been eliminated. We writeStacks((x1, x2)) =
Nbd(x1) ∪Nbd(x2)− {x1}.

More generally for a sequence of customers
seq = (x1, . . . , xi) we write Stacks(seq) =
(Nbd(x1) ∪ · · · ∪ Nbd(xi)) − {x1, . . . , xi−1}. We

Constraint Modelling Challenge 2005

96

can compute this iteratively using the equation
Stacks((x1, . . . , xi)) = (Stacks((x1, . . . , xi−1))−{xi−1})∪
(Nbd(xi)− {x1, . . . , xi−1}).

For elimination ordering ρ, let ncost(ρ) =
maxi=1,...,n |Stacks((x1, . . . , xi))|. It is only at time-
points in {endxi

: i = 1, . . . , n} that the number of open
stacks could decrease. Ifρ is feasible then customers get
eliminated fromg(ρ) in the orderρ (sinceρ = f(g(ρ))),
so the largest set of open stacks for solutiong(ρ) is equal
to Stacks((x1, . . . , xi)) for somei = 1, . . . , n. Hence, for
feasibleρ, cost(ρ) = ncost(ρ).

For any customer elimination orderingρ we have:
ncost(ρ) ≥ cost(ρ). Let ρ′ = f(g(ρ)), which is a feasible
customer elimination ordering. Then, using Proposition 1,
ncost(ρ′) = cost(ρ′) ≤ cost(ρ) ≤ ncost(ρ). So the minimum
of ncost(ρ) over all customer elimination orderingsρ is equal
to the minimum ofcost(ρ) over all customer elimination or-
derings, which, by Proposition 2, is equal to the minimum
of cost(π) over all solutionsπ, i.e., the cost of the optimal
solutions. This shows that allowing infeasible customer elim-
ination orderings in our search algorithms does not affect the
result. The basic algorithm below performs a search over cus-
tomer elimination orderings.

4 Basic Customer Elimination Algorithm
The algorithm is based on chronological backtracking search.
The valuemaxStacksis the maximum number of open stacks
allowed. For example, if we have already found a solution
with costR then we could setmaxStacks= R − 1 to see if it
is possible to improve on this solution.

Alternatively, we could run the algorithm repeatedly, incre-
mentingmaxStackseach time, starting withmaxStacks= 1
(or maxStacksequalling the size of the smallest neighbour-
hood). The optimal cost will be the value ofmaxStacksin the
first run that succeeds.

A sequence of customersseqis built up incrementally.seq
is initialised as the empty sequence.

While seqdoesn’t contain all customers, do (a) and (b):
(a) Choose customerx not in seq, and addx to the end of

sequenceseq;

(b) If |Stacks(seq)| > maxStacksthen backtrack to the last
reassignable choice (i.e., the last choice such that there
exists an alternative not yet tried). If no such choice ex-
ists, return ‘fail’ and stop.

If the algorithm doesn’t return ‘fail’, then (the final)seq
is a customer elimination sequence with cost no more than
maxStacks, which can be converted to a solutiong(seq) with
cost no more thanmaxStacks. If the algorithm returns ‘fail’,
then every customer elimination sequence has cost greater
thanmaxStacks; in which case there is no solution with cost
less thanmaxStacks. (These properties follow from the re-
sults and the discussion above.)

Complexity for problems with high optimum cost
It can be seen that this algorithm will find the optimal cost
quickly (and prove optimality) for problems with high path-
width, i.e., where the optimal cost is close to the number of
customers.

A lower bound for the optimal cost is the size of the small-
est neighbourhood. This is because the set of open stacks
when the first customer is eliminated is that customer’s neigh-
bourhood. If for some customerx, Nbd(x) 6= C then elimi-
natingx first leads to an elimination sequence with cost less
thann. This implies that the optimal cost is equal ton if and
only if every customer is a neighbour of every other customer,
i.e., for allx ∈ C, Nbd(x) = C.

Let w be the cost of the optimal solution. Suppose, dur-
ing the algorithm, an initial sequenceseq of length (n −
maxStacks) has been chosen, so that(n − maxStacks) cus-
tomers have been eliminated, and there aremaxStackscus-
tomers remaining to be eliminated. If|Stacks(seq)| ≤
maxStacksthen any choices for the remainder of the sequence
will succeed, since there are onlymaxStackscustomers re-
maining in the problem. This implies that ifmaxStacks≥ w
then success or failure will be determined by choosing a se-
quence of at mostn − maxStackscustomers, and hence at
mostn− w customers.

If maxStacks< w then the algorithm will return ‘fail’,
since there is no solution with cost at mostmaxStacks. More-
over, no sequence longer thann − w + 1 will be generated.
This is because if a sequence of lengthn − w + 1 were to
succeed with the test in (b) then the largest number of stacks
generated so far would be not more thanmaxStacksand so
at mostw − 1; but then any extension of this sequence will
have cost at mostw−1 (since onlyw−1 customers remain),
which contradictsw being the cost of the optimal solution.
Therefore we have:

Finding an optimal solution (and proving optimality) for fam-
ilies of instances withn − w bounded by a constant is poly-
nomial in the number of customers and products

5 Implementation with CP
The CP-based implementation of the customer elimination
algorithm hasn search variablesx1, . . . , xn all of domain
{1, . . . , n} representing the ordering in which then cus-
tomers are eliminated. The only constraint on these search
variables is a global ‘alldifferent’ which forces the ordering
to form a permutation.

The method commences by a preprocessing step which
aims to calculate a lower bound for the optimal value. This
is done by calculating the neighbourhood setNbd(x), for
each customerx. This is done in a similar manner to that
described in Section 3. The lower-bound (lwb) for the opti-
mal value is then calculated, which corresponds to the car-
dinality of the smallest neighbourhood set. At this stage
another set of variablesy1, . . . , yn is created with domain
{lwb, . . . , n}. Intuitively these variables correspond to the
optimal value of the current partial or full customer elimina-
tion ordering, with lower bound ofyk given by the size of the
setStacks(x1, . . . , xk).

Once the bound has been calculated, and they-variables
have been allocated their corresponding domains, then
branch-and-bound search commences. This takes the form
of a standard branch-and-bound search across thex variables.
Every time a search variable is instantiated, the corresponding
y variable is calculated to give the current bound on the opti-

Constraint Modelling Challenge 2005

97

mal solution. There is a global ‘max’ constraint across this set
of variables so that every time a partial ordering is found with
a worse optimal value than a previous solution, early pruning
can take place. The combination of this early pruning through
the use of the global constraints, and the good bound on the
objective value, creates an efficient solving mechanism for
this problem.

6 Further Techniques

6.1 A simple dominance condition removing
infeasible elimination orderings

Suppose we have scheduled a subset of the customersC ′, as
seq. Let C ′′ = C − C ′ be the remaining unscheduled cus-
tomers. LetS be the union of neighbourhoods of each el-
ement inC ′, i.e., S = (

⋃
x∈C′ Nbd(x)). Let x and y be

two remaining customers. If we schedulex next then the set
Nbd(x) − S get added to the current open stacks. Say thaty
dominatesx (givenC ′ or seq) if either of the following hold:

(i) Nbd(x)− S % Nbd(y)− S

(ii) Nbd(x)− S = Nbd(y)− S andy < x.

Say thatx ∈ C ′′ is undominated if there does not existy ∈
C ′′ which dominatesx.

When we have scheduled customersC ′ we only need to
consider undominated customers to schedule next. The rea-
son for this is that ifx is not undominated there always exists
a y which is undominated and which dominatesx, and any
customer ordering beginningseq, x is no better than the cor-
responding customer ordering where customery is brought
forward just beforex (and so beginningseq, y, x).

This view also suggests a simple heuristic for choosing
which customerx to schedule next: choose one with smallest
setNbd(x)− S.

6.2 Before-overlap branching

Here we discuss another kind of decision to branch over,
which can be used on its own or in conjunction with customer
elimination.

Let x andy be two customers. We say customerx is before
customery (with respect to some solution) ifendx < starty,
i.e., if the stack forx closes before that ofy opens. We say
thatx andy overlapif x is not beforey, andy is not before
x, i.e., if there exists some point in which both the stacks for
x andy are open. This happens if and only ifstartx ≤ endy
and starty ≤ endcx. If x and y are neighbours (i.e., they
require a common product) then customersx andy overlap.
For any two customersx andy, exactly one of the following
three possibilities occurs (in any given solution):

(i) x is beforey;

(ii) y is beforex;

(iii) x andy overlap.

Implied constraints can be generated in each case, espe-
cially (i) and (ii).

Propagation from before statements Obviously:
before(x, y) andbefore(y, z) imply before(x, z).
If before(x, y) and overlap(y, z) then notbefore(z, x), and
alsoendx ≤ endz.

This latter implication restricts the search for customer
elimination orderings: we can assume thatx appears earlier
in the sequence thanz in the customer elimination ordering.
beforestatements also strongly restrict directly the possible
solutions (ordering of products).

Propagation from overlaps Consider a setR of r cus-
tomers, every pair of which overlap, i.e., for allx, y ∈ R,
overlap(x, y). Then the cost of the solution is at mostr. This
is because at the pointmin {endx : i ∈ R}, there is an open
stack for each customer inR.

If x andy overlap then, when the first of them is eliminated,
there is an open stack for both customers. In particular, if
endx ≤ endy then at the point thatx is eliminated, the current
set of open stacks includes bothx andy.

We could therefore construct a search tree by at each node
choosing two customers, and constructing a branch for each
of the three possibilities above. We will need relatively few
beforedecisions at (above) a node for either inconsistency,
or becoming close to generating a solution with cost within
the upper boundmaxStacks, sincebeforestatements strongly
restrict solutions and customer elimination orderings. Nodes
with almost alloverlapdecisions associated allow weaker di-
rect propagation. However, then searching for feasible cus-
tomer elimination sequences at such a node may well be ef-
fective, since the increased number of overlaps will tend to
increase the number of open stacks, potentially clashing with
the upper bound and allowing backtracking. (Causing fur-
ther overlaps is similar to increasing the neighbourhoods of
customers; customer elimination is very effective when the
neighbourhoods get larger.)

7 Discussion
We analysed and proved equivalence of a simple reformula-
tion of the problem (customer elimination sequences), with
an associated branch-and-bound approach. We implemented
this approach with CP technology; as expected, given the ear-
lier discussion, the approach works very well when the op-
timum cost is high, as demonstrated by the experimental re-
sults. However, the approach is also very successful for many
problems with much lower optimum cost; propagating the
lower bound based on the sizes of the neighbourhoods seems
to be very effective for some of these problems.

Acknowledgements
This material is based upon works supported by the Science
Foundation Ireland under Grant No. 00/PI.1/C075. We are
grateful for valuable discussions with many of our colleagues
including Radek Szymanek, Gilles Pesant, Steve Prestwich,
David Burke, Gene Freuder, Tom Carchrae, Armagan Tarim,
Joe Bater, Mark Hennesey, Alex Ferguson and Brahim Hnich.

Constraint Modelling Challenge 2005

98

Appendix: Experimental Results
Experimental Conditions:

- All experiments were run on a Dell Latitude D400 laptop
with a 2GHz 4M Pentium processor, and 1GB of RAM.

- ECLiPSe 5.8]79 was used for the implementation of the
full algorithm, the code relies on theic, ic global,
ic search and thebranch and bound algorithms.

- One run was used for each instance.

- The maximum time allowed for each run was 5 minutes.

The method of gauging search effort is adeep backtrack
count. A deep backtrack is where a variable has been set to a
value and search has continued, and later this search tree node
has had to be returned to, and the alternative branch taken.
Therefore the deep backtrack count does not includeshal-
low backtracks, where a variable is assigned a value which is
found purely by propagation to be inconsistent.

The mean, median and maximum number of backtracks to
find the optimal solution have not been included in the two
tables of aggregate results. This is because in ECLiPSe a
handler is triggered when a better optimal solution is found
than the incumbent. It is possible to print the number of
backtracks at this point (as we did with the single instances),
but we could not see how to get the program to store such a
value. The large number of instances made it impractical to
go through the program output and calculate such values by
hand.

Constraint Modelling Challenge 2005

99

File Best Solved Runtime Search effort (bts) to Total search effort
value Optimally? (sec) find optimal solution (backtracks)

Miller19 13 Yes 1.26 0 40
GP1 45 Yes 0.34 0 2
GP2 40 Yes 0.93 0 3
GP3 40 Yes 0.88 1 1
GP4 30 Yes 2.04 0 2
GP5 95 Yes 2.06 0 1
GP6 75 Yes 13.3 0 0
GP7 75 Yes 16.7 0 1
GP8 60 Yes 36.4 0 2

NWRS1 3 Yes 0.01 0 0
NWRS2 4 Yes 0.01 0 1
NWRS3 7 Yes 0.50 1 97
NWRS4 7 Yes 0.02 0 0
NWRS5 12 Yes 0.16 0 4
NWRS6 12 Yes 0.24 0 8
NWRS7 10 Yes 199.7 0 17544
NWRS8 16 Yes 9.33 0 484

SP1 9 Yes 199.2 0 35195
SP2 20 No 299.2 254 5455
SP3 38 No 283.7 1 1450
SP4 59 No 292.7 1 503

Table 1: Individual results

Constraint Modelling Challenge 2005

100

% solved mean best time per instance (sec) Total effort p. i. (bts)
File optimally value found mean median max mean median max

problem10 10.dat 100 8.03 0.01 0.04 0.8 2.17 12 120
problem10 20.dat 100 8.92 4.28 0.02 0.09 0.80 6 40
problem15 15.dat 100 12.8 0.03 0.11 1.20 4.6 23 209
problem15 30.dat 100 14.02 0.009 0.04 0.09 0.96 7 13
problem20 10.dat 100 15.87 1.40 0.74 209.46 154.77 96 30182
problem20 20.dat 100 17.97 0.11 0.24 2.21 7.77 18 172
problem30 10.dat 94 23.95 25.96 2.21 299.75 1091.26 445 26361
problem30 15.dat 99 25.97 7.27 0.89 297.30 272.94 83 12271
problem30 30.dat 100 28.32 0.17 0.15 1.87 5.45 14 60
problem40 20.dat 96.4 36.38 20.55 0.53 298.50 341.08 70 6211
ShawInstances.txt 100 13.68 0.36 0.32 1.32 20 22 68

wbo 10 10 100 5.925 0.01 0.03 0.04 2.5 5 13
wbo 10 20 100 7.35 0.007 0.02 0.02 1.6 4 6
wbo 10 30 100 8.2 0.006 0.02 0.02 1.3 4 6
wbo 15 15 100 9.35 0.08 0.10 0.30 11 16 52
wbo 15 30 100 11.58 0.09 0.10 0.81 14 14 143
wbo 20 10 100 12.9 2.1 0.30 112 317 41 18, 812
wbo 20 20 98.8 13.69 5.17 0.25 299.09 868.4 24 55225
wbo 30 10 90 20.05 47.76 3.33 299.16 2039.38 148 17155
wbo 30 15 90.8 20.96 40.86 2.47 299.34 2075.06 226 26696
wbo 30 30 90 22.58 42.66 1.54 299.71 2108.03 247 24227
wbop 10 10 100 6.75 0.005 0.01 0.02 0.73 2 6
wbop 10 20 100 8.08 0.006 0.03 0.06 1.83 4 20
wbop 10 30 100 8.55 0.003 0.02 0.02 0.83 4 6
wbop 15 15 100 10.37 0.04 0.09 0.35 4.83 10 60
wbop 15 30 100 12.15 0.04 0.10 0.32 5.48 12 47
wbop 20 10 100 14.28 0.26 0.15 3.60 26.15 20 401
wbop 20 20 100 14.87 0.25 0.21 4.28 20.52 21 435
wbop 30 10 92.5 22.48 32.67 1.03 299.72 1513.8 50 14966
wbop 30 15 95 22.38 25.26 1.12 299.17 1813.35 83 26968
wbop 30 30 98.5 23.84 9.56 0.55 299.61 442.45 71 16291
wbp 10 10 100 7.28 0.01 0.03 0.13 4.13 5 68
wbp 10 20 100 8.71 0.005 0.02 0.03 0.97 4 8
wbp 10 30 100 9.31 0.003 0.02 0.02 0.53 3 5
wbp 15 15 100 11.05 1.023 0.11 34.36 292.50 14 10152
wbp 15 30 100 13.09 0.023 0.060 0.371 3.075 11 54
wbp 20 10 100 15.13 8.08 0.35 146.07 1386.15 18 32319
wbp 20 20 98.8 15.41 7.61 0.18 298.72 1705.12 39 101327
wbp 30 10 90 23.20 46.07 2.55 299.71 2094.25 80 15758
wbp 30 15 85 23.03 49.72 0.90 299.92 2816.48 75 29906
wbp 30 30 91.4 24.47 34.70 0.99 299.73 2545.60 149 93548

Table 2: Aggregate results

Constraint Modelling Challenge 2005

101

