Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005

In conjunction with The Fifth Workshop on
Modelling and Solving Problems with Constraints
Held at IJCAI 2005, Edinburgh, Scotland, 31 July, 2005

Barbara M. Smith and lan P. Gent
Cork Constraint Computation Centre, University College Cork, Ireland
and School of Computer Science, University of St Andrews, Scotland

Introduction

The first Constraint Modelling Challenge was posed in Ma
2005; we challenged constraint programmers to solve a di
ficult optimization problem. There are a number of existing
papers on the problem that we chose, but it had not previousiijansferred.
been tackled using constraint programming, to our knowl
edge. In this paper, we attempt to present the thirteen su
missions that we received, summarising the wide variety o i .
ideas that the Challenge entrants used, and pointing out dif'uding graph path-width.
ferences and similarities.

The statement of the problem follows:

A manufacturer has a number of orders from cus-
tomers to satisfy; each order is for a number of dif-
ferent products, and only one product can be made
at a time. Once a customer’s order is started (i.e.
the first product in the order is being made) a stack
is created for that customer. [Each customer places
exactly one order] When all the products that a
customer requires have been made, the order is sent
to the customer, so that the stack is closed. Be-
cause of limited space in the production area, the
maximum number of stacks that are in use simulta-
neously, i.e. the number of customer orders that are
in simultaneous production, should be minimized.

More formally: we are given a Boolean matrix in
which the columns correspond to the products and
each row corresponds to the order of a particular
customer. The entry;; = 1 iff customer: has
ordered some quantity of produgt(the quantity
ordered is irrelevant). The objective is to find a per-
mutation of the products such that the maximum
number of open orders at any point in the sequence
is minimized: ordet is open at poink in the pro-
duction sequence if there is a product required in
orderi that appears at or before positiénn the
sequence and also a product that appears at or after
positionk in the sequence.

%t_he character of the problem completely, however, and ex-

t?:_am, using a variety of Operations Research techniques. Lin-

the order spread, i.e. the total for all customers of the time that
their order is in production). The different objective changes

perience of solving the rehearsal problem cannot easily be
Fink and Voss cite several papers on the open stacks prob-
ares and Yanasdé] list several equivalent problems, in-

The Challenge instances were provided by the groups en-
tering the Challenge, and seem to present different kinds of
difficulty, depending on their source. Three of the instances
(SP2, SP3 and SP4) have not yet been solved optimally.

In the following sections, we first describe a number of pre-
processing steps that could be used to simplify the instances,
and a number of lower bounds on the number of open stacks
that can be derived to assist in proving optimality. We then
describe the different solution approaches that were tried in
the Challenge entries. We do not discuss the performance of
the models here; detailed results can be found in the individ-
ual submissions.

2 Preprocessing

There are a number of ways in which a given instance can be
preprocessed to make it simpler to solve. Many or all of these
have previously appeared in the literature on the open stacks
problem, but here we mainly cite their use in the Challenge
submissions.

The simplest reduction is to remove orders that require no
products and products that do not appear in any order, al-
though the Challenge instances should have been constructed
so that there are no such orders or products.

Let P be the set of products. Lét(p) be the set of orders
(or customers) requiring a prodyeandC(P’) be the set of
customers requiring a set of produétsC P.

If the orders requiring product, C(j), are a subset of
those requiring product, C'(k), then productj can be re-
moved from the problem; once an optimal sequence is found,

The problem is one of a number of related sequencingroduct; can be inserted next to produttwithout affect-
problems discussed by Fink & Vo$d]. Another problem ing the maximum number of open stacks. Many Challenge
from this paper appears in CSPLib as prob039 (the rehearsahtries remove dominated products in this way, Eld; 13;
problem) and has previously been tackled using constraint4]. Garcia de la Banda and StuckEs] and Miller et al.
programming. The rehearsal problem can be viewed as thgrove the correctness of this reductifi, 11] credit it to Bec-
open stacks problem with a different objective (to minimizeceneriet al. [2], who did not give a proof. Shaw and Laborie

Constraint Modelling Challenge 2005

[13] note that it is effective on many Challenge instances andof k£ colours to the vertices of the graph in such a way that
for one set of instances, removes on average half of the progny pair of nodes linked by an edge have different colours.
ucts, while in[5] it is calculated that 16% of products are The reverse is not necessarily true; Pesant shows that addi-
removed across the whole set of instances. Beldiceanu aribnal constraints are required to ensure that-eolouring
Carlssor{3] use a special case of this reduction in which twocan correspond to a product sequence with at rhagpen
products required for exactly the same orders are merged. stacks. Hence, the chromatic number of the graph (the min-

Szymanek and Hennes$$5] recognise that ifC(j) € imum number of colours) gives a lower bound on the min-
C(k), then it is safe to insist that produgis sequenced be- imum number of open stac43]. Although solving the
fore productk; however, they imposed this as a dominancegraph colouring problem simply to compute a lower bound
constraint, and found that it did not reduce search. could be expensive, the size of any clique in the graph also

If the set of products® can be partitioned into two sef¥ ~ gives a lower bound. Shaw and Labofs] use a greedy
and P”, such thatC'(P’) N C(P") = 0, i.e. there are no or- clique-finding algorithm to find a large clique in the graph;
ders requiring products in bot® and P”, then the subprob- they found this bound useful in proving optimality. Pesant
lems defined by?’ and P” can be solved separately. Garcia [11] notes that if the graph, after pre-processing to remove
de la Banda & Stuckejs] note that this simplification was dominated products, is a clique, then the minimum number
used in[19], and was useful for some of the Challenge in- of stacks is the number of orders.
stances. SimonikL4] found that the full decomposition was ~ Simonis[14] finds lower bounds by solving small subprob-
only useful for Challenge instances that were not difficult tolems consisting of 3 to 5 products. The optimal solutions for
solve anyway, but that a special casesofgleton products these subproblems can be easily found by considering all per-
was useful: a singleton product is required for only one or-mutations of the products. However, only subsets of the first
der and that order requires no other products. Such a produtgw products are considered, where the products are ordered
can be scheduled at the beginning of the production sequenéy a weight function (also used to derive the initial static vari-
without affecting the maximum number of open stacks. able ordering).

Baptiste[1] finds lower bounds by solving a small MIP
model for each position in the sequence. For each position

3 Lower Bounds j, 1 < j < n, the division of products into before and af-
Finding a good lower bound on the maximum number ofter j that minimizes the number of stacks that are opep at
open stacks is useful in proving optimality: if a solution is is found. The maximum of these optimal solutions gives a
found whose value is equal to the lower bound, the solutiodower bound on the value of the optimal solution to the origi-
is known to be optimal and the search can terminate. This apyal problem.
plies even to incomplete search methods, which cannot prove
optimality in any other way, as well as to complete methods4 Symmetry Breaking

where it may be possible, though time-consuming, to show b)AS in many sequencing problems, reversing an optimal se-

he simolest | bound is th ; ber of %uence of products gives another optimal sequence. Several
The simplest lower bound is the maximum number of or-5, 65 add a constraint to break the symmetry. For instance,
ders requiring a product. Other lower bounds are derived by 4.\ & Laborig13] and Baptisté1] choose one of the prod-
cgm°ng the:g—demé:\ndgrapmat hads ag@df? Lor each of ,ots requiring in the largest number of orders and constrain
thesn orders and an edge between nodlasd; Iifthereisa ;g hroduct to appear in the first half of the production se-
product requm_ed by both orders. L&} be the set of neigh- quence. Although using very different models, Simdndi4]
bours of node in this graph. and Beldiceanu & Carlssdi#] both impose a fixed order on

Miller [9] states and proves a number of theorems on lowefye first two variables selected, corresponding in both cases
bounds based on the co-demand graph. The simplest is thaf o products.

if § is the smallest degree of any node, tlden 1 is a lower

bound on the maximum number of open stacks. Garcia d ; ;

la Banda and Stuckey also use this bound, fi@nhwhere 5 ConStramt Programming Models

it is not proved. Miller gives similar results that improve 5.1 A Basic Model

slightly on this bound. Another result frof®] calculates Possibly the most obvious viewpoint on which to base a con-

mi; = [N UN;) —i—j[, 1 <i,j <m,i# j iem; straint model has a variable for each product, whose values

is the number of orders that share a product with eith@r are the positions in the production sequenge= i iff prod-

J or both, excluding and; themselves. Ip is the minimum uct & is scheduled in position, 1 < i,k < n. There is an

value of;; over all pairs of nodes andj, thenp + 1 isa allDifferent constraint on these variables, and other variables

lower bound. are introduced to allow the number of open stacks to be de-
Garcia de la Banda and StuckEs} also use a number of termined from the production sequence. Variableand!;,

bounds fron{2] based on derivingiinorsby removing nodes for 1 < j < m can be defined as the first and last positions

or contracting edges in the co-demand graph. in the sequence where the stack for orgds open. This
Pesanf11] discusses the connection between the problentan be expressed as the constrajfjts= min{p;|k € P;}

and a constrained graph colouring problem. A solution toand!; = max{py|k € P;}, whereP; is the set of prod-

the open stacks problem with stacks corresponds to/a ucts in orderj. A boolean variable;; indicates whether

colouring of the co-demand graph, i.e. an allocation of oneor not the stack for ordef is open during theth time-slot

Constraint Modelling Challenge 2005

in the production sequences;; = (f; < i Al; > 1), They also use a heuristic to choose the variable (product)
1<i<m1<j<m. to occupy the position in the middle of the sequence; their

The number of open orders during thith time-slot is reasoning is that the maximum number of open stacks tends
> 1<j<m 0ij- Finally, the objective is the maximum value to occur in the middle of the sequence, and hence that the

of this sum, over all values af 1 < i < n. products sequenced in the middle are the most important. For
o each product, they consider placing that product in the middle
5.2 A Dual Viewpoint of the sequence (in position/2) and finding the minimum

) . number of open stacks at that point. To do this, they parti-
Since any production sequence can be seen as a permutati@$h the other products into two sets, such that the number of
of the products, a dual viewpoint has variables representingrders required by a product in both sets is minimized. Any
the positions in the production sequence, whose values agder that is required both by a product in the first half of the
the products, so that; = k iff product & is scheduled in sequence and by a product in the second half of the sequence
positions, 1 < i,k < n. must have an open stack at positiari2. They find the ‘Min-

These two sets of variables can be linked by channellingntersect’ partition of the remaining products for each prod-
constraints:s; = k iff p, = 4. Miller, Prosser & Unsworth uct j, by solving a subsidiary constraint optimization prob-
[10] and Shaw & Laborig13] use both sets of variables, |em. These solutions are then used as a heuristic to guide the
linked by these channelling constraints;[&8], theinverse search. The product which will give the minimum number
constraint in ILOG Solver is used to implement the chan-of open stacks is positioned at,; this minimum number of
nelling constraints efficiently. open stacks at:/2 is also a lower bound on the optimal so-

The values assigned to the variables must be all differ- lution that can be found as a result of this (or any subsequent)
ent; the channelling constraints in fact obviate the need fochoice of ‘middle’ product. The bound is further tightened
an explicit allDifferent constraint on either set of variables toby constraining the remaining products to be before or after
ensure correct solutiori§], but specifying such a constraint m /2 according to the optimal partition, and finding the opti-
and maintaining generalized arc consistency can increase dmal sequence under those constraints. These bounds are then
main filtering. Shaw and Laborigl3] maintained GAC on passed to the complete method.
the allDifferent constraint for that reason. _

Miller, Prosser and Unswortfil0] use a search strategy 9.3 Permuting the Customers

that assigns values to the variablgsss, ..., s, in that order, Rather than finding a permutation of the products, as in the
i.e. the sequence is built up chronologically. They use a numbasic model, Wilson and Petr[@7] solve the open stacks
ber of lower bounds, analogous to those derive@@inthat problem by finding an optimal permutation of the orders (cus-
they use in preprocessing, but dependent on a partial assigtbmers). This idea was previously proposed by Yan§kSe
ment. They note, however, that the cost of calculating thesé we consider the customer whose order is completed first,
bounds dynamically is very high. A probably more useful dy-and the point in the sequence of products when that happens,
namic reduction is based on the observation that if the varievery product that customer requires must be made before
ablessy, ...s; have been assigned, then any product that doefhat point in the sequence. Further, there is no advantage to
not require a new stack can be scheduled next, without affeckcheduling any other product before that point. So the max-
ing whether or not the sequence can be completed optimallymum number of open stacks occurring while the first cus-
Hence, all the products that are required only by customergomer’s stack is open occurs when the last product for the
whose orders have already been started should be sequenceg@tomer is made, and is equal to the number of products the
next, in any order. customer requires. Reordering the number of products up to
Shaw and Labori¢l3] also describe this reduction, but fi- this point in the sequence makes no difference to the maxi-
nally used a different search strategy that they found morenum number of open stacks in the whole sequence.
robust. The products are partitioned into two subs@tsnd This idea can be extended to the remaining customers. A
P,, such thatP; will be sequenced beforg,. Each subset permutation of the customers can be defined from a permuta-
forms a subproblem that can be solved independently of théon of the products, by considering the points in the sequence
other, and itis solved by recursively subdividing into two sub-at which the last product for each customer is made, breaking
sets. If at any point either subproblem is insoluble (becausées for instance by the initial ordering of the customers. Wil-
the current upper bound on the maximum number of opeson and Petrie also give a function mapping a permutation of
stacks cannot be achieved) the search can backtrack. Tiiee customers to a permutation of the products, and show that
search decisions assign a product to one subproblem or thee maximum number of open stacks in this sequence is no
other. worse than in any other product sequence corresponding to
Hebrard, Hnich and Walsf6] use a variant of the basic the same permutation of the customers. Hence, it is sufficient
model with only the dual variables. They instead use specialto consider permutations of the customers. Such a permuta-
purpose global constraints (one for each order) to link thdion defines theustomer elimination sequendee. it defines
variabless;, 1 < i < n, defining the position of each product the order in which the stacks are closed.
in the production sequence, and the variablgsl < i < n; (This idea is related to the dynamic reduction used by
1 < j < m, indicating whether or not the stack for order Miller et al. [10]: as the sequence of products is built up, any
is open during theth time-slot in the production sequence. product that does not require opening a stack can be immedi-
They describe the propagation of these global constraints. ately added to the sequence. Hence, the next real decision is

Constraint Modelling Challenge 2005

effectively which stack to open next.) Although Szymanek and Hennessy have variables repre-
Their CP model has: variablesy, ..., r,,, constrained to senting the sequence of customers as one viewpoint in their
be all different: ; is the customer whose order is fulfilled model, they do not construct the product sequence from the
first, and so on. Constraints relate the successive neighboutustomer sequence, as Wilson and Petrie do, and so do not
hoods of customers in the co-demand graph to the sets of opeppear to get the same benefits.
stacks when customey is eliminated, when customes is)
eliminated and so on. (When customeiis eliminated, there 9.5 A Scheduling Model
is a stack open for each of its neighbours.) From the setBeldiceanu and Carlssd] use the basic model, but view
of open stacks, the maximum number of open stacks can beach order as a task requiring a resource (its stack) and use
found. the cumulativeconstraint provided in SICStus Prolog to link
Wilson and Petrie eliminate some equivalent sequences ahe sets of variables;, f;,1 < j < m to the objective, which
customers by using the idea of dominated customers. At angn this view is the maximum number of resources in simulta-
point in the search, adding a customepo the sequence as neous use.
the next customer to be eliminated entails opening stacks for They use a static variable ordering, arranging the product
all the remaining customers who require products that are revariables in descending order of the number of customers re-
quired by customei, i.e. for all customers inV;, the neigh- quiring each product. The value ordering chooses values as
bourhood ofi in the co-demand graph, who are not in the close to the middle of the sequence as possible; hence, the
neighbourhood of any customer already sequenced. Cusearch strategy tries to build up the sequence from the middle
tomeri dominates customei if the set of new stacks re- to the ends, and puts the products most in demand in the mid-
sulting from adding to the sequence is a strict subset of thedle of the sequence. Beldiceanu and Carlsson comment that
set of new stacks resulting from addifigor the sets of new the weakness of the model is the poor propagation of the max
stacks are the same anék i'. This also gives a variable or- amd min constraints, defining the variablgsandl;. They
dering heuristic: choose the customer which will result in thesuggest that this could be improved by developing a global
smallest number of new open stacks. constraint, with appropriate filtering algorithm, to constrain a
They also discuss branching decisions based on whethegriable to be the maximum or minimum of a set of variables
two customers overlap, or if not, in which order they appearthat are all different.
and discuss implied constraints that can be derived. Shaw and Labori¢13] also use a scheduling viewpoint,
Permuting the customers rather than the products clearlgis well as the variables of the basic model and their duals.
reduces problem size when the number of customers is leSthey define variables representing the start and end of each
than the number of products; Wilson and Petrie also foundctivity (order stack) and relate these to the varialfles,.

that it gives good results generally. Constraint-based scheduling algorithms are used to reason
.) . about the starts and ends of the activities and the resource
5.4 Multiple Viewpoints usage, and these inferences can propagate to the other vari-

Szymanek and Henneskls] use a number of different view- ables.

points, including that of the basic model given earlier, linked The scheduling viewpoint leads to some implied con-

by channelling constraints. The principal search variables irstraints that can be expressed in terms of the start and end

their model are boolean variableg;,;, representing the rel- variables. Beldiceanu and Carls4@h define theduration of

ative position of the stacks for customers (ordérsand ; the stack for ordey, as the number of products it requires;

cpr; = 0 iff the stack for orderk is closed before the stack this then gives a constraint on the start and end times of the

for order! is opened. For any two ordets! that have a prod- activity. An equivalent constraint ofy andi; is given by[13;

uct in commongpy = cpi = 1. The importance of these 14]: I; > f; + |P;| — 1,1 < j < n. Simonis[14] extends

variables is that itp;,; = 0, then orders: and! can poten- this to subsets oP;.

tially share a stack location. Shaw and Laborie give further constraints of this kind. If
Their model also views the problem as one of finding atwo ordersj andk share at least one produd@,(N Py, # (),

permutation of the orders. Since the stacks for two or moréhen the corresponding activities must overlap for a duration

orders may be started at the same time, if they require thatleas{P; N P|. Further, ifP; C Py, then the activity corre-

same product, two different permutations of the orders maypponding to ordej can start no later and finish no earlier than

correspond to the same permutations of the products. Domthe activity corresponding to ordér These constraints could

nance rules are introduced to distinguish some of these casdig expressed either in terms of the start and finish variables

for instance, if?;; C P;, then ordeyj is considered to appear in the scheduling model, or in terms of tlfig fi, ;, Ix, in the

beforej’, even if the first product in the sequence required bybasic model.

either of them is required by both. Szymanek and Hennessg .

give a global constraint that is used to link #)g, variables, .6 A Graph Colouring Model

the permutation of the orders, and the objective. The searchAs described earlier, the open stacks problem can be viewed

assigns thepy,; variables first, then thg; variables of the as a constrainted graph colouring problem, and this can be

basic model (and then variabl¢sand!/; of the basic model; useful in deriving lower bounds on the optimal solution.

but since the sequence has been fixed by the previous assigBhaw and Labori¢13] include a graph colouring viewpoint

ments, there are presumably no decisions to be made at this their model in order to use this perspective on the prob-

stage). lems dynamically during the search. The aim is to colour

Constraint Modelling Challenge 2005

the co-demand graph so that if two customers both have thel.7 Putting the products in order
stacks open at some point during the product sequence, their is[14] devel del in which at int d
nodes in the graph are assigned different colours. Clearly?'™O"'S eVvelops a model In which at any point aur-

if two nodes are neighbours in the graph, they must be adhd the search, the partial solution already built up indicates

signed different colours (there is at least one product that theg1e order in which the products already considered will be

both require). Shaw and Laborie introduce new variables>®duenced but not their positions in the sequence. This is
h;,1 < j < m, whereh, represents the colour assigned implemented by a real-valued variahjefor each product;

to node (customer). If nodesj, ;' are neighbours in the co- a complete solutiqn can be translated into a production se-
demand graph, the constrailmyt’ £ h; is added at the start. quence by arranging the products in ascending order of the

Otherwise, the colour variables are related to the other vari\—’alues assigned to the corresponding variables. The domains

ables of the problems by the constraintsfif< i, A f; < I of the variables are an arbitrary real interval, with two sen-
J= vyt NGt = b i i
thenh,; # h;. The colours are interchangeable, and to reducdN®! values, sagtartandend marking the start and end of
e interval. Once values in this interval, say, v, ..., vy

this symmetry, the large clique in the co-demand graph that i ithwy < us < ... < v, have been assigned to a subset of the

found during pre-processing, in order to provide a bound o' , : : ; .
the optimal ?/:Sue pis colouregd at the startp variables, the next variable considered is assigned a value in

one of the sub-intervals defined by this assignment, i.e. in ei-
(Although using a very different approach, Truchet, Bour-ther (start, v1) or (v, v2) Or ... or(vg, end) Hence, the new

don and CodognétL6], as described below, consider the pos-assignment represents a decision as to how the corresponding

sibility that two customers can possibly share the same staclproduct should be placed in the sequence in relation to those

in a similar manner.) already placed.

Whereas Shaw and Laborie use the graph colouring per- Simonis notes that the advantage of this model, in compari-
spective in conjunction with other viewpoints, Pesktd] son with a model in which the variables represent the position
bases his model entirely on solving the constrained graplf! the sequence of each product, or the product to be placed
colouring problem. He finds initial upper and lower bounds'n each position m_the sequence, is that the branchmg factor
on the objective value (the upper bound being one less tha! f the search tree is small at the top of the tree. The first two

the number of customers, since it is easy to detect if the coariables are assigned arbitrarily, and the third has three pos-

demand graph is a clique, and otherwise, the number of stack€ choices. Eventually, the final product can go in one of
required is less than the number of customers). He does %Jr 1 subintervals. In contrast, if the variables correspond to
binary search to find the smallest valuefofor which a k- the positions in the sequence, for the first vanab[e assigned
colouring that can correspond to an product sequence &Singthere aren choicesy — 1 choices for the second variable and

stacks exists. S0 on. o . .
The products are initially ordered by a weight function,

Asin[13], the colour symmetries are partly broken by pre-where a product has a high weight if it is required by many
colouring a large clique in the co-demand graph. Furthegustomers, each of whom requires few other products. Simo-
symmetry-breaking constraints are also added, by orderingis also uses an expensive shaving technique during search
the sets of nodes assigned to each of the remaining coloursthat combines a dynamic variable and value ordering heuristic

Having found ak-colouring of the graph, it has to be con- wlth domain fllterm_g. At each choice point, for every unas-
verted, if possible, into a feasible product sequence. For eacigned product variable and every sub-interval that it could

colouri, Pesant first searches for a sequence of the custome?€ Placed in, the increase in the cost function that would

in the colour clasg’; that have been assigned to that coIour;reSUIt from placing the product in that sub-interval is com-
this is the order in which these customers will use their comPutéd. This may remove some inconsistent values; thereafter

mon stack location. This order in turn constrains the producil® variable that causes the greatest increase in cost and the
sequence. The variablgs, 1 < j < n of the basic model are value that causes the smallest increase in cost is selected.
used, together with an allDifferent constraint on these vari- Simonis also uses a partial search (ustrgdit-based
ables. The search backtracks if it proves impossible to find &8arch) to find good solutions quickly, combined with the
product sequence. complete search.

. . The values assigned to thevariables are hard to interpret
Unary constraints can be added on the variaplesorre- i this model; we might think of them as something like a

sponding to the products required by the customer currentlyime variablesf/, I and so on are defined in a similar way
being considered that uses stack locatioBince none of the 7

" ianed to cold h qucts i to the basic model; for instancg, = min{yx|k € P;}, and
customers assigned 1o colauran have any products in Com- ,oce the objective can be defined using similar constraints.
monl,(tlhe ngmber of.procliucts (rjeqhuwed b{)the cus;on;etr)s ur?mg It seems that this model would be similar to using the basic
stack locationi previously, and the number required by the : .
customers using this location subsequently, give lower anmodel with a search strategy that chooses the relative order

upper bounds on the position in the product sequence of arg, '€ Products, rather than their positions in the sequence,
product required by this customer y adding inequality constraints between them, so that at a

choice point during search, the choice might be betwgen

Pesant comments that the expertise that has been developedandp; > p,. However, Simonis considered this search
in solving graph colouring problems makes this a potentiallystrategy and concluded that it did not allow the constraints to
fruitful approach to solving the open stacks problem. propagate well.

Constraint Modelling Challenge 2005

6 A Mixed Integer Programming Approach more solutions satisfying either set of relaxed constraints than

Baptiste[1] gives a MIP formulation for the problem that is there are to the original model. A local search algorithm

similar to the basic CP model given earlier, but uses 0/1 rathd€lated to WalkSAT is used with all three models, and the
than integer variables. So insteadzaf = i iff product & is relaxed models are shown to be much faster than the origi-

scheduled in position he hasex; — 1 iff product is sched- nal model on an artificial instance for which optimal pseudo-
uled in positioni. The constraiﬁti" o=1,1<i<n solutions exist. On Challenge instances, the second relaxation
: k=0 %kt — &~ =¥ =

n is found to give best results.
and)’, ,zr; = 1,1 < k < n ensure that exactly one prod- 16 ; ‘o
uct is scheduled in any position, and every product is sched- Truchet, Bourdon and Codogritf] use an idea reminis-

uled somewhere; the latter constraint replaces the allDiffererge"'t Of one of the viewpoints ifLs]: to reduce the maxi-
constraint. mum number of open stacks, it is important to ensure that as

For every orderj and sequence positiain three 0/1 vari- far as possible, two orders that have no products in common
ables are defined. Instead of variabfeandl;, variablesh,;, can share a stacking space. (Of course, two orders that do

e deined such ha, — 1 ffoder) sars producion |18 A PIOALCLT Eeren s bl e e st open
in position: or before, andu;; = 1 iff order j ends pro- P 9

. . Sy (DD B,
duction at positiori or after. The constraints defining these SPac€-) They define a I’e|atlcﬂ]3p(j,‘;7_) = (PN Py =0
variables areb,., ; > b;; anda;; < a;_y ;. With these vari- Sep(j,5') is true for two productg, j* if they can potentially

; ; ' be separated i.e. can share a stacking space. They define a
ables, the variables;; of the basic model can be defined by surro pate for the objective;, defined tg bg the numger of
0ij = bij + ai; — 1. These variables are linked to the de- airs%f ordersy, j' S{JCh tr?ét (in terms of the basic model)
cision variablesey;: _for any orderk z_;md productj _such t_h_at ? =1 fr ﬂ;?l‘ e the stack for ordey opens after
¢jk = 1, 2 < 045, Since If produck is scheduled in position tﬁe stajck forj ordegj", c'lo'ses or v.v. They show that find-
1 and orderj requires that product, then the stack for orgler ! L

is open at positiori. Hence, the objective can be defined asNY @ permutation that_mgxmlzg,ms equwalent to finding
before. a permutation that minimizes the maximum number of open

The formulation allows cuts analogous to the implied con-StaCks'

straints derived from the scheduling model discussed earlier; 1he advantage of defining the new objective function is
for instance, if two orders and ;' are such thaP,, C p;,, hatg has a greater range of values than the original objec-
ie all pI’OdL,JCtS required by’ are also required]by_thér,w tive and is more suitable for use as an error or cost function

bi; < by anda,; > a0, foralli, 1 <i < n. in local search. ,

jBapti]ste comjmenté that the weakness of the MIP model Truchetet al. use a local _search method (Ad_aptn_/e Search
is that many symmetries (apart from the obvious reversal ofPlémented for permutation problems) to find improved
the sequence) cannot easily be broken. He tried a secondafgnfigurations by identifying a variable that can be consid-
objective that found a solution with the minimum number of €1€d (partly) responsible for the poor quality of the current

stacks that gave the lexicographically smallest sequence GPnfiguration, and trying another value in this variable’s do-

products, to break other symmetries that arise from permuting'&!"-

products without changing the number of open stacks, but this Shaw and Labori¢13] combine the constraint model de-
was not successful. scribed earlier with local search, although only for the larger

Challenge instances. Whenever a new (and therefore better)
solution is found, Large Neighbourhood Search is used to try

7 Local Search to improve it further. A sub-sequence of the product sequence
Two of the submissions use local search to solve the prohis selected at random and LNS attempts to reassign the prod-
lems; a few other cases use local search in conjunction witlicts in these positions using a smaller number of open stacks.
complete search.

Prestwic_h[12] uses a similar model to Baptiste's MIP g A Model Checking Approach
model, which can similarly be seen as a 0/1 version of the ba-
sic CP model described earlier. He proposes to increase thdiller [9] solves the open stacks problem by viewing a prod-
solution density of the model in order to improve the perfor-uct sequence with at most’ open stacks as a violation of a
mance of local search, by adding “pseudo-solutions” in suctsafety property; if such a violation is found, model checking
a way that any pseudo-solution can be transformed into a trugrovides a counter-example that can be converted into a solu-
solution that is at least as good. tion to the open stacks problem with at magtopen stacks.

The pseudo-solutions are obtained by relaxing the con- Because proving that no solution exists for a givehis
straintsy ", _, xx; = landd) zp = 1t0 Y. ax; > 1, verydifficult or in some cases impossible with this approach,
for 1 < k < n, i.e. each product can appear more than oncéMiller derives a number of lower bounds on the value of the
in the sequence, and the number of product assigned to a poptimal solution; if a solution can be found with value equal
sition in the sequence can be 0, 1 or more. An alternativéo the lower bound, then this is sufficient proof that no better
relaxation also has the constraift$,_, zx; > 1i.e. every solution exists. These bounds are also used by Miller, Prosser
position in the sequence must have at least one product. Prestad UnswortH10].
wich shows that a solution satisfying these constraints can be Miller also gives a heuristic method for constructing solu-
converted into a dominating solution representing a permutaions, which she reports often find the optimal solutions im-
tion of the products, and that there can be super-exponentialipediately, and otherwise gives a good starting point. This

Constraint Modelling Challenge 2005

is based on constructing primarily a sequenceudtomers here some of the ideas that appear in different submissions,
from which the product sequence can be derived, in such & various guises:

way as to keep the number of open stacks low. This approach
is reminiscent of the complete method used by Wilson and
Petrie[17].

Miller comments that an advantage of the model checking
system used (SPIN) is the backtracking that it provides. In
this case, if at some point during search, the fipgibducts in
the sequence have been chosen, and morelithatacks have e Although the problem is ostensibly one of finding a per-
been opened, the search will immediately backtrack. Fur- mutation of the products, in fact, focussing on the se-
ther, if this sub-sequence used at méstopen stacks, but quence of the customers can be a more fruitful way to
the search has previously extended a sub-sequence consisting consider the problem. This has been done either by
of thesei products in a different order, then the search must specifically sequencing the customers, or by recognising
previously have failed because at some later point it was im- that while sequencing the products, the real decisions are
possible to use no more thad stacks. Hence, the current only those that involve opening a new stack.

sub-sequence should again fail. This is recognised by SPIN, ¢ ¢ puildi ;

X A . ' uilding up the product sequence chronologically, re-
because the state of the system at this point is identical to the ¢ arranging tf?e prOF()jUCtS befoqre tinpecannot afgf]ect t)rlwe
previously visited state. The notion of identical states appears optimal arrangement of the products afterand v.v
in a different guise in the approach described in the next sec- This observation has been recognised in various ways,

tion. from a dynamic programming approach, to various ways

. . of splitting the sequence and dealing with the two parts
9 A Dynamic Programming Approach separately.

Garcia de la Banda and Stuckis use a dynamic program- ¢ Two orders can share the same stack location only if they
ming formulation to solve the open stacks problem. They have no products in common; the products that they each
point out that if a subse®” of the products has been sched- require must also be separated in the product sequence.
uled at the beginning of the sequence, with the last productin Since it is only by sharing stack locations that the num-
this sub-sequnce beingthe customers that have open stacks ber of open stacks can be reduced, some Challenge sub-
at this point are those who ordered produicas well as those missions have focussed on orders that can potentially be

who ordered any other productjras well as any productthat ~ separated in this way as the key to minimizing the num-
has not been sequenced. This does not depend on the order in per of open stacks.

which the previous product® — {p}, are scheduled, nor on o)]
the order of the remaining product®,— P". The Challenge entrants had only limited time (around six

If the minimum number of stacks required to schedule theVe€ks) to devise models to solve the open stacks problem.
set of productsS, given that the products i® — S have Given that, we were gratified to receive so many excellent
already been sequenced,sisicksp(S) and the set of cus- €ntries. The variety of approaches and the number of interest-
tomers with open stacks at that pointdgp, P — S — p), ~ ingideasin the submissions is impressive. The Challenge has
wherep is the last product sequenced in— S, Garcia de conclusively shown that constraint programming is a fruitful

la Banda & Stuckey give the basic dynamic programming re_approach to solving the open stacks. problem. We plan to sub-
cursion: mit the problem, with the Challenge instances, to CSPLib and

hope to see further development of the models described here.

e Instances can often be reduced by preprocessing them, to
remove products or customers that cannot affect the so-
lution. Lower bounds on the optimal solution can also be
calculated in various ways ahead of search; this appears
to be crucial in proving optimality for many instances.

stacksp(S) = Ipnelgl max{A(p,S—{p}), stacksp(S—{p})}

o _ - 11 Thanks, and Advice to Future Organisers
They suggest that this is potentially a much more efficient

: ; ; ially thank Patrick Prosser for proposing the Mod-
approach than, say, the basic CP model given earlier, becaugh‘? especia
rather than implicitly considering every permutation of the €119 Challenge as a part of the 2005 Workshop. It was also
products, it is only necessary to consider the subsef of his idea that it be a challenge, not a competition or evaluation.

They use a number of lower bounds on the optimal valueVe think this is very important: we do not feel that constraint

some of which are discussed earlier. They find an optimaP'ogramming is at a point where winners can be determined

solution by either trying every possible value from the lowerPUrely by cpu time given the large variety of tools and tech-

to the upper bound, or by doing a binary search in this rang@dues used. . .
(as does Pesaft1)). We thank the organising and programme committees of the

They comment that although their approach does not usk/CA! 05 Workshop on Modelling and Solving Problems with
constraint programming, it is equivalent to a constraint pro-Constraints, and most especially Zeynep Kiziltan for her ex-

rammina approach in which states visited are memoized. tensive help. We thank Toby Walsh for agreeing to enter the
g g.app results of the Challenge into CSPLib. For other help in var-

. ious ways we would like to thank lan Miguel, Sylvain Soli-
10 Summary and Conclusions man, and members of the CP Pod research group. We would
A number of key ideas emerge from the the approachelke to thank the UK's Symmetry and Search network, which
adopted in the various submissions to the Challenge. We lisgponsored the prize for best paper.

Of course we very much thank all the entrants to the Chal{6]
lenge, and especially those who also submitted instances dur-
ing the first phase.

We hope that modelling challenges can be run in the future[,7]
perhaps annually. We do not think it appropriate to keep the
challenge in our hands, so we thought it might be useful to
offer advice to future organisers.

The first point is to emphasise that we always intended th&s]
challenge to allow non-constraint based approaches, and a
number of such entries appeared. We think this was very ben-
eficial to the Challenge and for comparing constraints with[9]
other approaches, and it should be preserved. The name of
the Challenge (i.eConstraintmodelling) worried some en-
trants who checked with us before submitting, but it is hard tq 1]
see how to rename the Challenge which is about constraints
and comparison with other approaches.

The second is that there are certain points in the pro-
cess that we perhaps needed to put more work into. First
among those would have been the selection and distributioiﬂl]
of the Challenge instances. Some work double checking them
would have been useful, and also solving them with a simple
solver to filter out very easy ones. The obvious reason we difl12]
not do this is pressure of time.

A third point is that the two phase approach to the Chal-
lenge seemed to work well. In the first phase entrants Wer§13]
able to submit their own instances for use in the second phase.
In fact we used all instances that were submitted (barring one
omitted by error), and they were pleasingly diverse. We didn't
concern ourselves if instances were hand crafted to be ea£§r4]
for a particular solver and hard for others, since all other en-
trants had the chance to construct instances like thi$ too. [15]

We do hope that this report is useful to others interested in
this problem, and again hope this will be repeated in future
years: but it does take some time to complete, so be warnedfl6]

References

[1] P. Baptiste. Simple MIP Formulations to Minimize the [17]
Maximum Number of Open Stacks. IJCAIO5 Constraint

Modelling Challenge entry.

J. C. Becceneri, H. H. Yanasse, and N. Y. Soma. A1§
method for solving the minimization of the maximum
number of open stacks problem within a cutting process.
Comput. Oper. Res31(14):2315-2332, 2004. [19]

N. Beldiceanu and M. Carlsson. éumulativeModel
for a Pattern Sequencing Problem. 1JCAIO5 Constraint
Modelling Challenge entry.

A. Fink and S. Voss. Applications of modern heuristic
search methods to pattern sequencing proble@sm-
puters & Operations Research6:17-34, 1999.

M. Garcia de la Banda and P. J. Stuckey. Dynamic Pro-
gramming to Minimize the Maximum Number of Open
Stacks. I[IJCAIO5 Constraint Modelling Challenge entry.

(2]

(3]
[4]

(5]

'However, note that we required source code to be entered un-
der a promise of confidentiality, meaning that we could if necessary
check for entries which had a database of known instances with so-
lutions, which we would have been unhappy with.

Constraint Modelling Challenge 2005

E. Hebrard, B. Hnich, and T. Walsh. Partition with Min-
imal Intersection. IJCAIO5 Constraint Modelling Chal-
lenge entry.

B. Hnich, B. M. Smith, and T. Walsh. Dual Models of
Permutation and Injection Problen¥#\IR, 21:357-391,
2004.

A. Linhares and H. H. Yanasse. Connections between
cutting-pattern sequencing, visi design, and flexible ma-
chines.Comput. Oper. Res29(12):1759-1772, 2002.

A. Miller. Improved lower bounds for solving the min-
imal open stacks problem. [JCAIO5 Constraint Mod-
elling Challenge entry.

0l A. Miller, P. Prosser, and C. Unsworth. A Constraint

Model and a Reduction Operator for the Minimising
Open Stacks Problem. 1JCAIO5 Constraint Modelling
Challenge entry.

G. Pesant. Trying Hard to Solve the Simultaneously
Open Stacks Problem with CP. [JCAIO5 Constraint
Modelling Challenge entry.

S. Prestwich. Open Stack Minimisation by Local Search
and Reverse Dominance Reasoning. [JCAIO5 Con-
straint Modelling Challenge entry.

P. Shaw and P. Laborie. A Constraint Programming Ap-
proach to the Min-Stack Problem. 1JCAIO5 Constraint
Modelling Challenge entry.

H. Simonis. Modelling Challenge: Benchmark Results.
IJCAIO5 Constraint Modelling Challenge entry.

R. Szymanek and M. Hennessy. Modelling Challenge
— Open Stack Problem. IJCAIO5 Constraint Modelling
Challenge entry.

C. Truchet, J. Bourdon, and P. Codognet. Tearing cus-
tomers apart for solving PSP-SOS. IJCAIO5 Constraint
Modelling Challenge entry.

N. Wilson and K. Petrie. Using Customer Elimination
Orderings to Minimise the Maximum Number of Open
Stacks. IJCAIO5 Constraint Modelling Challenge entry.

H. H. Yanasse. On a pattern sequencing problem to min-
imize the maximum number of open stacksuropean
Journal of Operational Research00:454-463, 1997.

B. J. Yuen and K. V. Richardson. Establishing the
optimality of sequencing heuristics for cutting stock
problems. European Journal of Operational Research

84:590-598, 1995.

Constraint Modelling Challenge 2005

Simple MIP Formulations to Minimize the Maximum Number of Open Stacks

Philippe Baptiste
Ecole Polytechnique
Laboratoire d’'Informatique LIX, CNRS
F-91128 Palaiseau
Philippe.Baptiste@polytechnique.fr

Abstract MIP based bound associatedite {0,...,n — 1}. Our lower
bound is then the maximum over albf 15(¢).

Informally speakingb(t) corresponds to the problem of
deciding which products are sequenced before/after position
t in the sequence. Indeed, a producis either sequenced
before or after position. Let thenz, € {0,1} denote the
binary variable corresponding to this alternativg, (= 1 if
and only ifp is sequenced strictly befotex,, = 0 otherwise).

As exactlyt products must be sequenced in position., t —
1, we havey "z, = t.

We consider a manufacturing scheduling problem
in which the sequence of products to be manufac-
tured has to be determined so as to minimize the
number of customer orders that have been started
and are waiting to be completed. We describe a
straightforward local search method together with
a powerful lower bound based on a MIP formula-
tion. Finally we introduce another MIP with spe-
cific cuts that allows us to optimally solve medium

size instances. Experimental results are reported. Now let us introduce, for each customet {0, ..., m—1},
three binary variablek., a.,i. € {0,1}.
1 Introduction e b, equals one if and only if customesstarts before.

We consider the manufacturing scheduling problem as de- o ,_ equals one if and only if customeends after or at.
scribed in the 2005 Constraint Modeling Challenge web- _) .
pages. * ic equals one if and only if customestarts before and

“A manufacturer has a number of orders from customers ~ ends after or at (“i” stands for In process).
to satisfy; each order is for a number of different products,we can link these 3 variables as follows: > b, + a. — 1
and only one product can be made at a time. Once a CUsince (1)i, equals 1 if the customer starts before and ends
tomer’s order is started.¢., the first product in the order has after t and (2) a customer must start befarer end after
been made) a stack is created for that customer. When all thenenceb, + a. is never 0 in a solution. Our objective is
products that a customer requires have been made, the ordgr minimize the number of customers for whigh= 1 so,
is sent to the customer, so that the stack is closed. Because gfg objective of the MIP is exactly"" ' i.. It now re-
limited space in the production area, the number of stacks thaf5ins 1o link the customer variables to the product variables:
are in use simultaneousiye., the number of customer orders € {0,m — 13, (X" K)b > S Kz, and
that are in simultaneous production, should be minimized.” I (Zp=o Bep)be = 2up=o RepT

We use the following notation. The Boolean matfixis ~ (>_,—9 Kcp)ac = 32— Kep(1 — 25). In the above equa-
used to identify the products required by customers. The enjon, (Z”:é K.,) plays the role of a big /" (this is the

try K., is 1 if and only if customer: requires produch. m smallest possible one). Altogether, this leads to:

andn respectively denote the total number of customers and
the total number of products. Customers are numbered from m—1
0tom — 1 and products are numbered frémon — 1. We min » _ i,

say that a customerstarts (respectively ends)f and only =0
if the first (resp. last) product required byis sequenced in Z;‘;& Tp =1
positiont. Ve e {0,....,m—1}i. > b.+a.—1

We refer to the web pages of the challenge Ve e {0,...,m — 1}, (Zn:é Kep)be > Z":é Kepp
www.dcs.st-and.ac.uk/ ipg/challenge/index.html v 0 1 o K > h1 Ko(1—
for a complete description of the problem and for a brief c€{0,om =1}, (3o Kep)ae 2 3o Kep(l = 2p)

Vp e {0,...,n—1},z, € {0,1}

bibliography. Ve e {0,...,m — 1}, a¢,be,ic € {0,1}

2 Lower Bound)] Computinglb should be easy since the MIP contaién +
The most basic lower bound is the maximum over all productsy) variables and(n +m) constraints. Experimental results

p of Z;":_Ol K.,. To improve this bound, we introduti&t) a show that this is true for most of the instances.

3 Upper Bound

Constraint Modelling Challenge 2005

Altogether this leads to the following MIP.

We use a very simple local search method to compute an upnino

per bound of the optimal solution. As this procedure is not

the major contribution of the paper, we mention it briefly.

Through out the local search, our criterion is a lexicograph-
ical combination of the number of open stacks and of the sum

of the staring times minus the completion times. The sec

ondary criterion is extremely useful to guide the search to-
wards promising regions. The local search is based on a ran<
dom insertion “move” (remove a product in the sequence and
insert it somewhere else). Such a move is always accepted

if the objective function is improved. Based on a probabil-

ity that decreases over time (like in simulated annealing), the

move is also accepted if it does not deteriorate the objectiv
function too much. The total number of iterations is exactly
50000.

4 MIP Formulation

Yt € {0,.on— 1}, 30y =1
Vp € {0,....,n— 1}, Z;”;Ol zp =1
Vi€ {0,.,n—1}, 5" iy <o
Ve € {0,....,m —1},Vt € {0,...,n — 1},
) Sct 2 Sct—1
Ve e {0,....,m—1},Vt € {0,...,n — 1},
€ct < €ct—1
Ve e {0,....,m —1},Vt € {0,...,n — 1},
Lot = Sep +€cp — 1
Vee {0,...m—1},Vp e {0,....,n—1} s.t., K, =1,
Vt € {O, = 1}7xpt < et
€l e {0,..,n—1},¥t € {0,...,n — 1}, 2, € {0,1}
Ve € {0,....,m —1},Vt € {0,....,n — 1}, Set, €ct, it € {0,1}

4.2 Some nice properties of the MIP

Our MIP contains O(n(m + n)) binary variables and
O(n(m + n)) constraints. We believe this is rather low and

We first describe a basic model and we then introduce somean lead to small search trees. The nice property of the MIP is

cuts to improve the search for the solution.

4.1 Basic Model
We use the following variables:

e Product AssignmentFor each producp and each se-
guence position (0 < t < n), =, is the binary assign-
ment variable that equals 1 if and onlypiis sequenced
in positiont.

Customer Variables. For each customet and each
sequence positios, we have three binary variables
Sety €ct, bt € {0,1} that equal 1 if and only if the cus-
tomer respectively starts before ortaénds after or af,
orisin process at

Stack VariableThe variables € {0, m} represents the
number of stacks simultaneously open in the solution.

The objective is to minimizer. We now describe the con-
straints that ensure we reach an optimal solution.

e One product at a time. For all sequence position

t € {0,...,n — 1}, we have exactly one produdte.,
Zn—l

p=0 Tpt = 1.
Products are sequencedAll products are sequence
somewherei,e., Vp € {0,....,n — 1}, >, xp = 1.

Bounding the number of open customefd.any posi-
tion ¢, the number of customers in process is not greate

thano, i.e, vt € {0,...,n — 1},2::01 it <O

Start and end VariablesSinces,.; equals 1 iff,c starts
before or att, we haveve € {0,..,m — 1},Vt €
{0,....,n — 1},8¢ > Sc¢—1. For the same reason,
Ve € {0,...,m —1},Vt € {0,..,n — 1}, et < €cp1.
Fina”y, ict = S¢t + €Cet — 1

Linking customers and productSor any customer and
productp such thati., = 1, we haver,; < ic.

that when the sequence of products is knowa, (whenzx,,,
variables are fixed), the remaining problem does not require
any branching so, the last line of the MIP can be replaced by

Ve e {O, e, M — 1},\77‘) S {0, = 1}, Scts €ety et € [O, 1]

Interestingly, we could also do the opposite. Indeed, when
Sets €ct, Iep VAlues are fixed, it is easy to see that the remaining
problem is a pure assignment problem. So it does not require
any branching. Hence, we could alternatively replage e

{0, 1} bept S [0, 1]

In practice, this does not prove to be very efficient and it is
much better to state to the MIP that all variables are indeed
binary. However, this shows that our formulation is relatively
tight.

4.3 Cuts
First, we try to “tighten”e¢ and s variables. Consider a
customere. It requiresq Z;‘;& K., products hence
€cqg—1 > landvt > q,e.t > 1 —s. 4 FOr the same reason,
Sen—q > 1 andvt <n —q,s.t > 1 —ec t+q-

Second, we add a redundant constraints on “aggregated”
customers. Consider two customersind ¢’ and letq de-
note the number of products required byr by ¢’. There
areq products sequenced before the end of of ¢/ hence,
€cqg—1 + € q—1 > 1 and for the same reasoR, ,_, +
S¢ n—g = 1.

Third, we add a constraint of “included” customers. Con-
sider two customersandc’ such that all products required by
' are also required by. Then, for anyt, we haves.; > s.
andect Z Colte

Finally, we add a simple constraint to break symmetry. To
do so, we chose a product required by a maximum number of
customers and we constrain it to be sequenced in the first half
of the sequence.

4.4 Things that do not work!

We have tried to use the lower and upper bounds computed in
Sections 2 and 3 to tighten. The outcome of the resulting

10

Constraint Modelling Challenge 2005

MIP is either infeasibility (in this case the initial upper bound move symmetries is both complex and ineffective for the MIP
is optimal) or an optimal solution. Surprisingly, the behaviorapproach. We believe that this strange behavior should be
of this new MIP is much worse than the initial one. deeply investigated.
We have also tried to replace the constraiiis €
{0,....m — 1},¥p st., Kq, = 1L,VE € {0,...,n —
1}7xpt S ict by Ve € {O,...,m - 1},Vt € {O,...,TL —
1}, Zp:K(pzl Zpt < ice. This formulation more compact and
should be more efficient. Preliminary tests have shown that it
increases the average number of nodes by more than 50!
Finally, we have implemented a rather complex MIP for-
mulation to look for an optimal solution that lexicographi-
cally minimize the sequence of products. This MIP is also
using a quadratic number of variables and constraints and al-
lows to break many symmetries (much more than in the initial
MIP) because of the secondary objective function. Unfortu-
nately, this does not work either.

4.5 Experimental Results

All experiments were run on PC Dell Latitude D600 running
XP. Cplex 9.0 has been used to solve the MIPs. We have fol-
lowed the guidelines of the Challenge to report experiments.
The values required in the tables are well suited to CP ap-
proaches but are less relevant to MIP approaches. Indeed,
it is impossible to distinguish the time spent to find an opti-
mal solution from the time spent for the proof itsdtbr this
reason, we have slightly modified the tables. In the following,
the “search effort” always denote the number of nodes in MIP
search trees.

We first report our results on a small set of instances with
various sizes Millerl9, GP1, GP2, GP3, GP4, GP5, GP6,
GP7, GP8, NWRS1, NWRS2, NWRS3, NWRS4, NWRSS5,
NWRS6, NWRS7, NWRS8, SP1, SP2, SP3 and SP4. As
both the lower bound computation (Section 2) and the search
for an optimal solution are based on MIP (Section 4) they
might require a large amount of CPU time. So, we have de-
cided to ignore instances GP5, GP6, GP7, GP8, SP3 and SP4.
We first ran our MIP on the remaining instances with a time
limit of 1200.0 seconds. Within this time limit, the optimal
solution has been found (and proven) for GP1, GP4, NWRS1,
NWRS2, NWRS3, NWRS4 and NWRS5. For the remaining
instances, we ran our small MIP that provides a lower bound
and our simple local search algorithms. The cpu time and the
number of nodes reported are then related to this small MIP
only.

We have also ran our algorithms on the instances clustered
by size (Table 2). Given the huge number of instances, the
search for an optimal solution was stopped after 300 seconds.
The lower bound (Section 2) and the Upper bound (Section 3)
have been computed for all instances that could not be solved
within 300 seconds. We have added two columns to the table:

e “Av. Gap” provides the average relative gap between the
upper and the lower bound

e “Av. Runtime” provides the average runtime over all in-
stances (both solved and unsolved).

5 Conclusion

The major weakness of this approach is that we are not able
to break many symmetries. It seems that adding cuts to re-

11

Constraint Modelling Challenge 2005

Instance | Best objective| Best lower Proved Total Total search
value found | bound found optimal ? Runtime effort
Miller19 13 No 26.64 9543
GP1 45 45 Yes 686.81 183
GP2 41 40 No 922.77 27975
GP3 41 40 No 1169.25 27055
GP4 30 30 Yes 2525 0
GP5 n.a n.a n.a n.a n.a
GP6 n.a n.a n.a n.a n.a
GP7 n.a n.a n.a n.a n.a
GP8 n.a n.a n.a n.a n.a
NWRS1 3 3 Yes 0.14 0
NWRS2 4 4 Yes 0.28 0
NWRS3 7 7 Yes 3.31 24
NWRS4 7 7 Yes 10.36 193
NWRS5 12 12 Yes 204.18 1106
NWRS6 12 10 No 8.03 589
NWRS7 10 6 No 21.97 569
NWRSS8 16 13 No 39.16 3231
SP1 9 6 No 5.87 153
SP2 20 16 No 99.28 25987
SP3 n.a n.a n.a n.a n.a
SP4 n.a n.a n.a n.a n.a

Table 1: Individual results (Ph. Baptiste)

12

Constraint Modelling Challenge 2005

(s1sndeg "yd) synsai a1ebalbby :z a|qel

NM.N mn—”.MUH ..m._(_ .m.c ..m.c ..m.—_ ..m.c ..m.c ..m._(_ ..m.—_ ..m.—_ mm.NN oo.o mH\OMH\QQ;
0T'vE €80 000 |000 [Tré6ee [BU [®U [®eu [z8eSz [6S6T |zz/z |ETSI 05'L6 0T 0z dgm
G99 0S'TT e'u e'u e'u ’'u | 'e'u e'u e'u e'u e'u ¢T'ET 000 osGgTdgm
9.°68 0£'C 000|000 [/8%8569 U |®eu [®U [00TOZ [9e2E [€6'95 [SOTT 1998 STSTdgm
08'€ 6T 9T e'u e'u e'u B'U | 'eu e'u e'u e'u e'u TE6 000 og 0T dgm
6EEY 921 000 [000 [/e688¢ U [®U [®U [T600e [/9G |zvez |18 98'26 0z 0T dgm
0 000 000 [000 [ozezl [®'u [®u [®u [6TS [T,T [v0C |82ZL 00°00T oToTdgm
LS 6 €401 eu |eu |eu [eu [eu [eu [eU eu |eu [/9ce 000 0E0E0gM
959 o v Teu Teu Teu Teu Teu ou U Teu 9602 000 ST0500M
09°€ L6TT 000 [000 [009z5 [®'u [®u [®u [sre [J2e [/1e |s00C 00T 0T 0£0qM
6.°S ov'vT e e e e'u | eu e'u | eu ey e 0L'ST 000 0Z2°0Z2°00M
98'zy ¥S0 000 [000 [vGOeve [B'U [®BU [®u [09Grz |¥62Z |OT'6E |067CT /586 010z 0gM
9/°8 .21 e'u e eru e'u | e'u e'u | eru e'u e'u €9'TT 000 0SGTOgM
8s°zze €59 000 000 [6€€6ey [BU [BU [®U [y826z [€808 |[¥1'86 |LE6 EE'EY STGTOgM
7o'y 09T e'u e'u eu e'u | eu e'u | eru ey e 22’8 000 0S 0T O0M
Seest ST'Z 000 [000 [967T//9 [®u [®U [®U [//962 |gG/. [SZTTIT |SEL 0529 0z 0T 0gM
SL°€ 000 000 [000 |SsTzee [®'u [®'u [®eu [eg/T [oT€ |Si€ |26 00°00T 0T0T0gM
98'¢cT 69'8 e'u e'u e'u ’'U | 'e'u e'u e'u e'u e'u 00’2 000 ososdogm
WH.N mO.HH ..@.C ..m.—_ ..m.—_ ..@.C ..m.c ..m.c ..@.C ..m.: ..@.C Nm.qﬂ oo.o ON\ONIQOQ\S
S0°€9 SLT 000 [000 [8/0TTy [®U [®U [®Uu [06G6Z [8TTZ [E9EY |8CVI 0526 0T 0zdogm
€E'0T TL0T e'u e'u e'u Be'U | 'e'u e'u e'u e'u e'u 02'¢T 000 OmH\deOQ>>
LL7T9T 16 000 |000 [06)80/9 [®'U [®U [®u [/0€/z [/2'98 [60°TOT |LE0T 00°0Z STGTdogm
€6’V LV'ET e'u e'u e'u ’'u | 'e'u e'u e'u e'u e'u JASKS] 000 osoTdogm
79'68T 66'L 000 000 [€9¥90. [®U [®U [®U [Gy86z [9z/8 [E6'ETT [L0'8 00°09 oz oTdogm
6L'S 00°0 000 000 |STy¥TT [®u [®Uu [®u [g/gz [09€ |6.S [GL'9 00°00T orToTdogm
6E°S 0C'1T e'u e'u e'u e'u | 'e'u e'u e'u e'u e'u C9'ET 000 Mmeys

e'u e'u e'u e'u e'u e'u | 'e'u e'u e'u e’u e’u e'u e’u 02 0ywsajgo.d
2’8y c0’'s e'u e'u e'u ’'U | 'e'u e'u e'u e'u eu ¥€'8¢ 79'E ogogwajgoud
09'8 T0°L e'u e'u e'u e'u | 'e'u e'u e'u e'u e'u 16'S¢ 76°0 gToswajgo.d
29°€ 0L'6 000 [000 [00Z8T [®u [®u [®Uu [9o/e [pSe [I5€ |S6EC €0 0T 0gWa|qoud
9v'9 av'8 eu e'u eu ’'u | 'e'u e'u e'u e'u e'u 16°.T 8T 0z 0zwajgoud
€922 020 000 [000 [/2°9v9T [®'U [®U [®eu [0TGZ [2g6 [850Z |88'ST 1266 0T 0zWa|qoud
€29 T.'8 e'u e'u e'u ’'u | 'e'u e'u e’u e'u e’u 20vT 91T osgTwsajgod
8S'Ly 280 000 000 [/9°€/vE [®U [®U [®eu [0S€0E [vOTT [Ev'9E [/8TT 28'S6 STGTWa|qoud
/STT 61°0 000 [000 |erelel [®u [®u [®u [egesz [/S€ |688 2678 60°66 0z 0Twa|qoud
06T 00°0 000 [000 [yT'€s [®'u [®u [®u [/06 [29T [06T |€08 00°00T 0T 0TWa|qoud

xeul uelpaw |ueaw Xew |uelpaw |ueaw | xew uelpaw |ueaw
q I JJOIND
) o dea - aouelsul uonn|os rewndo q punoj anfea ay) uIyIm
awnuny 'Y | % de9 Y | 541105 yoseas 10, pul} 0] 8dueIsul souejsul Jed BWRUNITBIOL | o5 eapy Ajrewndo a4

Jad uoys yoseas

P3AIOS %

13

Constraint Modelling Challenge 2005

A cumulative Model
for a Pattern Sequencing Problem

Nicolas Beldiceanu® and Mats Carlsson?

! LINA FRE CNRS 2729, Ecole des Mines de Nantes, FR-44307 Nantes Cedex 3, France.
Nicolas.Beldiceanu@emn. fr
2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden.
Mats.Carlsson@sics.se

Abstract. This note presents a constraint model for the pattern sequencing prob-
lem proposed at the first constraint modelling challenge at IJCAIL This model is
based on a cumulative constraint. We get a model with a linear number of vari-
ables and constraints according to the number of products and customers. Results
with SICStus Prolog are reported on the benchmark suite provided by the orga-
nizers of the challenge.

1 Problem Description

Given a 0-1 matrix M in which each column j (1 < j < p) corresponds to a product
required by the customers and each row ¢ (1 < ¢ < ¢) corresponds to the order of a
particular customer!, the objective is to find a permutation of the products such that the
maximum number of open orders at any point in the sequence is minimized. Order ¢
is open at point k in the production sequence if there is a product required in order ¢
that appears at or before position & in the sequence and also a product that appears at or
after position & in the sequence.

2 Contribution and Model

Given a p-c 0-1 matrix M, our contribution is a compact model for the pattern sequenc-
ing problem. We came up with a model involving p variables in [1, p], 3 - ¢ variables
taking their values in [1, p], 2 variables taking their values in [0, ¢], and one cumulative,
one alldifferent, one arithmetic as well as ¢ minimum and maximum constraints. We
first provide an example of the pattern sequencing problem and recall the definition of
the cumulative constraint. We then present our model and illustrate it on the example
initially introduced.

Consider the matrix depicted by part (A1) of Fig. 1. Part (B1) gives its correspond-
ing cumulated matrix obtained by setting to 1 each 0 which is both preceded and fol-
lowed by a 1. The cost 3 of this solution corresponds to the maximum number of 1 in the
cumulated matrix. But observe that we can get a lower cost by permutting the fourth and
the last columns. The corresponding matrix is depicted by part (A2) of Fig. 1. Finally,

! The entry c;; = 1 iff customer 4 has ordered some quantity of product 7.

14

123456789

123456789

111101101

010010000

000100110
(A1)

122332221

111111111

011110000

000111110
(B1)

123567894

123456789

111011011

010100000

000001101,
(A2)

Constraint Modelling Challenge 2005

122212222

111111111

011100000

000001111
(B2)

Fig. 1. A first matrix (A1) and its corresponding cumulated matrix (B1). A second matrix (A2)
where we permute two columns of (A1) and it corresponding cumulated matrix (B2).

part (B2) shows its corresponding cumulated matrix from which we conclude that we
have a solution of cost 2. Before presenting our model we shortly recall the definition
of the cumulative constraint.

Given a set of tasks, where each task has an origin, a duration, an end and a resource
consumption, the cumulative constraint enforces that at each point in time, the cumu-
lated height of the set of tasks that overlap that point, does not exceed a given fixed
limit. It also imposes for each task the fact that the end is the sum of the origin and of
the duration of that task.

As depicted by Fig. 2, the key idea of our model is to associate to each row (i.e. cus-
tomer) ¢ of the cumulated matrix a stack task which start at the first 1 on row ¢ and ends
just after the last 1 of row 4. Then the cost of a solution is simply the maximum height
on the corresponding cumulated profile.

For each column j of the 0-1 matrix initially given we create a variable V; ranging
from 1 to the number of columns p. The value of V; gives the position of column j in

a solution. Since Vi, V5, ..
alldifferent([V1, Va, . ..

, Vp]) constraint.

., V}, must be assigned to distinct positions we first have an

For each row (i.e. customer) 7 of the 0-1 matrix initially given we create 3 variables
O;, D; and E; which respectively correspond to the stack opening time, the stack open
duration and the stack closing time of customer i. Thus O; + D; = E;.

We create a minimum(O;, [Vi1, Via, . ..

, Vik:]) and a maximum(E; — 1,[V; 1, Vi 2,

.., Vik;]) constraints for linking the opening time O, and the closing time F; with
those permutation variables which correspond to those columns of the 0-1 matrix ini-
tially given having a 1 on row ¢. The minimum of the stack open duration D); is set to
the number of 1 on row 7 of the initial 0-1 matrix.

Finally we put all the stack tasks in a cumulative constraint, telling that each stack
task uses one unit of the ressource during all it execution. Since we want to have the
same model for different limits on the number of open stacks we create one extra
dummy task which starts at 1, ends at p + 1 and with a height H in [0, ¢|. We link
H with the number of open stacks Cost by the constraint H + Cost = c.

3 Additional Constraints and Enumeration

Symmetry breaking V, < V,, where V,, and V}, are the first two variables in the static

order.

15

Constraint Modelling Challenge 2005

122332221 122212222
TTI11111 1] TT111111 -
OCTT10000 | 0ITI00000|
00011110 000000l

(A1) (A2)

Fig. 2. Stack tasks associated to each row (i.e. customer) and corresponding cumulated profile for
the two matrices of the previous example.

Subset row Suppose the 1s in row ¢ form a subset of the 1s in row j. Then we have
Di S Dj, Ol Z Oj, El § Ej.

Dominance constraints First, we give two ways of transforming a valid solution S’ to
another valid solution S with the same or lower cost. We say that S”" dominates S’.
Then, we express constraints that suppress solutions \S’, taking care not to suppress any
solutions S”. The transformations apply to columns %, j and row ¢ such that the set of
1s in column ¢ equals the set of 1s in column j, except M|q,i] = 0 and M|q, j] = 1.
Transformation 1: Suppose S’ is a solution with O, < V; < V;. We obtain S” by
swapping columns ¢ and j. There are two cases: a) If j is the last column with a 1 in
row g, then £, and D, will decrease. b) Otherwise, E, and D, remain unchanged. The
other rows are unaffected. The maximum peak cannot increase; it might decrease.
Transformation 2: Suppose S’ is a solution with E, > V; > V;. We obtain S” by
swapping columns ¢ and j. There are two cases: a) If j is the first column with a 1 in
row ¢, then O, will increase and D, will decrease. b) Otherwise, O, and D, remain
unchanged. The other rows are unaffected. The maximum peak cannot increase; it might
decrease.

We don’t want to apply Transformation 2 in case (b), as the obtained S” would
match the precondition of Transformation 1, leading to an infinite sequence of trans-
formations. Hence we add the conjunct V; = O, to the precondition of Transforma-
tion 2. We obtain the following dominance constraints, which suppress solutions S”:
(0 <VinNV; < Vj)and =(Eq > V; AV, > V; AOg = V).

Enumeration We use the following strategy for the enumeration:

— Identical columns are merged.

— Variable choice: Columns are ordered by decreasing total number of 1s.

— Value choice: From the middle to both extremities. For example, for 15 columns
we get the following ordering of the values: 8, 9, 7, 10, 6, 11, 5, 12, 4, 13, 3, 14, 2,
15, 1. The intuition being that columns with higher number of 1s should be placed
nearer the middle of the schedule. This value choice heuristics was more successful
than simpler variants for the most difficult instances.

Weakness of the Model It seems that the propagation related to the minimum and
maximum constraints is rather weak since it does not directly takes into account the
fact that the permutation variables should take distinct values. One idea for the future
could be to create the constraint (and a filtering algorithm achieving arc-consistency)

16

Constraint Modelling Challenge 2005

min_max(MIN, MAX, [V1, Vo, ..., V,,]) where MIN is the minimum value of V3, Vo, ..., V,,
MAX is the maximum value of Vi, Vo, ..., V,,, and Vi, Vs, ...V, are all different.

4 Results

We run our solver with a 15 seconds time cutoff limit on a 3GHz Pentium 4 with SIC-
Stus Prolog on all the instances provided by the organizers of the challenge. The next
table summarizes our results. Columns A, B, C, D, E, F, G, H, I, J of the table presented
next page respectively provide

e A: The percentage of solved instances to optimality within the cutoff limit of 15
seconds,

B: The mean best value found for all instances,

C: The mean total time for finding the optimal solution and for proving optimality
for those instances for which we could prove optimality,

D: The median total time for all instances,

E: The maximum time for all instances,

F: The mean total number of backtracks for finding the optimal solution and for
proving optimality for those instances for which we could prove optimality,

G: The median total number of backtracks for all instances,

H: The maximum number of backtracks for all instances,

I: The total number of instances,

J: The number of instances solved to optimality.

All reported times are expressed in milliseconds. A -1 in columns C and F indicates
that we could not solve to optimality any instance of a group corresponding to the first
column.

17

Constraint Modelling Challenge 2005

[File [Al B Cl D[EJ F] Gl __H[1 7]
Harvey-wbo_10_10 97.50] 5.92]] 765.38] 200]15000]] 5879.79] 1466.0] 46452]| 40| 39
Harvey-wbo_1020 2.50| 8.22|| 4050.00|15000] 15000]| 20840.00|116233.5| 20840 40| 1
Harvey-wbo_1030 0.00] 8.87]| -1.00[15000| 15000 1.00[112653.5 o[l 40 0
Harvey_wbo_15.15 11.67]10.12|| 1340.00]15000] 15000|| 7869.57| 86636.5] 23970|| 60| 7
Harvey -wbo_1530 0.00{1337]] _-1.00[15000{ 13000 ~1.00] 861955 ol 60 0
Harvey -wbo_20_10 71.43[12.96| 5396.40] 7150]15000]| 28902.16| 36668.0] 74038 || 70| 30
Harvey-wbo_2020 1.12[15.68|| 4370.00] 15000 15000]| 19625.00] 656535 19625|| 90| 1
Harvey-wbo_30_10 10.00[20.77]| 9797.00|15000| 15000]| 38710.00| 46433.5| 50062][100] 10
Harvey_wbo_30_15 0.00[23.16]| _-1.00[15000| 15000 1.00] 453195 o[120] 0
Harvey-wbo_3030 0.00[25.96]| -1.00[15000| 15000 .00 46454.0 o[[140] 0
Harvey_wbop_10_10 _ |[100.00] 6.75|] 3167.25] 1435]13740]] 24003.47] 13824.0]100746]| 40] 40
Harvey_wbop_1020 0.00 8.80]| -1.00]15000| 15000 ~1.00[107799.5 o[l 40 0
Harvey_wbop_1030 0.00] 9.42|| -1.00[15000| 15000 1.00[111199.5 o[[40 0
Harvey_wbop_15-15 333|11.42|| 775.00|15000]15000]| 4134.00] 85696.5| 5389 60| 2
Harvey_wbop_15.30 0.00{13.93]] -1.00[15000{ 13000 ~1.00] 88745.0 ol 60 0
Harvey_whop20_10 || 45.00[14.57]| 6716.11|15000]15000]| 36210.50] 60876.0] 73901 40] 18
Harvey_wbop_20_20 0.00{17.21]| _-1.00[15000| 15000 21.00] 62415.0 o[l %0 o
Harvey_wbop_30_10 10.00[23.32|[11875.00| 15000| 15000 54780.25| 41399.0| 69201 40| 4
Harvey_wbop_30_15 0.00[24.55]] _-1.00[15000| 15000 1.00| 418445 o[l 60 0
Harvey_wbop_30_30 0.00{27.53]| -1.00[15000| 15000 1.00] 490535 o[[140] 0
Harvey_wbp_10_10 100.00] 7.27]] 211.50] 85| 1480] 1239.10] 463.5] 9987] 40| 40
Harvey_wbp_1020 42.86] 8.01| 3376.33|15000] 15000|| 12292.03| 45963.5| 50432 70| 30
Harvey_wbp_1030 21.00] 9.49|[3299.52|15000|15000|| 11614.19] 36407.0] 75663]|100| 21
Harvey_wbp_15.15 23.33|11.43|| 2631.43|15000]15000|| 12081.57| 60864.0] 27010]| 60| 14
Harvey wbp_1530 5.00(13.04]] 4828.33[15000]15000]| 11137.83] 41308.5| 34109][120] 6
Harvey wbp_20_10 90.00(15.12|| 3403.33] 3470] 15000 16412.83| 16051.5| 48931 40| 36
Harvey-wbp_2020 2.22(17.05][13390.00| 15000| 15000]| 138564.00| 62686.0|140004]] 90| 2
Harvey-wbp_30_10 30.00(23.57|| 6535.62|15000] 15000|| 27417.44| 43974.0 36478 40| 16
Harvey_wbp_30_15 0.00[24.73]|_-1.00[15000| 15000 100 55263.0 o[l 0] 0
Harvey_wbp_3030 0.00[27.07]| -1.00[15000| 15000 1.00] 479835 ol[10] 0
Simonis_problem_10_10][100.00] 8.03]] _95.53] 20| 2590]| 408.95] 16.0] 13481]550]550
Simonis_problem_10_20|| 67.27] 9.03|| 1722.89| 1500]15000|| 3532.77| 3441.0] 79736||550|370
Simonis_problem_15-15|| 58.00|13.06]| 2153.20] 6475|15000|| 9169.26| 25392.5| 89755||550|310
Simonis_problem_15_30|| 37.28|14.38|| 1229.27|15000]15000|| 2411.34| 27862.0] 33803 |[220] 82
Simonis_problem_20_10|| 99.09]15.88|| 1660.86] 625]15000|| 7599.73| 3089.3| 76284|[550(545
Simonis_problem_20_20|| 30.90]18.35|| 1251.76|15000] 15000|| 3901.53| 41040.3| 32262|[220] 63
Simonis_problem_30_10|| 79.45|24.00|| 3919.72| 4330]15000|| 14941.28| 16701.0| 62324|[550]437
Simonis_problem_30_15|| 24.00]26.84|| 2144.90]15000] 15000|| 10059.94| 49759.0 96676]220] 53
Simonis_problem_30_30|| 21.82|20.18|| 132.92|15000]15000|| 288.96| 39811.0] 4893|[110] 24
Simonis_problem_40_20|| 16.36]37.83|| 395.00]15000]15000|| 1172.44| 34265.0] 11890|[110] 18
[Miller_Miller19 [0.00[20.00]] _-1.00] 6900]15000 71.00] 6581.0 o 1] 0]
Wilson_gp30by30 25.00]46.50]| 6900.00]15000]15000]] 6581.00] 237225 6381] 4] 1
Wilson_gp100by 100 0.00[95.75]|_-1.00[15000| 15000 1.00] 152605 ol 4 0
Wilson_nwrsSmallerd || 50.00] 7.75|| 7155.00|15000] 15000 17922.00| 19043.0] 35105]| 4| 2
Wilson_nrwsLarger 0.00{20.75]| _-1.00[15000| 15000 1.00| 242365 ol 4] 0
Wilson_sp# 0.00[46.50]| -1.00[15000| 15000 1.00] 15390.0 ol 4] 0
[Shaw_Shawlnstances || 0.00[16.28] _ -1.00]15000[15000] __ -1.00] 393450] __ O[] 25] 0]

18

Constraint Modelling Challenge 2005

5 Appendix: source code

solve (Matrix, Ps, NbStacks) :-
problem(Matrix, Ps, PsL, NbStacks, ValOrder), min_max (1000, NbStacks, [], PsL, Ps, ValOrder).

min_max (NbStacks0, NbStacks, PsLO, PsL, Ps, ValOrder) :-—

NbStacks #< NbStacksO,

findall (f (PsL,Ps,NbStacks), label (PsL,NbStacks,Valorder,PsL0), [f(PsLl,Psl,Nbsl)]), !,
format (“new incumbent Ps="q Cost="g\n’, [Psl,Nbsl]),

min_max (NbS1l, NbStacks, PsLl, PsL, Ps, ValOrder).

min_max (NbStacks, NbStacks, PsL, PsL, _, _).

label (Ps, NbStacks, ValOrder, Oracle) :- middle_out_labeling(Ps, ValOrder, Oracle), indomain (NbStacks), !.

middle_out_labeling([], _, _)-.

middle_out_labeling([X|Xs], Orderl, []) :- !,

select (X, Orderl, Order2),

middle_out_labeling(Xs, Order2, []).

middle_out_labeling ([X|Xs], Orderl, [O|Oraclel]) :-

suffixchk (Orderl, [O|AfterO]),

(X=0, Oracle2 = Oraclel

; member (X, After0O), Oracle2 = []

)y

selectchk (X, Orderl, Order2), middle_out_labeling(Xs, Order2, Oracle2).

split (N, N, []) -->
split(I, N, [X|Xs]) --> [X], {J is I+l}, split(J, N, Xs).

problem(Matrix, PsOrig, Ps4, NbStacks, ValOrder) :—
nonzero_rows (Matrix, Rowsl),

length (Rows1l, NbO), transpose (Rowsl, RowsT1),

length (RowsT1l, NbCols), length(PsOrig, NbCols),
keys_and_values (RowsT2, RowsTl, PsOrig), !,

keysort (RowsT2, RowsT3), keyclumps (RowsT3, RowsT4),
merge_clumps (RowsT4, RowsT5, Psl), transpose(RowsT5, Rows5),
% Rows5 is the original matrix, lex-sorted by column, identical columns removed.
% PsOrig are the permutation variables corresponding to the original matrix.

% Psl are the permutation variables corresponding to Rows5.

length (Psl, NbP), domain(Psl, 1, NbP),

Mid is (NbP+2)>>1, Midl is Mid-1, NbP1 is NbP+1,

for (Mid, 1, NbPl, L1, []), for(Midl, -1, 0, L2, []), splice(Ll, L2, Valorder, []),
all_distinct (Psl, [on(minmax),consistency(bound)]), NbP1l is NbP+1,

orders_tasks (Rows5, Psl, NbPl, Tasks, [task(l,NbP,NbP1,H,1)1),

tag_by_sum(RowsT5, Psl, Ps2), % order Ps by decreasing #ls

keysort (Ps2, Ps3), keys_and_values(Ps3, _, Ps4), Ps3 = [(_-LB)-P1,_-P2|_],

P1 #> P2, % symmetries, V. 2

NbStacks in LB..NbO, NbStacks + H #= NbO, % lower bound

cumulatives (Tasks, [machine(1,NbO)], [bound (upper)]),

dominance (RowsT5, Psl, Tasks), row_subsets(Rows5, 0, Pairs, []), post_subsets(Pairs, Tasks),

% redundant_cumulatives (0, NbP, RowsT5, Psl, Tasks),
true.

nonzero_rows ([1, [1).

nonzero_rows ([RIRsl], [RIRs2]) :- memberchk(l, R), !, nonzero_rows(Rsl, Rs2).
nonzero_rows ([_|Rsl], Rs2) :- nonzero_rows(Rsl, Rs2).
for(End, _, End) --> !.

for (Cur, Step, End) --> [Cur], {Next is Cur+Step}, for(Next, Step, End).

splice([], [1) -=> [].

splice([a], []) -—> !, [A].

splice([A|As], [BIBs]) --> [A,B], splice(As, Bs).

row_subsets ([], _) -—> [I.

row_subsets ([Row|Rows], I) --> {J is I+l}, row_subsets(Rows, Row, J, J), row_subsets(Rows, J).
row_subsets ([l, _, _,) -=> [I.

row_subsets ([Row2|Rows], Rowl, I1, I2) -->

{J2 is I2+1}, ({subset_01(Rowl, Row2, 0, _)} -> [I1-J2] ; []), row_subsets(Rows, Rowl, I1l, J2).

post_subsets([], _).

post_subsets ([I-J|Pairs], Tasks) :-

nthl (I, Tasks, task(01,D1,El,_,_)), nthl(J, Tasks, task(02,D2,E2,_,_)),
D1 #=< D2, Ol #>= 02, E1 #=< E2, post_subsets(Pairs, Tasks).

redundant_cumulatives (NbP, NbP, _, _, _).

redundant_cumulatives (I, NbP, Cols, Ps, Tasksl) :-

J is I+1, nthl(J, Cols, Col), sumlist(Col, H),

ps_of_supersets (Cols, Ps, Col, Pxs, []), length(Pxs, W),

(wW=:=l -> true

; H=<1 -> true

; min_and_maxl (Pxs, Org, End),
Dur in W..1000,
redundant_cumulatives_tasks(Col, Tasksl, Tasks2, [task(Org,Dur,End,H,1)1),
length(Col, NbO),

cumulatives (Tasks2, [machine(1,NbO)], [bound (upper)]),
% format (‘' redundant cumulatives, column="d #rows="d #columns="d\n’, [J,H,W]),
true

),
redundant_cumulatives (J, NbP, Cols, Ps, Tasksl).

19

ps_of_supersets ([1, (1, _) --> [].
ps_of_supersets ([Col2|Cols], [P|Ps], Coll) -->
({subset_01(Coll, Col2, 0, _)} -> [P] ; []), ps_of_supersets(Cols, Ps, Coll).

redundant_cumulatives_tasks([], [T]) --> [T].
redundant_cumulatives_tasks([0|Col], [T|Ts]) --> !, [T], redundant_cumulatives_tasks(Col, Ts).
redundant_cumulatives_tasks([1|Col], [_|Ts]) --> redundant_cumulatives_tasks(Col, Ts).
% Dominance constraints for any two columns i,j such that
% orders (i) + g = orders(j):
$ NOT (First (q) <Pi<Pj)
$ NOT (First (q)=Pj<Pi<Last (q))
dominance (RowsT5, Psl, Tasks) :—
dominance_items (RowsT5, Psl, Tasks, Items, []), dominance_constraints(Items).
dominance_items ([1, [1, _) -=> [].
dominance_items ([Coli|Cols], [Pi|Ps], Tasks) --> dominance_items(Cols, Ps, Coli, Pi, Tasks).
dominance_items ([1, [1, _, _,) —=> [I.
dominance_items ([Colj|Cols], ([Pj|Ps], Coli, Pi, Tasks) ——>
({subset_01(Coli, Colj, 0, [Q])}
-> ({nthl(Q, Tasks, Task)},
[item(Pi,PJ, Task)]
i 8]
), dominance_items (Cols, Ps, Coli, Pi, Tasks).
subset_01([], [I, _, [1).
subset_01([X|L1l], [X|L2], I, L3) :- !, J is I+1, subset_01(Ll, L2, J, L3).
subset_01([0]L1], [1|L2], I, ([JIL3]) :- J is I+1, subset_01(Ll, L2, J, L3).
dominance_constraints ([1) .
dominance_constraints([item(Pi,P]j, task(0,_,E,_,_)) |Items]) :-
Pi #=< Pj #=> O #>= Pi, Pi #>= Pj #/\ O #= Pj #=> E #=< Pi,
dominance_constraints (Items) .
merge_clumps ([]1, [1, [1).
merge_clumps ([Clump|Clumps], [Col|Cols], [P|Ps]) :—
Clump = [Col-P|R], merge_vars(R, P), merge_clumps (Clumps, Cols, Ps).
merge_vars ([1, _).
merge_vars ([_-X|Xs], X) :- merge_vars(Xs, X).
tag_by_sum([], [1, [1).
tag_by_sum([Col|Cols], [P|Psl], [(W-Sum)-P|Ps2]) :-
sumlist (Col, Sum), W is -Sum, tag_by_sum(Cols, Psl, Ps2).
tag_by_weighted_sum([], [], [], _).
tag_by_weighted_sum([Col|Cols], [P|Psl], [(W-Sum)-P|Ps2], Weights) :—
sumlist (Col, Sum), weighted_sum(Col, Weights, 0, WSum), W is —-WSum,
tag_by_weighted_sum(Cols, Psl, Ps2, Weights) .
weighted_sum([], [], S, S).
weighted_sum([X|Xs], [Y|Ys], S1, S3) :- S2 is S1 + X*Y, weighted_sum(Xs, Ys, S2, S3).
rows_sums ([], []).
rows_sums ([Row|Rows], [Sum|Sums]) :- sumlist (Row, Sum), rows_sums (Rows, Sums).
orders_tasks([], _, _) ——> I[].
orders_tasks([01|0Os], Ps, NbP1l) --> [task(Org,Dur,End,1,1)],
{order_task (01, Ps, Org, End)}, {sumlist(0l, LB)}, {Dur in LB..NbP1},
orders_tasks (0s, Ps, NbP1).
order_task (Bs, Ps, Org, End) :- order_ps(Bs, Ps, Psl, []), min_and_maxl(Psl, Org, End).
order_ps ([], []) -=> [].

order_ps ([0[Bs], [_|Ps]) --> !, order_ps(Bs, Ps).
order_ps([1[Bs], [P|Ps]) —-> [P], order_ps(Bs, Ps).

suffixchk (List, List) :- !.
suffixchk ([_IList], Suffix) :- suffixchk(List, Suffix).

min_and_maxl(Psl, Org, End) :- min(Psl, Org), maxl(Psl, End).

min([X], X) :- !.

min(Row, Min) :- element(_, Row, Min), ge_each(Row, Min).
max1([Max], Maxl) :- !, Max+l #= Maxl.
max1(Row, Maxl) :- element(_, Row, Max), le_each(Row, Max), Max+l #= Maxl.

ge_each([], _).
ge_each([X|Xs], Min) :- X #>= Min, ge_each(Xs, Min).

le_each([], _).
le_each([X|Xs], Max) :— X #=< Max, le_each(Xs, Max).

20

Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005
A dynamic programming approach

Thierry Benoist
Bouygues e-lab, 1 av. Eugéne Freyssinet,
78061 St Quentin en Yvelines Cedex, France
tbenoist@bouygues.com

The problem

A manufacturer has a number of orders from customers to satisfy; each order is for a number of different
products, and only one product can be made at a time. Once a customer's order is started (i.e. the first
product in the order has been made) a stack is created for that customer. When all the products that a
customer requires have been made, the order is sent to the customer, so that the stack is closed.
Because of limited space in the production area, the number of stacks that are in use simultaneously i.e.
the number of customer orders that are in simultaneous production should be minimized.

More formally: we are given a Boolean matrix in which the columns correspond to the products required
by the customers and each row corresponds to the order of a particular customer. The entry c_ij = 1 iff
customer i has ordered some quantity of product j (the quantity ordered is irrelevant). The objective is to
find a permutation of the products such that the maximum number of open orders at any point in the
sequence is minimized: order i is open at point k in he production squence if there is a product
required in order i that appears at or before position k in the sequence and also a product that appears
at or after position k in the sequence

We have n customers (indexed by i) and m products (indexed by j). We have to find a permutation of
{1,...m}. Let s; be the position of product j in the sequence.

P(i) is the set of products of customer i

C(j) is the set of customers ordering product j

Dynamic Programming

Given a solution (permutation) s, the number of open commands at position t only depends on the
product j attached to position t and on the set of products St attached to previous positions (up to 1).
Indeed open commands are C(j) E O(Sy) with O(S)={i T [1..n] , P()CS: | {EP(i)}}, in other words
commands containing product j (namely C(j)) and commands with some products in § but not all
(namely O(Sy)). It is important to note that the actual permutation of St has no impact on the number of
open commands at position t.

Therefore we can design a dynamic program with 2" states, corresponding to all possible subsets of
[1..m]. Any state S can be reached from || different states’ with one product less. If we denote by f(S)
the objective value corresponding to the best permutation of products of S, then S can be recursively
written as:

}£(9)= min (e £(s- {i).[c()E o(s- {i))
| il s
ft@=0

and f([1..m]) is the optimal solution of the problem.
Complexity

Space complexity is 2". More precisely, br problems of size n<64, m=30, we need ex10° bits in
memory.
The computation algorithm reads as follows:

For S in subsets ([1..m]) // 2" subsets
Compute O(k), scanning all commands and intersecting their set of product with k
Then for all productsj (at most m, m/2 in average), compute the union of O(k) and P(j)
Then get the cardinality of thisset and update {SE{j}) if necessary

The time complexity of this algorithm is O(nm2™). However since space complexity limits the size of
tractable instances (with this approach) it is intersecting to focus on the case n and m < 64since in most
programming languages it allows performing intersections, union and even cardinality2 operations in
constant time. For such instance the number of operations is around (n+m)2". In practice computations

X | representing the cardinality of set X
2 Having precomputed the number of bits of all 256x256 bitvectors of size £ 16

21

Constraint Modelling Challenge 2005

times are <1ms when m=10, around 1s when m=20, around 30mn when m=30. Larger problem cannot
be solved with this approach.

Future work

This dynamic program may help solving larger instances. For instance it could explore in one second
nodes of depth m-20 in a chronological branch and bound [Benoist & Cambazard, ongoing work]. Or it
could optimize any window of 20 columns in a local search approach...

Table 1. Aggregate results (Thierry Benoist)
Java Program on PC 2.4Ghz, 1Go RAM.
One run per instance.
No measure of search effort (no backtrack)
Max runtime 2 seconds.
All sets of instances with m £ 20 are solved. For results on problems withm=30 see table 2.

File % solved Mean best Total runtime per instance
optimally within value found in milliseconds
the cutoff limit mean median max
problem_10_10.dat 100% 8.0309 0.56909 0 31
problem_10_20.dat 100% 8.9218 830.309 828 | 1031
problem_15_15.dat 100% 12.869 24.4364 16 78
problem_15 30.dat
problem_20_10.dat 100% 15.878 0.87636 0 16
problem_20_20.dat 100% 17.973 993.545 985 | 1219
problem_30_10.dat 100% 23.953 0.98727 0 31
problem_30_15.dat 100% 25.968 31.1818 31 63
problem_30_30.dat
problem_40_20.dat 100% 6.4727 1296.17 1297 | 1469
Shawlinstances.ixt 100% 13.68 992.52 985 | 1047
wbo_10_10.ixt 100% 5.925 2.79487 0 16
wbo_10_20.ixt 100% 7.35 835.175 829 860
wbo_10_30.txt
wbo_ 15 15.ixt 100% 9.35 24.75 31 47
wbo_15 30.txt
wbo_20_10.ixt 100% 12.9 0 0 0
wbo_20_20.txt 100% 13.689 993.189 985 | 1016
wbo_30_10.txt 100% 20.05 0.48 0 16
wbo_30_15.txt 100% 20.958 31.675 31 62
wbo 30 30.txt
wbop_10_10.txt 100% 6.75 0.8 0 16
wbop_10_20.txt 100% 8.075 838.625 828 937
wbop_10_30.txt
wbop_15 15.txt 100% 10.367 24.4833 16 62
wbop_15_30.txt
wbop_20_10.txt 100% 14.275 0.775 0 16
wbop_20_20.txt 100% 14.867 1009.69 1000 [1110
wbop_30_10.txt 100% 22.475 0.775 0 16
wbop_30_15.txt 100% 22.383 33.8333 31 63
wbop_30_30.txt
wbp_10_10.txt 100% 7.275 1.95 0 47
wbp_10_20.txt 100% 8.7143 830.8 828 875
wbp_10_30.txt
wbp_15_15.txt 100% 11.05 24 .95 16 62
wbp_ 15 30.xt
wbp_20_10.txt 100% 15.125 2.675 0 31
wbp_20_20.ixt 100% 15.411 1009.36 1000 | 1578
wbp_30_10.txt 100% 23.175 1.175 0 16
wbp_30_15.txt 100% 22.983 33.3167 31 63
wbp 30 30.txt

Table 2. Individual results (Thierry Benoist)

22

Same program as in section 1. Complete search method

Constraint Modelling Challenge 2005

Instance

Best objective
value found

Proved
optimal?

Runtime

Search effort to
find optimal solution

Total search effort

Miller19

GP1

GP2

GP3

GP4

GP5

GP6

GP7

GP8

NWRS1

Yes

0.7s

NWRS2

Yes

0.8s

NWRS3

Yes

31s

NWRS4

Yes

30s

NWRS5

Yes

24mn

NWRS6

== NN W

NN

Yes

21mn

NWRS7

NWRS8

SP1

Yes

36s

SP2

SP3

SP4

23

Constraint Modelling Challenge 2005

Dynamic Programming to Minimize the Maximum Number of Open Stacks

M. Garcia de la Banda
School. of Comp. Sci. & Soft. Eng.
Monash University, 6800, Australia

mbanda@csse.monash.edu.au

P. J. Stuckey
NICTA Victoria Laboratory
Dept. of Comp. Sci. & Soft. Eng.
University of Melbourne, 3010, Australia
pjs@cs.mu.oz.au

Abstract

We argue that a complete method for the Open
Stacks problem should be based on dynamic pro-
gramming. Starting from a call based dynamic pro-
gram, we show a number of ways to improve the
dynamic programming search, preprocess the prob-
lem to simplify it, and to determine lower and upper
bounds. We then explore a number of search strate-
gies for reducing the search space. The final dy-
namic programming solution is, we believe, highly
effective.

Dynamic programming is so effective for this problem be-
cause it reduces the raw search space fiBthto 2!7’1, since
we only need to investigate minimum stacks for each subset
of P. Note also that dynamic programming is completely
equivalent to a constraint logic programming approach with
memoing. Although our implementation does not use a CP
system, it certainly can be considered a CP approach.

The following code illustrates oud* call based dynamic
programming algorithm, which improves over a naive dy-
namic programming formulation by taking into account lower
L and upper bounds

stacks(S, L,U)
if (S = 0) return O
if (stack[S]) return stack[S]

1 Introduction
The Open Stacks problem can be phrased as followsPLet

be a set of productg; a set of customers, and let us assume
that the products ordered by custonmagre C' are placed in
stacki satisfyingVve;, c¢; € C,¢; # ¢; : @ # j. Customer;

is active (or stack is open) from the time the first product
ordered byc; is built until the last product ordered hy is
built. The Minimization of Open Stacks Problem (MSOP)
[3] aims at finding an order for building the products/n
which minimises the maximum number of customers active
(or of open stacks) at any time.

2 Dynamic Programming Formulation

The MSOP problem is naturally expressible in a dynamic pro-
gramming formulation. Let(p) be the set of customers or-
dering producip € P, andc(S) = Upesc(p) be the set of
customers ordering products from setC P. Assume that

min=U+1
T:=5
while (min > L and T # 0)
p = indexmin{a(p,S — {p}) |p € T}
T:=T-{p}
if (a(p, S — {p}) > min) break
sp :=max(a(p, S — {p}), stacks(S — {p}, L,U))
if (sp < min)min :=sp
stack[S] = min
if (min > U) FAIL := FAIL U {S}
elseSUCCESS := SUCCESS U {S}
return min

The algorithm starts by checking whethgris empty, in

productp is built immediately before any product from set which case 0 stacks are needed. Otherwise, it checks whether

A C P, and after any other remaining produgt{ A — {p}).
Then, the set of active customers at the tjwig built are

the minimum number of stacks fd¢t has already been com-
puted (and stored intack[S]), in which case it returns the

previously stored result (code shown in light grey). If not, the

a(p, A) = c(p) U (c(A) Ne(P — A —{p}))

algorithm basically computes isp the valuemax(a(p, S —

i.e., those who ordereg, plus those whose orders include {P}),stacks(S —{p}), L, U) for eachp € 5, and updates
some products scheduled befgrand some scheduled after. the current minimum imnin if required. Note, however, that
Crucially, a(p, A) does not depend on any particular order ofthis computation is avoided (thanks to theeak) for prod-

the products in A o — A — {p}. Let stacksp(S) be the

ucts whose active set of customers is greater or equal than

minimum number of stacks required to schedule the set ofhe current minimumnin, since they cannot improve on the
productsS assuming that those iR — S are scheduled earlier. current solution. As a result, the order in which the products

Dynamic programming can be used to definecksp(S) as:
stacksp(S) = Hlelg‘l max{a(p, S —{p}), stacksp(S —{p})}
P

in S are tried will affect the amount of work performed by
the algorithm. The simple heuristic embedded in our algo-
rithm selects the produgtwhich would have the least active

24

Constraint Modelling Challenge 2005

customers if scheduled immediately. The loops also stops as We can use this to improve thé&* algorithm above. We
soon as the current solution equals the lower bound, since weplace the calculation(p, A) with

are only interested in finding one best solution.

The dark grey code stores 8UCCESS the sets which
resulted in finding a solution within the bounds, andiA 7L
those which did not. We will make use of these later.

Calling stacks(P, L,U) returns the minimal number of
stacks required to schedule the produétassuming a lower
bound L and upper bound’. Extracting the optimal solu-
tion found fromstack|] is straightforward, and standard for
dynamic programming.

We can improve the code above by noticing that wheng

computingstacksp(S), the open stacks initially are given by
o(S) = ¢(P — S)Nc(S). If we have a produgk € S where
c(p) C o(S), then there must be a solution toacksp(S)
which starts withp.

Lemma 1 If there exist® € S wherec(p) C o(S) then there
is an optimal order forstacksp(S) beginning withp.

Example 1 Consider the following open stacks problem

|pl p2 p3 p4d p5 p6 p7
cl| X . . . X . X
c2 | X X .
c3 X . X X .
c4 X X . X X
c5 X X

Consider scheduling = {p1,p2, p3, p4, p6} after{p5,p7}
have been scheduled. ThexiS) = {c1, ¢4, ¢5} and an opti-
mal schedule can begin wiil3 sincec(p3) C o(.9). |

We can improve the search further using the following ar-
gument about the minimal number of stacks required. Define

the customer graptG = (V, E) for an open stacks problem
as:V =c¢(P)andE = {(c1,¢2) | Ip € P,{c1,c2} C c(P)}.

That is, nodes represent customers, and nodes are adjacent i

they order the same product. L&f(c)
cin G.

be the degree of node

Lemma 2 The minimal number of stacks required for set of
productsS is at leastb(S) = |o(S)| + min{da(c) | ¢ €
o(5),G" = (V. E = {(c1, c2)[{c1, 2} € (P = S)})}-

Example 2 The customer graph for Example 1 is

TAVAY

Consider scheduling the s&t= {p2, p3, p4, p5, p6, p7} after
{p1}. The open stacks argS) = {c1,c2}. The reduced
customer graph removes the dashed arc betwgemd c2.
The remaining degrees are: 2,2,2,4,2 respective(y) =
[{cl,c2}| 4+ 2 = 4. This is a lower bound on a schedule for

c4

N

a'(p, A) = max{a(p, A),b(A)}

which gives an improved lower bound on the future number
of stacks required.

3 Preprocessing

Our methodology attempts to simplify the problem by apply-
ing two preprocessing steps to the initi@dl The first step
removes fromP any producty’ such thate(p’) C ¢(p) for
omep appearing in the reduced problem. Solving the re-
duced problem gives an optimal value #r and optimal so-
lutions to the reduced problem can be extended to give op-
timal solutions toP by simply placing each’ immediately
after thep that subsumed it.

This was also noted (although not proved) in Becceetri
al. [1]. We can prove it using Lemma 1. Simply note that
if ¢(p’) C ¢(p) then any order forS including p’ but not
includingp must have:(p’) C o(S). Because the problem is
the same when considering the reverse order, the same holds
for orders withp’ beforep.

Example 3 Consider the open stacks problem from Exam-
ple 1. Since:(p2) C ¢(p4) ande(p6) C c¢(p4), the two prod-
ucts can be removed. Inserting them aftérin an optimal
order for the reduced set of products, gives an optimal order
for the original problem.

| p5 p7 p3 pl p4 p2 pé
cl| X X - X . . .
c2 X X . .
c3 . . XX X
c4| . X X - X| - X
c5| X - X

d

four second preprocessing step is more obviou$? dan

be partitioned into two set® = P; U P, such thate(P;) N

c(P,) = 0, then we can independently order followed by

P,. This is noted by Yeun and Richardsf8]. We thought

this was too unrealistic to occur, but it does occur in several

benchmarks, including some of the mildy difficult ones.
Becceneriet al [1] reference techniques for handling tree

like sub-graphs of the customer graph independently, but the

paper is not available (and is in Portugese!).

4 Bounds

Our A* algorithm uses both upper and lower bounds to reduce
the number of subsets visited. Trivial lower and upper bounds
areL = max{|c(p)| | p € P} andU = |C|.

Our approach tries to improve the lower bound by
analysing the customer graph.

Lemma 3 If @ C C is clique in the customer grapfy, the
minimal number of open stacks is at lef3t

We independently determined this lower bound before
finding [1] where they explain a more general approach to

S, since closing any customer requires at least this many opezalculating lower bounds. They introduce the following lower

stacks. O

bound without proof.

25

Constraint Modelling Challenge 2005

Lemma4 If d = 1+ min{dg(c) | c € C} thend is alower ~ 2=™*! for the second, ...272 for the second last, ari™*

bound on the open stacks for the problem. for the last product.
A minor of an open stacks problem can be obtained by indexmin (a(p, S — {p}), —Sece(p 2 ")
either removing an entire customere C (replacingc(p) peS el

by ¢'(p) = c(p) — {c}), or merging two adjacent customers (5) minimizes the maximum of the number of active stacks

(c1,¢2) € E (replacing each product ordefp) by ¢'(p) = required using the improved form A).
(c(p) — {e2}) U{er} if ¢ € c(p), or by (p) = e(p) oth- g the improved formui(y, 4)
erwise). These operations correspond to edge contraction or |ndeXI;1€1é1a (p, S —{p})

node elimination from the customer gra@f.

Lemma5 Letm be the minimal open stacks for a problem
defined bye(p), andm’ be the minimal open stacks for the
problem defined by (p) wherec’ is a minor ofc. Thenm' <

m.

We also implemented the minimal cost node heuristic
(which we’ll denote (6)) of Beccenest al [1] which does
not follow the general greedy format since it selects arcs (not
products) in the customer graph to determine a product order.

With these two lemmas we apply any number of minor5 Search Strategies
steps and use the size of the minimum degree node + 1,
a lower bound for the original problem. Note that we cal
stop when the remaining customer graph is a clique.

negur A* program is particularly effective when called with
L = U = n, where it only explores schedules which use ex-
Becceneriet al. [1] define a heuristic arc contraction ap- actly n active stacks. This is related to the fact that the prob-
proach (HAC) based on this, but provide no proof of correct'em isfixed parameter tractableThis immediately suggests
ness. We built an implementation of Beccereral’s algo- 2" extended search procedure where we successively try each

rithm and a greedy clique finder (that doesn't do contractiong©SSible value from the lower to the upper bound:

but tries starting from each products set of customers). stepwise(L,U)
In order to improve the upper bound we run a number of for ¢try:=LtoU
greedy heuristics of the following general form. FAIL:=0
et min := stacks(P, try, try)
hel;:;is;(.:é%) if (min < try) return min

for (S € FAIL) stack[S]:=0

while (S # 0)
heuristically selecp Note that ifstacks returns a number different frobi+1, this
S:=5—{p} is the optimal value and can be reused in later computations.
if (a(p, S — {p}) > min) min :=a(p, S — {p}) We need to reset the memoed values for FAlLed sets (when
return min stack[S] > U), since they must have failed because the upper

We experimented with eleven heuristics, with the five mostbound was t0o low.
p . Vo We can improve upon this search using binary search. The
successful over all benchmark instances being: following code

(1) Yuen's hueristic 32]: selects at each stage the product
whose intersection of customers with previous active stackginarychop(L,U)

minus the number of new stacks is maximized gmin =U + 1
. while (L < U)
indexmax [c(p) N (P —)| = |e(p) — (P = §)]. FAIL:=SUCCESS =0

o _ o try:=(L+U) div 2
(2) minimizes the number of active stacks and breaks ties in min := stacks(P, try, try)
favor of products that close greater number of stacks (are the if (min < try)

last product in those stacks) gmin ;= min
. . B B B _ U=min—1
indexmin(a(p, § — {p}), —le(p) — <(S = {p})D)- for (S € FAIL U SUCCESS) stack|S] := 0
L . else

(3) minimizes the number of active stacks except (a) all ac- Li=try+1

tive stack numbers less than the current: are considered
equivalent, and (b) ties are again broken in favor of products
that close more stacks.

for (S € FAIL) stack[S]:=0
return gmin

)) _ repeatedly tries the midpoint of the current range. If success-

indexmin(max(min, a(p, S —{p})), =le(p) —(S={pH)- ful, ittries values below it after removing altack[S] compu-
S _ ~tations performed fostacks (P, try, try) (but not those pre-

(4) minimizes the number of active stacks and breaks ties byjously calculated and used by this computation), since they

maximizing a cost given bif.c.(,)2~ %) wheren(S,c) could be too high or too low. If unsuccessful, it tries values

is the number of products’ € S for which customerc above it, after removing FAILed stored values.

appears irc(p’). This effectively assigns to each customer Finally, we noted that often the most expensive stack num-

with m ordered products a cost of (almost) 1 split amongstber to try was the stack number below the optimal, and those

its products as follows2~™ for the first scheduled product, above the optimal were usually easier than those below. This

26

Constraint Modelling Challenge 2005

motivated a backwards stepwise approach where the possib&iven that each extra product could in the worst case double

stack numbers are tried in decreasing order:

backwards(L,U)

try =U

while (try > L)
FAIL:=SUCCESS =0
min := stacks(P, try, try)
if (min > try) return gmin
gmin = min
try :=min — 1
for (S € FAILUSUCCESS) stack[S] :=0

the search space, this is vital. This is masked by using the
definite choice optimization, if both are removed the program
fails to solve NWRS8 which has 20 redundant products out
of 60.

There are 113 instances where the products are separable
(which surprised us somewhat), with 2.42 separate parts on
average. In most cases the result of separating is not much
better than not, since the separable partitions are usually tiny
singletons. But there are examples such as Wandigkl
where the search space reduces from 1853 calitaitks to
183, even though the separable parts are size 1, 1 and 5 out of

This has another advantage: we can stop at any time withg nonredundant products.

a (non-optimal) solution. Note that sinstacks can return
a value less thatry we do not just decrease they by one
each time, but to under the minimum we last found.

6 Experimental Results

The effect of the upper bound heuristics are not too great
once we usdackwards. They improve the number of sets
in 884 cases, but the percentage improvement is tiny overall
(0.0012%) since they do not improve any of the really hard
benchmarks by more that a tiny fraction. Comparatively, the

In this section we briefly describe the effect of the prepro-heuristics rank in the order (1) to (6) (worst to best). Of 5964
Cessing approachesy lower and upper bounds approaches é}ﬂjtltlons of prOdUCtS for 5803 prOblemS, the fOIIOWIng table

searching approaches.

shows the number of times each heuristic returned the (equal)

We compare on all benchmarks except the most difficultPestanswer of all heuristics, theniquebest answer (bettered
SP2, SP3, SP4, which none of our versions can finish in time2ll others), the number of times the answer wasdhtmal
In order to compare the different search approaches we sho@hswer to the problem (of 5803), and the tatamof the

the total number of calls tetacks to optimally solve each

heuristic results is shown.

instance (except SP2, SP3, SP4) for each search strategy with

all optimizations enabled, and thérackwards with some

optimizations disabled individually. The appendix shows the

results for all benchmarks.

Total calls Total time
Search method tetacks (secs)
A* 56,231,534 1386
stepwise 29,887,854 88(
binarychop 25,351,370 715
backwards 21,271,366 572
backwards —definite 33,992,526 1,260
backwards —d'(p, A) 169,638,021 441
backwards —redundant 30,166,640 850
backwards —red —def 70,759,348 2231
backwards —partition 21,275,426 573
backwards —upper 21,298,294 570
backwards —lower 21,452,365 574

The dynamic programming code is written in C, with no

great tuning or clever data structures, and many runtime flag

to allow us to compare the different versions easily.
First of all the definite choice optimization of Lemma 1 is
highly beneficial. The total number of callsgtacks reduces

by 1/3 but the time halves since we avoid search for the best

possible candidate.

The improved search offered by the usexGp, A) instead
of a(p, A) is massive. The search reduces by an order of ma
nitude. But because we havent attempted a very clever impl
mentation ofz’ (p, A) execution is slower, since usiagp, A)
we can have a very tight inner loop.

Removing redundant producig where c(p’) C ¢(p)
for another producp is an important first step. Over the

heur 1) @) @) (4) ®) (6)
best 3046 3596 3615 3840 5073 5446
unigue 29 1 7 43 159 514
optimal | 2733 3231 3248 3458 4608 4986
sum | 98167 96798 96769 96462 94592 940P3

Although the lower bounds approaches are very successful
at finding good lower bounds, the only time they can improve
the backwards approach is when the lower bound is the op-
timal. While this occurs frequently it does not occur on the
hard benchmarks so there is little benefit. The HAC heuristic
is never improved by the cliqgue approach. The clique lower
bound gives the optimal answer in 2718 benchmarks of 5803,
while the HAC approach gives the optimal on 3380.

While the lower and upper bounds are not that useful for
backwards, this is certainly not the case far*, stepwise or
binarychop. Similarly, without using:’(p, A) the lower and
upper bounds are much more important.

EQeferences

[1] J.C. Becceneri, H.H. Yannasse, and N.Y. Soma. A
method for solving the minimization of the maximum
number of open stacks problem within a cutting pro-
cess.Computers & Operations Resear@1:2315-2332,
2004.

B.J. Yuen. Improved heuristics for sequencing cutting
patterns. European Journal of Operational Research
87:57-64, 1995.

B.J. Yuen and K.V. Richardson. Establishing the optimal-
ity of sequencing heuristics for cutting stock problems.

2]

(3]

benchmark suite we remove 16305 redundant products out
of 101385 total products, a 16% reduction in size on average.

European Journal of Operational Resear&4:590-598,
1995.

27

A Appendix

All experiments were run on a Pentium IV 3.4Ghz with 2GB
RAM running Linux Fedora Core 3. The dynamic program-
ming software was written in C, compiled with gcc 3.4.2 us-
ing -O3. The runs are performed using 4l improvements,

all preprocessing steps, all lower and upper bounds heurisitics
(using the best value found), and thackwards stepwise
search approach. In fact the backwards stepwise approach is
fairly insensitive to upper and lower bounds unless the lower
bound is the optimal which can save substantial computation.

Since the program is deterministic the search results are
the same on each run of a benchmark. The timing results
for each suite are aggregates over 10 runs of each individual
benchmark in the suite. For the individuals the time shown
is the average over ten runs of the individual benchmark.
The time calculated is sum of user and system time given by
getrusage , it accords well with wall clock times for these
CPU intensive programs. For the problems that take signifi-
cant time we observed around 10% variation in timings across
different runs of the same benchmark.

The measure of search effort is the number of calls to
stacks that do not immediately return, because of cache hit
or S = (). This is the same as the number of non-symmetric
calls tolabeling if we consider this as a constraint pro-
gramming approach with memoing. Note that since we use
the backwards stepwise approach, between each successive
stack number tried we empty the cache, so the total num-
ber of calls is just the sum of the calls made for each stack
number. The maximum search effort per instance was set at
225 = 33554432 calls tostacks.

Note that we always run the dynamic programming search
even if the calculated lower and upper bounds agree (in which
case we know we have the optimal solution already)

The software found the opimal solutions for all problems
except SP2, SP3 and SP4 which hit the search limit. It finds a
solution of size 19 for SP2 using 25785 callstacks before
hitting the limit trying 18 stacks. The runtime shown for SP2,
SP3 and SP4 is the time to find the best solution. The best
lower bounds we have for SP2, SP3, and SP4 calculated using
lower bound heuristics and usistepwise are 18, 15 and 22
respectively.

28

Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005

File %solved | mean| Total runtime per instance (mg) Search to find optimal Total search effort
best mean | med. max mean | med. max mean| med. max
problem10.10 100% | 8.03 0.09 0 2 7.01 7 23 8.21 7 86
problem10.20 100% | 8.92 0.13 0 4 10.45 10 46 15.66 11 419
problem15.15 100% | 12.87 0.37 0 7 13.75 13 89 39.19 14 584
problem15_30 100% | 14.02 2.49 1 43 25.17 22 487 260.09 23 6031
problem20.10 100% | 15.88 0.52 0 4 12.99 10 92 36.96 28 179
problem20.20 100% | 17.97 5.83 1 86 29.31 19 561 428.12 20 6634
problem30.10 100% | 23.95 1.63 1 9 17.59 10 178 57.62 52 280
problem30.15 100% | 25.97 7.48 3 46 35.45 15 384 282.63 113 1634
problem30.30 100% | 28.32 | 718.36 3 10074 | 999.80 30 | 64954 | 31473.85 30 | 379396
problem40.20 100% | 36.38 96.89 8 607 90.69 20 1329 | 2454.55 147 | 14757
Shaw?20.20 100% | 13.68 12.43 11 42 45.80 19 474 812.76 667 3020
wbo.10_10 100% | 5.92 0.14 0 1 9.82 10 11 14.00 10 60
wbo.10_20 100% | 7.35 0.33 0 6 20.27 19 57 47.98 19 629
wbo_10_30 100% | 8.20 1.27 0 21 26.32 27 30 147.53 28 1621
wbo_15.15 100% | 9.35 1.11 1 7 15.57 15 31 103.60 71 579
wbo_15.30 100% | 11.58 28.34 2 213 85.82 30 1936 | 2496.88 30 | 17724
wbo.20.10 100% | 12.90 0.51 0 3 11.74 10 25 40.26 40 96
wbo.20_20 100% | 13.69 8.72 7 42 38.48 20 338 540.33 363 2894
wbo.30.10 100% | 20.05 1.78 2 5 14.52 10 70 60.79 58 117
wbo_30.15 100% | 20.96 8.08 7 30 28.54 15 155 280.28 253 859
wbo_30.30 100% | 22.56 | 1108.10| 306 8686 | 608.63 30 | 14230 41707.21| 16392 | 319162
wbop.10_10 100% | 6.75 0.10 0 1 9.82 10 10 14.22 10 42
wbop.10.20 100% | 8.07 0.56 0 8 21.02 19 105 69.78 20 715
wbop.10_30 100% | 8.55 1.07 1 25 28.98 28 70 113.22 29 2464
wbop.15.15 100% | 10.37 0.77 0 6 15.25 15 32 71.92 15 313
wbop.15_30 100% | 12.15 18.63 2 197 | 162.52 30 2890 | 1593.28 30 | 18177
wbop.20_10 100% | 14.28 0.49 0 3 11.82 10 28 32.30 25 85
wbop.20_20 100% | 14.87 7.99 2 58 40.24 20 659 473.01 20 3428
wbop.30_10 100% | 22.48 1.21 1 5 10.78 10 22 39.48 39 83
wbop.30_15 100% | 22.38 7.50 5 38 25.13 15 166 249.48 156 1070
wbop.30_30 100% | 23.84| 986.12 87 8770 | 1113.31 30 | 35735| 31250.81| 2973 | 300677
wbp_10_10 100% | 7.28 0.08 0 1 7.60 7 18 11.68 8 70
wbp_10_20 100% | 8.71 0.17 0 2 11.93 12 36 25.07 13 330
wbp_10_30 100% | 9.31 0.20 0 2 14.03 14 21 25.43 15 268
wbp_15.15 100% | 11.05 0.56 0 6 13.82 13 54 59.75 15 509
wbp_15.30 100% | 13.09 5.02 1 60 28.75 23 308 539.16 26 6580
wbp_20.10 100% | 15.12 0.52 0 3 11.97 10 45 41.12 40 96
wbp_20_20 100% | 15.41 7.26 2 83 50.58 19 1000 468.31 31 5136
wbp_30.10 100% | 23.18 2.03 2 8 23.68 10 100 73.33 66 185
wbp_30.15 100% | 22.98 10.56 7 45 57.48 15 651 377.62 270 1348
wbp_30_30 100% | 24.46 | 1203.78 5 17097 | 2071.78 30 | 132556 | 45069.34 61 | 765944

Table 1: Aggregate results: Garcia de la Banda and Stuckey

29

Constraint Modelling Challenge 2005

Instance best value found Proved optimal?| Runtime (ms)| Search to find optimal Total search effort]
Miller _20_40 13 0 610 40 39656
GP1 45 O 8.4 42 42
GP2 40 0 11.2 48 48
GP3 40 O 12.6 50 50
GP4 30 g 10.5 37 37
GP5 95 O 84.8 208 208
GP6 75 0 138.0 100 100
GP7 75 O 118.8 99 99
GP8 60 0 174.3 96 96
NWRS1 3 O 0.2 8 8
NWRS2 4 O 0.1 11 11
NWRS3 7 O 0.0 13 13
NWRS4 7 g 0.1 15 15
NWRS5 12 O 1.4 20 20
NWRS6 12 0 1.0 23 23
NWRS7 10 O 3.0 32 32
NWRSS8 16 0 2118.6 40 86869
SP1 9 O 26.4 17 1269
SP2 19 0 1650 (?) 25785 (?) —
SP3 36 O lhour (?)| 949523 (?) —
SP4 56 O 4hours (?)| 3447816 (?) —

Table 2: Individual results: Garcia de la Banda and Stuckey

30

Constraint Modelling Challenge 2005

B Proofs product with each of these. In order to close the first
Lemma 1 If there existp € S wherec(p) C o(S) then there stack we need to have at leashctive customers.
is an optimal order forstacksp(.S) beginning withp. =
Proof: Take any optimal ordefL;p/TlopIl; of S. Lemmas Letm be th/e minimal open stacks for a problem
Consider the ordesll, p'Tl,11;. We show that the defined byc(p), andm’ be the/njmlmal open stacks f/or the
active stacks for each product can only decrease. Problem defined by (p) wherec” is a minor ofc. Thenm/ <
Consider products il; have the same active sets m.
since the set of products before and after is an un- Proof: Take an optimal ordefl for ¢. Now since
changed. Now consider any prodytt(as a gen- (c1,¢2) € E there is a product that shar@sandc,
eral representative of those products befpren and hence their open lifetimes intersect. Consider
the original order). In the original orderp’ = the same ordeH for ¢’. Sincec; is replaced by,
c(P—Ha—{p}—Hz)Ne({p’ }UPiaU{p}UIl3). In the lifetime of ¢; is now exactly the union of the
the new ordetip” = ¢(P—II,—II3)Ne(PiaU{p}U lifetimes of ¢; andcs, for ¢. Hence the number of
II3). Now (P -1y —{p} —1I3) = ¢(P -1l —1I3) open stacksn’ given byII is such thatn” < m.
sincec(p) C ¢(P—S) C ¢(P—Ty—{p}—II3). and The minimal number for’ ism’ < m” <m. O

c(Pig U{p} UII3) C c({p'} U Pix U {p} UII3).
Henceap” C ap’. We also have to examine the
stacks fop. In the new ordet.(p, S—{p}) C o(S5)
ando(S) is a lower bound on the number of stacks
in any order. Hence ordedI;p'TI;II5 has a mini-
mal number of stacks. i

Lemma 2 The minimal number of stacks required for set of
products S is at leastb(S) = |o(S)| + min{dg/(c) | ¢ €
o(5),G" = (V. E —{(c1, c2)[{e1, 2} € (P = S)})}-

Proof: At the beginning ofS the remaining cus-
tomersc(S). We argue about the minimal num-
ber of stacks required to close any open customer
¢ € ¢(S). In order to close a customernwe need

to have open stacks for the customer and all cus-
tomersc’ adjacent in the customer graph (since
andc’ share some produgtwhich needs to be com-
pleted before we can closg. The reduced cus-
tomer graphz’ removes edges fro@ which cor-
respond to customer-customer dependencies which
may already have been completed (since they may
only occur in products it — S). In order to close
any customer, we need to open at leagt (c)

new customers (since these edges only connect to
unopened customers). Hence the bound holds.

Lemma 3 If @ C C'is clique in the customer grapfi, the
minimal number of open stacks is at le>

Proof: Assume to the contrary. Eliminating all the
customers except thosedh(i.e., replacing:(p) by
¢(p) N Q) gives a problem which clearly is a lower
bound on the original problem. Imagine we have
a schedule on this reduced problem wi€h — 1
stacks. Then clearly there must be one custamer
which becomes inactive before another customer
becomes active. Contradiction since then the prod-
uct wherec; andcs are jointly required cannot be
scheduled. O

Lemma4 If d = 1 + min{dg(c) | c € C} thend is a lower
bound on the open stacks for the problem.

Proof: In order to close a stack we need to have
active a customer, and all its neighbours in the cus-
tomer graph. Since the customer shares at least one

31

Constraint Modelling Challenge 2005

Partition with Minimal I nter section

Emmanuel Hebrard Brahim Hnich Toby Walsh
NICTA and UNSW University College Cork NICTA and UNSW
Sydney, Austalia Ireland Sydney, Austalia
ehebrard@cse.unsw.edu.au b.hnich@A4c.ucc.ie tw@cse.unsw.edu.au

1 Introduction

Our approach relies on interleaving a complete and a heuristic
method. We therefore introduce two models: The first one isa
complete model that channels the permutation of the products
with a matrix of Boolean variables standing for open stack at
a given time and for a given customer. We detail the propa-
gation algorithm for the channelling constraint. The second
model is an approximation approach, the idea is that given a
product p that we schedule at the middle rank (m/2) in the or-
dering, we can approximate the best permutation by the best
partition of products around p. This relies on the observa-
tion that having many non-open stacks is harder to achieve
at mid-schedule than at the start or the end. When there is a
high enough demand, then the number of open stacks tends to
increase and then decrease only once, the rank m/2 is there-
fore critical. The second observation is that once a product is
chosen for the middle rank, the number of open stacks at the
time this product is manufactured depends only on the parti-
tion of the other products before or after, and not on the ac-
tual permutation. Moreover, if we solve this problem for each
product then the best number of stack closed at rank m /2 is a
lower bound for the whole problem. We therefore solve one
such problem for each product, and from this preprocessing
we get a lower bound and also an approximate solution. We
also found that, once each one of these partition problems is
solved, giving this partition as starting point for the complete
method is usually a good improvement. When the prepro-
cessing is completed, then the upper and lower bounds are
handed to the complete method (when they are not already
equal) to hopefully prove optimality.

2 Complete Model

We refer to the matrix containing the data as demand. Then
for any permutation of the columns (products) of demand,
we can construct a matrix openOrders that represents which
orders are open for which products. For instance, let the fol-
lowing matrices represent demand = openOrders for two
possible permutations. The first permutation of the products
has 4 orders opened at once for product 2, whilst the second
permutation has never more than 2 open orders at the same
time:

P P P P P, P
c; 0 1 0 C; 0 1 0
Cy 1 0 1 = (5 1 1 1
C; 1 0 1 C; 1 1 1
Ccy O 1 0 Ccy O 1 0

P P B P P P
c; 0 0 1 C; O 0 1
C: 2 1 1 0 = C. 2 1 1 0
Cs 1 1 0 Cs 1 1 0
Cy O 0 1 Cy O 0 1

Suppose that we have n customers and m products. We
declare an array permutation of m variables, ranging in
[1..m] with an al | di ff constraint. The semantic of
permutation[i] = j is that product i comes j*" in the or-
dering. We also declare a matrix openOrders of n x m
0/1 variables. The semantic of these variables corresponds
to the second and fourth matrices (open orders) in the ex-
ample above. openOrdersfi,j] = 1 iff there exists k,!1
such that permutation[k] < j < permutation[l] and
customer ¢ demands products £ and [. Then we minimise
the maximum sum on the rows of openOrders, that is
maz; () ; openOrdersli, j]).

The most important part of this model is the way
permutation and openOrders are channelled. We devised
a global constraint for that purpose.

Definition 1 SEQUENCECHANNEL([B1,...
alldiff(Xy,..., XA
V1<i<k, Bx,=1A

We need one SEQUENCECHANNEL constraint for each
customer. The Boolean variables [Bi, ..., B,] correspond
to one row of openOrders, and the integer variables
Xq,..., X} to those variables in permutation such that the
corresponding product is demanded by the customer we con-
sider. For instance, on the small example we have:

SEQUENCECHANNEL (openOrders[1], Ps)

e SEQUENCECHANNEL (openOrders|2], Py, Ps)
SEQUENCECHANNEL (openOrders[3], Py, Ps)

e SEQUENCECHANNEL (openOrders[4], Ps)

,By], X1, ...

Now we give
SEQUENCECHANNEL([By, . ..

some
7B’VL]aX17' ..

rules to propagate
,Xk). Let

32

7Xk3) =

g (resp. Bp) be the smallest (resp. greatest) index of a
Boolean variable that contains the value 1, and «; (resp. (1)
be the smallest (resp. greatest) index of a Boolean variable
that does not contain the value 0. The propagation rules that
we present here first compute the values of «g, 8y, a1, 51,
then propagate to the integer variables and conversely, use
the result to refine ag, Bp, 1,81 and prune the boolean
variables:

Propagation Resulting from «y, 5o: The first observation
is that if there exists 7 such that B; = 0 and 7 — « < k then
we have g = i + 1. This is because there is not enough
room for all the 1’s between «q and ¢, and they must be all
consecutive. Of course, the same reasoning can be applied to

Bo-
Then we look at the X;’s. We can prune the bounds of any
X to [ap.. o). When this is done we enforce:

ag = min;(min(F;)) & Bo = max;(mazx(P;))
We have three cases:
1. By —ap+1 < k: we fail.

2. By — ag + 1 = k: then we can set «; and 31 to o and
Bo respectively.

3. Otherwise: For all i such that X; is ground, we enforce:
a1 = min(ay,i) & f1 = max(B,1)

Moreover, if the total number of values in the domains
of the X;’s is equal to &, then we have:

o =09 & B =0

Propagation Resulting from a1, 3;: We have the follow-

ing inequalities:
a1 < mini(max(F;)) & B1 > maz;(min(F;))

Since some indexes lower than or equal to min,(maz(P;))
(resp. greater than or equal to max:; (min(P;))) will be set to
one.

a1 < fBo—k+1&B1>ag+k—1

Since there will be at least £ 17s.
Finally we have B; = 0forall 1 <i < agorn>i> Gy
and B; = 1 forall oy < < 3.

3 Heuristic modd

The basic idea here is that the product that we choose to put in
the middle of the ordering is the most constrained. It is easy
to see that when the first product is manufactured, we need
no more stacks than the demand for that product. This is also
the case for the last product. Most of the time, the number of
open stacks will follows a regular distribution with a unique
peak (or plateau). Moreover, given a product that we choose
to be manufactured in the “middle” of the sequence, only the
partition of the other products before or after the rank /2 is
important to know how many stacks will be necessary at time
m/2. To understand why this method gives good results, it is

Constraint Modelling Challenge 2005

important to notice that for a stack to be closed at time m /2,
it must be closed for either 0..m/2 or m/2..m. Therefore,
consider a product manufactured at time 1 /2, and a partition
that ensure & closed stacks at that time. This ensure at least
km /2 closed stacks (0’s in openOrders) for any permutation
that respects this partition. The problem that we want to solve
can be formulated as follows:

Given a product p, what is the minimum number of open
stacks at time m /2 if we schedule p to rank m /2 ?

The exact rank of other columns does not matter, this value
depends only on how we partition the columns, either be-
fore or after j. Indeed, for any 4, if we schedule product
j to rank m/2, then we have openOrders[i][m/2] = 1
iff either demandli][j] = 1 or there exists k,! such that
demand[i|[k] = 1 and demand]i][l]] = 1 and the products
k and [are scheduled on both sides of m /2, and the exact
ranking of £ and [are not important. We give an equivalent
definition of the problem using set notations:

Definition 2 MININTERSECTPARTITION: given m Sets
81, ---Sm, We must partition those sets into 2 groups G; =
{s11,. .. 81m/2ts G2 = {s21,...82,n/2} sUCh that |G,| =
|G2| and the size of the intersection between the union of all
sets within each group is minimised:

si€G1 s;E€G2

Indeed, given a product j that is scheduled to the rank m /2,
we can represent each product & as the set of customers 4 that
demand k and does not demand j (sx = {i | demand|i, k] =
1Ademand]i, j] = 0}). Now if two of those sets share a “cus-
tomer” ¢ and are not put into the same group (before/after),
then the stack for product j will be open at rank m /2.

We give a constraint program to solve this problem:

1. A set of at most n Boolean variables 71, . .. Z4, one for
each initial 0 in the column j of demand.

2. m—1 Boolean variables Py, ... P,,_1, one for each col-
umn (product) apart form ;. We pose Pj, = 0 iff Py goes
before the rank 4 (given to the column j).

3. We post a sum constraint >, ., ,,,_y) Px = m/2, 10
enforce the partition.

4. For each columns c¢i,co and row r such that
demand[r,c;] = 1, demand[r,j] = 0 and
demand|r, co] = 1, we post a constraint to enforce that
if these two columns are partitioned in different sides,
then Z,. should equal 1:

(P, ® P.,) = Z,

5. We minimise the sum >, .1, ;. Z. i.€., the number of
“preserved” 0’s (or intersections between columns).

This problem is in practice small (at most n + m — 1
Boolean variables) and easy to solve for instances up to a
certain size. However, it is NP-hard, and for really large in-
stances (say for instance 50 products and customers), solv-
ing this partition problem to optimality is difficult. Here is a
sketch of a proof of NP-hardness:

33

Proof: We reduce MAX-2SAT to the problem of partition-
ing the collection of sets {Sy,...,S,} into two collections
G1, G2 of equal size such that | Ug,c;, NUsg,eq, | is mini-
mum.

Let ¢ be a 2SAT formula with » atoms and m binary
clauses. We introduce two sets .S; and S; for every atom x;.
For every pair of literals x;, z; there are 3 possibilities:

1. They are opposites (x; = #;), then we do nothing.

2. Thereisaclause ¢, = (&, ©;), then we introduce n + 1
elements ex1, . .. ex(n41) IN both S; and ;.

3. Otherwise, for the k" such pair, we introduce n + 2
elements fo,+k1,-- - fm+k(n+2) in both S; and Sj.

We first show that partitioning S; and S; in the same col-
lection is never optimal. Consider such a solution, since the
two groups have equal size, there exists j such that S; and S;
are in the second collection. Now if we swap S; and .S;, we
will remove at least 2n(n + 1) intersections, and add at most
2(n — 1)(n + 2). It thus always is an improvement.

As a consequence, any optimal solution corresponds to a
valid 2SAT assignment, moreover, since allowed combina-
tions are less penalised it corresponds to an optimal 2SAT
solution.

3.1 Algorithm

In this section we detail how we combined these two ap-
proaches.

e We solve m times the problem MININTERSECTPARTI-
TION, once for each product.

We collect the intersection size and keep it iff it is
the lowest so far.

Then we consider the partition, and we repre-
sent the problem using the complete model, but modi-
fied as follows: We set permutation[j] = m/2, and
for each i # j, we add permutation[i] < m/2 or
permutation[i] > m/2 according to the partition com-
puted earlier.

We collect the value returned by the complete
method and keep it iff it is the lowest so far.

e Then we pass the bounds to the complete method, for
completeness.

4 Implementation and Discussion

We implemented these models using Hal CSP*. The heuristic
model we actually used for most instances is a slight variation
on the one introduced earlier. The only difference is that in-
stead of choosing one product, we chose a pair of products to
put at rank m/2 — 1 and m/2. The benefits both on lower and
upper bounds usually compensated the fact that O(n?) prob-
lems were to be solved instead of O(n). We usually imposed
no cutoff when solving MININTERSECTPARTITION, but we
imposed time cutoff for the complete method both for solv-
ing “partitioned” problems and the “total” one. The value of
the cutoff varies according to the instances. It is worthwhile
to note that MININTERSECTPARTITION being usually small

Lavailable at http://www.cse.unsw.edu.au/ ehebrard/codef.htm

Constraint Modelling Challenge 2005

and involving only Boolean variables, the number of back-
tracks can be huge for a given duration. On the other hand, the
complete model makes much less backtracks for similar prob-
lem size and duration. For instance, on wbo _30_30. t xt we
will have 75,000 backtracks per second in one case and 900 in
the other. Therefore the search effort column should be taken
with great care, as the search effort corresponding to the com-
plete method is underestimated in comparison with that of
the heuristic model. All the experiments were run on desktop
with an Intel Pentium 4 CPU 3.20GHz and 1Gb of memory.
The “K”, “M” and “G” in the tables correspond respectively
to “Thousands”, “Millions” and “Billions” of Backtracks.

5 Appendix

34

Constraint Modelling Challenge 2005

File solved | value | Total cputime(s) Best solution backtracks Total backtracks

mean | mean | median | max mean | median | max mean | median | max
problem_10_10.dat 100% 8.03 0.6 0.0 417 1K 118 38K 7K 564 511K
problem_10_20.dat | 64% 8.74 32.7 6.0 606.4 M 22K 38M M 116K 38M
problem_15_15.dat
problem_15_30.dat
problem_20_10.dat | 99% 1588 | 1.1 0.2 32.1 2K 1K 104K 7K 2K 128K
problem_20_20.dat | 60% 17.98 | 76.0 33.7 662.0 3M 40K 49M 3M 203K 49M
problem_30_10.dat 100% 23.99 15 0.4 38.1 3K 1K 101K 7K 3K 132K
problem_30_15.dat | 53% 25.98 17.1 7.9 128.1 100K 4K 3M 140K 57K 3M
problem_30_30.dat | 20% 2847 | 3654 | 289.6 4590.0 2iM 253K 763M 2/M 2M 763M
problem_40_20.dat | 30% 36.43 | 54.0 35.0 352.8 4M 43K 90M 4M 199K 90M
Shawlnstances.txt 44% 13.76 | 79.9 41.0 519.1 43K 24K 347K 172K 81K M
whbo_10_10.txt 100% 5.92 0.1 0.1 0.2 484 340 1K 983 926 2K
who_10_20.txt 97% 7.35 8.0 41 59.0 7K 3K 33K 33K 26K 215K
who_10_30.txt 1% 8.20 138.3 126.1 7232 144K 64K M 327K 246K M
whbo_15_15.txt 80% 9.35 138 5.1 103.1 8K 851 85K 35K 11K 434K
who_15_30.txt 11% 11.65 169.5 | 92.6 828.4 180K 25K M 482K 488K M
whbo_20_10.txt 100% 1290 | 03 0.2 25 1K 988 25K 3K 2K 28K
whbo_20_20.txt 65% 13.74 | 353 24.7 307.1 25K 10K 449K 91K 78K 449K
whbo_30_10.txt 100% 20.05 | 16 0.7 9.0 8K 3K 58K 10K 5K 58K
whbo_30_15.txt 59% 2099 | 37.1 31.4 238.8 14K 11K 144K 52K 24K 489K
wh0_30_30.txt 2% 22.73 | 4014 | 3481 1135.4 625K | 110K 16M 3M M 20M
whop_10_10.txt 100% 6.75 0.1 0.1 0.3 767 724 1K 1K 1K 4K
whop_10_20.txt 95% 8.07 10.7 3.8 118.2 9K 8K 28K 41K 26K 389K
whop_10_30.txt 62% 8.57 62.4 55.6 149.1 64K 48K 347K 200K 155K 539K
whbop_15_15.txt 90% 10.37 11.7 11 229.4 7K 1K 124K 35K 4K 871K
whop_15_30.txt 22% 11.20 | 92.7 80.0 279.9 140K | 39K M 697K | 705K M
whbop_20_10.txt 100% 1447 | 0.1 0.1 0.4 1K 1K 3K 1K 1K 3K
whop_20_20.txt 85% 14.88 | 22.2 17.5 168.6 41K 22K 397K 146K | 108K 556K
whop_30_10.txt 100% 2250 | 05 0.4 1.6 4K 4K 10K 5K 5K 10K
whop_30_15.txt 73% 2238 | 283 8.6 274.0 11K 4K 72K 46K 21K 581K
whop_30_30.txt 20% 2394 | 7916 | 5514 4715.1 7IM 795K 1G 78M 5M 1G
whp_10_10.txt 100% 7.28 16 0.1 14.3 1K 668 46K 18K 1K 162K
wbp_10_20.txt 58% 8.73 48.0 5.2 447.6 226K | 17K 2M 367K | 32K 2M
wbp_10_30.txt 62% 9.31 1721 | 374 1207.2 863K | 220K OM M 661K OM
whbp_15_15.txt 40% 11.08 | 38.9 34.6 221.3 13K 2K 91K 200K 44K M
whbp_15_30.txt 29% 1315 | 534.2 | 66.2 29668.6 | 43M 66K 4G 43M 505K 4G
whp_20_10.txt 100% 15.18 14 0.3 12.3 2K 2K 13K 9K 3K 77K
whp_20_20.txt 47% 1550 | 69.9 35.9 466.4 110K 30K 738K 239K 109K M
whp_30_10.txt 100% 2327 | 27 0.5 24.0 5K 3K 57K 12K 3K 87K
whp_30_15.txt 20% 2313 | 325 36.2 56.2 6K 2K 37K 21K 15K 61K
whbp_30_30.txt

Table 1: Aggregate results

Instance | Value | Proved | Runtime | Bestsolution | Total
Miller19 13 YES 9043 139K 13M
GP1 46 NO 640 47M 78M
GP2 45 NO 47339 17K 2G
GP3 44 NO 570 33M 35M
GP4 41 NO 4243.5 89M 1G
GP5

GP6

GP7

GP3

NWRS1 3 YES 65 340K 340K
NWRS2 4 YES 15 86K 87K
NWRS3 7 NO 365 27K 166K
NWRSA 8 NO 344 25K 119K
NWRS5 12 NO 305 14K 53K
NWRS6 12 YES 20 14K 82K
NWRS7 15 NO 5782 14K 29M
NWRS3 17 NO 5656 14K 60M
SP1 9 NO 2124 13K 429K
SP2 22 NO 84936.7 24M 1G
SP3 51 NO 30192.8 600M 600M
SP4

Table 2: Individual results

35

Constraint Modelling Challenge 2005

Improved lower bounds for solving the minimal open stacks problem

Alice Miller,
Department of Computing Science
University of Glasgow, Scotland
alice@dcs.gla.ac.uk

Abstract

In this paper we demonstrate the benefit of calcu-
lating good lower bounds for the value of M, the
maximum number of concurrently open stacks, for
an optimal solution. We give several theoretical re-
sultsand illustrate their use when applying a model
checking approach to find solutions. The improve-
ment afforded is equally valid when a constraints
modelling approach is taken.

1 Introduction

When an optimal solution to a problem is sought, whichever
modelling approach is used, failure to provide good initial
bounds for a solution can make finding a solution more diffi-
cult and, in some cases impossible. In this paper we prove
some theoretical results which provide some good lower
bounds in some cases. Indeed, we could not have solved
many of the final instances without these bounds. We also de-
scribe a construction technique, based on one of our theoreti-
cal results, which often provides us with the optimal solution
without the need for search. When the constructed solution
is not necessarily optimal (the maximal number of stacksis
not equal to the best lower bound) it often provides a very
good solution from which to start a search. We combine our
theoretical results together with a model checking approach
to find an optimal solutionin amost al of the final instances.
It isimportant to note, however, that when using a constraints
modelling approach, the application of the theoretical bounds
is equally valid and, indeed, essential (see [1]).

2 Themodel checking approach

Model checking has been used efficiently to solve a prob-
lem that is very similar to the minimal open stacks problem
(MOSP), namely to solve the rehearsal problem [2].

We have adapted this model to investigate MOSP. Al-
though we have not exploited the magjor advantages of model
checking (concurrency, and communication for example), in
the smaller examplesit provides an efficient method for find-
ing asolution with maximum number of open stackslessthan
or equal to M, for given M, if such a solution exists.

Explicit state model checking with Spin involves convert-
ing a description of asystem (written in the specification lan-

guage Promela) into a finite graph, or state space, and per-
forming a depth-first search over the state space. The nodes
of the state space are the states, which are stored as tuples
consisting of the current values of every variable in the sys-
tem. Propertiesare checked by adepth-first search of the state
space. If astate is reached which has been previously visited
then the search will automatically backtrack. (Thisincludes
self loops.)

As well as checking for deadlock, livelock and assertion
violations, SpIN allows us to verify properties expressed as
linear temporal logic (LTL) formulas. If a path is found for
which a given property is false, the search terminates and the
current path provided as a counter-example.

The property that we use in this example, is a safety prop-
erty (something bad will never happen). For a given M we
assert that no solution with maximum number of open stacks
less than or equal to M is possible. If thereis a solution, we
can examine the associated counter-example to construct the
corresponding sequence of products. This sequence is con-
structed automatically using a Perl script, we do not provide
details here.

One of the features of SpiN that we exploit is automatic
backtracking, described above. If a subsequence of prod-
ucts has been generated in which the maximum number of
open stacks is aready greater than M (and so the current
subsequence can not possibly lead to a solution), a delib-
erate self-loop is introduced, causing the search to back-
track and the current subsequence to be abandoned. In ad-
dition, if the current path has so far successively placed
products pg, p1, . - ., Pn_1, then, because the associated states
a this point would be identical, if any path had previ-
ously been explored for which the first n products were also
Po,P1,---,Pn_1 (inany order), the search would again back-
track (the number of open stacks from this point onwards
would be the same in either path).

The Promela specification for a simple model (the first
wbo_10_10 example) is provided in Appendix 2. It is pro-
vided for the interested reader, and we are happy to provide
additional explanation upon request.

Model checking is a very efficient tool for finding bugsin
programs [3] but proving that no errors exist can be impos-
sible due to memory and time constraints. This is because
finding an error (or solution in our case) involves searching
only part of the state space, and proving no errors requires

36

the entire search space to be searched. As such, in the stacks
problem it is usualy fairly easy to show that a solution for a
given M exists, (and to provide a solution) but - for the larger
examples - difficult (and in some cases impossible) to show
that no solution exists.

The basic approach involves initially setting M to be the
number of customers. We then produce a series of models,
reducing the value of M by 1 each time, until amodel is pro-
duced for which no solution with maximum number of open
stacks less than or equal to M exists. We then increase M
by 1, recreate the associated model, and find a solution. All
of these stages are performed automatically, using atemplate
model and afile containing the particular example.

For some of the larger examples however, it is either very
time-consuming, or impossible due to memory constraints, to
prove the case where no solution exists using model checking
alone. However, by precomputing agood lower bound for the
optimal solution, it is often possible to avoid this last step al-
together. If we have found a solution for which the maximum
number of open stacks is egual to a known lower bound b,
thereis no need to investigate further.

Inthefollowing section, we give sometheoretical resultsto
enable usto establish aset of lower boundsfor each example,
from which we can choose the best.

3 Finding a good lower bound

The simplest lower bound for the number of concurrently
open stacks is given by the maximum number of customers
requesting a single product. In this section we give some re-
sults which help to improve on this lower bound.

First of all we introduce the idea of the degree of a given
customer.

Definition 1 For any customer i, thedegreeof i, deg(i) isthe
number of customers j # ¢ for which i and j select the same
product. (We say that 7 and j arein a product.)

For example, in instance Millerl9, every customer has de-
gree 10 because they all appear in a products with 10 other
customers.

In the following, when we say that M is a lower bound,
we mean that there is no ordering of products such that the
maximum number of concurrently open stacks is less than
M.

Theorem 1 If
M = min{deg(i) : 0 < i < no_of _customers}
then M + 1 isalower bound.

Proof Suppose that z is the first customer to have al of its
orders satisfied. Then when the last order containing = is
filled, there are at least M + 1 stacks open. Thisis because
x has degree at least M, the orders containing x must have
involved opening M stacks for al of the customers adjacent
to z plus a stack for z, none of which can have been closed
as z isthefirst customer to have had all of its ordersfilled.

Corollary 1 If we list the degrees of the customers in
non-descending order, do,di,...,d, say, where n =
no_of_customers — 1 and dy < d; < < d,, thena
lower bound is given by maxz{d; + 1 —i}.

Theorem 2 SQuppose M isthe mFrﬂ'ﬁsﬂ%"éMﬂ%eggﬁrggf %?%%2005

customers. If thereisonly one customer, « say, with deg(x) =
M, then M + 2 isalower bound.

Proof If thereisasolution with the maximum number of open
stacks lessthan M + 1 then by theorem 1 it followsthat x is
the first customer to have all of its products filled. Suppose
that the first product in the sequence of products containing
x is p1, and the last product in the sequence containing «
is p2. Up to and including the point a which po is made,
no customer (y say) not in a product with = can have had a
stack open. (Otherwise at p, thereareatleast M + 1+ 1 =
M + 2 stacks open — every customer in a product with z,
z itself, and y). Similarly, if we reverse the order in which
the products are made, since the maximum number of open
stacks will not increase, « must again be the first customer to
have al of its products filled, and there can be no products
containing a customer not in a product with z up to the last
product containing = (p1). This means, going back to the
original order, if y is some customer not in a product with z,
y can not appear in any product either up to and including p »
or from p; to the fina product inclusive. Thusy can never
appear. Thisisacontradiction.

Corollary 2 If there is only one customer, x say, with mini-
mum degree M, and all other customers have degree at |least
M + 2, then if there is some product p containing 2 of the
customers not in a product with z, then M + 3 is a lower
bound.

Proof As above, but this time we show that if there is a
sequence with the maximum number of concurrently open
stacks less than M + 3, then the product p can not appear
anywherein the sequence.

Theorem 3 For any pair of customers z and y, let R, , be
the size of the set of customers formed by taking the union of
the neighboursof z and the neighboursof ¢y and (if necessary)
removing customersz andy. Let R, betheminimumR,, ,, for
all pairs of customers z and y (where z # y). Then Ry + 1
isalower bound.

Proof Let customers z and y be the first two customers to
have all of their products filled. If z and y have their last
product filled at the same time, and the last product containing
xz and y is p say, then when p is placed, R, , + 2 customers
have orders open. Suppose xz and y have their last product
filled at different times, and suppose x has al of its products
filled first. When the last product for y is filled, there are
R, + 1 customers with orders open. If R, isthe minimum
such R, clearly R» + 1 isalower bound.

Corollary 3 Let Rz be the minimum R, , . for all triples
x,y,zwherex # y # z, then R3 + 1 isalower bound. If we
define R,, ina similar way for all 2 < n < no_of customers
then maz{R, +1: 2 < n < no.of _customers} is alower
bound.

The following result gives an easy way to find a solu-
tion with maximum number of open stacks at most N =

37

no_customers—1, provided al customersdo not have degree
N.

Theorem 4 If at least one customer has degree less than IV,
there is a solution with maximum number of concurrently
open stacks at most V.

Proof Suppose that customer = has degree< N and z re-
quests r products. Then for any sequence in which all of the
r products containing « are placed first, the number of open
stacks will never exceed N. This is because for the first
products the number of stacksis at most deg(x) + 1, and for
the remaining products the stack for z is closed, and so there
areat most N open stacks.

Theorem 5 Let a and b be two products, such that the size of
the union of the customers requiring product a or b (C', UCp)
say) is M. If all customers with degree < M — 1 belong to
both C, and Cy, then M isalower bound.

Proof If the first customer to have al of its products filled
has degree at least M — 1 then, by an argument similar to the
above, M isan upper bound. Assumew.l.0.g. that a is made
before b. Then, since all customers with degree < M — 1
require both products a and b, they will not have their stacks
closed until after both ¢ and b have been made. So no open
stacks will be closed until both a and b have been made. It
followsthat therewill beat least |C, U Cy| = M stacks open
when b ismade. In all cases, M isan upper bound

Theorem 6 Let ¢ and b be two products, such that a is made
before b, and the size of the union of the customers requiring
product a or b (C, UCy) say) is M. Let S, and S, be the sets
of customers requiring product a but not b, and vice versa. If
either:

1. for every customer x € S,, x isin a product with every
customer in Sy or

2. All customersin S, apart from some customer z satisfy
(1) and z isin a product with all but one of the customers
in Sy, Sp \ {y} say, z isin a product with some z in
C\ C,UC(Cy, and z isin some product with y,

then M is an upper bound. If there is some customer z for
which the second case holds, but no suitable y exists, M — 1
isalower bound.

Proof Omitted for space reasons.

4 A Construction

The following construction is loosely based on observation
and Theorem 6. It often providesan optimal solutionimmedi-
ately (instances GP3 and GP4, for example), and in all cases
provides a good starting point. In some instances (GP7 for
example) it provided the best solution, where model check-
ing alone could not cope with such alarge problem.

Construction 1 Let M be the minimum size of the pairwise
unions (see Theorems 5 and 6). Pick two customers a and b
such that the size of the union C', U C}, is equa to M, and
deg(a) < M. List the products ordered by « first, followed

by any (remaining) products on E"f"&f%()@%%’f p Cpfl%I(IIﬁT&eS 2005

that are ordered only by customers belongingto C', U Cy. It
can easily be shown that the number of open stacks at any
point so far is a most M + 1. Henceforth, when we have
placed a product P, we say that a customer is finished if it
does not appear in any unplaced products (unfinished other-
wise), and spareif it has not yet appeared in a placed product.
For any customer 4, let s(i) equal the number of spare points
adjacent to 4, then we define

o S; if i isnot a spare point
sum; = { s; +1 otherwise

The construction proceeds as follows: If the number of un-
finished customersis at most the maximum stack size so far,
stop. Otherwise, pick a customer ¢ such that sum; is mini-
mal. Add al remaining products ordered by ¢ followed by all
products which are ordered only by customers which are not
(now) spare. Repeat as often as necessary.

41 Results

Our experiments were performed on a PC with a 2.4GHz In-
tel Xenon processor, 3Gb of available main memory, running
Linux (2.4.18), with Spin version 4.2.3.

In Table 1 below, we give results of the preprocess to find
the greatest lower bound and the first theorem to find this
bound, for the single detailed examples considered in Table
4 of Appendix 1. GL B isthe greatest lower bound. Bound 0
is the maximum number of 1sin a column, and bounds 1 to
9 correspond to Theorem 1, Corollary 1, Theorem 3, Corol-
lary 3 (three-way unions), Theorem 2, Corollary 2, Corollary
3 (four-way unions), Theorem 5 and Theorem 6. We decided
to not implement bound 7, as it proved to be too time con-
suming. In each case an example pair is provided to construct
agood initial solution using Construction 1, if such a pair ex-
ists. The customer with the smaller degree is given first in
each case.

Our results for the grouped data sets are given in Tables 2
and 3 of Appendix 1. Note that we only record the percentage
solved, the mean value and the average time taken to solve
completely. The time is in seconds, and includes the time
taken to compute the best lower bound in each case. In order
to achieve better, more accurate results, the theoretical results
achieved in this paper have been applied to a Constraint pro-
gramming approach in [1], where results have been recorded
more accurately. We initialy limited our search time to 1
hour per data set. However, for some of the data sets, dueto
time constraints, where we were unlikely to achieve an opti-
mal solution within our time limit, we have not tried to find
a solution at al. In cases where we believe we could have
found optimal solutionsto all instances, but did not (because
we would have missed the submission deadline!) we have
marked al fieldswitha‘T’.

In table 4 we give our results for the single, larger in-
stances. In many cases we have used the construction ap-
proach to find the best solution. Note that in each case, if the
constructed solution is optimal, the time, number of fails etc.
both up to and including the solution is zero (no search is re-
quired). In cases where the constructed solution is one more

38

| File [Lowerbound [Boundused | Examplepair |
Miller19 13 bound 4 0,2)
GP1 45 bound 3 (6,17)
GP2 40 bound 9 (34,2)
GP3 40 bound 1 (18, 20)
GP4 30 bound 0 (31,22)
GP5 95 bound 3 (20, 50)
GP6 75 bound 1 (49,0)
GP7 75 bound 3 (62, 28)
GP3 60 bound 4 (15,31)
NWRS1 3 bound 0 (3,0)
NWRS2 4 bound 0 (4,0)
NWRS3 7 bound 9
NWRHA4 7 bound 1 (2,1)
NWRS5 11 bound 9 (9,19)
NWRS6 12 bound 9 (8,9)
NWRS7 10 bound 9 (13,6)
NWRSS 12 bound 3 (24,2)
SP1 8 bound O
SP2 9 bound 0 (29,1)
SP3 12 bound 4 (35, 63)
SP4 13 bound 0 (22,65)

Table 1: Best lower bounds for the larger instances

than the greatest lower bound, the time etc. up to the best so-
lution is 0, but the time etc. to prove the optimum solution is
not. The number of fails recorded is the number of matched
states in each case (when the search is forced to backtrack).

References

[1] A. Miller, C. Unsworth and P. Prosser. A constraint
model and a reduction operator for the minimising open
stacks problem. In lan Gent and Barbara Smith, editors,
Proceedings of the 4th Workshop on modelling and solv-
ing problems with constraints. Held in conjunction with
[JCAI’ 05. Edinburgh, July 2005.

[2] P. Gregory, A. Miller, and P. Prosser. Solving the re-
hearsal problem with planning and with model checking.
In Brahim Hnich and Toby Walsh, editors, Proceedings
of the 3rd Workshop on modelling and solving problems
with constraints. Held in conjunction with the 16th Euro-
pean Conference on Artificial Intelligence (ECAI 2004).,
pages 157-171, Vaencia, Spain, August 2004.

[3] Gerard J. Holzmann. The logic of bugs. In Proceed-
ings of the 10th ACM S GSOFT Symposium on Founda-
tions of Software Engineering (S\GSOFT’ 02, pages 81—
87, Charleston, South Carolina, USA, November 2002.
ACM Press.

39

Constraint Modelling Challenge 2005

Appendix 1
File % solved | mean value | mean time
problem_10_10.dat 100 8.04 2.05
problem_10_20.dat 100 8.93 272
problem_15_15.dat 100 12.88 2.83
problem_15_30.dat - - -
problem_20_10.dat T T T
problem_20_20.dat T T T
problem_30_10.dat - - -
problem_30_15.dat T T T
problem_30_30.dat - - -
problem_40_30.dat - - -
Shawlnstances.txt 100 13.72 10.56
wbo_10_10 100 6.03 343
wbo_10_20 100 74 3.05
wbo_10_30 100 8.23 72.38
wbo_15_15 100 9.35 5.35
wbo_15_30 - - -
wbo_20_10 100 129 6.5
wbo_20_20 100 13.7 9.02
wbo_30_10 100 20.06 941
wbo_30_15 100 20.98 9.7
wbo_30_30 - - -

Table 2: Timesto find the optimal solution for each data set

40

Constraint Modelling Challenge 2005

File % solved | mean value | meantime
wbop_10_10 100 6.78 14
wbop_10_20 100 8.1 25
whbop_10_30 - - -
wbop_15_15 100 104 4.35
wbop_15_30 - - -
wbop_20_10 100 14.3 52
wbop_20_20 100 14.88 7.1
wbop_30_10 100 225 7.25
wbop_30_15 100 22.38 8.53
wbop_30_30 - - -

wbp_10_10 100 7.3 253
wbp_10_20 100 8.73 31
wbp_10_30 - - -
wbp_15_15 100 11.05 4.0
wbp_15_30 - - -
wbp_20_10 100 15.13 4.65
wbp_20_20 100 15.40 10.56
wbp_30_10 100 23.18 6.83
wbp_30_15 100 230 8.32
wbp_30_30 - - -

Table 3: Timesto find the best solution for each data set

File solved | best | timetobest | failstobest | timeto | failsto
value | solution solution prove prove
Miller19 | Yes 13 0 0 0 0
GP1 Yes 45 0 0 0 0
GP2 Yes 40 0 0 1.79 29888
GP3 Yes 40 17.34 668 0.18 1675
GP4 Yes 30 0 0 0 0
GP5 Yes 95 0 0 0 0
GP6 No 76 0 0 - -
GP7 No 76 0 0 - -
GP8 No 61 0 0 - -
NWRSL | VYes 3 0 0 0 0
NWRS2 | VYes 4 0 0 0.01 47
NWRS3 | VYes 7 0.58 27616 0.88 182412
NWR$4 | Yes 7 0 0 0 0
NWRS5 | Yes 12 1.093 970 23.82 79984
NWRS6 Yes 12 0 0 - -
NWRS7 | Yes 10 0 0 0 0
NWRSS8 No 16 0 0 - -
SP1 Yes 9 0.375 282 277.79 | 1135110
SP2 No 22 0 0 - -
SP3 No 35 0 0 - -
SP4 No 54 0 0 - -

Constraint Modelling Challenge 2005

Table 4: Times and number of fails to prove the best solution for each problem

41

App endix 2 Constraint Modelling Challenge 2005

The Promela specification for a simple model (the first wbo 1010 example) is provided below. Note that we use a set of three
dots. . ., to indicate where code has been omitted, for space reasons.

The main process is the scheduler process, and the product order is decided non-deterministically. Note that M AX is set to
8 here. Thismodel is used to investigate the existence of a solution with maximum stack size at most 8.

#define MAX 8

#define no_prods 10

/* prods labelled 0 to 9 */
#define no_custs 10

/* custs labelled 0 to 9 */

byte no needed=9; bit STOP=0;
bit prod made[no prods]=0;
/*set to 0 if prod still not made*/

byte stacks=0; byte no made=0;
/*no of prods currently made*/

byte orders_left[no_custs]=0;

/*no of prods left for each cust*/
/*set in init*/

bit order started[no custs]=0;
/*has custs order started*/

typedef array {bit prod[no prods]};
hidden array orders[no_custs]=0;

inline choose_ next prod(choice)
{do
::atomic{prod made[0]==0->
choice=0;break}
::atomic{prod made[1]==0->
choice=1;break}

::atomic{prod made[8]==0->
choice=8;break}
::atomic{ ((prod_made [9]==0)
&& (prod_made [0] ==1)) ->
choice=9;break}
od}

inline make prod(j)
{byte count1=0;
stacks=0;
do
::atomic{ (countl==no_custs)->
prod made[j]l=1;
count1=0;break}
::atomic{else->
if
:: ((order_started[countl]==1)
&& (orders_left [countl]>0)) ->

stacks++;

if
(orders [countl] .prod[j]l==1) ->

orders left [countl]--

(orders [countl] .prod[j]==0) ->skip

fi;

:: ((order_started[countl]==0)
&& (orders [countl] .prod[jl==1)) ->
stacks++;

order started[countl]++;
orders_left [countl] --

42

i Constraint Modelling Challenge 2005
::else->skip

fi;
countl++}
od}

proctype scheduler ()
{byte count=no prods;
byte mymax=0; stacks=0;

start:

do

::atomic{ (stacks>MAX) ->skip}
::atomic{ ((stacks<=MAX)

&& (no_made==no_needed)) - >break}
::atomic{else->choose next prod(count) ;
make prod(count); no made++;
printf ("\n make prod %d\n", count) ;
if
:: (stacks>mymax) ->mymax=stacks
::else->skip
£i}
od;
printf ("\n Max stacks %d now\n",mymax) ;
STOP=1

}
init{atomic{

orders[0] .prod[3]=1;
orders[0] .prod[7]=1;
orders left[0]=2;

orders[1] .prod[1]=1;
orders[1] .prod[4]=1;
orders[1] .prod[5]=1;
orders_left[1]=3;

orders[9] .prod[2]=1;
orders_left[9]=1;
prod made[0]=1; /* don’'t need this prod */

run scheduler ()

}
}

#define p (STOP==1)

#include "rehearsal.ltl"

43

Constraint Modelling Challenge 2005

A Constraint Model and a Reduction Operator for the Minimising Open Stacks
Problem

Alice Miller and Patrick Prosser and Chris Unsworth
Department of Computing Science
University of Glasgow, Scotland
{alice/pat/chrisu} @dcs.gla.ac.uk

Abstract

We present two constraint models for the Minimis-
ing Open Stacks Problem (MOSP). Our first model
is based on that reported in [1], and our second is
a refinement and is more space efficient. We also
present two reduction operators for the MOSP. One
reduction operator is applied as a pre-processto re-
move elements of the problem that are provably re-
dundant, the second dynamically reduces the prob-
lem during search. We also introduce conditional
lower bounds, which are lower bounds associated
with a partial assignment. Experiments are then
performed using the two reduction operators, and
our best constraint model using the lower bounds
reported in [2] and the conditional lower bounds.

1 Introduction

The minimising open stacks problem (MOSP) is in principal
very similar to the rehearsal problem, as describedin [3]. The
MOSP is essentially a permutation problem. We are given m
products and »n customers. A customer may demand a hum-
ber of different products. Therefore we can think of a cus-
tomer as a 0/1 vector (or row) of length m and a product as
a 0/1 column, where the column has n elements correspond-
ing to customers. When the first product for a customer is
produced, a stack (or a pallet) is opened for that customer,
and that stack is closed when we have made the last product
for that customer. The products can be made in any order,
i.e. we can permute the columnsin m! ways. By permuting
the columns we can then control when customer orders are
open and closed. The goal is then to find a permutation that
minimises the number of stacks/pallets open at any time.

Below we present two constraint encodings for the MOSP.
The first encoding is based on that in [1] and was imple-
mented in JChoco. Our second encoding is more compact, us-
ing less variables and less constraints, and allows us to model
larger problems. This mode was then encoded in ILOG's
JSolver.

We aso present a reduction operator. This is a pre-
processing step in problem solving, i.e. the problem is pro-
cessed to produce a smaller representative problem that can
then be modelled and solved. The solution to this problem

can then be inflated, in linear time, to give a solution to the
original problem.

2 A Constraint Programming Encodings

Below we introduce the variables and the constraints (in ital-
ics). The main aspects of the model are to 1-fill rows of a0/1
array, such that for agivenrow, say i, welocate the position of
thefirst 1in that row and also thelast 1 in that row, and then
fill the intermediate elements with 1's. This correspondsto a
customer order being open from the first product demanded
up to and including the last product demanded.

M atwo dimensional array. M[i][j] = 1 if and only if cus-
tomer i requires product j. Thearray M is essentially an
array of constants, i.e. M isthedataread ininitially and
does not change.

S aone dimensiona array. If §j] = k then product j will
be produced in time ot (column) k. That is, S gives us
the permutation of the columns. Each variable in S has
a domain 1 to m, and al the variables in S must take
different values.

P aonedimensiona array. If P[k] =j thenintimedlot (col-
umn) k, product j will be produced. In order to force S
and P to maintain a permutation we use the channelling
constraints S[j] = k < P[k] = j.

T isthe timetable, and is a two dimensional array of 0/1
variables. S[j] = k — T[i|[k] = M][i][j]. That is,
if product j is made in time dot k (i.e. §j] = k) and
customer i demands product j (i.e. M[i][j]) then product
j ismadefor customer i intimek (i.e. T[i][k] = M[i][j])-

open isatwo dimensional array of 0/1 variables. If open[i][K]
= 1 then something is made for customer i in time k or
earlier. Consequently, a stack is open for that customer
at time k and if a stack is open for customer i at time k
the stack is also open at time k+1. Therefore we have
a right-rippling constraint such that open[i][k] = 1 —
openli][k + 1] = 1. Thisright-rippleis initiated when
T[i][K] = 1. We then have the following constraints,
T[i][k] =1 — openli][k] = 1.

nc is also a two dimensional array of 0/1 variables. This
array is symmetrical to the array above, stating when
a stack is not closed, and has a left-rippling constraint.
If ncfi][k] = 1 then something is made for customer i

44

in time k or earlier, consequently the stack for this cus-
tomer cannot be closed at time k, and neither can it be
closed at time k-1. Therefore we have the left-rippling
constraint ncfi][k] = 1 — ncli][k — 1] = 1. Again, the
left-rippleis kicked off when T[i][K] = 1. The constraint
isthen T'[i][k] = 1 — nc[i][k] = 1.

Stacked isatwo dimensional array, such that Stacked[i][k] is 1 if

and only if the ith customer’s order is stacked at time k
and the stack has not been closed at timek. Thereforewe
have the constraint Stacked]i][k] = 1 < openl[i][k] =
1 A ncli][k] = 1.

soat isaonedimensiona array of m variables with domains
0 to n, such that soat[K] is the number of stacks open at
time k. Therefore soat[Kk] is the sum of the variablesin
the kth column of array Stacked. Therefore we have the

constraint soat[k] = S°'=0 " Stacked]i] [k].

cost is the objective variable to be minimised, and is the
maximum of the values in the vector soat (stacks open
at time). That is, we want to minimise the maximum
number of stacks open at any time, consequently we
have the constraint maximum(cost, { soat[k] 0<
k < m}). The maximum constraint works as follows.
If the lower bound of some variable soat[k] increases
then lwb(cost) = maz(lwb(cost), lwb(soat[k])). If
lwb(cost) increases then there is no effect. If the up-
per bound of some variable soat[k] decreases then we
find the variable soat[1] that has the largest upper bound
and set upb(cost) = min(upb(cost), upb(soat[l])). If
upb(cost) decreases then for all valuesof k (0 < k <
m) upb(soat[k]) = min(upb(soatlk]), upb(cost)).
The maximum constraint can also be realised using
primitive constraints. Consider the case where we have
3variablesA, B, C and we constrain variable X to be the
maximum of A, B, and C. This can be done as follows:
X>ANX >BAX >CAN(X=AVX=BVX=
).

The above model was coded in JChoco using the S variables
asthedecisions. Variableswereinstantiated in the static order
S0], 91], 52, ... , {m-1]. A symmetry breaking constraint
was applied, similar to that in [1], such that §[0] < §m-1].

A second model was also coded up in JSolver. The P vari-
ables were used as decisions, and the arrays open, nc and
T were not used (and consequently the ripple constraints in
those arrays were not used). To replace the 2-dimensional
arrays T, open and nc, we introduced the following one di-
mensional arrays.

start a one dimensional integer array. If start[i] = k
then the first product for customer i is made in
time dot k. This is maintained by the constraint
minimum(start[i],{S[j] : 0 < j <mAM[][j] =
1}). The minimum constraint can be realised either
as an-ary constraint, similar to maximise above, or by
using primitives (also as above).

end a one dimensiona integer array. If end[i] = k
then the last product for customer i is made in
time dot k. This is maintained by the constraint

Constraint Modelling Challenge 2005

maximum(end[i], {S[j] : 0 < j < mA M[i][j] =
1}).

The variablesin the Stacked array are then maintained by the

constraint, Stacked[i][k] = 1 < start[i] < k < end]i].

This (JSolver) model is significantly more compact than the

onefirst described (coded in JChoco) using less variables and

less constraints. This alows usto model larger problems.

3 A Reduction Operator

We now describe a reduction operator, and present a proof
that this reduction is sound. Essentially this operator isa pre-
process step where we input the data for the problem and re-
move from it products that have no effect on the optimal so-
lution. This delivers a new representative problem that has
less columng/products than the original. This reduced prob-
lem can then be solved to optimality and an optimal solution
to the original problem constructed in linear time.

3.1 Removing Subsumed Columns

Our reduction operator removes a product p,; from the prob-
lem if there exists some other product p; such that al the
customers that demand product p; aso demand product p,
i.e. we say that p; is asubset of p;. A practical example of
this might be two products, the first a dustbin and the second
adustbin lid. No customer demands a dustbin lid if they have
not already demanded a dustbin. We can ignore the produc-
tion of the dusthin lid in constructing our schedule. We can
then re-insert the production of the dustbin lid into the sched-
ule immediately after the production of the dustbin without
atering the cost of that schedule.

Theorem 1 Let P, be a problem (instance) consisting of n
products p1, ps, . .., ps. If, for somed and j, p; C p;, Py,
is the problem obtained from P,, by removing p; and s,
an optimal sequence for P! _,, then si_, (i), the sequence
formed by inserting p; after p; in s’,_;, is an optimal se-
quencefor P,.

To prove the theorem, we use two lemmas;

Lemmal If s, isa sequence corresponding to any prob-
lemwithn — 1 products, and s,, a sequence formed by adding
a new product p;, then if R and R’ are the maximum number
of open stacks for s,,_1 and s,, respectively, R’ > R.

Proof Suppose that the maximum number of stacks (R) for
sn—1 is achieved when product p is placed. All of the cus-
tomers that have stacks open at that point have ordered prod-
ucts before (or at) p. Regardless of wherep; isplaced, thisis
still true, and so the number of stacks openwhen py, is placed
isdtill at least R.

Lemma?2 If s,,_; isa sequence corresponding to any prob-
lemwithn — 1 products, and s,, a sequence formed by adding
a new product p;, which is a subset of some existing product
p;, directly after p;, thenif R and R’ are the maximum open
stacks for s,,_; and s,, respectively, R’ = R.

Proof We show that when p; isinserted after p;, the number
of stacks open when any product p, is placed is unchanged.

45

We also show that the number of open stacks when p; is
placed will be less than or equal to that of p ;.

The number of open stacks open when p, is placed equals
the number of orders opened on or before p ;. minus the num-
ber or orders closed before py,. If py, is positioned before p;
then clearly these totals will be unaffected, thus the number
of open stacks will remain the same.

If pi is positioned after p; then the number of open or-
ders will remain the same as al orders that require p; will
aready have been opened by p;. The number of closed or-
ders will also remain the same as any orders that where pre-
viously closed by p; that require p; will now be closed by p;.
Therefore the number of open stackswill remain the same.

Because p; will not open any new orders, the number of
open stacks when p; is placed will be the same as p; minus
the number of ordersclosed at p ;.

Proof of Theorem 1 Suppose that s¢,_, is the optimal so-
lution of P!_, and that R is the maximum number of open
stacks associated with s? By Lemma 2, the maximum

n—1-
number of open stack for s¢, _, (i), with p; placed directly af-
terp; is R.

If thereisno solutionto P,, with maximum number of open
stacks less than R then we are done. Suppose then, that there
is some solution, s,, with maximum number of open stacks
equal to R’ say, where R’ < R. Removing p; from s,,_1
will resultinasequencefor P!, which must have maximum
number of open stacks R” > R since we know that R is the
optimal value for P} . But by replacing p; we must obtain
a sequence with maximum number of open stacks > R”, by
Lemmal. Thus R’ > R"”. Sowe must have R’ = R”, which
isacontradictionas R” > R.

3.2 Dynamic Reduction

A variant of the reduction operator is used inside the search
process. This operator forces a product to be produced next,
based on the state of the partial solution. Assume the search
process is free to select the next product to produce, and we
have computed the current number of open stacks. If thereis
an unselected product such that if selected next the number
of open stacks does not increase, then that decision is forced.
Furthermore, this selection will not increase the number of
open stacks in any subsequent time slots.

3.3 Lower Bounds

A set of lower bounds is calculated for each problem, dur-
ing a pre-processing stage. The first, boundy, is simply the
maximum number of 1s contained in any given column of
the input data, i.e. the maximum demand for a product. The
other bounds, together with the proof of their validity, are de-
scribed in full in [2]. We summarise them below. Note that,
for any customer i, deg(i) denotes the degree of 4, defined as
the number of customers that order at least one of the same
products as i (i.e. the number of neighbours of 7). Also, if n
is the number of customers, dg,d,...,d,_1 isalist of the
degrees of the customers in non-decreasing order. For any
pair of customerss and j, « # j, we define R; ; to be the set
of neighbours of ¢ and j, not including or j. Similarly we
define R; ; 5, for any set of (distinct) customerss, j and .

Constraint Modelling Challenge 2005

bound; do+1
bounds max{d; +1—i:0<i<n}

. do+2 ifdi—dg>0
bounds = { 0 otherwise
boundy max{|R;,| +1:z #y}
bounds max{|Ry .| +1:x#y#z}

From this set of lower boundswe choose the maximum, G.
If we find a solution with cost G, we know that this must be
an optimal solution.

3.4 Conditional Lower Bounds

An additional set of lower bounds are cal culated which take
into account a partial assignment. We define D, to be the set
of customers that require product a. We define R; to be the
set of neighboursof i. bound,, isthelower bound for apartial
solution where a product a has been assigned to the first time
sot. bound®? isthe lower bound when products a and b have
been assigned to the first two time dots.

bound{ max{|Ry UDy|+1:x}
bound; = max{|RyyUDq|+1:2z#y}
boundy = max{|Rsy.UDs|+1:2#y#z}
bound® = max{bound],bounds, bounds}
bound?"’ max{|R; U D, UDpy|+1:z}
boundg’b = max{|Ryy UD,UDy|+1:2#y}
boundg’b = max{|Rey,UD,UDy|+1:2#y#z}
bound™® = max{bound®®, bounds®, boundy®}

These bounds are used by adding the following constraints.

{s[l]=a — cost>bound®:1<a<m}

{cost < bound® — s[l]#a:1<a<m}
{s[l]=ans2]=b —

cost > bound®® 1<a,b<mAa#b}
{cost < bound®® —

sll]#aVs2l=b — :1<a,b<mAa#b}

Our current implementation has a very high cost to calcu-
late these bounds. The worst of which being bound ®?, which
takes O(n?) time. We calculate this for al a and b therefore
the total time for this is O(m?n*). Because of the limited
time available for development our implementation is very
naive. As aresult we haveincorporated these boundsinto the
model, but the cost to calculate the bounds has not been in-
cludedin the results. We do thisto show the potential benefits
of the technique without the disadvantage of our naive time
restricted code. We have not measured the time to calculate

46

these bounds but we estimate the cost for a problem of size
n = 100 m = 100 to be a few minutes. For the problem
G P5 adding these bounds reduced the total time from one
and a half hours to 26 minutes, and reduced the number of
fails from 12324 to 3706.

4 The Experimental Model

Our experiments were performed using our second model,
implemented in ILOG's JSolver. Problems are read in and
reduced, using the operator derived from Theorem 1 above.
The search process uses the dynamic reduction method de-
scribed in section 3.2. The optimal solution was then found
for this representative problem and proved to be optimal (ei-
ther using the greatest lower bound G discussed above, or by
showing that no solution with smaller cost exists). The ac-
tual optimal solution was then reconstructed by re-inserting
the subsumed products, and this was done in linear time.

5 Work Not Done

We have not fully explored the effectiveness of the reduction
operator. It would be interesting to measure the amount of
reduction achieved on each of the challenge problems. We
have only done an ad-hoc study, which demonstrated that the
use of the operator invariably reduced the time taken to obtain
asolution. Indeed in some cases the improvement was quite
dramatic.

We have not investigated the relative performances of the
various lower bounds, i.e. to measure which oneis typically
best. Indeed, for each of the bounds there were example
instances where the bound gave the greatest lower bound.
It would also be possible to increase the number of lower
bounds checked. For example, extending the notation used
inbounds 4 and 5, max{|Rs,y,-,w| + 1} @so givesan upper
bound, but is expensive to compute.

We have implemented two upper-bounds but we have not
incorporated these into our model. The first upper-bound
reads in the problem and takes the identity permutation as a
solution and then costs that. The second upper bound greed-
ily produces a solution in a “furthest-insertion” style. It was
considered that if the furthest-insertion upper-bound was rea-
sonably good then we could use this not only as an upper-
bound but also use that permutation as a static variable order-
ing heuristic.

We have not systematically investigated variable or value
ordering heuristics.

Acknowledgements

We are grateful to ILOG SA for providing us with the JSolver
toolkit via an Academic Grant licence. We would like to
thank Barbara and lan for producing such an exciting chal-
lenge.

References

[1] P Gregory, A. Miller, and P. Prosser. Solving the re-
hearsal problem with planning and with model checking.
In Brahim Hnich and Toby Walsh, editors, Proceedings
of the Workshop on modelling and solving problems with

Constraint Modelling Challenge 2005

constraints. Held in conjunction with the 16th European
Conference on Artificial Intelligence (ECAI 2004)., pages
157-171, Valencia, Spain, August 2004.

[2] AliceMiller. Improvedlower boundsfor solving the open
stacks problem. In lan Gent and Barbara Smith, editors,
Proceedings of the 5th Workshop on modelling and solv-
ing problems with constraints. Held in conjunction with
IJCAI-05., 2005.

[3] B.M. Smith. Constraint Programming in Practice:
Scheduling a Rehearsal. Technical report, APES, 2003.

Appendix of results

Our experiments were performed on a Pentium4 2.8Ghz pro-
cessor with 512 Mbytes of RAM running Microsoft Windows
XP Professional and Java2 SDK 1.4.2.6 with an increased
heap size of 512 Mbytes. Our model was coded upinlLog's
JSolver. For the experimentsin Tables 1 and 2 we allowed 60
seconds per instance and for Table 3 7200 seconds (2 hours)
per instance. These times include model creation but do not
include the time to compute the lower bounds. In Tables 1
and 2 we give the average and max results for only those in-
stances that we found and proved optimality.

47

Constraint Modelling Challenge 2005

File % solved | mean vaue | time (sec) number of fails
mean | median | max | mean | median max
problem_10_10.dat 100 8.07 0.14 0.14 0.24 2 0 81
problem_10_20.dat 100 8.92 0.16 0.17 041 5 0 679
problem_15_15.dat 100 12.87 021 0.19 114 12 1 3440
problem_15_30.dat 92.73 14.02 0.65 022 |3525 | 446 0 40820
problem_20_10.dat 100 15.88 021 0.2 0.66 40 9 1422
problem_20_20.dat 85 17.98 0.85 023 |36.47 | 1167 1 79327
problem_30_10.dat 100 23.95 0.27 0.24 289 | 128 27 10208
problem_30_15.dat 85.91 25.98 124 028 |37.95 | 2583 26 125372
problem_30_30.dat 66.36 28.55 3.01 0.3 49.74 | 898 0 17141
problem_40_20.dat 62.73 36.49 7.03 0.42 |59.77 | 6948 56 67796
Shawlnstances.txt 68 13.68 0.87 0.33 9.64 | 1006 77 16015
wbo_10_10 100 5.95 0.18 0.19 0.23 11 6 60
wbo_1020 100 7.35 0.24 0.22 0.56 45 5 1005
wbo_10_30 975 8.2 0.29 0.25 0.77 20 3 244
wbo_15_15 100 9.35 0.26 0.24 0.44 72 25 618
wbo_15_30 60 11.62 2.07 036 |4888 | 773 24 25680
wbo_20_10 100 12.9 0.23 0.22 0.33 49 28 342
wbo_20_20 81.11 13.7 1.58 0.39 |34.75 | 2392 119 71762
wbo_30_10 100 20.05 0.29 0.27 1.06 | 119 66 2345
wbo_30_15 98.33 20.96 0.65 0.42 552 | 811 257 10234
wbo_30_30 32.14 22.99 4.09 0.63 [39.92 | 1921 148 32462
wbop_10_10 100 6.75 0.17 0.17 0.2 6 6 21
wbop_10_20 100 8.07 0.26 0.22 1.72 48 0 1515
wbop_10_30 95 8.55 0.69 025 |1255 | 212 1 4813
wbop_15_15 100 10.37 0.24 0.25 0.39 54 31 494
wbop_15_30 75 12.27 1.85 0.33 [4233 | 608 11 14609
wbop_20_10 100 14.28 021 0.22 0.3 40 27 196
wbop_20_20 85.56 14.87 2.09 038 [47.45 | 2811 113 97374
wbop_30_10 100 22.48 0.26 0.27 0.45 70 60 506
wbop_30_15 95 22.38 0.57 041 233 | 625 207 4578
wbop_30_30 47.86 24.37 4.32 0.49 53 | 2256 30 42519
wbp_10_10 100 7.33 0.15 0.16 0.2 5 2 73
wbp_10_20 100 8.71 0.17 0.17 0.28 6 0 106
wbp_10_30 100 9.31 0.19 0.19 0.45 13 0 545
wbp_15_15 100 11.05 0.22 0.2 0.42 44 14 365
wbp_15_30 875 131 0.91 025 |2759 | 605 1 20633
wbp_20_10 100 15.13 021 0.2 0.28 35 26 236
whbp_20_20 86.67 15.42 2.15 0.3 42.33 | 4660 60 209328
wbp_30_10 100 23.18 0.3 0.25 114 | 187 47 2794
wbp_30_15 75 22.98 1.65 0.42 | 2359 | 3864 254 68342
whbp_30_30 47.86 24.96 3.64 0.36 59.2 | 2955 12 103704

Table 1: Times and number of fails to find the optimal solution for each data set

48

Constraint Modelling Challenge 2005

File % solved | mean vaue | time (sec) number of fails
mean | median | max | mean | median max
problem_10_10.dat 100 8.07 0.15 0.14 0.53 15 4 1665
problem_10_20.dat 100 8.92 0.21 017 |1252 | 159 4 35527
problem_15_15.dat 100 12.87 0.57 0.2 5219 | 1234 9 160625
problem_15_30.dat 92.73 14.02 1.26 022 |4347 | 1803 4 29657
problem_20_10.dat 100 15.88 031 0.22 1.98 416 29 7988
problem_20_20.dat 85 17.98 3.66 022 [54.13 | 9030 5 86966
problem_30_10.dat 100 23.95 0.57 0.33 6.45 | 1014 188 22108
problem_30_15.dat 85.91 25.98 6.54 028 |54.72 | 15474 46 117260
problem_30_30.dat 66.36 28.55 1.68 0.3 49.74 | 265 5 6880
problem_40_20.dat 62.73 36.49 5.58 028 |59.77 | 4268 5 26289
Shawlnstances.txt 68 13.68 19 14.02 | 58.78 | 46529 | 35835 | 120177
wbo_10_10 100 5.95 0.19 0.19 031 26 17 262
wbo_1020 100 7.35 0.78 022 [1741 | 624 21 17438
wbo_10_30 975 8.2 145 025 |30.94 | 1260 10 24299
wbo_15_15 100 9.35 113 0.38 753 | 2793 252 26457
wbo_15_30 60 11.62 177 038 [2259 | 541 32 10375
wbo_20_10 100 12.9 0.3 0.28 0.77 284 176 2385
wbo_20_20 81.11 13.7 9.92 055 |[5455 |20594 | 283 94726
wbo_30_10 100 20.05 0.55 0.47 1.89 812 542 3755
wbo_30_15 98.33 20.96 8.06 2.64 [51.77 [21915 | 4539 |142875
wbo_30_30 32.14 22.99 1.72 031 [1198 | 430 9 4409
wbop_10_10 100 6.75 0.18 0.19 0.28 21 14 234
wbop_10_20 100 8.07 14 022 |24.11 | 2219 6 43075
wbop_10_30 95 8.55 0.72 025 |1255 | 228 6 4821
wbop_15_15 100 10.37 0.54 0.27 6.98 | 1034 63 16378
wbop_15_30 75 12.27 2.78 027 [4233 | 1439 8 15190
wbop_20_10 100 14.28 0.27 0.25 0.69 219 110 2020
wbop_20_20 85.56 14.87 5.12 039 |[57.14 | 9828 154 86323
wbop_30_10 100 22.48 0.37 0.36 0.84 358 242 1764
wbop_30_15 95 22.38 7 198 |43.05 | 18200 | 4115 |131457
wbop_30_30 47.86 24.37 156 0.3 36.69 | 280 7 6207
wbp_10_10 100 7.33 0.16 0.16 0.33 23 7 474
wbp_10_20 100 8.71 0.24 0.17 2.72 196 6 5901
wbp_10_30 100 9.31 0.3 0.19 3.75 310 4 7527
wbp_15_15 100 11.05 1.29 0.22 |44.02 | 4457 31 183345
wbp_15_30 875 131 2.28 025 |[4292 | 3678 7 36740
wbp_20_10 100 15.13 0.32 0.3 0.89 458 210 3095
whbp_20_20 86.67 15.42 7.23 0.34 |5873 | 21671 121 131545
wbp_30_10 100 23.18 0.73 05 2.64 | 1535 689 8030
wbp_30_15 75 22.98 8.34 0.89 |[5875 | 24118 | 774 121667
whbp_30_30 47.86 24.96 1.56 0.3 3342 | 841 6 7876

Table 2; Times and number of fails to prove the optimal solution for each data set

49

File solved | best | timetobest | failstobest | timeto fallsto
value | solution solution prove prove
Miller19 | Yes 13 0.312 0 0.328 17
GP1 Yes 45 0.484 0 05 6
GP2 Yes 40 7.375 448 7.375 458
GP3 Yes 40 11.78 399 11.78 411
GP4 Yes 30 47.89 7523 47.89 7542
GP5 Yes 95 1329.71 3700 1329.73 3706
GP6 Yes 75 6812.98 81443 6813 81469
GP7 Yes 75 2020.32 428 20.32 453
GP8 No 84 2.985 22 7200 1105756
NWRSL | Yes 3 0.172 12 0.172 15
NWRS2 | Yes 4 0.203 11 0.203 17
NWRS3 | Yes 7 0.25 28 0.375 579
NWRSA | Yes 7 0.219 21 0.219 31
NWRS5 | Yes 12 0.437 155 26.5 77122
NWRS6 | Yes 12 1.015 354 203.01 615419
NWRS7 No 10 23.15 38377 7200 | 16551474
NWRSS8 No 16 681.46 154359 7200 4554999
SP1 Yes 9 0.391 282 287.58 | 1134916
SP2 No 22 1151 3415 7200 3009686
SP3 No 40 97.7 8115 7200 236553
SP4 No 65 31.72 1148 7200 219177

Constraint Modelling Challenge 2005

Table 3: Times and number of fails to prove the optimal solution for each problem

50

Constraint Modelling Challenge 2005

Trying Hard to Solve the Smultaneously Open Stacks Problem with CP*

Gilles Pesant
Cork Constraint Computation Centre, University CollegekC€ork, Ireland
pesant@crt.umontreal.ca

Abstract hand has constraints that we can exploit. Some con-
straints may be harder than others to exploit well but

This short paper presents a constraint programming having no constraint at all gives us very little leverage.

approach to the Simultaneously Open Stacks Prob-

lem. It reformulates the problem as a constrained e We much prefer solving satisfaction problems over op-
graph colouring problem. The algorithm is de- timisation problems. The natural approach to optimisa-
scribed in detail and experimental results are re- tion in constraint programming even recasts the problem
ported. as a succession of satisfaction problems.

Pure local search would do well on this problem and is

; probably the best line of attack, as evidenced by some of the
1 Introduction scientific literature on the subject. Unfortunately we ava-c
As part of the Fifth Workshop on Modelling and Solving strained to use constraint programming.
Problems with Constraints held during 1JCAI 2005, a Mod-
elling Challenge was proposed. The object of the First Con2 Problem Transfor mation
straint Modelling Challenge is to model tt8&multaneously) i)
Open Stacks (SOS) problem as a constraint problem in the! st_arted out implementing a local search_ approach, hoping
constraint programming or constraint logic programming la to find some role for constraint programming along the way.

guage of your choice. Quoting the organisers: Th(_an | had an idea about a transforr_nation of the _problem
which would definitely involve constraint programming. In
A manufacturer has a number of orders from cus- g section, | describe a transformation of the SOS problem
tomers to satisfy; each order is for a number of dif- into aconstrained graph colouring problem.
ferent products, and only one product can be made In minimising the number of stacks used, we are in fact

at a time. Once a customer's order is started (i.€. yying to find customers whose orders can share a stack (actu-
the first product in the order has been made) a stack ally the physical space taken by a stack), given an appriapria
is created for that customer. When all the products hermytation of the products. Each timeustomers share,
that a customer requires have been made, the order \ye “save”c — 1 stacks. Of course these savings can only be
is sent to the customer, so that the stack is closed. compined if there is a permutation of the products which is
Because of limited space in the production area, the ¢onsistent with every such saving. So which customers can
number of stacks that are in use simultaneously i.e. ogsibly share a stack? A necessary condition is that their o
the number of customer orders that are in simulta- gers do not have a product in common, otherwise they will
neous production, should be minimised. each require a stack when this product is being made. Con-
| believe the main constraint of this challenge is actuallysider then a grapli = (V, E) whose vertices correspond
to find a solution approach based on constraint programmingo customers and with an edge between two vertices if and
In its original form, the problem consists of finding a permu-only if the corresponding orders have a product in common.
tation of the products (corresponding to the productiomord Such a graph has already been defined in the literature, e.g.
that minimises the number of simultaneously open stackd1]. Any subset of customers sharing a stack must correspond
Every permutation is a valid candidate solution i.e. any eleto a stable set in that graph. Actually, an admissible vertex
ment in the space of all permutations is feasible. Thereforeolouring of the graph corresponds to a potential solution t
we are faced with an unconstrained optimisation problemthe SOS problem, where a colour stands for a stack. Itis a
which is doubly bad news for constraint programmers: potential solution because we must make sure that there ex-
ists a permutation which separates the orders in everydghare
tack. In that sense it is a constrained graph colouring-prob
lem. Consider an instance with orders anch products. Let
*Research conducted while the author was on sabbatical leave: V' — {1,2,..., k} represent a mapping of the vertices of
from Ecole Polytechnique de Montréal. G to k colours (identified as integers). Such a mapping ef-

e Intuition and practice agree that constraint programmin
tends to perform relatively better when the problem at

51

Constraint Modelling Challenge 2005

fectively partitionsV into colour classe§’y, . .., Cy. Let P, the graph is not a clique then there must be a pair of vertices
be the set of products required for the order correspondinthat are not adjacent and the corresponding orders can eas-
to vertexv € V, m, € {1,2,...,n} represent the position ily share a stack, using a production sequence which groups
of productp in the production sequence, apg € C; the their respective products, thus separating them. There are
element of colour clas§’; whose rank igi on the stack (i.e. many lower bounds possible and | essentially follow what is
the ;M one to use that physical space). We must then find aescribed in1] but initially proposed in2]. They suggest

k-colouringe of G such that taking the minimum of three values:
c(u) # c(v) (u,v) € E (1) e the maximum number of orders per product;
Ty # Ty 1<p<gqg<n (2) o 1+ the smallest degree of a vertexdh
Pir F Pis 1<r<s<|Ci,1<i<k (3) o the size of a clique which is a minor 6.
Tp < Mg pe Py q€ Py, For the latter, graph minors are computed by heuristic arc

1<j<|Ci|-1,1<i<k (4 contraction as described [d]. To these, | add a fourth al-
. . ,) ternative: the size of a subgraph@fwhich forms a clique,
Equation (1) is for the standard vertex colouring requireme gptained through a simple constructive heuristic. Thajueli
(2) ensures that the,'s represent a permutation of the prod- is actually constructed to break some symmetries during the
ucts, and (3) similarly ensures a consistent ranking of the 0 graph colouring phase so | use it here “for free” and experi-

dersin each colour class. Itis Equation (4) that bring the cO ments confirm that it is sometimes the best of the four.
strainedness to the colouring: for every colour class aed th

every pair of consecutively ranked orders on the stack cor32 Graph Colouring
responding to that class, there is a strict ordering coimstra
between their respective products since these orders ntay
overlap. This is a strong requirement that can significantl
reduce the number of feasible permutations of the product
each time a colour class is fixed.

r;};he strategy to select the number of colokthat we try is
airly simple. We start at the lower bound and look for a valid
constrained colouring. If we prove that there is no solutan

% colours, the lower bound is set to+ 1 and we repeat the
process with a number of colours that is half way between the
. current number and the upper bound. If a solution is found,
3 An Exact Algorithm the upper bound is set to and we repeat the process with
My exact CP algorithm solves successive constraint satisfa ¥ — 1 colours. Otherwise we have reached a given cutoff time
tion problems, looking each time forkacolouring of G with and we repeat the process with a number of colours that is
a differentvalue ok. A colouring is only valid if itis compat- ~ half way between the current number and the upper bound,
ible with at least one product permutation constrained as devithout updating the lower bound. We stop when the lower
scribed above. The colouring is done one colour at a time ané@nd upper bounds coincide, in which case we have proven
the constraints on the product permutations are added gradaptimality, or when a global cutoff time is reached.

ally. The actual graph colouring proceeds one colour at a time
In the rest of this section | go into more detail. Constraintand selects all the vertices to share that colour. It is ddvan
programming actually comes into play in Section 3.3. geous to proceed in this way because as soon as a colour class
is closed, we can add constraints on the product permutation
3.1 Preprocessing (see Section 3.3). The colours are processed in lexicograph
Often we can reduce the size of an instance by disregardingfder and so are the vertices. . _
some of the products that are dominated. Proddoininates In order to break some obvious symmetries, | preassign

productj when the set of orders requirirgs a subset of the vertic&_es in some of the colour classes and_ im_pose a lexico-
set of orders requiring Given any solution to the instance 9graphic ordering on the rest of them. As indicated before,
without considering produgt (and in particular any optimal & Simple constructive heuristic identifies a hopefully &rg
solution), we can construct a solution to the original insta ~ clique inG. Each vertex from that cliquévs, . . ., v¢} must
(i.e. including;) using the same number of open stacks sim-Pelong to a distinct colour class so | can safely preassign
ply by inserting;j immediately afteri in the production se- t0 Ci. For the remaining colour classé€$., ..., Cy, | add
quence: clearly whepi is being made, every order involved constraints’; < Ciiq1, £+ 1 <4 < k — 1, meaning that the
already has an open stack from produictst before [1]). smallest index of a vertex i6; should be less than the small-
Once dominated products have been removed, | buil@stindexof a vertexi’,;. No doubt much more could be
graphG as defined in the previous section. If that graph isdone to break symmetries.
a clique then no two orders may share a stack so we can in); .
mediately conclude that the minimum number of stacks is the-3 Product Permutation
number of orders. As soon as a colour clags is closed (i.e. all the vertices of
In the other, more interesting cases, lower and uppethat colour have been selected), we have identified the-corre
bounds on the number of colours necessary to colour theponding set of orders sharing a stack. This in turn comstrai
graph (i.e. the number of stacks necessary) are computdle space of feasible product permutations: there must exis
once before the start of the search. The upper bound is vegn ordering of the elements 6f consistent with an ordering
simple and corresponds to the number of orders minus one: @f the products which separates the orders. As each colour

52

Constraint Modelling Challenge 2005

class is closed, the number of feasible product permutation?). For the individual instances, which are generally large

decreases. If that number reaches zero (i.e. the domain ofautoff time of one hour was selected.

m, becomes empty), we can backtrack. Here are a few observations. The smaller instances are all
The basic CP model corresponding to (2)-(4) is: solved to optimality but that percentage goes down as the

size increases, as should be expected. For a fixed number

gl Ldifferent ((m)i<p<n) (5) of orders, the performance generally increases with the-num
al I different ((pi)i<j<ici-1) 1<i<k (6) ber of products: this is not surprising since more products
Tp < Ty p€P,,,q€ P, ,, mean fewer opportunities of sharing a stack between orders
1<j<|Ci| -1, and lower combinatorics for this algorithm. The very low

i<k 7 median \{alues also indicate tha}t a majority of ins’ganc_es are
l<is () very easily solved by the algorithm. One exception is the
m€{L,2,...,n} 1<p<n (8) set “ShawlInstances.txt” which appears to be more balanced.
pij € C; 1<j<|Ci| -1, Its percentage of_instances solved to optimality also (_“:timb
1<i<k ©) qmckly as more time is given (from a very low 16%_W|th|n_
- = one minute to 52% within five minutes). Upon further investi-
| search this constrained solution space in the followinggation, the algorithm actually solves every instance af$ka
way. Constraints (5) and (8) are present from the start. Wherto optimality within twenty minutes. Many of the individual
ever a colour class is closed, s@y, we may add constraints instances are solved to optimality quickly but the algarith
(6), (7), and (9) for that. | then look for a feasible assignment also performs poorly on some of the larger ones.
of the (pij)1<j<|c,|—1 variables { fixed), which allows con-
straints (7) to do some filtering. This assignment may need Dijscussion
of course to be backtracked over. Only once the colouring i
complete do | seek a feasible assignment of (thg1<p<n
variables.

Tn this challenge, | aimed to design a solution approach in
which constraint programming plays a significant role at the

- . . I . ling | I | ly di f ff
Itis possible to tighten that model by adding implied unarymgdpealrr:%hgﬁnvolv%l:jrrgsel yaldsl(;eg(taiirrglcl)yStkgptr?tysiemglr(tes :1%

constraints. If the orders preceeding an orden a stack they bell d whistles. t ke it ier t | d
share involve a total afproducts and since these products are2S''S and WNISties, 1o make it easier {0 analyse and compare

distinct, a product involved in must be sequenced after these the core ideas.

t other products. The same reasoning applies for the orders One consequence of this is th_at the graph colouring com-
succeeding, giving us: ponent is very basic and there lies a potential source of im-

provement. | believe much of the vast expertise in solving

j—1 ICi graph colouring problems could be added here and the al-

Z |Pp| <mp<n— Z |P,,, pe P, gorithm’s performance would greatly benefit from it. In my

=1 =j+1 opinion, this approachis interesting because it calls oela w
1<j <, studied problem, graph colouring, with an extra twist tht C

i can handle well.
1<i<k (10)

We could go further than these “monochrome” constraintsA cknowledgements

and add more global unary inequalities that keep track, fOfrhis research was conducted while | was on sabbatical leave
every producp, of all the other products necessarily before 4 the Cork Constraint Computation Centre (4C) and was sup-
or afterp in the sequence, based on the same reasoning by e in part by Science Foundation Ireland. I wish to thank
applied collectively to every colour class closed so faedd 6 other members of 4C who participated in this challenge
tried this but limited experimentation seems to indicat& th ¢ r stimulating discussions, comparison of results, aridtpo
even though it decreases the number of backtracks requiregdys t relevant literature. ’

it slows down the algorithm.

References

J. C. Becceneri, H. H. Yanasse, and N. Y. Soma. A
Method for Solving the Minimization of the Maximum

4 Reaults

The algorithm was run on all the instances provided for thél]
challenge. A single run was performed on each instance since Number of Open Stacks Problem within a Cutting Pro-

the algorithm is deterministic and identical parametersewe : - . .
used throughout (except for the cutoff time, as indicated be c(e)%s4.Computers& Operations Research, 31:2315-2332,

low). The computer used was a Sunfire 4800 equipped with _

900MHz processors and 8Gb of RAM. The constraint pro{2] H. H. Yanasse, J. C. Becceneri, and N. Y. Soma. Bounds
gramming library used was ILOG Solver 4.4. Because of the ~ for a Problem of Sequencing Patterrfsquisa Opera-
great number of instances, | had to keep the cutoff time low. ~ cional, 19(2):49-77, 1999.

Table 1 reports on the files containing multiple instancéts w

a cutoff time of one minute. In order to see how sensitive

these results are to the choice of the cutoff time, | also ran

the same experiments with a five minute cutoff time (Table

53

Constraint Modelling Challenge 2005

File % solved mean value time (sec) number of fails

mean median max mean median max
problem10.10.dat 100 8.03 0.01 0.01 0.30 63 0 8268
problem10.20.dat 100 8.92 0.01 0.01 0.17 22 0 2534
problem1515.dat 99.27 12.87 1.05 0.01 57.02 15156 0 1136844
problem15.30.dat 100 14.02 0.26 0.01 12.23 951 0 46392
problem20.10.dat 80.36 16.00 2.69 0.01 56.41 40322 2 988414
problem20.20.dat 90.91 18.00 2.17 0.01 52.34 12073 0 312110
problem30.10.dat 60.73 24.60 2.37 0.01 58.83 29055 1 936763
problem30.15.dat 71.36 26.39 2.26 0.01 59.62 14581 0 378698
problem30.30.dat 86.36 28,50 0.79 0.01 28.65 1134 0 46246
problem40.20.dat 70.91 36.87 1.10 0.01 30.93 3847 0 113004
Shawlnstances.txt 16.00 13.84 31.97 32.72 59.82 18320594806 355744
wbo_10_10 100 5.93 0.05 0.01 0.54 1824 22 33509
wbo_10_20 100 7.35 0.11 0.01 2.58 695 2 13354
wbo_10_30 100 8.20 0.20 0.01 2.78 514.08 0 7158
wbo_15.15 76.67 9.53 5.77 0.03 47.64 109751 119 1383663
wbo_15.30 76.67 11.78 4.28 0.01 55.48 11158 0 234343
wbo_20_10 55.71 13.33 5.55 0.23 32.74 71561 2454 397844
wbo_20_20 55.56 14.81 1.23 0.01 15.54 4195 11 56077
wbo_30_10 30.00 21.32 4.73 1.21 3551 56092 12499 447865
wbo_30_15 39.17 22.74 3.04 0.16 55.15 19841 783 386402
wbo_30_30 51.43 25.25 1.57 0.02 57.80 2203 0 87438
wbop 10.10 100 6.75 0.06 0.01 0.58 2481 32 32166
wbop.10.20 100 8.08 0.23 0.01 4.67 1121 1 23807
wbop.10.30 100 855 0.15 0.01 3.57 353 0 9753
wbop 1515 73.33 10.60 2.33 0.05 41.63 37878 170 859363
wbop.15.30 85.00 12.22 5.66 0.01 39.26 12311 0 158432
wbop20.10 52.50 1460 2.19 0.08 44.62 25965 604 533277
wbop.20.20 66.67 16.06 4.52 0.01 49.06 18820 0 214185
wbop30.10 50.00 24.00 1.07 0.69 4.45 9357 5007 42331
wbop30.15 50.00 2450 2.10 0.04 9.83 10543 178 49722
wbop.30.30 57.86 26.34 1.53 0.01 57.79 2019 0 81157
wbp_10.10 100 7.28 0.01 0.01 0.08 134 3 2677
wbp_10.20 100 8.71 0.02 0.01 0.73 123 0 7512
wbp_10_.30 100 9.31 0.01 0.01 0.16 13 0 555
wbp_15.15 91.67 11.08 4.59 0.01 48.24 120432 48 2568624
wbp_15.30 94.17 13.11 2.16 0.01 45.91 10370 0 218073
wbp_20.10 72.50 15.30 5.89 0.04 30.85 74714 295 360531
wbp_20.20 67.78 15.80 1.98 0.01 48.75 10862 0 369693
wbp_30.10 50.00 24.33 1.11 0.12 11.72 10543 981 113464
wbp_30_.15 50.00 24.23 1.03 0.03 8.44 5226 87 46843
wbp_30_.30 63.57 26.09 2.20 0.01 54.98 3529 0 103541

Table 1: Performance of the algorithm for each data set giveme minute cutoff time.

54

Constraint Modelling Challenge 2005

File % solved mean value time (sec) number of fails

mean median max mean median max
problem10.10.dat 100 8.03 0.01 0.01 0.30 63 0 8268
problem10.20.dat 100 8.92 0.01 0.01 0.17 22 0 2534
problem15.15.dat 99.82 12.87 1.63 0.01 148.97 21990 0 1682021
problem15.30.dat 100 14.02 0.26 0.01 12.23 951 0 46392
problem20.10.dat 84.36 15.94 9.78 0.01 294.00 162810 4 6060689
problem20.20.dat 92.73 17.99 5.15 0.01 231.60 26999 0 1373590
problem30.10.dat 63.82 2452 11.16 0.01 297.42 137742 3 3793694
problem30.15.dat 71.81 26.30 4.22 0.01 118.26 27776 0 888522
problem30.30.dat 89.09 28.48 5.12 0.01 208.91 8580 0 370158
problem40.20.dat 75.45 36.85 4.44 0.01 148.94 17039 0 622593
Shawlnstances.txt 52.00 13.68 98.74 91.57 221.67 5939556401 1509980
wbo_10_10 100 5.93 0.05 0.01 0.54 1824 22 33509
wbo_10_20 100 735 0.11 0.01 2.58 695 2 13354
wbo_10_30 100 8.20 0.20 0.01 2.78 514.08 0 7158
wbo_15.15 85.00 9.40 18.92 0.13 170.70 408472 668 6918121
wbo_15.30 86.67 11.72 21.80 0.02 207.86 41807 3 320574
wbo_20_10 57.14 13.20 10.20 0.24 190.18 153138 2454 3335626
wbo_20_20 64.44 1457 27.88 0.02 287.45 135922 36 1298301
wbo_30_10 36.00 21.24 26.15 4,68 243.63 306058 48578 2793437
wbo_30_15 44 .17 22.40 25.15 0.19 258.37 185333 1001 1956629
wbo_30_30 55.71 2499 12.39 0.02 170.82 19021 1 253642
wbop 10.10 100 6.75 0.06 0.01 0.58 2481 32 32166
wbop.10.20 100 8.08 0.23 0.01 4.67 1121 1 23807
wbop.10.30 100 855 0.15 0.01 3.57 353 0 9753
wbop 15.15 88.33 10.42 36.54 0.15 274.62 682564 729 9306640
wbop.15.30 86.67 12.18 7.00 0.01 73.06 14487 0 158472
wbop20.10 75.00 14.45 39.28 0.15 274.77 583197 1258 4719165
wbop.20.20 66.67 15.52 5.89 0.01 85.95 25251 0 420993
wbop.30.10 50.00 23.93 1.07 0.65 4.43 9357 5007 42331
wbop.30.15 50.00 2395 2.10 0.04 9.81 10543 178 49722
wbop.30.30 63.57 26.15 14.11 0.01 280.10 22278 0 498671
wbp_10.10 100 7.28 0.01 0.01 0.08 134 3 2677
wbp_10.20 100 8.71 0.02 0.01 0.73 123 0 7512
wbp_10_.30 100 9.31 0.01 0.01 0.16 13 0 555
wbp_15.15 98.33 11.05 18.15 0.02 282.00 540213 167 10230988
wbp_15.30 95.83 13.11 4.19 0.01 178.10 25740 0 1502581
wbp_20.10 75.00 15.28 7.65 0.03 60.09 97469 295 755475
wbp_20_20 68.89 15.66 4.53 0.01 161.24 25340 0 907633
wbp_30.10 50.00 24.18 1.12 0.12 11.72 10543 981 113464
wbp_30_.15 53.33 2420 7.01 0.03 175.87 55936 103 1101325
wbp_30_.30 65.00 25.81 7.15 0.01 268.93 12353 0 528258

Table 2: Performance of the algorithm for each data set gividre minute cutoff time.

55

Constraint Modelling Challenge 2005

File solved best timetobest failstobest timeto fails to
value solution solution prove prove
Miller19 13 60.56 113521 3600.00 3295988
GP1 v/ 45 0.29 96 0.29 96
GP2 vV 40 0.52 136 0.52 136
GP3 v 40 0.15 42 0.15 42
GP4 vV 30 0.38 678 0.38 678
GP5 vV 95 2.98 95 2.98 95
GP6 v/ 75 0.80 36 0.80 36
GP7 v/ 75 7.46 3292 7.46 3292
GP8 90 340.30 66188 3600.00 983359
NWRS1 v/ 3 0.01 4 0.01 4
NWRS2 v/ 4 0.01 13 0.01 13
NWRS3 vV 7 0.01 45 0.01 45
NWRS4 v/ 7 0.04 194 0.04 194
NWRS5 vV 12 0.01 13 0.01 13
NWRS6 Vv 12 0.01 8 0.01 8
NWRS7 vV 10 17.95 49321 17.95 49321
NWRSS8 Vv 16 36.94 40083 36.94 40083
SP1 12 60.42 1439078 3600.00 70878095
SP2 42 180.15 921702 3600.00 15123139
SP3 62 180.65 188937 3600.00 3904945
SP4 90 241.48 164766 3600.00 2506194

Table 3: Performance of the algorithm on individual insesgiven a one hour cutoff time.

56

Constraint Modelling Challenge 2005

Open Stack Minimisation by L ocal Search
and Rever se Dominance Reasoning

Steven Prestwich
Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
s.prestwich@cs.ucc.ie

Abstract

Dominance reasoning can be used to add con-
straints to a model, pruning the search space and
improving backtrack search. This paper proposes
the reverse approach for local search: reformula-
tion to add artificial solutions that are dominated
by true solutions. On the open stack minimization
problem this technique can super-exponentially in-
crease the solution density, significantly improving
local search performance. However, experiments
indicate that solution density is not the only impor-
tant model property.

1 Introduction

The idea that higher solution density® makes a problem eas-
ier to solve seems natural, and is usually assumed to have
at least some effect on search performance [1; 3; 5; 11;
12]. But little has been done to exploit this conjecture. One
way to increase the solution density of a problem is to in-
crease problem symmetry by reformulation, and this super-
symmetry technique has been shown to improve local search
performance [7]. Any solution to a supersymmetric model is
either a true solution to the problem, or can be transformed to
one by applying a symmetry transformation.

Unfortunately supersymmetric reformulations have been
hard to find — perhaps because supersymmetry is the inverse
of symmetry breaking by reformulation, which is known to
be powerful but non-trivial to apply [2]. Moreover, problem
features other than solution density also seem to affect search
cost, and there seems to be no agreement on what these fea-
tures are. More than one CSP-to-SAT encoding (the totally
weakened and log encodings [8]) increases solution density
but can make the problem harder to solve by local search.
Nevertheless, it seems worth pursuing the idea of increasing
solution density by reformulation. Choosing a good model
can be as important as choosing a good search algorithm, and
new modelling techniques are of interest to the CP commu-
nity.

This paper extends supersymmetry to the more general
notion of dominance. The idea is to reformulate a prob-

Defined as the number of solutions divided by the number of
total variable assignments.

lem in such a way that new, dominated “pseudo-solutions”
are added, increasing the solution density of the model and
boosting local search performance (we shall ignore backtrack
search). This might be done by simply removing or weak-
ening constraints in the model. However, this must be done
very carefully: we must ensure that any pseudo-solution can
be transformed to a true solution that dominates it. As with
supersymmetry this is non-trivial, but this paper demonstrates
that it is possible and can yield good results.

2 Modeling open stack minimisation

We use the following problem as an illustration. A manufac-
turer has a number of orders from customers to satisfy; each
order is for a number of different products, and only one prod-
uct can be made at a time. Once a customer’s order is started
a stack is created for that customer. When all the products
that a customer requires have been made the order is sent to
the customer, so that the stack is closed. Because of limited
space in the production area, the number of stacks that are in
use simultaneously should be minimized.

2.1 A matrix representation

We can model the problem as a matrix M of binary variables,
in which the columns correspond to the products required by
the customers, and the rows to the customers’ orders. Matrix
entry M;; = 1 if and only if customer ¢ has ordered some
quantity of product j (the quantity ordered is irrelevant). Any
0 with a 1 in a column to its left, and another 1 in a column
to its right, is counted as a 1. A score is assigned to each
column: its number of 1s (including Os counted as 1s). The
score of the matrix is the maximum of its column scores. The
problem is to permute the columns of the matrix to minimise
its score.

2.2 Aninteger model

The matrix representation can be modelled as an integer pro-
gram. Suppose the matrix has R rows and C' columns. As-
sume that each customer orders at least one product (if not
then that customer can be removed from the problem), so that
every row has an open order of length at least 1. In the fol-
lowing, ¢ is an integer with range 1... R and j, k are integers
with range 1...C. Define variables p;; such that p;;, = 1
denotes that product 5 is placed in column k. Each product

57

must be placed in exactly one column and each column must
receive exactly one product:
> bk =1 @)
J

ijk =1
%

(These two sets of constraints imply each other.) To model
the idea of 1s influencing Os to their left and right, define
variables I;; and r;; such that [;;, = 1 if and only if M;;, has a
1toits left, and r;;, = 1 if and only if M, has a1 to its right.
We need constraints

ik < lik Djk < Tik 2)
where M;; = 1, and
Lk <likgr Tik1 < Tik 3

We also define variables o;;. such that o, = 1 denotes that
there is an open order on row s at column k&:

Lig +rire <14 o 4
The 1,7, o variables model the fact that any 0 between two

1s is counted as though it were a 1. The objective is to find
consistent values for the p, [, r, o variables while minimising

maxg Z Oik
i

This optimisation problem can be solved as a series of con-
straint satisfaction problems (CSPs) with additional linear
constraints:

where € is an integer variable. We must minimise Q. starting
with Q = R a feasible solution is found; R is then decre-
mented and the search resumed with the same variable as-
signments (to exploit any solution clustering); and so on until
timeout occurs.

2.3 Creating new solutions

We would like to remove or weaken some constraints in order
to create new pseudo-solutions, thus increasing the solution
density of the problem. But we cannot simply remove arbi-
trary constraints, because solutions to the resulting problem
might not be solutions to the original problem, or they might
be solutions with larger scores. We must do it in such a way
that any pseudo-solution can be transformed into a true solu-
tion of equal or lower score: in other words pseudo-solutions
must be dominated by true solutions.
Suppose we weaken constraints (1) to

> pr =1 (6)
k

Now each product may be placed in more than one position
in the sequence, and some sequence positions might receive
no products. At first sight this appears useless because so-
lutions might not be permutations. However, it can be seen
as a model for a generalised form of the problem: find a se-
quence of sets of products such that each product appears in
at least one set, and the orders are open in set k if there is a
product required in an order in another set ¢ that appears in a
set before or after set &, or in k itself. Such a sequence is a
pseudo-solution for the original problem.

Constraint Modelling Challenge 2005

2.4 From pseudo-solutionsto solutions

A dominating solution can be derived from a pseudo-solution
as follows. For any product that appears in more than one
set, remove all but one of its appearances. For example the
pseudo-solution

({4}, {4}, {4,5}, {}, {1,2,3})
becomes
({4h, {3 {5} {}{1,2,3})

if we delete all but the first appearance of each product. We
now have the same number of products as sets, and can ob-
tain a permutation by moving products without violating the
ordering among sets. For example 5 can be moved one set to
the left to obtain

({4}, 55 {1 {1 {1,2,3})

then 1 moved two sets to the left to obtain

({4}, {53 {1}, {3, {2,3})

and finally 2 moved one set to the left to obtain the permuta-

tion
({4}, {5}, {1}, {2}, {3})
2.5 Increasein optimal solution density

The effect on the density of optimal (pseudo-)solutions can
be spectacular. Consider a problem that we shall call Ay,
represented by a 2 x 2N matrix:

00...0 | 1...11
11...10...00

The column permutation shown has 1 open stack in any col-
umn, and this is optimal. We may permute the left and right
columns separately, and reverse all columns, to obtain another
optimal permutation. Thus there are 2(N'!)? optimal permu-
tations, and any other permutation such as

0...0101...1
1...1010...0

has at least one column with two open stacks (because of the
zeroes shown in bold). However, there are many more opti-
mal pseudo-solutions. Considering only those cases in which
all (0,1)-columns are in the N left (or right) columns and all
(1,0)-columns are in the N right (or left) columns, there are
2(2V — 1)2V optimal pseudo-solutions. So the number of
optimal solutions has been increased by a factor of at least

N! >NN72|092NN

oN* oN*

2 2
_9N?’-nNlog, N 9N

A super-exponential increase in solution density might be ex-
pected to have an effect on local search performance.

At the other extreme, for some problems there will be ex-
actly the same number of solutions in both models: in other
words the reformulation introduces no pseudo-solutions.
Consider a problem we shall call By, represented by the
2N x N matrix

Un
[LN}

58

where Uy and L are upper and lower diagonal N x N ma-
trices respectively:

111111 100 ...000
011...111 110 ...000
Uy — | 001...111 L | 111...000
000 ...001 111...111

Notice that every column has exactly (N + 1) 1sand no 0 has
a 1 to the left and the right, but in any other permutation this
is no longer true. For example with B, if we exchange the
middle two columns:

r 1111 T r 1111 T
0111 0111
0011 0101
0001 0001
1000 | — | 1000
1100 1010
1110 1110

| 1111 | | 1111 |

then both have 6 open stacks instead of 5. So the matrix has
two optimal solutions, each with (IV + 1) open stacks: one is
with Uy and Ly as shown, the other is obtained by revers-
ing their columns. Notice also that each column has at least
one 1 where the other has a 0 in the same row. Therefore no
two columns can be placed in the same set without increas-
ing the maximum number of open stacks, and there are only
two optimal pseudo-solutions (corresponding to the optimal
solutions).

2.6 Discussion of the models

We shall refer to the original integer model as model 1, and
the new one as model 3. We shall also consider an intermedi-
ate model 2 in which all sets in the pseudo-solution must be
non-empty, which is obtained by replacing (1) with

> pjk =1 > bk =1 (@)
k J

Model 2 might also have super-exponentially more solutions
than model 1. Considering only optimal pseudo-solutions
to Ax in which product 1 appears in every set, there are
2(2N-1 — 1)2(0V=1) of them, which is still at least O(2"")
more than model 1 solutions.

The weakened constraints of models 2 and 3 are analogous
to the removal of “at-most-one” clauses in a well-known SAT
encoding of CSPs [9]. This allows a CSP variable to be as-
signed more than one domain value, thus creating pseudo-
solutions for the CSP. This is known to improve local search
performance (though it is not certain that increased solution
density is the explanation). Those pseudo-solutions are very
closely related to CSP solutions, which can be obtained sim-
ply by taking any assigned value for each CSP variable. The
pseudo-solutions of models 2 and 3 require a far less obvi-
ous transformation to obtain true solutions, are less closely
related in terms of Hamming distance, and are dominated by
true solutions in terms of the objective function in the open
stacks problem.

Constraint Modelling Challenge 2005

100000 F———————— 5
E Model 1 —+— 1
Model 2 —--x-—-- 1
L Model 3 ---*--- |
10000 ¢ E
2]
=2
1000 F E
% E
100 |

100
N

Figure 1: Results on the Ax benchmarks

All three models have O(R?) p, [, r variables and O(RC)
o variables, giving a total of O(R(R + C')). They have O(C')
constraints (1) or (6) or (7) of size O(R), O(ARC?) con-
straints (2) of constant size where A is the matrix density,?
O(RC) constraints (3) of constant size, O(RC) constraints
(4) of constant size, and O(C) constraints (5) of size O(R),
giving a total space complexity of O(RC(1 + CA)). For
sparse matrices the space complexity is low, making the mod-
els suitable for large problems in which each customer orders
a small number of products.

3 Experiments

Integer programs can be solved by local search. We use an un-
published algorithm based on a recent SAT algorithm called
VW?2 [6]. The new algorithm (and VW?2) is related to Walk-
sat variant B [4; 10], and uses a modified objective function
that dynamically weights variables to improve search diversi-
fication. In the experiments in this section the Walksat noise
parameter p is set to 0.05, the VW2 s parameter is set to 0.1,
and the VW?2 ¢ parameter to 0.000001.

For the An benchmark (with super-exponentially many
optimal pseudo-solutions) the results are shown in Figure 1.
The graph is a log-log plot so the straight lines show that the
search effort is polynomial in V. Models 2 and 3 are indis-
tinguishable, but model 1 has a steeper gradient and there-
fore a higher polynomial degree. We also experimented with
N = 500 and tuned the search algorithm parameters, and the
results were very similar: models 1 and 2 took tens of seconds
to solve while model 3 took tens of minutes.

For the B benchmark (with no optimal pseudo-solutions)
the results are shown in Figure 2 and are quite different.
Model 1 is now the best, model 2 is slightly worse, and model
3 much worse. However, model 2 appears to scale better than
model 1 as IV increases: unfortunately the crossover (if there
is one) occurs as the problems become expensive to solve.
Still, these small differences might vanish under more care-
ful tuning of the search algorithm. The main point about this
graph is that model 2 scales comparably with model 1, and
much better than model 3.

2Defined as the number of 1-entries divided by the total number
of entries.

59

1e+06 Model 1 —+— 7
I Model 2 ---x--- |
Model 3 -~ %-+-
100000 | 4
[%2]
£ 10000 F E
1000 F 4
- X//
100 . .
10 100

Figure 2: Results on the B benchmarks

4 Conclusion

Model 2 emerged as the most robust in our experiments.
We used unrealistic problems that were solved in polynomial
time, but in experiments on some Challenge instances model
2 also gave the best results. It is hoped that the new model
and local search algorithm will perform fairly well on at least
some of the Challenge benchmarks. However, our main aim
was to demonstrate the idea of reformulating a problem to in-
crease its solution density, which generalises the technique of
supersymmetry.

References

[1] D. Clark, J. Frank, 1. P. Gent, E. Maclntyre, N. Tomoyv,
T. Walsh. Local Search and the Number of Solutions. Sec-
ond International Conference on Principles and Practices
of Constraint Programming, Lecture Notes in Computer
Science vol. 1118, Springer, 1996, pp. 119-133.

[2] I. P. Gent, J.-F. Puget. Symmetry Breaking in Constraint
Programming. Tutorial, Tenth International Conference
on Principles and Practice of Constraint Programming,
Toronto, Canada, 2004.

[3] Y. Hanatani, T. Horiyama, K. lwama. Density Condensa-
tion of Boolean Formulas. Sixth International Conference
on the Theory and Applications of Satisfiability Testing,
Santa Margherita Ligure, Italy, 2003, pp. 126-133.

[4] D. A. McAllester, B. Selman, H. A. Kautz. Evidence for
Invariants in Local Search. Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Appli-
cations of Artificial Intelligence Conference, AAAI Press
/ MIT Press, 1997, pp. 321-326.

[5] A. Parkes. Clustering at the Phase Transition. Fourteenth
National Conference on Artificial Intelligence and Ninth
Innovative Applications of Artificial Intelligence Confer-
ence AAAI Press / MIT Press, 1997, pp. 340-345.

[6] S. D. Prestwich. Random Walk With Continuously
Smoothed Variable Weights. Eighth International Confer-
ence on Theory and Applications of Satisfiability Testing,
Lecture Notes in Computer Science vol. 3569, Springer,
2005, pp. 203-215.

[7]1 S. D. Prestwich. Negative Effects of Modeling Tech-
niques on Search Performance. Annals of Operations Re-

Constraint Modelling Challenge 2005

search vol. 118, Kluwer Academic Publishers, 2003, pp.
137-150.

[8] S. D. Prestwich. Local Search on SAT-Encoded Colour-
ing Problems. Theory and Applications of Satisfiability
Testing, Lecture Notes in Computer Science vol. 2919,
Springer, 2004, pp. 105-119.

[9] B. Selman, H. Levesque, D. Mitchell. A New Method
for Solving Hard Satisfiability Problems. Tenth National
Conference on Artificial Intelligence, MIT Press, 1992, pp.
440-446.

[10] B. Selman, H. A. Kautz, B. Cohen. Noise Strategies for
Improving Local Search. Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, AAAI Press,
1994, pp. 337-343.

[11] J. Singer, I. P. Gent, A. Smaill. Backbone Fragility and
the Local Search Cost Peak. Journal of Artificial Intelli-
gence Research vol. 12, 2000, pp. 235-270.

[12] M. Yokoo. Why Adding More Constraints Makes a
Problem Easier for Hill-climbing Algorithms: Analyzing
Landscapes of CSPs. Third International Conference on
Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science vol. 1330, Springer-Verlag
1997, pp. 356-370.

A Experimental results

The results shown in Table 1 were obtained on a 733 MHz
Pentium Il. We consider only the individual instances, not
the large families of problems. We performed one run per
instance, with a threshold of 10® local moves (flips) and the
following algorithm parameter settings: p = 0.05, s = 0.01
and ¢ = 0.05/n where n is the number of variables in the
model. (In further experiments with more time and finer tun-
ing we found a 20-solution for SP2, a 35-solution for SP3,
and a 54-solution for SP4.)

60

No. of | Objective value
File runs | Best Worst flips | secs
Miller19 1 13 13 168279 | 0.5
GP1 1 45 45 | 3216551 31
GP2 1 40 40 148422 | 2.4
GP3 1 40 40 | 1039508 | 7.2
GP4 1 30 30 | 1031501 15
GP5 1 95 95 | 3336715 74
GP6 1 76 76 | 5152962 | 117
GP7 1 79 79 | 1996366 41
GP8 1 60 60 | 4702041 92
NWRS1 1 3 3 27767 | 0.06
NWRS2 1 4 4 4540 | 0.02
NWRS3 1 7 7 148432 | 0.3
NWRS4 1 7 7 21939 | 0.09
NWRS5 1 12 12 39657 | 0.6
NWRS6 1 12 12 44284 0.2
NWRS7 1 10 10 201125 | 1.0
NWRS8 1 16 16 256892 1.2
SP1 1 9 9 155477 | 0.36
SP2 1 21 21 | 3569961 15
SP3 1 37 37 | 65277580 | 458
SP4 1 57 57 | 57188506 | 547

Table 1: Results on individual instances

61

Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005

A Constraint Programming Approach to the Min-Stack Problem

Paul Shaw

Philippe Laborie

ILOG S.A., France

1 Introduction

This paper tackles the IJCAI-05 modelling challenge using
the constraint programming libraries Solver [ILOG, 2005b]
and Scheduler [ILOG, 2005a] from ILOG. The resulting
“min-stack” solver uses a combination of modelling, prop-
agation algorithms and search strategies, all of which con-
tribute to increased performance on the challenge instances.

2 Base model

Here, a foundation model is introduced which is sufficient to
model the problem. Later, redundant modelling methods are
described which do not change the optimal solution of the
problem, but can help to solve it more quickly.

In the problem, there are n products and m customers. The
set of products demanded by customer j (an order) is denoted
by P;. The set of orders demanding product k is denoted by
Ok.

The problem is modelled using a constrained variable for
each manufacturing time slot. Variable p; € {1...n} in-
dicates which product is manufactured at slot ¢, where slots
range from 1 to n. A dual model is also created which repre-
sents the time slot of the manufacture of each product. Vari-
able s € {1...n} indicates in which slot product k is pro-
duced. These two sets of variables are maintained in consis-
tency via an inverse constraint which specifies that s,,, = 1.
An all-different constraint [Régin, 1994] is also imposed on
the variables p which increases domain filtering.

Each order has a span of activity between the first and last
time slots involving a product demanded by the order. Vari-
ables for these first and last slots are defined for order j as
f; = min{sg|k € P;} and I; = max{sy|k € P;}. The
constraint [; > f; + |P;| — 1 is also imposed.

A Boolean variable (which will also be considered to be
0 — 1) oy indicates if order j is active at time slot ¢ via the
constraint o;; = (f; < i Al; > 4). Using this, the number
of active orders (number of open stacks) «; at time slot ¢ is
givenby a; =37, ,, @i;. Finally, the objective is to min-
imize the maximum number of open stacks (active orders)
Q= MaxXi<;<n .

3 Problem simplifications

Before even attempting to resolve a problem, certain simpli-
fications can be made to it which reduce its difficulty. First

of all, any customer orders demanding no products can be re-
moved. Any products which are not ordered by any customer
can likewise be removed.

A further observation is that if two products are ordered by
exactly the same customers, then one of the products can be
removed without affecting the value of the optimal solution.
To see this, note that removing a product can never increase
the optimum. Also, for any solution not involving the re-
moved product, the removed product can be inserted directly
before or after its twin without increasing the number of open
stacks.

The final observation is the most powerful, and in practice
can aid search considerably. If for two products k and [, prod-
uct [is ordered by a subset of the customers of k& (O; C Oy),
then product [can be removed from the problem. This can be
seen in two ways. First, as above, for any solution without [,
[can be inserted next to k without increasing the number of
open stacks. Second, O; could be modified by adding orders
(which can never decrease the optimum) to make it equal to
Oy, then product [removed using the equality rule.

The product removal rule is effective on many instances.
For example, on Simonis’s problem_10_20 instances, on av-
erage 10 of the initial 20 products are removed.

4 Lower bounds

Computing a lower bound on the minimum number of open
stacks can be useful in proving the optimality of a solution; if
a solution is found with a number of stacks equal to the lower
bound, search can be stopped.

Perhaps the simplest lower bound L; is the maxi-
mum number of customers demanding a product: L; =
maxi<g<n |Ok|. A better lower bound can be found by ob-
serving that if any two customer orders involve the same
product, the two orders must be active together in at least
one slot: that is, the orders overlap in time. An ‘order’ graph
can be constructed with a node per order and an edge be-
tween two nodes when their corresponding orders share at
least one product. The chromatic number L3 of this graph
forms a lower bound on the minimum number of open stacks.

Instead of colouring the order graph optimally to find
bound L3, a bound L that is cheaper to compute is based
on finding a (large) clique in the order graph. The size of this
clique is a lower bound on L3. A greedy clique finding al-

62

gorithm is used in the solver, and the constraint o« > Lo is
added after finding it.

The bound L5 is indeed useful for proving optimality. All
large instances in gp100by 100 were closed because a solution
was found with a number of open stacks equal to the size of
the maxiumum clique found in the order graph.

5 Redundant modelling

Redundant modelling is the addition of supplementary con-
straints and variables to the problem, which, although do
not reduce the solution space, help the search for solutions
by making deductions (filtering domains) more effectively.
Here, two redundant models are added to the original: one
based on graph colouring, and another based on resource-
constrained scheduling.

5.1 Colouring modée

The previous section discussed how colouring the order graph
could be used to pre-compute a lower bound. A colouring
model which bounds the number of open stacks can also
increase domain filtering during search. A colour variable
¢; € {1...m} is introduced for each customer order j. Each
pair of orders ¢, j that overlap must be coloured differently.
This is ensured by constraints of the form f; < ;A f; <[; =
¢i # c;. (Note that when orders ¢ and j share a product, both
sides of the implication are added directly, as the orders must
overlap in this case.) Finally, the constraint that the number of
open stacks is at least the number of colours used is imposed:
« Z maxi<;<m Cj.

The colour variables are symmetric under any value per-
mutation. To break this symmetry, and to colour the max-
imum number of variables and thus aid domain filtering, a
large clique is found (the same one as was used in the bound-
ing function Ly) and coloured with colours from 1 to Ls. This
pre-assignment of the colour variables is done at the start of
search.

The redundant colouring model is extremely useful. For
example, when disabled, one instance in the Shawlnstances
suite had to be stopped at over three million choice points,
when it is normally solved in a few thousand.

5.2 Scheduling model

From a scheduling perspective, each order ¢ can be seen as an
activity over the time interval [f;, [;] that requires one unit of
a discrete capacity resource of total capacity c. The problem
is then to find a solution that minimizes the maximal usage
of the resource. Classical constraint-based scheduling algo-
rithms available in ILOG Scheduler [ILOG, 2005a] are used
to strengthen the propagation.

Let a; denote the activity representing order j. The follow-
ing constraints are imposed:

e The activity a; starts at the first slot of j (start(a;) =
;) and ends at the last slot (end(a;) = l; + 1)." These

'The additional +1 here is because in resource constrained
scheduling, activity execution intervals are normally open to the
right. That is, an activity of duration 3 starting at time 1 is said
to end at time 4. The activity executes in the interval [1, 4).

constraints allow the basecgé)sérealméﬁ/’(f dt%”én%c%heaci’ﬁﬁ%egzoos

model to communicate.

e Whenever two orders ¢ and j share at least one product,
it means that the two activities a; and a; have to overlap
for a duration that is at least equal to 0;; = |P; N Bl
Thus, the two following temporal constraints can be
stated: end(a;) > start(a;) + o0;; and end(a;) >
start(a;) + 045.

e Whenever two orders ¢ and j are such that P; C P it
means activity a; COVers activity a;. Thus, the two fol-
lowing temporal constraints can be stated: start(a;) >
start(a;) and end(a;) < end(a;).

On this scheduling model, resource propagation is en-
forced using the balance constraint. This constraint main-
tains the transitive closure of a precedence graph whose nodes
are the start and end time-points of activities and arcs repre-
sent precedence relations. The basic idea of the algorithm
is to compute, for each activity a; on the resource, a lower
bound on the resource usage at the start time of a; (symmetri-
cal reasoning can be applied to perform propagation based on
a lower bound on the resource usage at the completion time
of a;). Using the precedence graph a lower bound on the
resource utilization at date start(a;) + € just after the start
time of a; can be computed assuming that all the resource re-
quirements that do not necessarily overlap start(a;) will not
overlap it.

Given this bound, the balance constraint is able to find dead
ends, to derive new bounds on activity start and end times,
and to find new precedence relations that are added into the
precedence graph.

Details of the balance constraint in the more general case
of reservoir resources are available in [Laborie, 2003]. What
is important is that the balance constraint reasons not only
on the time-bounds of activities but also on the precedence
relations between activities. It usually allows for a stronger
pruning when precedence constraints between activity time-
points are fairly dense as is often the case for the challenge
problems.

6 Symmetry breaking

Any solution can be mapped into another solution simply by
reversing the production sequence (p1,...,pn). In order to
break this evident symmetry, a product p; among the most
demanded ones (that is, such that |Oy| is maximal) is selected
and constrained to be produced in the first half of the produc-
tion sequence: s; < |(n+1)/2].

7 Search strategies

The master search used is essentially constructive in nature,
although some local search is included (see section 7.3). The
standard constraint programming method of finding and prov-
ing an optimal solution is used, where the upper bound on the
cost function is continually maintained at one less than the
cost of the last solution found. Optimality is proven when the
complete search tree has been searched. Two search strategies
are described here, one quite classic, but with some iteresting
optimizations, and one more esoteric.

63

7.1 A search dtrategy

A natural way to search for solutions is to build up the
schedule chronologically; that is, instantiate the variables
{p1,...,pn} by increasing index. This can be reasonably ef-
fective, but a number of peculiarities of the problem allow its
efficiency to be significantly increased. These can be demon-
strated most easily by a transformation of the problem dur-
ing search. (This is a descriptive tool; in in reality, no actual
transformation takes place).

Consider that during a search, the schedule has been com-
pleted from slot 1 to slot h. Let S, = Ui<i<pp; be the
products already scheduled up to and including slot h. Let
An = {jlf; < hAl; > h} be the set of active orders just
after slot h. The remaining sub-problem (to schedule the re-
mainder of the products from slot h+1 onwards) can be trans-
formed into an equivalent one by creating a new problem with
the remaining products Ry, = {1,...,n} — S;, and a single
new product, say product zp,, with O, = Aj. In the new
transformed sub-problem, product z; must be scheduled first.
This transformation essentially melds all the products already
scheduled into one single product representing the active or-
ders just after slot h.

There are two points to note here. First, the transformation
makes the sub-problem look like a form of the original prob-
lem; the partial assignment of products has been replaced by
a single product. Second, the solubility or otherwise of the
sub-problem does not depend on the order of product instan-
tiations made up to slot h.

The first of the above points can be exploited by recalling
the problem simplifications of section 3. If, for any product
k in the new problem, Or C O,,, then product k can be
inserted next to product z;,. What does this mean for the orig-
inal search? It means that if after scheduling up to and includ-
ing slot h, an unscheduled product k exists with O, C Ay,
then product k can be placed in slot h + 1 without creating a
choice point.?

The second point can be exploited by cutting off search
when an identical sub-problem has already been encoun-
tered [Focacci and Shaw, 2002; Smith, 2005]. For instance,
suppose that for a given «, search has proved that there
is no feasible extension of the product assignment (1, 2, 3).
Then, by the ordering rule, none exists for any permutation
of (1,2,3). Each time the search backtracks, proving a sub-
problem insoluble, the set of products scheduled up to that
point is recorded in a set of no-goods. Then, at each point in
search, the set of currently scheduled products is looked up in
the set of no-goods; if it is found then the search is pruned.

These two rules vastly increase the speed of the simple gen-
eration scheme. However, another search strategy seems to be
more robust in practice.

7.2 A morerobust search

In the current implementation, a different strategy is used
which was found to be more robust than the more standard

’If more than one such product can be committed, the lowest
indexed one should be placed at slot & + 1. The remainder of these
products will be placed in subsequent slots by re-application of the
rule at the next slot.

. . i li hall 2
left-to-right scheduling already %%Sc%aé%wodfﬂlggrget%gggles 005

based on subdivision of the products to the left and right of the
schedule, then solving these two sub-problems recursively.
More precisely, to divide the products from slots [to 7, a
midpoint m = | (I 4+ r)/2] is chosen. Then, for each product
k for which min(sy) < m A max(si) > m, a branch is made
with the choices s < m and s > m. Once all products
have been divided, the two sub-problems from slots [to m
and slots m + 1 to r are solved recursively.

The method works in practice as subdividing the products
creates two independent sub-problems; no rearragement of
the products on the left hand side can affect the solubility or
otherwise of the problem on the right. The reasons are sim-
ilar to those already described for the left-to-right strategy;
the two sub-problems can be independently transformed to
smaller problems involving the products in their half plus one
other product z, with O, = A,,. (Again, these new prod-
ucts need to be placed at one extremity of the schedule of
the sub-problem.) Sub-problem independence makes search
much more efficient as search can backtrack if any of the two
sub-problems is independently insoluble.

Good decisions about how to partition the products can find
good solutions more quickly. The approach taken is to place a
product in the side which has least products already assigned.
To choose which product to assign, a calculation is made of
the increase to |A,,| that would result in placing each prod-
uct at the chosen side. The product minimizing this value is
placed. On backtracking, the product is placed on the other
side.

7.3 Local improvement

Each time a new (better) solution is found, a local search is
launched using the new solution as a starting point. The local
search technique used is Large Neighborhood Search [Shaw,
19981, which is particularly adapted to constraint program-
ming.

One iteration of LNS undoes the assignments of all vari-
ables p,, where ¢ < k < j and ¢ and 5 are chosen randomly in
[1...n]. LNS then attempts to reassign these variables using
a reduced number of open stacks. This reassignment instan-
tiates the product variables by ascending slot and uses a ran-
dom value (i.e. product) choice in each slot. The size of this
search was limited to 100 backtracks. The choice points ex-
plored during LNS are counted just as choice points in com-
plete search, and the sum of all the choice points (from com-
plete search and from LNS) is reported in the final results.

LNS continues accepting improvements until m + n itera-
tions have passed without improving the current solution, at
which point search reverts to complete (constructive) search.
If a better solution was found during LNS, the new upper
bound found is used to constrain the search by reducing the
maximum allowed value of «.

LNS proved invaluable for solving larger instance classes,
such as gpl00by100, and in general helps achieve a better
upper bound earlier in the search. However, for most smaller
instances, run time increases. LNS is disabled if the problem
is thought to be “easy”. In the current implementation, this is
when n < 20.

64

8 Results

The solver developed closes all problems in the challenge
suite except the three largest problems in class sp4. Search
effort was measured using run time and number of choice
points. For the results in table 2, a time limit of one hour
was set. Experiments were run on a Dell D610 Laptop with a
2GHz Pentium-M processor.

9 Comments

The time for this challenge was quite limited, and most of the
ideas presented in this paper have not been properly explored.
We believe that the results produced here can be greatly im-
proved and there is still much to investigate. For example:
deriving finer dominance rules, finding lower bounds during
search either by colouring or other methods, deriving a good
lower bound on A,,, while dividing products, applying sub-
problem simplification in the division strategy, and so on.

References

[Focacci and Shaw, 2002] F. Focacci and P. Shaw. Prun-
ing sub-optimal search branches using local search. In
Proceedings of CP-AI-OR ’02, pages 181-189. Springer,
2002.

[ILOG, 2005a] ILOG. ILOG SCHEDULER 6.1 Reference
Manual, 2005. http://www.ilog.com/.

[TLOG, 2005b] ILOG. ILOG SOLVER 6.1 Reference Man-
ual, 2005. http://www.ilog.com/.

[Laborie, 2003] P. Laborie. Algorithms for propagation re-
source constraints in Al planning and scheduling: Exist-
ing approaches and new results. Artificial Intelligence,
143:151-188, 2003.

[Régin, 1994] J.-C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings of the 12th
AAAL, pages 362-367. AAAI Press / The MIT Press, 1994.

[Shaw, 1998] P. Shaw. Using constraint programming and
local search methods to solve vehicle routing problems.
In M. Maher and J.-F. Puget, editors, Fourth Interna-
tional Conference on Principles and Practice of Con-
straint Programming (CP ’98), pages 417-431. Springer-
Verlag, 1998.

[Smith, 2005] B. M. Smith. Caching search states in permu-
tation problems. To appear in the Proceedings of CP 2005,
2005.

65

Constraint Modelling Challenge 2005

Table 1: Aggregated Result Summary

Constraint Modelling Challenge 2005

% Mean Total run time (s) Choice points to optimum Total choice points

File opt. | Stacks Mean | Median Max Mean | Median Max Mean | Median Max
ShawlInstances | 100 | 13.68 1.33 0.94 4.46 410.24 192.5 3577 1561.08 | 1187.5 5543
wbo_10_10 100 5.92 0.01 0.01 0.04 45.80 44.5 76 48.92 46 99
wbo_10_20 100 7.35 0.03 0.01 0.22 114.38 101.5 264 156.90 117 644
wbo_10_30 100 8.20 0.20 0.01 1.68 186.95 120 1147 424.50 120.5 2593
wbo_15_15 100 9.35 0.12 0.08 0.44 133.92 90 416 257.60 207.5 842
wbo_15_30 100 | 11.58 4.76 1.51 22.83 498.73 164 3067 4855.02 1835 18601
wbo_20_10 100 | 12.90 0.08 0.08 0.22 64.50 67 143 94.07 91.5 189
wbo_20_20 100 | 13.69 1.77 1.17 10.16 594.71 223.5 7326 1896.44 1377 11046
wbo_30_10 100 | 20.05 0.33 0.32 0.74 75.42 72 198 125.53 124 271
wbo_30_15 100 | 20.96 1.74 1.61 542 234.73 166.5 904 703.23 669.5 1870
wbo_30_30 100 | 22.56 97.52 75.82 390.54 | 5823.58 594 | 78248 42541.08 36650 208323
wbop_10_10 100 6.75 0.01 0.01 0.02 40.23 25 106 41.67 36.5 107
wbop_10_20 100 8.07 0.07 0.01 0.65 125.42 91 705 250.97 101 1505
wbop_10_30 100 8.55 0.40 0.01 7.53 199.47 119 1158 631.17 119 7629
wbop_15_15 100 | 10.37 0.12 0.07 0.56 140.25 107.5 631 292.30 225 1088
wbop_15_30 100 | 12.15 5.46 0.04 42.29 811.68 154 8471 6007.27 155.5 35292
wbop_20_10 100 | 14.28 0.07 0.04 0.18 58.48 48.5 113 86.62 69 216
wbop_20_20 100 | 14.87 1.82 0.62 8.58 474.56 203 3778 2174.44 922.5 10161
wbop_30_10 100 | 22.48 0.23 0.16 0.75 63.90 50.5 203 109.50 93 301
wbop_30_15 100 | 22.38 2.38 1.70 9.71 311.53 133.5 2886 1020.63 871.5 3942
wbop_30_30 100 | 23.84 | 130.69 1434 | 969.29 9914.45 303.5 | 244192 56881.51 8463 475608
wbp_10_10 100 7.28 0.01 0.01 0.01 20.57 17 49 21.98 17 57
wbp_10_20 100 8.71 0.01 0.01 0.09 45.07 37 118 53.41 37 285
wbp_10_30 100 9.31 0.01 0 0.20 54.50 45 391 63.24 49 551
wbp_15_15 100 | 11.05 0.06 0.02 0.70 78.17 69 340 145.38 80.5 1211
wbp_15_30 100 | 13.09 0.76 0.02 18.57 209.22 103.5 2258 1281.26 109 25112
wbp_20_10 100 | 15.12 0.06 0.04 0.19 46.45 44 103 69.60 62 152
wbp_20_20 100 | 15.41 1.03 0.22 10.61 253.34 121.5 5106 1249.40 230 12572
wbp_30_10 100 | 23.18 0.28 0.17 0.80 68.60 49.5 188 116.55 99 299
wbp_30_15 100 | 22.98 2.62 1.42 16.03 283.57 1335 3938 1086.27 629.5 6273
wbp_30_30 100 | 24.46 | 469.57 1.78 | 6776.43 | 18021.93 230 | 822249 | 180410.06 908.5 | 3911218
problem_10_10 | 100 8.03 0.00 0 0.02 18.77 16.5 70 19.26 17 73
problem_10_20 | 100 8.92 0.00 0 0.05 34.29 29 119 36.63 30 279
problem_15_15 | 100 | 12.87 0.02 0.01 0.29 59.93 44.5 297 80.55 49.5 540
problem_15_30 | 100 | 14.02 0.29 0.01 13.58 130.53 89 1799 515.85 89 21020
problem_20_10 | 100 | 15.88 0.04 0.02 0.23 49.93 46 166 64.41 56 215
problem_20_20 | 100 | 17.97 0.58 0.02 16.31 146.85 89 1684 748.96 91 21486
problem_30_10 | 100 | 23.95 0.18 0.12 0.91 67.47 57 231 99.99 90.5 301
problem_30_15 | 100 | 25.97 1.18 0.10 8.05 194.98 92 2659 606.39 150 3736
problem_30_30 | 100 | 28.32 | 221.65 0.02 | 4105.60 | 4079.43 119 | 175712 89314.88 119 | 1694494
problem_40_20 | 100 | 36.38 21.73 0.67 158.89 855.65 91 13085 5982.75 315 41003

66

Constraint Modelling Challenge 2005

Table 2: Individual Result Summary

Instance | Bestobj. | Proven? | Runtime | Choice points to optimum | Total choice points
Miller 13 yes 295.45 992 144013
GP1 45 yes 0.61 328 328
GP2 40 yes 1.35 446 446
GP3 40 yes 1.97 475 475
GP4 30 yes 4.07 1153 1153
GP5 95 yes 12.57 1341 1341
GP6 75 yes 96.39 3788 3788
GP7 75 yes 47 2673 2673
GP8 60 yes 90.44 4146 4146
NWRS1 3 yes 0.01 66 66
NWRS2 4 yes 0 46 46
NWRS3 7 yes 0.01 68 68
NWRS4 7 yes 0.02 117 117
NWRS5 12 yes 0.09 168 169
NWRS6 12 yes 0.27 565 565
NWRS7 10 yes 1.1 712 712
NWRS8 16 yes 478.78 1485 302272
SP1 9 yes 4.66 414 1901
SP2 21 no 3600 N/A 956633
SP3 38 no 3600 N/A 157322
SP4 61 no 3600 N/A 19070

67

Constraint Modelling Challenge 2005

Modelling Challenge: Benchmark Results

Helmut Simonis
IC-Parc, Imperial College London
hs@icparc.ic.ac.uk

Abstract whether orderj requires product. The model is shown in
table 3.

In this note we present a model for the constraint This model can be implemented easily with most finite
modelling challenge 2005 based on mixed finite do- domain solvers, and can be combined with a search routine
main and continuous variables implemented using which assigns th& variables. By propagation, all other vari-
the IC library of ECLiIPSe. We are interested in ables are fixed and an optimal solution can be found by a
proving optimality of our solutions, and therefore minimize or min_max branching schenfBrestwich, 1999
choose a model which minimizes the width of the Note that constraints 11 to 14 implement a forncofu-

search tree to be explored.The modelis naiveinthat |ative [Aggoun and Beldiceanu, 19p8onstraint, and that
it does not use any deep theoretical results on path the reified constraints over th@ variables perform obliga-

width to check consistency. tory part reasonirl@imoniset al., 200d. In many constraint
languages it would be better to use a single cumulative con-
straint of the form

1 Introduction B
. lati D, 1, E, Limit
We present a model for the open stack problgimk and cumulative($, D, 1, B, Limit)

\Voss, 1999 posed as the first constraint modelling challenges 1 Redundant constraints

[Gent and Smith, 20Q5Instead of just introducing the model

used for our evaluation, we try to explain the steps which ledVe can strengthen the model by adding a simple redundant
to the selection of our method, and why we found other ap_constralnt, which uses the fact that all products must be as-
proaches less satisfactory. ' signed to different slots and that we know the number of prod-

We paraphrase the problem definition frdi@ent and ucts required for each order.

Smith, 200% as follows: We consider a problem withprod-)

uct types andn orders. All products of the same type are Vigj<m : Ej 2 55+ (Z ¢ij) =1

made consecutively, but we can arrange the order of the prod- lsisn

uct types freely. A produatis required by ordey if the 0/1 Thjs is a special case of a more generic redundant constraint

integer entryc;; is equal to one. A stack for an order is re- which works for all subsets of the products required for an

quired (isopen) from the time the first product of the order order, as shown in table 4. Note that we don't have to create

is made to the time the last product is made (inclusive). Theyne constraint for each subset, it suffices to order the mitsdu

objective is to minimize the maximal number of open stackspy earliest start (resp. latest end) and to count the nurrfber o
tasks which are placed later (earlier), as shown in table 11.

2 Basic Modd

The basic model of the problem is given by the following def-3 L abeling Choices

initions and constraints. L&t be the set of production time The basic model leaves us with different possibilities ow ho
slots, i.e. P; denotes the time point when produds made. to assign values to the variables. We explore three possible
Initially, we assume integer time points frahto n. The sets alternatives:

of variablesS and E' denote the start and finish time points o

for the orders, i.eS; (E;) is the time point when production 3.1 Assigning slotsto products

of order; starts (ends). These variables also range fildm e most common search strategy will try to fix values for

n. For each time point and orderj we have a binary vari- he variables (see table 8). At each step, we determiniigtica
ableO;; which denotes whether ordgis open at timé. The

variableU; denotes the number of open orders at time point 1o compute utilization profiles, it is preferable to redefthe
i, and the overall objective is to minimize the maximal uti- end variables by adding one, to make them consistent wittidar
lization Limit. We also use the constantg which indicate variablesD.

68

Constraint Modelling Challenge 2005

choose a variable to be assigned next based on some heungriables. A proof of optimality by enumeration seems very
tic, and then non-deterministically try out all possibléwes, unlikely even for modest problem sizes.

until all variables are assigned. Due to whé&different con- The same argument holds for the slot assignment, the situ-
straint we know that a trivial bound on the size of the searctation is even worse in this case. We have to try all products
space is:!, we haven choices for the first variable, then-1 for the selected slot, but many of them will be non critical.
for the second variable, and so on, until the last variabte haThis means that the cost bound will only increase slowly, so

only one value left. that we will have to explore more of the search tree.
o Introducing a partial ordering between products seems to
3.2 Assigning productsto slots be a good strategy. Unfortunately, we can not use the ofigina

An alternative is to assign slots to variables, e.g. to $elec Model to do this, as the added inequality constraints betwee

slot in the schedule, and then to try out all possible pragluctProducts do notinteract sufficiently with the other coristisa
for this slot. We can for example (table 9) assign the sldts le WWe need another model.

to right, by selecting the product for the left-most slottfirs

(this means assigning it to value 1), then choosing a produd A combined cumulative global constraint

for the second slot, and so on. The trivial search tree sizg) ¢ {4 time limitations, we could not fully develop the con-
bound again is:!, the first choice explores alternatives. straint, but we did build a simple variant which performs the
: ; following pruning (table 12). At each invocation, we build a
3.3 Partial ordering of products profile o% cl)open o?d(ers at ea)ch time point. As starting point we
A third alternative is not to instantiate the variables dilg yse theS andE variables. As soon as the upper bound of the
but to partially order them by enforcing inequality contta start is less or equal to the lower bound of the end variable
between them. This is similar to the technique used irfor an order, we know that we have an obligatory part for this
[Dincbaset al., 1994 to solve disjunctive scheduling prob- order. We add up all obligatory parts and obtain a profile of
lems. Itis also related to MIP models for this problem, whichoverall stack usage. If the number of open stacks exceeds the
typically usen? 0/1 integer variables stating that one productcost limit, we can fail. Otherwise, we check for each unas-
is made before another. If we decide the order of all pairssigned product and each value left in its domain, whether it
of products consistently, we impose an order on the task§ould fit in the space left in the profile. If this is not possibl
which instantiates the variables. Unfortunately, thisrgea e prune the value from the domain. This solves the problem
strategy does not mix well with the constraint model, we onlyfrom table 5.
achieve very limited constraint propagation until mosks$as If the product can be placed in a given location, we then
are ordered. We could perhaps improve the interaction bgheck how this would modify the profile. We can update the
using constraint handling rules (CHRRJthwirth, 1998, but profile by comparing the slot value considered with the start

choose not to follow that route. and end variables for the orders belonging to the product. We
then check if the generated profile exceeds the cost bound, in
4 Problemswith model which case we again can prune the value from the domain.

o . : .. This solves the problem of table 6.
The reified constraint model does not remove all inconsisten This constraint together with the redundant constrair (1
values, as we will show on two examples. For both exampleand (17) drastically reduces the number of choices explored

we consider 5 products, 5 orders and a limit of 4 open stacks. L o
Table 5 shows the first instance. % is assigned to 2 and Rggﬁumn;tze% itrr:;st;iggéenoughto prove optimality even f

Py assigned to 4, thef’; can no longer be assigned to 3. As
the stacks for order®@, andOs are already open, there is no
room for the additional three stacks required by prodggct 6 1CModel
Table 6 shows a different situation. , and P; are already The key idea for our new model is the concept of a partial
assigned to 2 and 3 resp., then placiigto 4 is no longer order between products. If we arrange the products in a se-
possible because this would require 5 stacks at time point 3quence, we can calculate the start and end times of the or-
The problem is caused by the interaction of multiple ordersders, and compute the number of open stacks at each time
when we fix a product to a time slot. The reified constraintpoint. Instead of using values 1 tofor the variables, we use
(but also the cumulative formulation) ignore this intefact an arbitrary real interval as their domain. The first two vari
and therefore fail to detect the inconsistency. We can solvables can be placed arbitrarily in the interval togethehwit
these problems by implementing a stronger propagation for awo sentinels at the beginning and at the end of the interval.
combined cumulative constraint, as shown in section 5. This also eliminates the back-to-front symmetry in the prob
A more fundamental problem is the shape of the searctem. In our assignment routine (table 10 shows a simplified
tree. If we use a variable assignment method, we have to piclorm), we decide between which already placed products we
the first product and assign a slot to it. The choice of the sloshould place the selected product. As value we fix the middle
will be rather uninformed, and for a proof of optimality we of the interval. If the initial interval is sufficiently lasg we
will have to explore all alternatives. For the second vdgab can always find a number between two already selected val-
we will still need to explore: — 1 possible values. Unless our ues, even when using floating point arithmetic. We remove
estimation of the cost is very good, we will need to explorethe alldifferent constraint from the model, and satisfyciig-
a very large search tree even if we only consider the first dition by construction of the search routine. When we have

69

Constraint Modelling Challenge 2005

obtained a solution, we can renumber the products in orderd Problem Reduction
their assigned values to the range hto

Note that it would be very difficult to obtain this splitting
behaviour with integer domains. We would have to use a ver
large initial domain to make sure that there are enoughénmteg
values left between any two already assigned variables to f
in all remaining variables. If we are not extremely carefid,
might loose completeness of the search method.

The new model is given in table 7. This model has been8'1 L ower Bounds
implemented using the IC library of the ECLiPB#allaceet A trivial lower bound on the cost is given by the maximal
al., 1997[Cheadleet al., 2009 system which allows a mix of number of orders for some product.
discrete and continuous variables.

Note that the search tree of this model has a very nice form. Limit > max Cij
The first two variables can be fixed arbitrarily, for the third 1sisn 1<j<m
variable we have three possible choices, for the next orre fou)]
and so on. The tree is quite narrow at the top, but we have t¥/e can also obtain lower bounds by looking at subsets of the
explore more choices the deeper we go in the tree. If we sele@foducts and considering all permutations in which they can
the initial products carefully, we can hope to limit our sgrar € arranged. We use subsets of 3 to 5 products. Instead of
to the top part, exploring relatively few choices. The cumu-testing all such subsets, which we deem too expensive, we
lative constraint has been ported to the continuous domair@nly use the first 7 products according to our weight func-

but we found that the shaving technique described below i§on. These bounds can sometimes significantly increase the
performing slightly more pruning. lower bound, and so help to avoid some optimality proofs by

enumeration.

We will now discuss some additional techniques to reduce
i:e number of nodes that need to be explored. Ideally, these

ethods would be used to create new, reduced problem in-
tances with fewer variables and constraints. For thisueval
lon we did apply the reductions at runtime.

7 Search Strategy

For our search method (called cresha (credit+shaving)), w

have to define a variable selection routine and a value orde(j:here are a number of other preprocessing steps that can re-
ing. The variable selection decides which variable to assig duce problem size significantly, so that optimality proaés b

next, the value ordering defines the order in which differen0mMe much simpler.
values are tested during the search. Subsumed Product

8.2 Preprocessing

7.1 Variablesdection Productk is subsumed by producif

We use an initial static ordering and complementthisby ady- (|1 < j < m A =1y C{jl1<j<mAcy; =1}
namic selection which is computed at every step of the search
We found experimentally that the following function is quit We can remove the subsumed prodidrom the problem
successful as a static order: and schedule it directly before or after producit is easy to
1 see that this does not change the cost of the schedule.
w; = Z Cij *

1<j<m Zlgkgn Ckj Singleton Product

If a product is required by a single order and that order needs
no other products, then we have a singleton product. For-
arpally, we can define the set of singleton products as

The contributing value of an order is inversely proportidoa
the number of products that are required by the order.

As the dynamic part we evaluate at each step the minim
cost increase that would be caused by selecting a variable .
and placing it in the schedule. We choo);e the var?able which i Z (cij + Z i) = 1}
causes the maximal increase of the cost. For ties we use the
“domain size”, the number of slots where the product can b&ve can schedule such products at the very beginning of the

1<j<m 1<k<n

placed. sequence without impact on the overall cost. This reduction
. seems to occur quite frequently in randomly generated prob-
7.2 Valueordering lems. d g y ya P

As value ordering heuristic we choose the positions in order o

of minimal increase of the cost function. We break ties byProblem Decomposition

checking how manys and E variables will be updated by More generally, the problem can be decomposed into multi-
a given assignment value. In order to calculate these strat@le subproblems if the graph induced by the matfixsep-

gies we have to test each remaining value for each unassignedates into multiple connected componel@®rmenet al.,
variable at every step. We use this quite expensive operatia2001]. The problems can be solved independently and can be
at the same time to remove inconsistent values at each stembined by piecing together the sub product sequences. Ex-
and to achieve a form of global forward checking. This is aperiments on the problem data have shows that this occurs on
shaving technigUdorres and Lopez, 20Q@pplied over the a number of instances, but since these problems were easily
complete domain. solved anyway, we did not implement the decomposition.

70

Constraint Modelling Challenge 2005

9 Incomplete Search References

As initially indicated in[Van Hentenryck and Carillon, 1988 [Aggoun and Beldiceanu, 19D3\. Aggoun and

it can be advantageous to consider two different search rou- N. Beldiceanu. Extending CHIP in order to solve complex
tines when solving a constraint optimization problem, e.g. scheduling and placement problemslathematical and

to provide an incomplete routine to heuristically find a good Computer Modelling, pages 57—73, 1993.

solution quickly, and a complete routine which explores the[BeIdiceanust al., 1997 N. Beldiceanu, E. Bourreau

search space efficiently. We also use these two types of rou- p chan, and D. Rivreau. Partial search strategy in CHIP.
tines, the incomplete one is based on partial search, the com |, ond Int. Conf. on Meta-Heuristics. 1997.

plete routine is limited by a timeout of 600 seconds.
The initial choices in our search are very important, putlCheadlestal,, 2003 A. M. Cheadle, W. Harvey, A. J.

quite uninformed. Later in the search the insertion poings a ~ Sadler, J. Schimpf, K. Shen, and M. G. Wallace. ECLiPSe:
constrained by the previously placed products and thelsearc AN introduction. Technical Report IC-Parc-03-1, IC-Parc,

is effectively guided. We use a partial search technique¢al ~ 'mperial College London, 2003.
credit-based search[Beldiceanuet al., 1997 to explore the [Cormenet al., 2001 T. Cormen, C. Leiserson, R. Rivest,
top of the search tree completely, while controlling theraile and C. Stein.Introduction to Algorithms. MIT Press, 2

effort expended. We also tried to use a constraint-baseyt la edition, 2001.

neighborhood search routine to locally improve results, burpio oo o) 199d M. Dincbas, H. Simonis, and P. Van
could not com_plete the tests In the given time frame. Th HentenrycI’<. Solving large éombinatoriai problems in
form of the neighborhood in the continuous model seems to logic programming.J. Log. Program., 8(1):75-93, 1990

be very interesting for this type of local search. _ _ T
[Fink and Voss, 1999A. Fink and S. Voss. Applications
10 Result tables of modern heuristic search methods to pattern sequencing

]]] .] problems. Computers and Operations Research, 26:17—
All experiments were run on Linux machines with ECLIiPSe 34, 1999.

5.8. The overview of the results is given in table 1. It shows_ . . - .
the problem set (Set) with author, strategy used, number df runwirth, 1998 T. Friihwirth. Theory and practice of con-
straint handling rulesJournal of Logic Programming, 37,

products (Pr), number of customers (Cu) and number of in-

stances (In), the percentage of instances solved to optimal October 1998.
ity (Opt), information about the lower bound (LB), the num- [Gent and Smith, 2045. Gent and B. Smith. Con-
ber of solutions found (NrS) and the best solution (Sol). We straint modelling challenge 2005. http://www.dcs.st-
then show the number of assignment steps (Ass), the time and.ac.uk/ipg/challenge/, 2005.

(Time) and the number of backtracking steps (BT) requireqprestwich, 199p S. Prestwich. Three CLP implementations
to find the best solution (Best) and to prove optimality (Opti = of pranch-and-bound optimization. IParallelism and
mal). We give the average (Avg), geometric mean (Geom), |yplementation of Logic and Constraint Logic Program-

median (Median), and minimal (Min) and maximal (Max) ming, volume 2. Nova Science Publishers, Inc, 1999.
values where appropriate. The values for optimality are-com

puted from those instances for which optimality was proved Simonisetal., 2004 H. ~ Simonis, A. Aggoun,

(by reaching the lower bound or by exhaustive search). N. Beldiceanu, and E. Bourreau. Complex constraint ab-
The results for individual problems are shown in table 2. Straction: Global constraint visualisation. In P. Deransa

Values in italics show that the optimality proof timed out. M- Hermenegildo, and J. Maluszynski, editorjalysis

Solution values in parenthesis give better solutions which and Visualization Tools for Constraint Programming,

were found with other search strategies. The time out for the Velume 1870 ofLecture Notes in Computer Science,

GP100 and SP sets (marked by *) was increased from 600 to P29€s 299-317. Springer, 2000.

3600 seconds so that the search routine could find a first s¢Torres and Lopez, 2000P. Torres and P. Lopez. Overview

lution. Two instances in the NWRS (marked with +) set were and possible extensions of shaving techniques for job-shop

modified by hand to remove illegal empty rows. problems. In2nd International Workshop on Integration
of Al and OR techniques in Constraint Programming for
11 Summary Combinatorial Optimization Problems (CP-Al-OR' 2000),

. .. pages 181-186, March 2000.
In this note we have presented our model for the constraint .
modelling challenge. We use a mixed integer and continuouvan Hentenryck and Carillon, 1988&. Van Hentenryck and
variable model with the IC library of the ECLiPSe language. J.P. Carillon. Generality versus specificity: An experenc
The schedule is generated by defining an order of the products With Al and OR techniques. [AAAI, pages 660-664,
on the real number axis, inserting new tasks between already 1988.
placed ones. This model leads to a nice search tree whidwallaceet al., 1997 M. Wallace, S. Novello, and
is rather narrow at the top, allowing proofs of optimality by =~ J. Schimpf. ECLiPSe : A platform for constraint
enumeration for medium sized problems. logic programming. ICL Systems Journal, 12(1), May

T . . 1997.
2The IC library currently does not support holes in contirsiou

domains, we therefore had to simulate this in the user code

71

Constraint Modelling Challenge 2005

A Results
Best Optimal

K Set Opt Key LB | NrS Sol Ass Time BT Ass Time BT
1 hs | 100.00 Avg 7.9273| 1.23| 8.0309 80.43 0.23 0.98 93.58 0.24 2.85
cresha Geom | 7.6572| 1.16 | 7.7657 0.00 0.17 - 0.00 0.18 -
Pr10 Median 8 1 8 70 0.28 0 70 0.28 0
Culo Min 3 1 3 0 0.01 0 0 0.01 0

In 550 Max 10 3 10 434 0.53 29 736 0.73 59

2 hs | 100.00 Avg | 15.0673| 1.57 | 15.8782 249.84 0.80 5.99 452.71 1.03 25.26
cresha Geom | 14.5358| 1.44 | 15.4085 225.36 0.78 - 347.66 0.96 -

Pr 10 Median 16 1 17 200 0.81 0 339 0.91 18

Cu 20 Min 6 1 7 44 0.19 0 44 0.20 0

In 550 Max 20 5 20 1507 1.76 129 12798 | 12.94 930

3 hs | 100.00 Avg | 22.1255| 1.86 | 23.9527 398.88 1.42 17.28 1137.75 2.57 76.65
cresha Geom | 21.2858| 1.67 | 23.2988 319.28 1.36 - 784.75 2.24 -

Pr 10 Median 23 2 25 279 1.31 7 755 2.12 51

Cu 30 Min 8 1 9 104 0.67 0 104 0.68 0

In 550 Max 30 5 30 6427 9.79 495 12103 | 14.92 1006

4 hs | 100.00 Avg 8.5018 | 1.26 | 8.9218 294.51 0.52 3.02 661.48 0.86 30.58
cresha Geom| 8.2994| 1.18| 8.7720 193.89 0.45 - 253.30 0.56 -

Pr 20 Median 9 1 10 244 0.50 0 264 0.56 0
Culo0 Min 4 1 4 4 0.03 0 4 0.04 0

In 550 Max 10 4 10 5506 4.30 230 60994 | 38.16 5233

5 hs | 100.00 Avg | 12.0836| 1.45| 12.8691 539.23 0.93 8.34 1167.92 1.59 4454
cresha Geom | 11.7352| 1.32 | 12.6003 428.92 0.87 - 620.55 1.16 -

Pr 15 Median 13 1 14 429 0.86 0 573 1.02 16
Culs Min 5 1 5 4 0.04 0 4 0.04 0

In 550 Max 15 4 15 7674 7.31 458 67312 | 62.83 2540
6 hs | 99.55 Avg | 22.9318| 1.98 | 25.9682| 5241.24 5,29 24291 22116.69| 21.63| 1039.18
cresha Geom | 22.1306| 1.73 | 25.5447| 1486.45 2.02 - 6300.03 7.93 -

Pr 15 Median 24 2 28 942 1.23 8 6357 7.21 253

Cu 30 Min 9 1 14 429 0.79 0 456 0.96 0

In 220 Max 30 6 30 278348 | 241.17 17507 551805 | 419.51 29328

7 hs | 97.27 Avg | 12.7545| 1.40 | 14.0318| 5979.43 437 | 165.01| 19475.19| 16.58| 534.86
cresha Geom | 12.4854| 1.27 | 13.9369| 2188.66 1.76 - 4466.01 4.08 -

Pr 30 Median 14 1 15 2254 1.67 0 3125 2.60 35
Cul5 Min 6 1 9 104 0.29 0 104 0.29 0

In 220 Max 15 4 15 610546 | 417.07 28594 617707 | 424.54 28793
8 hs | 98.64 Avg | 16.0727| 1.65| 17.9773| 6451.40 496 | 206.78| 34178.23| 26.92| 1253.65
cresha Geom | 15.5813| 1.45| 17.7574| 2007.04 1.80 - 5382.35 5.08 -

Pr 20 Median 17 1 19 1500 1.34 0 3353 3.46 72

Cu 20 Min 6 1 10 340 0.51 0 340 0.51 0

In 220 Max 20 5 20 255303 | 198.54 13773 875385 | 554.73 49653

9 hs | 54.55 Avg | 30.6636| 1.86 | 36.5909| 17882.52| 46.22 | 528.12| 31674.18| 104.19| 921.68
cresha Geom | 29.5883| 1.60 | 36.3154| 4006.93| 13.63 - 11200.40| 45.82 -

Pr 20 Median 33 1 39 1500 7.13 0 10187 | 46.04 262

Cu 40 Min 15 1 24 1292 4.36 0 1292 6.59 0

In 110 Max 40 5 40 175430 | 491.06 5630 183800 | 460.27 6318

10 hs | 50.00 Avg | 23.9000| 1.41 | 28.6273| 16223.35| 28.73| 237.74| 22480.24| 74.09| 315.60
cresha Geom | 23.2144| 1.29 | 28.5375| 7015.01| 14.48 - 11303.57| 30.56 -

Pr 30 Median 25 1 30 4900 | 10.52 0 7740 | 18.54 80

Cu 30 Min 12 1 22 3224 5.29 0 4004 9.07 0

In 110 Max 30 4 30 306566 | 447.20 8642 156794 | 560.15 2631

11 wbo | 100.00 Avg 5.2250| 1.60 | 5.9250 257.10 0.37 4.97 539.40 0.55 29.15
cresha Geom | 4.8237| 1.46| 5.4219 235.03 0.36 - 350.93 0.45 -

Pr 10 Median 5 1 6 200 0.38 0 293 0.43 9
Cul0 Min 2 1 2 104 0.20 0 104 0.20 0

In 40 Max 8 3 10 938 0.76 53 5533 3.16 439

12 | wbop | 100.00 Avg 5.1250| 1.52 | 6.7500 245.18 0.37 4.38 1563.65 1.14 | 108.10
cresha Geom| 4.5496| 1.43| 6.1393 231.98 0.36 - 777.71 0.77 -

Pr 10 Median 6 2 8 200 0.37 1 752 0.72 44
Culo Min 2 1 3 147 0.23 0 147 0.25 0

Table 1: Summary (cont'd)

72

Constraint Modelling Challenge 2005

Best Optimal
K Set Opt Key LB | NrS Sol Ass Time BT Ass Time BT
In 40 Max 8 3 10 757 0.70 42 7476 4.39 762
13 wbp | 100.00 Avg 6.9500| 1.27| 7.2750 93.33 0.27 0.65 149.50 0.31 7.95
cresha Geom| 6.4930| 1.21| 6.7652 83.14 0.24 - 104.77 0.26 -
Pri10 Median 8 1 8 91 0.31 0 102 0.34 1
Cu 10 Min 3 1 3 25 0.04 0 25 0.05 0
In 40 Max 10 2 10 200 0.42 6 978 0.71 83
14 wbo | 100.00 Avg | 10.7571[2.04 | 12.9000 343.30 0.83 13.53 1363.89 1.98 90.07
cresha Geom| 10.1709| 1.86 | 12.3087 313.62 0.80 - 1084.27 1.74 -
Pri10 Median 11 2 14 288 0.81 13 1127 1.76 71
Cu 20 Min 5 1 6 200 0.47 0 300 0.59 11
In70 Max 17 4 19 1061 1.60 51 5788 6.04 456
15| wbop | 100.00 Avg | 10.6250(2.15 | 14.2750 731.58 1.23 45.45 6285.73 6.90 | 468.02
cresha Geom | 9.7734| 1.93 | 13.3796 438.94 1.00 - 3262.00 4.16 -
Pri10 Median 12 2 16 393 0.83 26 3527 4.47 230
Cu 20 Min 5 1 6 200 0.51 0 261 0.57 21
In 40 Max 16 4 20 4348 4.99 337 50179 | 52.63 3739
16 wbp | 100.00 Avg | 13.3250(1.75 | 15.1250 284.88 0.78 10.38 1403.13 1.83 | 104.60
cresha Geom | 12.6977| 1.58 | 14.5042 235.47 0.75 - 746.04 1.38 -
Pri10 Median 15 2 17 200 0.74 1 666 1.31 52
Cu 20 Min 7 1 8 70 0.46 0 70 0.46 0
In 40 Max 19 4 20 1300 1.79 84 15557 | 13.35 1343
17 wbo | 100.00 Avg | 16.2700| 2.40 | 20.0500 635.57 1.70 38.99 3786.50 6.62 | 271.37
cresha Geom | 15.4637| 2.18 | 19.3414 456.30 1.53 - 2800.51 5.39 -
Pri10 Median 16 2 21 392 1.33 24 2989 5.53 216
Cu 30 Min 8 1 10 200 0.77 0 489 1.25 30
In 100 Max 25 5 28 4454 6.57 369 19978 | 31.42 1459
18 | wbop | 100.00 Avg | 16.3750| 2.17 | 22.4750| 1376.03 2.89 96.80 | 13750.42| 22.38| 979.15
cresha Geom | 15.0397| 1.91 | 21.5388 644.70 2.07 - 10926.39| 18.52 -
Pr10 Median 18 2 26 516 1.38 42 11414 | 18.98 767
Cu 30 Min 7 1 13 200 0.85 0 3200 5.87 191
In 40 Max 26 5 30 9133 | 16.23 623 45921 | 68.86 3328
19 wbp | 100.00 Avg | 19.1750| 1.98 | 23.1750| 1015.38 2.17 66.80 6376.65 9.90 | 472.10
cresha Geom | 18.3156| 1.81 | 22.4438 512.28 1.69 - 3478.32 6.32 -
Pri10 Median 20 2 25 356 131 23 3421 6.00 219
Cu 30 Min 10 1 14 169 0.83 0 242 0.96 17
In 40 Max 27 4 30 6801 | 10.15 478 39688 | 52.02 3346
20 wbo | 100.00 Avg 6.7667 | 2.05| 9.3500| 2888.00 1.66 98.72 | 22505.97| 13.09 | 1020.38
cresha Geom| 5.9933| 1.86| 8.3463| 1261.54 0.88 - 6221.31 4.23 -
Pri5 Median 7 2 10 934 0.65 11 5818 4.31 213
Cu 15 Min 2 1 3 532 0.40 0 532 0.40 0
In 60 Max 12 4 14 61010 | 28.86 2636 313222 | 181.56| 15347
21| wbop | 98.33 Avg 6.7667 | 2.22 | 10.3833| 9726.05 6.05| 428.68| 131222.66| 79.05| 5923.10
cresha Geom| 5.8449| 1.99 | 9.1998| 2048.01 1.46 - | 44260.26| 28.25 -
Pri5 Median 7 2 12 967 0.72 20 79058 | 47.09 3244
Cu 15 Min 2 1 3 650 0.45 0 650 0.46 0
In 60 Max 12 6 15 133780 | 83.22 5952 728131 | 395.59| 35566
22 wbp | 100.00 Avg 9.4167| 1.72 | 11.0500 702.28 0.54 17.68 7144.43 4.31 344.42
cresha Geom | 8.6743| 1.52 | 10.1101 507.88 0.46 - 1835.01 1.42 -
Pr 15 Median 10 1 12 429 0.45 0 1748 1.26 68
Cu 15 Min 3 1 3 147 0.20 0 147 0.20 0
In 60 Max 14 4 15 6621 2.71 357 130281 | 74.46 5531
23 wbo | 97.50 Avg 5.0750 | 1.93| 7.3500| 3812.88 1.86 | 110.40| 37503.54| 19.01| 1734.59
cresha Geom| 4.6410| 1.71| 6.9127| 2188.36 111 - 10622.69 6.30 -
Pr 20 Median 5 2 8 1707 0.86 9 7412 4.77 198
Cul0 Min 2 1 3 609 0.32 0 614 0.35 6
In 40 Max 8 4 10 41830 | 20.30 1829 538568 | 184.02| 36566
24 | wbop | 70.00 Avg 5.1000| 1.58 | 8.1000| 32196.22| 14.65| 1491.97| 120702.39| 63.20 | 4928.00
cresha Geom| 4.5807| 1.40| 7.7854| 2360.09 1.18 - 28923.86| 16.42 -
Pr20 Median 6 1 9 1500 0.75 0 33405| 19.57 760
Cu 10 Min 2 1 4 784 0.48 0 1145 0.74 19
In 40 Max 8 4 10 628704 | 292.82| 29222 724484 | 420.03| 33028
25 wbp | 100.00 Avg 7.7429| 1.26| 8.7143 427.31 0.31 3.94 6470.49 3.42| 290.49
Table 1: Summary (cont'd)

73

Constraint Modelling Challenge 2005

Best Optimal
K Set Opt Key LB | NrS Sol Ass Time BT Ass Time BT
cresha Geom | 7.4901| 1.19| 8.5549 0.00 0.27 - 0.00 0.49 -
Pr 20 Median 8 1 9 340 0.28 0 558 0.43 21
Culo Min 4 1 5 0 0.02 0 0 0.02 0
In 70 Max 10 3 10 3822 1.82 103 372784 | 188.41 16960
26 wbo 65.56 Avg 8.9111| 2.50| 13.8111| 27438.20| 35.19| 1018.08| 95476.02| 156.21 | 2898.73
cresha Geom | 7.5116| 2.21 | 12.2172| 6307.57 9.78 - 44176.78| 74.82 -
Pr 20 Median 9 2 16 3546 5.87 62 65923 | 112.42 1791
Cu 20 Min 2 1 3 935 1.51 0 986 1.73 4
In 90 Max 16 6 20 455615 | 491.18 20321 295537 | 480.40 10359
27 | wbop | 26.67 Avg 8.9667 | 2.29 | 15.3667 | 26961.39| 42.86| 899.46| 132009.00(151.20| 3731.50
cresha Geom| 7.5419| 1.92 | 13.7934| 5029.20 8.10 - 51583.01| 64.03 -
Pr 20 Median 9 2 18 2317 4.77 32 73488 | 86.99 1921
Cu 20 Min 2 1 3 1500 1.74 0 2944 3.56 21
In 90 Max 16 8 20 347266 | 461.07 9908 560353 | 591.79 15010
28 wbp 85.56 Avg | 12.3000| 1.97 | 15.4556| 8961.77 8.61| 316.50| 46275.01| 46.88| 1701.68
cresha Geom | 11.2104| 1.73 | 14.1546| 2607.38 3.00 - 12892.73| 15.72 -
Pr 20 Median 13 2 18 1500 1.68 5 14151 17.58 453
Cu 20 Min 4 1 4 264 0.54 0 269 0.55 1
In 90 Max 19 5 20 103050| 90.22 4659 538036 | 421.26 24508
29 wbo | 47.50 Avg 4.9500| 1.55| 8.3750| 21851.75| 18.13| 509.02| 118364.84| 112.54 | 3580.84
cresha Geom 45332 1.42 8.1421 7479.11 551 - 49665.19| 55.46 -
Pr 30 Median 5 1 9 4900 3.50 0 32678 | 37.52 496
Cul0 Min 2 1 5 2254 1.65 0 12190| 13.83 138
In 40 Max 8 4 10 270313 | 281.90 5969 859851 | 554.87 35187
30 | wbop | 35.00 Avg 49500 1.38| 8.7500| 23221.67| 24.69| 667.50| 46058.71| 66.34 | 1149.50
cresha Geom | 4.5429| 1.28 | 8.6002| 6204.28 5.59 - 21772.23| 30.85 -
Pr 30 Median 5 1 9 4437 4.29 0 20610 | 28.26 244
Culo0 Min 2 1 5 1607 1.72 0 5271 7.82 81
In 40 Max 8 3 10 320114 | 410.74 11346 334300 | 430.15 11710
31 wbp | 100.00 Avg 8.2200| 1.21| 9.3100| 2344.85 2.06 69.77 4950.81 5.15| 197.65
cresha Geom | 8.0651| 1.15| 9.2406 0.00 0.66 - 0.00 1.44 -
Pr 30 Median 9 1 10 650 0.65 0 1152 1.16 26
Cul0 Min 4 1 6 0 0.04 0 0 0.04 0
In 100 Max 10 3 10 164794 | 135.56 6471 173891 | 146.47 6719
32 wbo 21.67 Avg 6.5667 | 1.87 | 11.7833| 37849.58| 39.61| 598.22| 177203.38| 228.80 | 2909.15
cresha Geom| 5.7231| 1.67 | 11.2386| 10358.27 9.36 - | 110578.67| 145.07 -
Pr 30 Median 7 2 13 6281 4.94 2 142211 | 184.55 2122
Cu 15 Min 2 1 4 3224 2.94 0 9500 | 11.34 158
In 60 Max 11 5 15 374739 | 403.44 6460 443254 | 526.85 7583
33| wbop | 10.00 Avg 6.6000 | 1.40 | 12.8167| 12780.73| 12.32| 239.20| 184943.67| 260.64 | 2937.17
cresha Geom| 5.7376| 1.28 | 12.4216| 5859.46 5.21 - | 153923.29| 209.77 -
Pr 30 Median 7 1 14 4900 4.41 0 229296 | 259.25 3464
Cul5 Min 2 1 6 2875 3.01 0 76419 | 86.36 1096
In 60 Max 12 4 15 240524 | 250.97 7120 373416 | 533.51 6141
34 wbp 81.67 Avg | 10.5750| 1.58 | 13.1250| 9835.32| 10.13| 267.42| 47043.44| 53.21| 141451
cresha Geom | 10.1160| 1.43 | 12.8301| 3028.60 2.88 - 11943.57| 13.76 -
Pr 30 Median 11 1 14 2552 2.18 0 10488 | 13.22 199
Cul5 Min 4 1 7 387 0.77 0 463 0.92 0
In 120 Max 15 4 15 433111 | 472.16 15024 478405 | 552.62 16340
35 wbo 86.67 Avg | 14.5667| 3.02 | 20.9833| 17578.88| 22.45| 928.18| 102742.73| 139.78 | 4688.42
cresha Geom | 13.1834| 2.78 | 19.7089| 3699.86 5.91 - 50765.00| 74.55 -
Pr 15 Median 15 3 23 2230 3.47 77 60638 | 83.89 2542
Cu 30 Min 5 1 7 650 1.40 0 3290 6.19 98
In 120 Max 25 6 29 236502 | 277.56 14682 421350 | 548.72 22956
36 | wbop | 23.33 Avg | 13.5167| 2.67 | 22.5333| 40699.43| 71.71| 2082.72| 136558.21| 275.94 | 5676.07
cresha Geom| 11.9061| 2.32 | 21.1790| 5566.81| 16.99 - 93146.43| 208.80 -
Pr 15 Median 15 2 25 4221 12.11 195 101430 | 275.82 4659
Cu 30 Min 4 1 8 650 1.42 0 9106 | 32.59 373
In 60 Max 23 6 30 395895 | 582.38 21580 390955 | 599.35 15182
37 wbp 91.67 Avg | 17.6333| 2.63 | 23.0000| 30253.63| 37.39| 1332.52| 103805.02| 133.66 | 5003.25
cresha Geom | 16.2903| 2.33 | 21.7611| 4148.78 6.59 - 44501.15| 61.64 -
Pr 15 Median 18 3 26 2283 3.61 83 69103 | 95.81 2982
Table 1: Summary (cont'd)

74

Constraint Modelling Challenge 2005

Best Optimal

Set Opt Key LB | NrS Sol Ass Time BT Ass Time BT

Cu 30 Min 6 1 9 532 1.18 0 1900 3.09 82

In 60 Max 27 6 30 471584 | 591.02 16879 554472 | 568.48 39190

wbo 6.43 Avg | 12.6500| 2.23 | 23.6357| 33127.47| 58.95| 631.96| 29021.11| 81.22| 368.33

cresha Geom| 10.2571| 1.91 | 21.2772| 12092.61| 21.44 - 16607.19| 43.11 -

Pr 30 Median 13 2 27 7651 | 12.85 22 13804 | 35.02 92

Cu 30 Min 2 1 3 4437 7.88 0 7571 | 15.68 11

In 140 Max 24 5 30 333331 | 587.51 16381 146344 | 408.97 2251

wbop 2.14 Avg | 12.6571| 1.65| 25.4000| 12522.08| 30.68| 164.41| 65826.00| 251.47 | 1044.33

cresha Geom | 10.2150| 1.45| 24.0354| 7621.25| 18.60 - 63787.06| 238.13 -

Pr30 Median 13 1 29 4900 | 13.42 0 68981 | 296.76 1105

Cu 30 Min 2 1 3 4437 8.48 0 45132 | 146.01 625

In 140 Max 24 6 30 199529 | 434.47 5786 83365 | 311.64 1403

wbp 27.14 Avg | 17.7857| 1.80 | 25.1786| 17071.12| 38.98| 294.91| 62200.24| 145.16| 1093.74

cresha Geom | 15.8865| 1.54 | 23.2492| 7114.11| 16.75 - 25298.37| 70.54 -

Pr30 Median 19 1 29 4900 | 12.30 0 35496 | 100.70 627

Cu 30 Min 4 1 4 1295 4.81 0 1295 4.83 2

In 140 Max 28 7 30 295597 | 459.45 8148 322076 | 588.20 5967

shaw | 92.00 Avg 9.4800 | 2.44 | 13.6800| 32579.40| 25.84| 861.36| 61404.17| 48.46| 2442.83

cresha Geom | 9.4329| 2.12 | 13.6598| 3241.43 2.74 - 23347.72| 20.15 -

Pr 20 Median 9 2 14 2149 1.75 14 20660 | 18.44 611

Cu 20 Min 8 1 12 1104 1.07 0 3255 2.63 43

In 25 Max 11 5 15 717909 | 570.25 19249 603810 | 453.77 29028

Table 1: Summary
Best Opt

Problem N M | Den | LB | NrSol Sol Ass | BT Time Ass BT Time
Miller.1 40| 201 0.20 4 1] 14(13)| 11400 0 11.98| 662304 | 6935 600.14
GP50.1] 50| 50| 0.81| 45 1 45| 13160 0 67.74| 13160 0 67.77
GP50.2| 50| 50| 0.63| 40 1 40 | 19504 0 81.03| 19504 0 81.07
GP50.3] 50| 50| 0.65| 40 2 40| 25765 1 96.04| 25765 1 96.07
GP50.4] 50| 50| 0.54] 30 1 30 9065 0 48.39 9065 0 48.43
GP100.1| 100 | 100| 0.86| 95 1 95 | 171500 0 | 3291.27| 171500 0 | 3291.38*
GP100.2| 100 | 100| 0.68| 75 1 75 | 171500 0 | 3137.39| 171500 0 | 3137.51*
GP100.3| 100 | 100 | 0.67| 75 2 75 | 182940 1| 2892.09| 182940 1| 2892.22*
GP100.4| 100 | 100| 0.54| 60 2 60 | 157157 1| 2495.84| 157157 1| 2495.97*
NWRS.1 20| 10 0.23 3 2 3 142 7 0.19 142 7 0.19
NWRS.2 20| 10| 0.27 4 2 4 391 5 0.33 391 5 0.33
NWRS.3 25| 15| 0.24 7 3 7 677 | 36 0.73 677 36 0.74
NWRS.4 25| 151 0.27 7 2 7 848 9 0.82 848 9 0.82
NRWS.1 30 20|0.26| 11 3 12 2139 6 2.57 2481 32 2.95
NRWS.2 30| 20|0.27| 11 3 12 3525 2 3.45 3810 22 3.86
NRWS.3 | 594+ 25| 0.15] 10 5 10 | 11202]| 369 26.50| 11202| 369 26.53
NRWS.4 | 59+ 2510.18| 12 5 16| 27312| 352 39.86| 151272| 2081 294.36
SP.1 25| 251 0.10 8 3 9 1472 6 1.89 1553 11 2.04*
SP.2| 50| 50| 0.07 9 1 22| 15092 0 48.89 | 887511 | 4641 | 3600.39*
SP.3 75| 75 0.06 9 1|46 (42)| 64680 0| 304.12| 748912 | 2571 | 3600.58*
SP.4| 100| 100 | 0.05| 13 5 67 | 437413| 566 | 2658.04| 506807 | 793 | 3601.20*

Table 2: Individual Results

75

B Modesand Code Segments

min

Vi<j<m

Limit s.t.
P[l.n]:1.n
S[l.m] :: 1.n
E[l.m]:: 1.n
Ull.n]:1.m
Limat :: 1.m
O[l..n,1..m] :: 0..1
alldifferent(P)
Vicj<m : Sj = min{P;le;; = 1}
Vi<j<m ' Ej = max{P;|c;; = 1}
Vici<nVi<j<m

Oy = (8; <) A (1 < Ey)
Vlgign : Ui = Z Oij

1<j<m

Limit = max U;
1<i<n

Table 3: Basic Model

min(PP) + |PP|—1
max(PP) — |PP|+1

E; >
S; <

Table 4: Redundant Constraint

PP | P | P | B
O, 1]0]1]0]0
O, 0[O0 [T 01
O, 0[O0 [T]0][1
O, 111010
Os [0 1T [0 10

Table 5: Example 1

@)
)
©)
(4)
®)
(6)
)
®)
9)
(10)
(11)
(12)

(13)

(14)

(15)
(16)
(17)

Constraint Modelling Challenge 2005

PP P PP
O 11010
O, [0 [T [0 [1]1
O, 0[O0 [I 10
O, 0[O0 [1I[0]0
Os 0[O0 [1T[0]0

Table 6: Example 2

min Limit s.t. (18)
P[1..n] :: 0.0..1000.0 (19)
S[1..m] :: 0.0..1000.0 (20)
E[1..m] 1 0.0..1000.0 (21)
Ull.n]::1.m (22)
Limit :: 1.m (23)
O[l.n,1..m] :: 0..1 (24)
Vi<j<m :8; = min{P;|c;; = 1} (25)
Vicj<m : Ej = max{Pjc; =1} (26)
Vi<i<nVi<j<m : (27)
Oij =(S; <P)N (P <Ej;) (28)
cj=1=0;=1 (29)
Vicicn :Ui= Y Oy (30)

1<j<m
Limit = max U; (31)

1<i<n
Table 7: IC Model
| abeling([])-.

| abeling([H T]):-

sel ect _var (X [H T], Rest, strategy),

choose_val (X),
| abel i ng(Rest).

Table 8: Assignment Method

| abel i ng(L): -

left _to_right(L,1).

left _to_ right([],

left _to_right([H
delete(N, [H T],
N1 is N+1,

_)-

T,N: -
Rest),

left _to_right(Rest,Nl).

Table 9: Left to Right Assignment

76

[abeling([])-

I abel ing([P1]): -
P1 = 200.0.

| abel i ng([P11, P2| Rest]): -
P1 = 200.0,
P2 = 800.0,

insert_|p([0.0,P1, P2,1000.0], Rest).

insert _Ip(Current,[]).

insert_|p(Current,[HT]):-
sel ect _var (X [H T], Rest),
i nsert (Current, X, New),
insert_| p(New, Rest).

insert([ABR,X[AXBR):-
Xis (A+B)/ 2.

insert([AIR,X [AS]):-
insert(R X S).

Table 10: Insertion Routine

spread(E, Orders): -
(foreach(Ex, E),
foreach(Set, Orders) do

prep_set (Set, Set N, M nSet),

sort (0, =<, M nSet, M nSorted),

(foreach(V, M nSorted),
for(J,SetN, 1,-1),
front o(0, A Al, BoundE) do

Al is max(A V+J-1)
).
Ex

#>= BoundE

Table 11: Spread Redundant Constraint

77

Constraint Modelling Challenge 2005

cumul (Assign, S, E, Limt):-

store_obligatory parts(S, E, Obl),

create_events(Obl, Events),

sort(time of event, =<, Events, Sorted),

build profile(Sorted, Profile),

check_resource(Profil e, MaxUse),

Limt #>= MaxUse,

find_unassi gned _vars(Assign, Unass),

get _max(Limt,LimnmtMx),

(foreach(X, Unass),

param(ol , Sort ed, Li mi t Max) do
get _assi gn_domai n(X, DonLi st),
(foreach(V, DonlLi st),
par am(X, Qol , Sort ed, Li m t Max) do
addi t _events(X, V, Obl, NEvent s),
append(NEvent s, Sorted, NAl |),
sort(t of event, =<, NAlI, NSorted),
buil d_profil e(NSorted, NProfile),
check _resource(NProfil e, NUse),
(NUse =< LimtMx ->
true

remove_val ue(X, V)

Table 12: Combined Cumulative Constraint

Constraint Modelling Challenge 2005

Modelling Challenge - Open Stack Problem

Radoslaw Szymanek and Mark Hennessy
Cork Constraint Computation Centre
Cork, Ireland
{radsz}{m.hennessy}@4c.ucc.ie

Abstract

The Open Stack minimization problem exhibits
many features which lead to an interesting CP
model for study. In this short paper, we will de-
scribe the main ideas behind one possible modeling
approach. The experimental results show that our
approach can solve the Open Stack instances pro-
posed for this modeling challenge. It is also able to
produce proof of optimality within a given search
cut-off limit for a large number of instances.

1 Introduction

A manufacturer has a number of orders from a customer to
satisfy; Once a customer’s order is started (i.e. any productin
the order has been made) a stack is created for that customer.
When all products required by a customer have been made, its
stack is closed and the order is sent to the customer. Because
of limited space in the production area, the number of stacks
that are in use simultaneously (i.e. the number of customer
orders that are in simultaneous production), should be min-
imized. This problem and possible local search approaches
are presented in detail in [Fink and Voss, 1999].

Our model consists of five different viewpoints which are
connected using channeling constraints. The model also
contains implied constraints, symmetry breaking constraints,
dominance constraints and a specially designed global con-
straint. For the purposes of clarity the variables in this paper
are represented with a lower case letter and a single or dou-
ble index while entities such as customers and products are
represented with an upper case letter.

2 Example

We will use example depicted in Figure 1 to explain our
model. It consists of five products and four customers. The
order matrix o,; specifies what products are ordered by which
customers. For example, product P, is ordered by customer
Cy only. The current ordering of products makes the number
of required stacks equal to the number of customers. How-
ever, if P is swapped with P, then it is possible to decrease
the number of required stacks by one, which is the optimal
number of stacks for this example.

P1 P2 P3 P4 P5 P1 P5 P3 P4 P2
cT 1 0 o0 o0 1 1 1 0 0 O
c2 1 0 1 1 0 ----\ 1 0 1 1 o0
¢c3 0 0 1 1 0 ----/ 0o o0 1 1 O
c4 0 1 0 1 1 0 1 o 1 1

Figure 1: An example and its optimal solution

3 Viewpointsand Variables

A graphical representation of all viewpoints is depicted in
Figure 2. The first basic viewpoint looks at the positions of
products. The problem is described by variables p;, which
represent the positions of products. Knowledge about posi-
tions of products is sufficient to determine the number of re-
quired stacks. For our example, there are five variables p1,
D2, P3, P4, and ps. Each p; variable has a domain consisting
of p values, where p is the number of products.

The second viewpoint looks at the problem from a cus-
tomer perspective, however it still uses p; variables. The stack
for C; is opened at position s; and is closed at position e;. In
addition, we can introduce variable d; which represents the
difference between a closing position and an opening posi-
tion. Initially, the domains of all variables will have p values.

The third viewpoint considers the customer positions. Vari-
able ¢; defines the position at which C; is serviced. In our
example, there are four variables c1, ¢2, ¢3, and ¢4. Each vari-
able will initially have a domain consisting of ¢ values, where
c is the number of customers. The positions of products and
the number of required stacks can be decided, given the posi-
tions for all customers. However, in our approach we also use
the cp matrix from the next viewpoint to improve the bound
on the number of stacks required given a partial solution.

3rd viewpoint
b

4th viewpoint
°Pi

5th viewpoint
PPj

Figure 2: Graphical representation of different viewpoints

2nd viewpoint

1st viewpoint
P

si dj
€j

78

Cl C2 C3 cC4
ci1 1 1 0.1 1
c2 1 1 1 1
C3 01 1 1 1
c4 1 1 1 1

Figure 3: Customer precedence matrix for the example

The fourth viewpoint decides the relative positions of cus-
tomer stacks. A boolean variable cp;; from customer prece-
dence matrix specifies if stack for C; is not closed before
stack for C; is opened. In our example, the optimal solution
makes variable cp;3 equal to zero since the stack for C; is
closed before stack for C' is open. If customers C; and C;
overlap then both cp;; and cp;; are equal one. Please note that
any customers that share products will overlap. The ¢p ma-
trix for our example is depicted in Figure 3. This viewpoint
works very well if there are many ones in the order matrix.

The fifth viewpoint looks at the relative positions of prod-
ucts. A boolean variable pp;; from the product precedence
matrix specifies that P; is positioned after P;. In our exam-
ple, the left solution will assign value zero to ppas since P» is
not positioned after P5. On the other hand, the right solution
will assign value one to ppos since P, is positioned after Ps.
Each pp;; is equal to one.

4 Constraints

This section presents the constraints that are required to guar-
antee the correctness of solutions for different viewpoints.
It does not include implied constraints nor channeling con-
straints. The simplest viewpoint is the product position one.
It imposes an alldif ferent constraint to make all product
positions unique.

The second viewpoint requires constraints to express rela-
tions between products of C; and s;, e;, and d;. First, s; is
equal to the minimal position of any product of C;. Second,
e; is equal to the maximal position of any product of C;. Fi-
nally, d; is larger or equal to the number of products of C;
minus one.

The customer position (3rd) viewpoint requires an
alldif ferent constraint to enforce that each customer is po-
sitioned differently. This constraint will put any two cus-
tomers at different positions even if they have the same set
of products.

The fourth viewpoint takes into account the precedence
relations between customers. It requires constraints which
make sure that there is no pair of customers C; and C; such
that C; is closed before C; and vice verse. Given any pair of
variables cp;; and cp;; only one can be equal to zero.

The fifth viewpoint models problem in terms of product
precedence relations. The constraints imposed by this view-
point make sure that for every pair of products P; and P;
variables pp;; and pp;; are not equal. This prevents a situa-
tion when P; is positioned after P; and at the same time P; is
positioned after P;.

5 Implied Constraints

There are additional constraints which may improve propaga-
tion within different viewpoints. For example, it is possible

Constraint Modelling Challenge 2005

to add implied constraints on s; and e; variables after analy-
sis of order matrix o. For any pair of customers C; and C},
which require the same set of products, we can impose im-
plied constraint which forces s; to be equal to s; and e; be
equal to e;. If C; and C; differ in only one product then the
weaker implied constraint is imposed which enforces that s;
is equal to s; or e; is equal to e;. On the other hand, if two
customers C; and C; do not share any products then s; has to
be different from s; and e, has to be different from e;.

We also add implied constraints which are imposed over
the customer precedence variables. For any pair of customers
C; and C; which do not share any products, if there exists
a customer C,,, which is in parallel to C; and Cj; is closed
before C,,, then C; can not be closed before C;. It is also
possible to add different types of implied constraints for the
same viewpoint which check any triplet of customers C;, Cj,
and C,,. If ¢p;; = 0 and cp;, = 0 then it implies that C;
is closed before C,, SO cp;, = 0. However, the number
of constraints of this type grows quickly with the increase
of customers, which often renders those constraints of little
value if any. In order to reduce the size of the model we do
not include these constraints in a model.

Since the second viewpoint extends the first viewpoint, the
following constraints should be rather called implied con-
straints than channeling constraints. If s; is equal to s; then
any P,, which does not belong to both customers can not be
placed at position equal to s;. Similar constraints can be im-
posed if we substitute s with e. However, we did not include
these implied constraints in our model since they increased
search time.

6 Channeling Constraints

The most important channeling constraints are the ones be-
tween the fourth and the fifth viewpoint. They are expressed
as rei fied constraints which take as input boolean variable
cpi; and the disjunction of constraints of type pp,,, = 1,
where P, is any product of C; and P, is any product of C;.
In other words, it means that C; can not be closed before C;
if there is at least one product of C; which is positioned later
than any product of C;. These channeling constraints make it
possible to reason about the precedence relationship between
products implied by the customer precedence relationship and
vice verse.

The channeling constraint between the first and the fifth
viewpoint are expressed using a sum constraint. Variable p;
is equal to the sum of variables in ith row of pp matrix. On
the other hand, the channeling constraints between the second
viewpoint and the fourth viewpoint are expressed as rei fied
constraints which take as arguments constraint s; < e; and
boolean variable cp;;.

There are also single direction channeling constraints
which are imposed to improve propagation between models
for different viewpoints. For example, c¢p;; = 0 implies that
¢i < ¢j. Inaddition, ¢; < c; implies that e; < e;. On
the other hand, e; < e; implies that ¢; < ¢;. Since one
product can close more than one open stack, the channeling
constraints are expressed as implication constraints.

79

7 Dominance Constraints

There are number of possible dominance constraints which
are imposed. The dominance constraint prevents exploration
of the search space which contains a wasteful solution if there
is a guarantee that there is a better or equally good solution
in different part of the search space. We refer the reader to
[Prestwich and Beck, 2004] for more elaborate explanation of
dominance constraints. In the case of the Open Stack prob-
lem, if for some special conditions the existence of the solu-
tion with the larger size of open stacks indicates the existence
of the solution with a smaller number of open stacks then
we can immediately cut the search space which contains the
wasteful solution.

The first dominance rule imposes additional constraints on
product positions. If the set of customers of P; is a proper
subset of the set of customers of P; then P; can always be
safely positioned before P;. In this case, constraint pp;; = 0
is imposed. In our example, P; would have a smaller posi-
tion than P,. We have not included this dominance rule in
our model since we are not certain that it does not conflict
with other dominance rules. In addition, these constraints
prolonged search on instances we have tested.

The second dominance rule imposes additional constraints
on customer positions. If the set of products of C; is a proper
subset of the set of products of C'; then Cj is positioned earlier
than C;. It is expressed using constraints ¢; < c¢;. In our
example, this dominance rule will position C before Cs.

The third dominance rule is based on the customer neigh-
borhood. The neighborhood of C; is defined as the set of
customers for which a variable from the ith row of the ¢cp ma-
trix equals one. That is, C; has a neighbor C,,, if ¢pi, = 1.
If there is a pair of customers C; and C; such that for all
k, epi < cpjr and there is a Cy, for which ¢pi, < cpjm
then C; is positioned earlier than C;. In other words, C; is
positioned before C; if the neighborhood of C; is a proper
subset of the neighborhood of C;. For efficiency reasons, a
constraint to discover this dominance rule is imposed only for
pairs of C; and C; where there exists a Cy,, such that cp;,,, is
not fixed and ¢p;,,, = 1 before search.

8 Symmetry breaking

The products of the first customer can be ordered in any way.
They could be assigned based on lexicographical ordering of
the products. The symmetry breaking will choose one possi-
ble ordering and enforce it. However, this symmetry breaking
can sometimes conflict with a product dominance rule, which
is explained in section 10.

The first three dominance constraints are not imposed in
case when sets under consideration are the same. However, in
such case we could apply symmetry breaking and still impose
dominance like constraints but only for pairs when i < j
given C; and C; or P; and P;. In other words, dominance
constraints could be strengthen by removing requirement for
proper subset if i < j. Applying similar approach to the third
dominance rule is of little practical use since constraints to
detect and enforce this dominance rule are expensive in terms
of time and memory. We observed the increase of the search
time when we included symmetry breaking to strengthen the
third dominance rule.

Constraint Modelling Challenge 2005

9 Special global constraint

We implemented special global constraint to obtain better
lower-bound estimate given partial solution. It involves cp,
¢ and limit variable which denotes the maximal number of
open stacks. We do do not describe the consistency algorithm
in full detailed. Due to space limitation a non incremental
version of the algorithm was presented in Algorithm 1. This
algorithm presents reasoning for the minimal number of open
stacks based on ¢p and ¢ matrix only.

Algorithmus 1 Consistency function for the proposed global
constraint
1: fori =0to cdo

2: lastPosition[i] = 0; minNeighbors[i] = 0;
3 forj=0tocdo
4 if epji.min() =0 then
5: lastPosition[i]++;
6: end if
7 if ¢pi;.min() =1then
8 minNeighbors[i]++;
o: end if
10: end for
11: end for

12: {open]i] - boolean value, initially false since C;’th cus-
tomer is not open}

13: for i = 0to cdo

14: {i - currently considered position}

15: for j =0tocdo

16: if lastPosition[j] < i then

17: open[j] = true; { C; becomes open since already
its last possible position is analyzed}

18: end if

19: end for

20: lowerbound = - i + 1; {number of closed customers}
21: if only C,, can be placed at position i then

22: for j =0tocdo

23: if cpm;.min() = 1 then

24: open[j] = true; {C,,, opens C;}

25: end if

26: end for

27. ese

28: compute the minimal additional open customers
(minAdd) given possible customers at position i

29: lowerbound = lowerbound + minAdd;

30: endif

31: forj=0tocdo

32: if open[j] = true then

33: lowerbound++;

34: end if

35: end for

36: if lowerbound < minNeighbors[i]-i then

3T lowerbound = minNeighborsl[i] - i;

38: endif

39: use lowerbound to update number of open stacks
40: end for

The lines from 1 to 11 compute the last possible position
at which C; can be opened and the minimal number of cus-
tomers open if C; is open. Given C; the number of zero’s

80

in the ith column of the ¢p matrix gives the latest possible
position at which C; is opened. On the other hand, the num-
ber of ones in the ith row specifies the number of customers
which are (were) open if C; is open. The main loop, which
starts at line 13, computes the lowerbound of required stacks
taking into account every position separately. The for loop in
lines 15 to 19 opens a customer if its last possible open po-
sition is equal to current position 7. If it is known that C,,
takes position i then mth row of ¢p matrix is used to update
open array. If it is not known which customer takes position
¢ then all candidates are examined and the candidate which
will open the smallest number of customers is used to com-
pute the lowerbound. Line 20 initiates the lowerbound with
value ¢ — 1 since this reflects the number of customers which
are already closed at position 7. The lines 32 to 35 simply
count the number of previously or currently open customers
at position . The lowerbound for number of openstacks can
prune the domain of openstack variable or detect inconsis-
tency when partial solution exceeds the number of allowed
open stacks.

10 Model discussion

The complexity of the model depends on the number of cus-
tomers and number of products. The number of variables
and constraints grow quadratically with the number of cus-
tomers and products. The model uses many different view-
points therefore channeling constraints are a significant part
of the model. The third and fourth viewpoint require ¢ and
p? variables respectively. However, those variables are re-
quired to reason directly about the precedence constraints oc-
curring in the partial solution. The model uses few global
constraints, like alldifferent and the special global constraint
which is presented in section 9. They help to improve the rea-
soning, especially in the case when proving the optimality of
the solution. The dominance rules can make some instances
easy to prove since they indicate the search space which can
be omitted. The model uses also some symmetry breaking to
complement the dominance rules.

While it is often beneficial to add dominance and symme-
try breaking constraints to a model, in the case of the open
stack problem there can be a conflict between product dom-
inance constraints and symmetry breaking for the products
of the first customer. Consider only products P5 and P, and
only customers C3 and C; from the example. The customer
dominance rule will enforce that ¢4, < ¢3. The product dom-
inance rule will enforce that p3 < p4. Finally, the symmetry
breaking for the products of the first customer enforce that
pq = 1 since it is the product of Cy, which is the first cus-
tomer. Clearly, we can not have all three techniques applied
at the same time. The decision which technique should be
discarded is instance dependent. In our case, due to time lim-
itations we decided to discard the symmetry breaking as it
applies only to products of the first customer which can po-
tentially have an impact.

11 Search

The search approach is based on standard variable and value
ordering heuristic. The variable ordering heuristic uses for-
ward min domain as the first criteria and forward degree as

Constraint Modelling Challenge 2005

the second criteria. The ties are resolved based on lexico-
graphical ordering. The search variables consists of variables
from ¢p matrix, p variables, s variables, and finally e vari-
ables in such order. In addition variables within cp matrix are
ordered. The rows of the ¢p matrix that contain more unfixed
variables are considered first. Please note that search does not
use c variables as the position of the customer is decided by
the cp matrix. Similarly, the pp matrix is not included since
p variables denote the product positions. The ¢ and pp vari-
ables are only used to improve the reasoning and discover in-
consistent partial solutions faster. The value ordering chooses
always the minimal possible value within a variable domain.
This value ordering will first choose the value zero for any
precedence variable, which prefers the situation when a cus-
tomer is closed before another one is open. This often leads
to good quality first solution. In order to be certain that our
global constraint is complete, we run additional search with
all variables.

12 Experimental setup

We measure the search effort in time and number of back-
tracks. We use JaCoP solver [Kuchcinski, 2003], which we
augmented with additional global constraint. The experimen-
tal results are presented in the appendix using the suggested
data format.

13 Conclusions and Future Work

The presented model for the open stack problem uses many
modeling techniques. It models the problem using multiple
viewpoints, channeling constraints, dominance constraints,
implied constraints, symmetry breaking, and a specially de-
signed global constraint. Future work will evaluate the in-
fluence of the particular model components on search. For
example, the removal of the second viewpoint could reduce
search time on average. The choice between conflicting dom-
inance rules and symmetry breaking constraints can be done
on a instance basis. In addition, different search algorithms
based on instance characteristics could be proposed.

Acknowledgments

We would like to thank Nic Wilson for interesting discus-
sions.

References

[Fink and Voss, 1999] A. Fink and S. Voss. Applications
of modern heuristic search methods to pattern sequencing
problems. Computers and Operations Research, 26:17-
34, 1999.

[Kuchcinski, 2003] K. Kuchcinski. Constraints-driven
scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
8(3):355-383, July 2003.

[Prestwich and Beck, 2004] Steven Prestwich and J. Christo-
pher Beck. Exploiting dominance in three symmetric
problems. In Proc. 4th Int. Workshop on Symmetry & Con-
straint Satisfaction Problems, 2004.

81

File proven | best | timetobest | backtracksto best | timeto | backtracks to
optimal | value solution solution prove prove
Miller19 Yes 13 15 67 926 77154
GP1 Yes 45 2.88 149 3.64 185
GP2 Yes 40 3.58 81 5.62 170
GP3 Yes 40 72 1552 72 1552
GP4 Yes 30 677r 13055 683r 13066
GP5 Yes 95 275 325 28.7 338
GP6 Yes 75 71.4 311 71.4 325
GP7 Yes 75 57.52 437 57.52 437
GP8 No 86 343.65 177 - -
NWRS1 Yes 3 0.84 49 0.84 49
NWRS?2 Yes 4 0.78 26 0.78 26
NWRS3 Yes 7 0.97 34 1.03 39
NWRS4 Yes 7 1.14 107 1.14 107
NWRS5 Yes 12 1.24 109 1.28 118
NWRS6 Yes 12 1.18 49 1.21 50
NWRS7 Yes 10 2.88 112 11.13 450
NWRS8 Yes 16 2.35 118 8.62 396
SP1 No 11 96.0 21577 - -
SP2 No 22 13.6 287 - -
SP3 No 51 67.5 317 - -
SP4 No 71 486.35 521 - -

Constraint Modelling Challenge 2005

Table 1: Times and number of backtracks to prove the optimal solution for each problem

In order to measure the time to find an optimal solution, the solver is given a lowerbound which corresponds to the optimal
solution. This allows the solver to start backtracking to the first search node immediately after finding the solution with optimal
value. In other words, we have a two-pass experimental setup. The first time we look for an optimal solution with proof of
optimality within a given limit of the search effort. The second time we use the cost of the optimal solution to set the lowerbound
and measure the time required to find an optimal solution. The values for last three columns of Table 2 are computed only for
instances which were proven optimal. We have set the cut-off limit to 100.000 backtracks. The runtimes specify the amount of
CPU seconds as given by a time command from Linux. Due to a tight submission deadline we were not able to obtain results
for files wbo_30_15, wbho_30_30, wbop_30_30, and wbp_30_30.

82

Constraint Modelling Challenge 2005

File % mean | time (sec) # backtracks # backtracks
solved | value to find optimal per instance
mean | median max mean | median | max | mean | median | max
problem_10_10.dat | 100 8.031 0.65 0.61 4.13 17 15 179 48 16 3809
problem_1020.dat | 100 | 8.9218 | 0.70 0.68 161 29 26 92 36 26 645
problem_15_15.dat | 100 12.869 | 1.75 0.70 64.84 49 23 7541 486 24 28299
problem_15_30.dat | 100 14.018 | 0.98 0.82 13.23 44 39 180 79 39 3994
problem_20_10.dat | 100 15.878 | 7.89 0.89 261.00 | 1751 34 57611 97 19 4276
problem 20_20.dat | 98.2 | 17.173 | 11.31 0.87 441.00 34 29 92 2690 31 96152
problem_30_10.dat | 93.6 | 23.995 | 87.43 159 [1305.00 | 455 27 28419 | 8187 94 99703
problem_30_15.dat | 83.6 26.05 | 34.89 1.03 831.00 | 133 27 4964 | 3933 28 95281
problem_30_30.dat | 92.7 | 28.336 | 8.79 1.23 404.00 41 33 92 836 44 33673
problem_40_20.dat | 80.9 | 36.573 | 34.37 1.42 766.00 73 35 2373 | 2487 36 56064
ShawlInstances.txt 100 13.680 | 22.97 | 10.11 | 128.00 | 164 70 1292 | 5069 2235 | 29124
wbo_10_10 100 5.925 0.71 0.65 131 26 19 128 79 29 491
who_10_20 100 7.35 0.77 0.67 1.40 45 30 233 65 32 339
wbo_10_30 100 8.2 0.82 0.75 1.35 46 41 110 59 41 216
wbo_15_15 86.7 9.383 | 12.79 0.98 179.00 | 268 45 8491 | 5392 95 82468
wbo_15_30 85 11583 | 2.47 0.87 26.11 160 41 5473 440 42 6815
wbo_20_10 97.1 | 12.900 | 21.93 3.51 260.00 | 232 31 6637 | 5283 822 59325
who_20_20 76.7 | 14.044 | 26.62 1.05 287.00 | 620 36 20857 | 5682 66 67837
whbo_30_10 79.0 | 20.050 | 143.39 | 1892 | 923.00 | 526 61 11811 | 14462 | 2400 | 86156
wbop_10_10 100 6.75 0.65 0.6 1.26 17 14 38 51 14 490
wbop_10_20 100 8.075 0.75 0.65 1.64 33 26 77 56 27 457
whop_10_30 100 8.55 0.81 0.74 1.15 49 40 135 54 40 154
whbop_15_15 98.3 | 10.367 | 6.03 0.85 48.80 | 1186 22 19942 | 2161 36 19942
whop_15_30 86.7 | 12.183 | 8.40 0.8 371.00 | 145 41 4684 | 2037 42 98515
whop_20_10 97.5 | 14.275 | 24.53 0.76 236 157 23 3532 | 6417 32 63041
wbop_20_20 78.9 | 15378 | 12.76 0.89 216.00 | 164 28 5146 | 2240 31 41430
whop_30_10 75.0 | 22.475 | 13.37 1.43 78.99 36 21 217 1219 53 7370
whbop_30_15 66.7 | 22.917 | 31.8 1.19 222.00 59 22 533 2888 48 21740
wbp_10_10 100 7.275 0.64 0.57 1.17 17 13 69 50 16 469
whbp_10_20 100 8.714 0.69 0.65 121 29 26 82 36 27 207
wbp_10_30 100 9.31 0.76 0.74 101 41 40 82 43 41 103
wbp_15_15 91.667 | 11.05 | 10.289 | 0.71 170 2912 21 49800 | 4392 25 77695
whp_15_30 100 13.092 | 4.24 0.81 79.35 336 40 13866 | 936 40 22361
wbp_20_10 100 15125 | 9.20 0.9 65.68 87 17 1087 | 2371 31 17278
wbp_20_20 80 15.6 10.49 0.87 228.00 | 200 28 6186 | 1972 28 47192
wbp_30_10 80 23.175 | 38.06 1.49 504 1251 26 25711 | 3902 47 55423
wbp_30_15 66.7 | 23.467 | 13.66 1.19 116.00 94 33 1302 | 1247 43 11011

Table 2: Times and number of backtracks to find the optimal solution for each data set

83

Constraint Modelling Challenge 2005

Tearing customers apart for solving PSP-SOS

Charlotte Truchet!, Jerémie Bourdon', Philippe Codognet
LLINA, Université de Nantes
2 rue de la Houssinere, BP92208, 44322 Nantes Cedex 03;d-ran
2 LIP6, Université de Paris 6,
8, rue du Capitaine Scott, 75015 Paris, France
Charlotte.Truchet.95@normalesup.org, jeremie.bou@lama.univ-nantes.fr

Abstract Products in order o

o . o § 11001 0
This article is about modelling and solving issues €0 01 0
for a Pattern Sequencing Problem, proposed as the 2
First Constraint Modelling Challenge. PSP-SOS 3 1i0j1.0/0
is difficult in that relevant information is not self- 0 1]0|0 (1 line 4=order of customer c,
contained in the variables’ values. A first model, 0 110
still global but less global, so to say, is proposed. A
derived second model, more precisely dedicated to Sty=2 fty=5
local search methods, is then implemented with the
Adaptive Search meta-heuristic. 2 4 5 4 2 number of open stacks at each time

max=5

1 Introduction , o

.) ,) . Figure 1: An example of thérob matrix, with the stacks
This paper intends to describe an entry to the First Comstrai gho\n in grey and the number of open stacks for every time
Modelling Challenge. The goal is to model and solve, with it given at the bottom

constraint programming techniques, a particular Pattern S
guencing Problem. PSP consist in finding a permutation of
some production patterns, optimizing some objective func-
tions dealing with store-house’s size or handling costse Th
particular PSP of the challenge is known as the simultan
ously open stack problem, or PSP-SOS, as statddFiitk
and Voss, 1999 An expression of PSPs as graph pathwidth
problems can be found il.inhares and Yanasse, 2402

Let us recall the problem briefly and introduce our nota-
tions, see also figure 1. A delivery service has to satisfy th . .
demands ofi customers: ...c,,. Each of them has ordered a % Modelling the PSP-SOS as a Constraint
particular subset of some produgts..p,,. We will write s; Satisfaction Problem
the order of customer;, s; C {p;...pm}. The goal is to find
the order in which the products should be delivered.

Suppose that the products are ranked by a permutatitn
gives a schedule where prodyct) is the first one delivered,
and so on. Most of our notations will depend on the order
so we will not write it. Letst; (respft;) be the starting time
(resp finishing) of customet, in the schedule. The delivery

service uses a stack per customer: this stack is closedebef0£Ocalizer and Localizer+fMichel and Hentenryck, 2001

Sti.i_ﬁge%farﬂgféirg rﬁf]qifg?hgﬁggir?]%%nniﬂgggr of simulta. JUSt to name a few. Their pros and cons in terms of expressiv-

neousI;\;J opened stacks, in order to realize the schedulein thy, efficiency or genericity could b? cﬁsc_ussgd for hours.

smallest storehouse as, possible. With our notations, #ris ¢ Let us very briefly recall that a d_|s_t|nct|on is made b_etvvgen

be written as: the complete methods, able .of giving a proof of opt|maI|ty,.
and the incomplete ones which have been proved very effi-

cientin practice, but are unable to prove optimality.

Whatever language and solver are chosen, PSP-SOS has
wheref (o) = {Maxi<j<m i{i <n,st; <o(j) < fti}} some features which make it challenging to program. Mainly,

A convenient solution for representing the problem, cho-
sen by the Challenge organizers as their instances’ foimat,
o use a matrix of size. x m, where thei-th row, j-th col-
umn contains a if customerc; has ordered produgt, and0
otherwise. In the following, we will write this matri®rob.
Line Prob; represents the order of custonagr

We will discuss in this section some of the issues when
modelling PSP-SOS. The goal is to find a model that can
be expressed in an existing Constraint Programming Lan-
guage, then solve it with a classical solver. Several lan-
guages and generic solvers exist nowadays, like the Prolog
family with for instance GNU-Prolog with constrain®iaz

and Codognet, 2001CHIP[Aggoun and Beldiceanu, 19B1

minimize, f (o)

84

Constraint Modelling Challenge 2005

it gives an objective function to minimize that is expresasd —(

a maximum on some of the problem’s data. Moreover, the

variables are either subsets @f, ...p,, } or sequences df 2 =T
and1 in the matrix model, anyway the cost not only depend

on their values, but on their values within the configuration —
a0 in a column can mean that the stack is closed, or open, C

depending on the before and after values. So to say, the prob- v

lem structure is such that the relevant information is ntft se Column realizing
contained. the maximum

This appears as a major issue for solving PSP-SOS. With

complete method, filtering techniques are very efficientiwhe Figure 2: On this example, only the open stacks in the current
applied locally. Here we have the analoguous of a global conschedule are represented. Pairs of stdaks) and(c, b) do

straint and they are well known to be difficult to deal with. count in f as they are separated by the column, or time, real-
With incomplete methods, it leads to other issues that weill b jzing the maximum off. Pair of stackga, ¢) do count ing

discussed below. but notinf.

2.1 Intrinsic issues of the PSP-SOS

As a first point, an obvious remark is that PSP problems are able to decrease the objective function (separable cust)me
matter of finding an order on the products. A model will any-from the ones for which we will certainly not (unseparable
how have to include an alldifferent constraint ontheThus ones):
a reasonnable choice is to state the maximum open stacks
problem as a permutation problem on the prodygtsp,,. Sep(ciy, i) < Vo € 531,V € iy, 0 # 3
Then, a possibility would be to keep the model with a per-
mutation CSP on thé&rob matrix columns, and as objec-
tive function. Anyway, it is worth focusing on the problem’s
structure to understand better how this objective fundbien and accessed in constant time, let us wite the resulting
haves on the search space. .

The second point concerns the customers. Unlikely tg" " boolean matrix. . .
many optimization problems, the PSP-SOS objective func- All t_hose remarks lead to the following model: find a per-
. ’ . mutationo on the productg; ...p,,, such that:
tion ranges over a very small domain of values. The only way
to decrease it, is to tear apart two customers in the schedulghaximize, #{(i1,12), Sep(i1,is) — (ci, < ci,Vei, < ciy})
Intuitively, thinking about the stacks: the goal is to miide
the number of stacks needed to satisfy the customers’ grders Or, writing it without all our notations and without con-
which does well mean that the delivery service wants to restraints instead of errors:
use as many stacks as possible. The more stacks are re-used, \/ariaples Productg: ...pm
the more likely we are to have a schedule with a minimum

With the matrix representation, one h&sp(c;,,c;,) <
Proh, . Proh, = 0, that s, the scalar product of the two lines
is equal to zero. This can be pre-computed once and for all

number of SOSs. e DomainsPermutations of thg;s

In the ordero, we will write ¢;, < ¢;, <> Va € 5;,,Y03 € e External data Orders of the customers, that is a setof
siy,0(a) < o(B), that is, customet;, has been fully served subsets of the;s, s1...s,,
before customer;, begins to be served. In that case they can From which we compute th&ep matrix: Sep(j1, j2) =
share a stack and the objective function may decreade of (s, Nsj, =0)

depending on whether those two customers where situated on

the columns realizing the maximum or not. e Constraints For all j1, jo < n, if Sep(j1, j2) then state

Intuitively, the range off may be greater than the range of Je e {<,>},Va € s,,V0 € 54, ef3
f but they behave in the same way. See example on figure 2.)))]
Think of an elementary step fromto o', g(o) > g(o’) — At that time, we haven variables, a domain of size!

ing on the position wherg decreases w.r.t. the maximum. depending on the customers’ orders, of oneferbut less than
Conversely,f(c) < f(o') — g(o) > g(o'), except in rare beforg._ Each constraint is adlsjunctlon of conjoncuon@of
cases. Now our goal will be to maximize equalities (when explicitely written). At least, we have gd
As a third point, we observe that, whatever the schedul®f the starting times and finishing times which where partly
o, it is not possible to tear apart two customers who share dgsponsible of the problem’s difficulty. Of course, it shitks
least one product. Such two customers can obviously nevéfobal constraints, and has probably no solution in general
share a stack and from a resolution point of view, we had bedtut that will be handled by an incomplete method.
not wasting any search effort on this couple. So it shall b .
usefull to include this knowledge on the problem’s strueturez'2 Issues of PSP-SOS w.rt. an incomplete method
in the model. Incomplete methods have been introduced a few decades ago.
For this we define the relatiafiep on the customersin or- They aim at either solve a constraint satisfaction problem o
der to distinguish the customers’ couple for which we may beCSP (such as famous SABelmanet al, 1994), or find

85

Constraint Modelling Challenge 2005

good solutions to optimization problems. Among them, lo-3 Solving PSP-SOS with adaptive search

cal search techniques consists, roughly speaking, in eho‘?idaptive Search is a local search method introduced in

ing randomly an assignment of domain’s values o the varijcoqognet, 2000 Although being a mere local search
abl_es, explore a neighbourhood of this c_:onﬂguratlon, gyin method, it includes ideas close to greedy algorithms in the
to improve an error (penalty, cost) functlon, eventually-pe ay it defines the neighbourhood exploration. The main idea
1[‘cC);rIm a movde E‘nd |terat1%9l_/laeta—r(1jzur(|jsttlcs such ?E Tabu ?eell(“},bto rely on a projection of the error function on the varesbl
overand Laguna, ré added to prevent beINg SWCK yainin the current configuration, the values of the diffaren

in local minima of the error function. This error function is variables are probably not the same: some variables may be

chlos_en SO th"’l‘f |tbexplr<_esse; in sorge wfay_ tlhe pc)iroxmlty 10 Rose to satisfy the constraints, while other ones may be re-
SO l;]non, usuaf yCyStlg mgrt] efnum' er ofviolated Cons®l o, qinle for a big part of the whole error (think about the
In the case of a » Or the function to optimize in an Optl'queens which attacks the most of the other queens imthe
m|zat_|on problem. gueens problem, for instance). The idea is to select one of
Using an local search method for the PSP-SOS problerthese bad variables for the next move. The configuration’s
may seem both natural and quite challenging. It is naturahejghbourhood is the domain of this particular variables It
because local search methods usually deal easily with permiypiored trying to minimize the error function (the main pne
tation problems (or problems with an alldifferent consttai pecause of course we do still want to improve this error on
on aII_them _/arlables, and all the_,- variables ha\{e the sameyot only the ones on the variables). It can happen that mov-
domain, of sizem). They start with a permutation on the jng the selected variable does not enable to decrease the err
domain’s values, and move by swaping two values. This enfynction. In order to avoid cycling, a tabu-like memory is
sures that the alldifferent constraint is kept satisfiehait added to mark those variables for a certain number of itera-
any effort during the search process. We have chosen to Uu$gns. A Tabu solving method for PSPs is also giveffimk
a local search method for both their well-known efficiency and Voss, 1999 but with a very different coding (as a graph
on optimization problems, and this ability of dealing wikket i instanciation).
permutations problems. The adaptive search method has been implemented for per-
The challenging part comes from the error function tomutation problems by D. Diaz and P. Codognet as an open-
define. Obviously, the real objective functigh given as source C library, available onliAe Details can be found in
the maximum of simultaneously open stacks, is not accuratBCodognet and Diaz, 200Iwhich shows that the method is
enough. Itis worth detailing why: the current configurai®n very efficient on classical benchmarks. The library inckide
very likely to be realized not only for one column, but severa all of the functions to solve a CSP by adaptive search, pro-
Then the only way of improving the objective function would vided the user defines the error functions corresponding to
be to modify all these columns, exceptin very particulaaloc his problem, both for the whole configuration and for thevari
cases. ables. Actually, the first one can be deduced from the second
Improving f thus cannot be done in one move (swap of theone in a way we describe below.
variables’ values), except if a move is defined as the swaps . . .
of several variables but there are two reasons for not trying-1 Writing the model in adaptive search
this: firstly, the neighbourhood would be rather big w.tiet Now the question is to compute the error at the variable Jevel
search space size, probably resulting in bad performancesorresponding to the model described above where we have
Secondly, the goal of the challenge is not to design a dedidiscarded the inseparables couples of customers. Counting
cated algorithm for solving the PSP-SOS but to use existinghe error corresponding to a customer is straightforwarst: j
constraint programming techniques to solve it, and performtake the number of other customers, separable with him, and
ing such unusual moves would not play fair, in our opinion.not separated. Question is, how to project this on a proguct
To simply check, we have tried such an objective function? In particular, should we count all the open stacks at inistan
with a local search method where a move consists in a swag, ? For the rows having &, obviously yes: swaping the
and it cycled as expected. column may improve the cost. For the other ones, the rows
So, one issue in defining the error function is to find a waybeing open at instarj but not effective, it would introduce a
to express the value of the current configuration more acculias in the model, because swaping the column cannot result
rately than byf. From the above discussion, we will take the in an improvement of;, at least on this row (maybe in the
¢ function, that is, the errors w.r.t. the above constrailits. ~ Whole configuration, but this is not the point). So we take the
deed,g has a range greater th@nresulting in moves that do following error for columnyy:
not decrease the real cost of the current configuration. This
should not be a problem for a local search method: all the €(jo) = > [Probij, = 11#{1 <i <n, Sep(i,i’)}
contrary, the idea is to guide the search more precisely, al- 1<i<n
lowing moves staying on the same value foibut intuitively
improving the chances to find a better configuration. We thug"
will base our error function op.

ith [P] = 1 if predicateP is true,0 otherwise.

Concerning the error function for the whole configuration,

the adaptive search method suggests to aggregate the vari-

- ables’ error with an appropriate operator, coherent with th
lwhen there is only one variable realizing the maximum. Bigtth

will not happen twice in a row, or the problem is trivial 2at http://pauillac.inria.fr/"diaz/adaptive/

86

Constraint Modelling Challenge 2005

problem, such as addition or maximum. As we have madé Conclusion

enoggh effort§ to get rid (?f the poor informgtion given by f‘heThe maximum open stack definitely appears to be a challeng-

maximum, this one is rejected. Although it would not give jq nroplem for the constraint community, as a model shall

back thef function, a risk still arises that a single swap may present some features known to be difficult for constraiat pr

not improve the global error function. The addition is thus a ramming, close the global constraint problems.

better choice, keeping the accuracy of the model. The erof \ye have given a model for representing the maximum open

function is: 3, ., e(j). Itis easily checked that this er- g50 problem, and solved it with a local search method. The

ror function corresponds to the model described above with 3trength of the model relies on two properties: firstly, kets

min-conflict way of counting. into account the inner structure of the problem by focusing
At that point the reader may have the impression that wen relevant information. Secondly, it modifies the objestiv

simply have replaced the maximum by the addition in the obfunction in order to measure more accurately the value of a

jective functionf, which is not such a big deal. This belonged configuration.

to the possilibities that we initially studied in order toveaa

more accurate objective function: counting the bad zeros if\cknowledgment

the matrix (those within an open stack), couting the wholerhank you to Marc Christie, LINA, for his help.

number of open stacks, etc. None of them has been kept,

because the crucial property for the model to have the samBeferences

optima asf would not have been satisfied. Counter examples _
are easily found. [Aggoun and Beldiceanu, 19pIAbderrahmane Aggoun and

Nicolas Beldiceanu. Overview of the chip compiler sys-
tem. Proceedings of ICLP9lpages 775-789, 1991.

. . [Codognet and Diaz, 2001Philippe Codognet and Daniel
We have implemented the model and error functions de- " s, vet another local search method for constraint solv-

scribed above in the adaptive search library. A major draw- ing. LNCS 2246, SAGA 2001, first Symposium on Stochas-
back of this implementation is the fact that the errors arte no tic Algorithms : Foundations and Applicatior001.

computed incrementally, although the library leaves the po -)
sibility to do it. It would probably improve the calculation [Codognet, 2000 Philippe Codognet. Adaptive search, pre-
time. But it does not affect the number of iterations which is liminary results. BOOK of the 4th ERCIM/CompulogNet
maybe a more neutral measure of the implementation’s effi- Workshop2000.
ciency. [Diaz and Codognet, 2001Daniel Diaz and Philippe
Experiments have been conducted on the set of instances Codognet. Design and implementation of the gnu prolog
proposed by the Challenge organization and the table of re- system. Journal of Functional and Logic Programming
sults is given in appendix A. A classical issue with the local 6, 2001.

search methods is the parameter tuning. We have chosenging and voss, 1999Andreas Fink and Stefan Voss. Appli-
maximal tabu tenure to try and force good minimas, and & cations of modern heuristic search methods to pattern se-

maximal percentage of resets yaria_bles to ensure diversific. quencing problemsComputers and Operations Research
tion. The maximum number of iterations has been chosen big 55.17_34 1999

(as an order of hundersm), which leads to a calculation
time of a few minutes per instance. More details on technicalGlover and Laguna, 1997. Glover and M. LagunaTabu
issues is to be found in appendix A and code in appendix B. Search Kluwer Academic Publishers, 1997.

Let us precise the complexity of the computation of the[Linhares and Yanasse, 2J02lexandre Linhares and Hara-
different functions. We count the number of arrays’ accesse cio Hideki Yanasse. Connections between cutting-pattern
the number of operations being of the same order. For each sequencing, visi design and flexible machin@smputers

3.2 Experiments and results

iteration, are computed: and Operations Research9:1759-1772, 2002.
e Error on them variables:m for the computation of the [Michel and Hentenryck, 20Q1L. Michel and P. Van Hen-
st; andft;, m x n? for the errors. ThatisQ(m x n?) tenryck. Localizer++: An open library for local search.

Technical Report, CS-01-03, Brown Univers2@01.

[Selmaret al, 1994 Bart Selman, Hector Levesque, and
e Computation of the effective error (w.r£): O(n x m) David Mitchell. A new method for solving hard satisfi-
ability problems. AAAI'92, pages 440-446, 1992.

e Error on the solution: same

e Updates after a swapOQ(n x m) for storing the best
solution found so far (computation of its effective error).

In the end, the complexity of an iteration is @(m x n?),
which is reasonnable.

Finally, the comparison with other solving methods can
hardly be made in this paper, as there is by now few litter-
ature on the PSP-SOS and will probably be far more after the
Challenge.

87

Constraint Modelling Challenge 2005

A Results

A.1 Aggregate results (Truchet, Bourdon, Codognet)

We use the adaptive search C library proposed by Diaz and @imdounder public licence, available online at
http://pauillac.inria.fr/"diaz/adaptive/ . The detailed code of our implementation is given in the next
appendix B. We do not have modified the solver, except for sompart to add some time measurements for the benches.
The total code (our implementation plus this slightly maatifadaptive search library) is sent to the Challenge Orgéiniz
separately. Experiments have been conducted on an IntéuRea at 2,66 GHz with 512 Mb RAM. The compiler is gcc
version 3.3.4.

The percentage of proved optimality is zero for all instandele to the incomplete method we use. We thus leave the nolum
blank.

As we use a local search method, we define the search effdreasitber of iterations. We recall from the paper that the
complexity order for one iteration i©(m x n?), wherem is the number of products andthe number of customers. The
cutoff limit we chose is defined as a maximal number of iterasidepending om, which explains why the next to last column
is quasi-constant for instances of same size.

The solver has been used with the following parameters. Wed®tail the most important ones, please refer to the code
and the adaptive search documentation for more details.iéMeod spend too much time in parameter tuning, in particdidr
not try and benefit from the plateau’s heuristic from adagpsgarch. It is possible that the results could be improvéerins
of calculation time, by incrementally computing the coats(in terms of search effort, by a finer parameter tuning.

e Number of iterations before a restart is trigger@d0 x m. This choice is somehow arbitrary. Our first experiments
showed that the best solution had been found far beforeithisfbr the small or easy instances, for example on the first
Harvey instances, after a few hundreds of iterations foblgr of sizel0 and20. One could argue that it would have
been sufficient to fix this parameter to far less thaé x m, say aroun@0 x m, to improve our results for the challenge.
Now our strategy has been to give the solver a reasonnabfeettd finding good solutions. Anyway a run for a typical
30 instance lasts around a few minutes, which is reasonnable.

e Number of restartst0, and only the best solution among theruns is kept

e Number of variables reset at a restdfi0 %

e Number of runsi. It would have been equivalent to perfoifinruns fixing the number of restarts@pbut less convenient.

e Number of iterations a variables is frozen when it does notato improve the errorm the number of variables. We
have chosen to fix it to the maximum, in order to insist on psing neighbourhoods and get the best possible optima,
although it might slow the search (see adaptive search dextation and articles for explanations on the parameter)

Since the first parameter (search effort for one restartyblmmtarily been fixed to a high value, we add another column i
the table of results to give the computation time for finding best solution.

88

Constraint Modelling Challenge 2005

9€'69 | ¢¢'8 9¥°9T1 | ¥c0€ 000€ 9L°GL8T | 086¢ | 066 TT°€50T | 99°18 ¥8v4 €1°6€ | ¥L'VC 0 og~0g"dan
€8°GT | 8¢'0 ¢6'c | 100€ 000€ L9°89GT | 6€8¢ | 7OV 09°2L0L | 6€°¢C L1821 61°0T | €6°CT 0 G1_0g dam
¥1°6 00°0 690 | 000€ 0 02616 | 2861 | O 88°L6C | 6L°TT 000 yI'e | ¢I'6 0 01~0g"dan
0T°0T | 61°0 Sv'1 1202 0002 T0°€TET | LL8T | TI€ LV'CLS | CTET gy 0T y1°L [4s]! 0 0z_0z dan
0€'T 00°0 ¥1°0 000¢ 8¢ G8'TS6 | 6¢81 | OT 09°€0c | ¥6'€ c0°0 89T g8 0 01~0z dan
L6°C1 | 820 90T 6741 0041 6C°CVET | 98¥1T | 6¥V€ 08°G€V | T6°€T 90°TT IT°0T | L9°¢¢ 0 0g~g1 dan
¥2.°0 ¥0°0 IT°0 | PEST 00¢T GE€'¢S0T | ¢OvT | 28T c0¥8¢ | ¥9°€ 1T°¢ 91'c | L0'TT 0 G151 dan
9.0 €00 900 | 8€0T 000T T€°€00T | 084 69 L8 TPT | €8'F 1y LTV | I8'1T¢ 0 0g” 071 dqm
€70 10°0 c00 | LE0T 000T 16096 | 89€ 6€ L8VL 4c'c G6°'T 98'T | 9€7I 0 0z_01"dqm
€0°0 00°0 000 | ¢10T 000T Gr'6ss | 198 el 8¢°09 ¥9°0 cs0 cE0 | €€°L 0 01_ 07 dan
L9°€8 | 7001 6781 | 020€ 000€ 12°8961 | 996¢ | L¥6 8C6V0T | 64°G8 919 1V'€V | 90°¥C 0 0g~0g"dogn
16°9T | 60°0 1.°¢ 200€ 000€ G6°099T | ¢¥9¢ | 091 GG'LTL | P1°€C T10°8T 6¢°T1 | ¢v'cl 0 G1_0g dogn
99'8 00°0 90 000€ 4 06°¢E8 | 90S¢ | L 0L°08¢ | 9L°T1 00°0 G8'C G0°6 0 01~ 0g dogn
6€°¢T | ¥€°0 8V'1 L20¢ 000¢ 0€°G6¥T | €961 | 1TV ¥2'09¢ | 9¢¥1 €C11 8G'8 | 00°GT 0 0z_0g doagn
AN 000 IT°0 | 002 0002 G8'VI10T | ¥PET | €€ 08'8Tc | ¥0'¥ yece €8T | 08 0 01~0z_dogm
Y6'ET | €70 OT'T | G€4T 00¢T 8C €8V | 9¢VT | L8V LL6VS | VETVI €911 EV'1T | 02'1¢ 0 0g~g1 dogn
r'e 00 GT°0 | ¥eqr 00ST €6°'T0¢T | TOPT | 08 8G'6Tc | ¥8°€ 1€ L9'¢ | 0v°0T 0 G1-g7 dogm
9€°0 c0'0 G600 | €c0T1 100T 9470071 | 916 6V G0'¥0T | 60°G LTY ¢y | 04702 0 0g"07 doagn
80°0 10°0 1000 | #7901 0001 00846 | 7.¥ €g ¢6°0L 0€'¢ ¥0°¢ 96°T €9°¢T1 0 0z_07 dogn
c0°0 00°0 00°0 TT0T 0001 G6'GLL | 61F 8 €L°9€ 1.0 290 970 GL'9 0 0107 dogn
0208 | 2991 ¥4°¢¢ | 020€ 000€ 80°TGETC | 866C | CITT ET°G6TT | 82798 Gc 0L 89°€S | 08°¢Ce 0 0€—0€ 09
GC'€e | €€0 1€V | ¢00€ 000€ 9T'9LLT | 998¢ | 9v€ ¢9°0TL | S¥'¥¢ L6°8T GECl | Lyel 0 §7-0g0qn
16°6 00°0 89°0 | 000€ g €4'8¢0T | ¥96¢ | & 6C¢°10€ | €9¢I 000 6L°€ | ¥6'8 0 07 0g 0qn
el | €970 0L'T 1€02 0002 80°9CLT | TE6T | L6S 68°6TL | cO¥T Ly'cl IT°0T | T8°€T 0 02 0T oqn
81°¢C 10°0 gc0 | 900¢ 0002 PI'6€0T | 6CLT | T¥ €9°26C | ¢S¢T ¥e'e G6'T | 208 0 07 0T oqn
Y9'€T | 0€°0 LCT €Val 00¢T 9C V09T | A8PT | 89¢ LEVTY | €TVL L2°C1 98'TT | LV'0C 0 o€~ ST o9qn
[RS 90°0 Gco €141 0041 €0°T92T | 9€¥T | 08T 08°€LE | ¥O'F 87°€ G8'¢ 8€'6 0 ST ST o9qnm
961 ¢0°0 80°0 ¢c01 0001 G0'€00T | 6¢S ¥S 01°26 S0°'S or'v 8¢'¥ | 0002 0 0€~ 07T 09n
€70 10°0 €0°0 ¢c01 0001 G¢'€00T | €04 9¢€ G286 ¥v'e 80°C ¢0'¢ | 0LCT 0 0Z 01 09qn
L1°0 000 10°0 | #€0T 000T Ge'6cL | 998 8 8819 040 280 €V'0 | ¢6°9 0 07T 07 °9qn
E€TGT | ¥1°C 8¥'€ | G20¢ 0002 8G'¢00¢C | G28T | 906 9L°0¥6 | ¢0'9T 9€°GT 8¢'GT | 86°€T 0 Seoue3suneyg
8889 | 00°0 9€'9 | T00¥ 0 LE°E€86 | €99€ | O L8TEY | CV'8L 000 0G°LT | LT6T 0 0z_ 0% werqoxd
Ly'L9 | 000 94’8 | ¥c0€ 0 9€"°€6T1T | T96C | O €6°€99 | 87’18 10°0 9€°LC | €V'8C 0 0g~0g worqoxd
€9°0¢ | 00°0 LT'T 800€ 0 G9°06L | ¥¢8¢ | 0 1¢°0L¢ | 16°¢¢ 00°0 0or'g | eIyl 0 §1_0g werqoxd
09°0T | 00°0 G0 100€ 0 Lvyey | €01 | 0 0L°T0T | #9°€T 00°0 ST 056 0 01~ 0g werqoxd
0S'TT | T0°0 10°T 0102 4 €6°916 | 0961 | L ¥0'CEE | 6T°FT 10°0 67'G | ¢0'8T 0 0z~ 0z wetqoxd
gc'e 00°0 €10 ¢c0¢ 0 Go'e€cS | L88T | 0 00°0¢T | 0S¥ 00°0 96°0 0T°6 0 01~ 0z wetqoxd
126 100 690 | €cqI 00¢T ¢9°Ge6 | 88¥YT | 76 60°T€EE | 9€°€T LTTT 0€'L | S0°9¢ 0 0g~G1 werqoxd
¥v'¢ 000 1T°0 k! i VLETL | L6VT | L ¥0°G6T (484 10°0 19T [4ixq! 0 G1-g1 wetqoxd
Sl 00°0 ¢c0'0 | €901 000T 96089 | 298 4! 00°cL (44 €6°T VT | LL°GT 0 0z 01 werqoxd
010 00°0 000 Ge0t 4 9¢'99¢ | 016 € ¥9°6¢ cL0 00°0 120 | 208 0 0107 wetqoxd
xew | werpowr | ueowr | xew | werpowt | weowr xew | werpour | ueowr xeut | werpowr | weowr JTUII] HoIno oYy

uonnyos rewrydo puy oy
ooueysur Jod owryunyy

souegsur 1ad }I0[jo oIRAG [RIOT,

uornjos rewrydo puy o3
soue)sur 1od 110[0 YIRS

sowre)sur 1od owIiUNI TRIQT,

punoj anyea
159 UesN

urgym Aqrewrydo
PoAJOS ¥,

ol g

89

Constraint Modelling Challenge 2005

A.2 Individual results (Truchet, Bourdon, Codognet)

We have chosen to run the program only once with some re$tanis2 to 10, and a number of iterations before restart from
10 x m to 100 x m, depending on the instances’ sizes and difficulty. Thus #s¢ &dd worst objective values found are equal.

Total runtime| Total search effort | Runtime to find| Search effort to find
File Number| Objective value| over all runs over all runs best solution best solution
ofruns | Best] Worst (seconds) | (number of iterations (seconds) (number of iterations

Miller19 1 20 20 39,33 20000 0,09 50

GP1 1 45 45 387 13470 387 13470
GP2 1 40 40 1408 55000 1,14 44

GP3 1 40 40 304 11903 304 11903
GP4 1 30 30 1568 55000 1,54 53

GP5 1 98 98 888 2000 12,54 28

GP6 1 75 75 840 2000 46,62 111

GP7 1 75 75 6176 15000 4320 10491
GP8 1 60 60 830 2000 50,63 122
NWRS1 1 8 8 1,87 10000 0,02 133
NWRS2 1 9 9 1,9 10000 0,03 177
NWRS3 1 16 16 9,27 15000 0,18 327
NWRS4 1 18 18 9,29 15000 0,04 68
NWRS5 1 23 23 26,93 20000 0,20 164
NWRS6 1 24 24 27,96 20000 7,95 6267
NWRS7 1 37 37 180 27500 176 26 690
NWRSS8 1 42 42 204 27500 102 14962
SP1 1 9 9 0,42 500 0,24 283

SP2 1 19 19 9,24 1000 0,61 66

SP3 1 37 37 273 7500 160 4391
SP4 1 55 55 2020 20000 453 4487

B Code

Important remark: we have made the initial mistake to exgkahe columns and rows of tti&-ob matrix from the Challenge’s
definition. When we realized it, it was too late to correctTitius in our implementation the customers are on the columns,
and the products on the rows. Although it has no consequentteeaesolution nor on the permutation finally provided b th
solver, it may affect the lisibility of the displayed mate for somebody who would run the code with displays. Anyay,
does not affect the results as we have translated all the inatrixes. We apologize to the Challenge’s Organizers.

It is important to remark that we have not fully used the pafes of the library, which can be seen in the CdsBwap
and Executedswap functions. Defining these two functions better woulalato incrementally compute the errors.

90

Constraint Modelling Challenge 2005

} (++T!{SINIITOEN>T ! 0=T) 30F
io=TeA
{[Cl1os pe=1C

} (++L ¢ SESTANVHONVYWEN>L ! 0=()a0F

{
‘utg=[T]lsuty
{gep=[T]sanqgep

{——uty ((0=<uT3) %% (0 == (T‘[uT3z]TOS_pe)ANATIONd)) OTTyM
-+qop ((SESIANYHOUVWEN>GDP) 33 (0 == (T‘[qap]1os pe)IWIATE0¥d)) STTYM
{ T-SESIANYHOUVYWEN=UTJ

{0=qep

} (+4T !SINFITOEN>T {0=T) 03

{o=xew 3uUT
ftea ‘TC'C “1T'T ‘uTy ‘gep UT
} ()s3xeang o3epdn zur
(10s
'T paxo3s) uorzeanurad 3usrino 8y3z IoFy ,b, 3500 8yz suiniar 3eyz uoriouny //

{
!xew+TeA uaniox
!Xew urnjsaI 9ST9 {TeA uiniar (xeu<rea) IT //
} (xew 3uT ‘Tea 3uUT)TISTOYDINOD FUT
‘wns 8ay3 8sooyo aMm ‘8I8H //
) 5,U0T3RINBTFUOD 8Y3 OUT SIOIID ,SO[QRTIPA 9Y3 SUTqWOD 03 pasn rozerado //

/¥
-dems pejnosxg pue dems JI 350D ‘STqeTIBA UQ 2S00 «x
03 sTTeO 3usnbasqns JI0jF S3UTRIFSUOD UO SIOIIS s23nduwod OSTY «
“UOTINTOS FUSIIND BY3 JO 3S0D [PFOF SY3F SUINIBY
¥
NOIINTOS 40 ISOD =«
x/
[——————— *
¥ sadAzozoxg «x«
Frommmemme x/
{

{(waTqoxad)oaa3
{(uoTanTosaINaTTToW)93IF
! (a1qeaedas)saay
!{(sun)eaxz
!{(sutgz)eaaz
{(s3angsp)oaxg

} ()3nol 3tnazeq proa

AToureur pe3eo0TTR TR 9914 //

{
000T/99SN A3*awT3n ni-abesn ISI+000T » O9S A3 SUTIN ni-abesn ISI uanizax
{(obesn asay ‘JTAS IOYSNY)obesnizah
!obesn i1sa sbesni 3oni3s

} (proa)swtgsseooxdisb ur

ssaooxd jusrino ay3x Aq pasdel[s swI3l 8yl UTPIQO O UOTIDUNI XOQTOOL //

sdems Jo Iaqumu T®30L // !{dems possed pe jur

'T3nTos Tewr3do 8y3 puTry O3 S3IP3SOI JO IO9qUINN // {3I1e3S91 qU UOT3INTOS FUT
.n7os Tewr3zdo 8y3 purjy O3 SUOT3IRISIT JO IoqumnyN // {I93T qU UOT3INTOS JUT
vorantos Tewrzdo ay3z pury 03 SWIL // {uoTanTos uT

'STUTF 90UP3SUT JUSIIND 9Yy3 usym pasdelTe oSwWIL // {suTwIsy FUT
(0 3soure

woxd ay3z jyo butuurbaq ay3x 8ours pasdelre SWIL // !{sbexreuwep UT

poyzsu Ino youaq o3 3ussaid o8I SITqRTIRA BUTMOTTOF 9y2 ITY //

uoT3NTOS 3S8q FUDIIND // {UOTINTOSOINSTITOW » FUT

UoTINTOS 3S8q FUSIIND dY3 FO (3500 T®SI) ,F, 350D // +FTID9IFO3INOOINSTTTISW JUT
uor3nros 3seq juaIind ayz jyo ,b, 3so0p // {qnodoInaTTTaW 3UT

‘uoT3INTOS 3599 FUSI

Ino ay3 BUTUISOUOO SUOTIPUIOIFUT SI03S O3 pasn aIe SaTqeTIeA BUTMOTTOF ay3 TIV //

uorzeynuwrad 3ud

IIno 9y3 03 9AT3P[2I ‘s3zonpoxd ay3z I0J I0309A 3S0D // {s3x9AN0 X FUT
_ _ uor3zejnurad USIIND Y
7 03 saarzerax ‘xaded ay3 uT T 3F pue T 3S SIOID3A // {SUTF x ‘s3Ingep x UT

*39sex g0 dems y
opa I93JP pa3leTNOTROSI oI Aoy3z ‘uorjzeznwisad ay3z o3 palpToOSse axe Asyz aours //
dems o3 sjzonpoxd om3z 309T3S 03 pasn aIe Sa[qeIIeA BUTMOTTOF 8Yy2 TTV //

(pezeTnoredaad) 3onpoxd uwnyod © ur [JO I9quInN // {sun x 3uUT
(1aded ay3 utr das) sarq

eredas o1 [pue T S3USTTO I9YIdYM 9I03S 03 XTIIBW // {oTqexedas x UT

(xreded oy3 utr qoig) xTazew warqoxd oyl // {waTqoag x UT
szonpoxd yo Jaqunu ay3 ST A2zTs qd ‘
S3USTTO JO JI9qunu 8yl ST X9zTS qd 9zTS warqoxd oyl // {kozTS qg ‘x92zTS qd UT

oseyd uoT3eZITRTITUI 9Yy3 burinp pajernoreosid aie saTqerieA BUTMOTTOF ay3 TIV //

UoTINTOS8I dSd 9yl I0F SOTqeTIRA TeqOTD //

/x O°UTBW JO IPA 93TIMISAO x/ {0 = paposu wexed JuT
3TneFSop 9Yy3 9PTIISAO dUO STYL //

[T+SINTITOEN« []oTqexedss ([‘T)ITVIVAIAS SUTFOP#

oTqeredss a@ie [pue T S3USITO FT (srenbs ([’I)aTgvdvddas oiodew //
[T+SHSIANVHOUVWEN L JwoTqoxd (LT)AWATIONd SUTFOP#

JuaTrTo 9y3z 03 spuodsaxzod [pue jonpoird ayz o3 spuodsariod T //
XTI3eW WATqOId Y3l ssoooe 03 ([’T)AWATId0¥d oxoew //

0000000T ALINIJANI SUTFop#

K2zTs qd SESTIANVHOUVWEN SUTFopi
¥92zTS qd SINIITOEN 2UTFopy

JJuRW, SpnTouTH
LU'IA[0S P, SPNTOUTH
sepnrouTr S,IS9ATOS //

<J°90INn0saI/sAS> OpNIouUTH
<Y-qTIP3IS> SPNTIUTH
<Y°OTp3S> opNnIouT#
sepnrour sorseqg //

N
*

. 3oubopop oddrTryd ¥ zPIQ TOTURA £00Z-Z00Z (D) 3ybriddop

yozeas aaT3depy,
I9ATOS d9Yy3 uo paseg

Tesodoxg 38ubopo) pue uopinog ‘3aYonir
obusTTRYD BUTTTOPON FUTRIISUOD 3SITA

X %k kX k X X % x %

91

Constraint Modelling Challenge 2005

!{[T]s3a9An0 uanzax
}
(T 3uT)aTgeTIeA UQ 23SOD
Jur
(19AT0S yoreas oarTze3depy Aq paposu) uoTrzdUNy STQRTIPA UQ 3S0D dYL //

/

*97qeTIPA P UO IOIID dY3 Sa3enTeay

HTIVIYVA NO LSOO

* %k k k %

{
{()s3x2An0 o3epdn uanzax
}
(proa)uoT3inIos 3O 30D
Jur
(z0AT0S yoreas aarTze3depy Aq papesu) uoriounj uorInTos JO 3S0D dYL //

¢ ()3nog 3Tnazeq

! (p3)aso1oz

£, mu w, ‘p3)F3uTtady
f(,w[, ‘P3)F3uTady

{
!{([T]uoTanTosaanaTTTaw’ , py, ‘PIF)F3uTads
} (++4T {SHSIANVHOMYWEN>T {0=T) I03F
*(, 1=uonnjog, ‘p3)F3utads
JTpuUS}
{(utw TeooT qu
oTanTos ‘ aurtwia]l ‘ obexrewsp ‘dems pessed pe ‘JTWIT 3ILISSI pe
(13891 qU UOT3NTOS ‘I93T quU UOTINTOS ‘jJIe3sax qu pe ‘dems qu pe
I93T qU pe’IT309JF93N0ODINDTTTOW ‘JNODINSTTTAW ‘SweusTd waTqoxd
W I\P% P% P% P% P% P% P% P% P% P% P% P% P% $% $¥EIS,, ‘PF) FautTads
MAVWHONEE — FOPFTH
{(FT3097F93N0DINSTTTAW *, U\PY, 0D un 1mod 90AN0K) UONINOS N[N, ‘PF) FuTadz

{
£()3T309334 3NOD=3T3V9IFSINOOINSTTTOUW
} (XIINIANI == FT3093393N0OINSTTToW) FT
! (sweusTTd WOTqOId’,U\s9, Ioryoly np doueisuy, ‘p3F) Fautads
{(,+e, ‘ouweuaTTd 3TnSay)uado=pIF
FTpUd4
“AvaﬂBmmoommmumm = duTwIa}
MYVWHONAL FOPITH

PF x HTIIA

‘T qur
}()stq uoTantos Aerdstad
proa

(yTeuryousq 8y3 I0J S3PIS SWOS pup) STTF P JT UOTINTOS 3S8q ay3z 9I03S //

{
FTPUSY
f(,mm,) F3utad

{

f([Clsutz’, pE%.,)Fautad
} (++C{SINIITOEN>L ! 0=L) 103
£(, suy,)zjurad

f(,w,) F3utad

{

‘([C]sangep’, pg%,) FuTad
} (++C{SINTITOEN>L {0=() 03
£ (, smgop,)33utad
f(,w,)F3uTtad
f(y=————-—-,) 33utad

f((t)oTqeTIeA UO 350D ‘P
‘([[T]1os pelsun ‘

{
f(,————,)33utad

} (++L¢SINTTITOEN>L {0=L) 303
O ——.)F3utad
{

{(,m,)33urad

)F3utad

)F3utad

{([t]ls3asano’ pgy |,)I3utad

{

t((C’[T]lT0s pe)aNaTEONd’ , P% .)IFFuTad
} (++C4SINEITOEN>L {0=C) 103
‘([tltos pe’, |pc% .)Frurad
} (++T ¢ SESIANVHONYWEN>T ! 0=T) I03
£(()3T309334 3IN0D’ , W\py%=Jnoayg o),) F3utad

! ()s3x9An0 °3epPdn
‘0 ‘1 3ur
" MYVWHONEE _JOPUITH#
} ()uotantos Aetdsta
proa

(seyouaq 103 AeTdsTp ON) padeTdsTp 8q pTnoys uoOI3INTOS ®© MOH //

{——ut3 ((0=<uT3)
{++qep ((SESIANVHOUVWEN>JISP)

T3e3nurod 3UL8IIND 8Yy3 I0F (3500

Tlsuty) %% (L => [T1T]sangep) %%

3% (0
3% (0

2AT30

(0==(
F(++1

{xew uanjzax

{

{Tea=xew (xXew<TeA) 3IT

wnwixew ay3 aye3 oM ‘9I9H //

{

{t4TRA
(([Clsut3=>T) 3% ([[]s3angep=<T)) 3FT
} (++0 ‘sInNaIToaN>C f0=[) xo03

{0=Tea

} (++T !SESIANVHOYVWEN>T {0=T) IOF

{
‘urg=[T1]surz
{qep=[T]s3ngep

== (T’[uT3]TOS_pe)ANATEONd)) STTUYM
(T/[gep]TOSs pe)aWATd0dd)) STTUM

! T-SHSIANVHOUVYWEN=UTJ

{0=q9p

} (+4T !{SINIITOEN>T {0=T) 0%

{po=xew UT

‘tea ‘C ‘'t ‘uty ‘gep 3uUT
} ()3T308933F 3INOD IUT
uo

©23F9) ,¥, 3SOD 9Y3 SUINISI 3BYF UOTIOUNF //

{4+4TRA

{
ixew uaniax
{
{(xew’TeA) TSTOYDINOD=XeUW
{Tea=[[]s3x2An0
{
{
{
((L=<l1

1T/T)ATIYEYddEs)) FT
T!{SINIITOEN>TTI?0=TT)I03F
P(1==(t’10)awaTd08d) 3T

92

Constraint Modelling Challenge 2005

E3

{()uoT3nTos FO 3ISOD=3NODINSTTTIUW
{1=[T]10S pe
(++T !o2TS pe>T {0=T) I03
(194T0S 8y3 Aq pepriiono) A3T3USpT oYz ST UOTINTOS [BTITUT YL //

{((3UT)FO9ZTS x 9ZTS PeR)DOTTRW (% FUT) =UOTINTOSSBAINSTTTOU

£ ((3uT)FO°ZTSxSINATITOGN+SINIITOEN) o0TTRW (5 3UT) = aTqexedss
£((3ur)F0°ZTSxSASIANVHOIVWEN) OOTTeW (4 FUT)=sun

{((3UT) FOPZTSxSASTANVHONVWEN) OOTTRW (x 3UT) = S3IL2ANO
£((3uUT)309ZTSxSINAITOEN)OOTTRW (x FUT) = SUTF
{((3UT)309ZTSxSINIITOEN)DOTTRW (x JUT) = S3Ingsp
{((3ur)3092TS x SHSIANVHOUVWEN)OOTTeW (x 3UT) = TOS pe

SUOT3PZTTRTITUT pUP SUOTILOOTTE AIowdW [eI8A8S //
{SESTANVHOUVYWEN = 9ZTS pe

FTpUSY
{
‘(,m,)F3urad

{
$0((C/T)awaTdoda’ , p%.) Fautad
} (++0 fsiNaIToaN>[!0=[)aoz
} (++4T !{SASIANVHOUVWEN>T {0=T)IO3F
XTI3ew waTqoird 8y3 Aerdsta //
T MUVWHONEE FOPUFTH

WATE0dd HHI OSNIAVHY ANZ //

{(p3)oso1og
{
{
fonTea=(L'T)IWITEONd
‘(ontean’ py, ‘p3)Fuedsy
} (++T !SESIANVHOYVWEN>T {(0=T)I0F
} (++0 fsINaTTOEN>L f0=()a0%

{((3ur)3092TSx (SESIANVHOUVWEN« SINIITOEN)) 00TTRW (% 3UT)=WSTqOId
qoxg xXTajew ay3z buriesid //

¢ (SINFIITOEN® ‘ SHSTANVYHOIYWEN® ,1\P% P%., \vwvwnmomw
f(1)3Txe
£ (L UJATHOT NA FINLIFANO INAYYH,) FyuTad

_ } (TI0N == P3F) 3IT

(1, ‘oweusTTd woTqoid)uadoy=pF x ATIJ

WHTI0¥d HHI SNIAVAY NIDAL //

qoxd XTIjeuwl 8y3 SUTPRIUOD S9UTIT bururewsz ay3z - //
4 SIUSTTOEN S3ONpPOIdgN, SUTRIUOD SUTT 3ISITF - //
:jewroy
oweuaTTd WoTqoid STTF dY3z UT paIo3ls ST warqoad ay3z Jo aoue3sur ayr //

iy ’p=suuoToosun‘antea’g=L/0=T 3UT
}
(pToA)SuOT3eZTTeTATUL
proa

/*
‘uoT30UNI UOTIPZITRTITUI
¥
SNOILYZITVILINI =«
*/

!{[1]10s pe=[T]luoT3anTosainaTTTow
} (++T ¢ SESIANVHONVWEN>T {0=T) I0F
{31e3S91 qU pe=31Ie3SaI qU UOTINTOS
{193T qu pe=I93T qu UOTINTOS
{3N00=3T3109FF2INODINST T TAU
{Xew=3nooanaTTTIau
FTPUSH
{()awTISsan01d3ab=uoT3nTos
asTo4
! (xew’3nod’3Ie3S91 qU PR’‘ITWTIT 3ILISSI pex3Ielsal qu
TPe+I93T quU pe’ U\PY,=0I03S ‘P9%,=1N0d ‘(PI,)SUOTIEINI PY, € UONNJOS B[9p uonelonowy ,) Fautad
" MYVYWHONAE FOPUITH
} (3nooansTTTaus>xew) IT
£()3T309334 3INOD=3N0D
{()s3a2anQ 23epdn=xeu
{++dems possed pe
{xew ‘3nodo ‘T 3UT
}(zt 2uT ‘1T 3ur)dems pejnooxm
proa

Tewr3do ay3z ueyz I9338
q ST 3T FT uor3zejznwiad mau ay3z a103s ATdwrs am ‘819 °30U Op 8M YOTYM ‘SIOIIS 8Y
3 @3ndwoo A7TejusweIOoUT 03 pasn oq prno) -pauroyiad ST dems p Is9AsusyM PITTRD //

/*

dems © SpIoody «x

*

dYMS daINOIXT
*/

/*

Ixeuw urnijaix
uaymuhm>:0|®ummﬁd
‘zr=[zL]TOS pPE
!rr=[1[]T0S PP

\«\muhm>:0|WumumsuMWE
!rr=[zL]TOS PP
‘zr=[1L]T0OS pPPE
{
1=z (zr==[T]TOS p®) IT
!1=1[(17==[T]TOS pP®) JIT
} (++T !SASIANVHOYYWEIN>T {0=T) I0F
‘xew ‘z[‘TL’T 3uT
}
(zt 3ur ‘IT 3ur)dems yI 350D
Jur

*/

“3T @sn 30U op @
M ‘uorizerordxs pooyrnoqubTau ay3z Fo uorzeindwod ‘Te3USWSIOUT ‘JUSTOTFFS oI0W © U
TP3qO 03 pPaTTed ST uoTr3odouny STYL ‘Teuorido sT uorzouny dems JI 3s0D ay3z bursn //

/¥
dems e I0J 3S0O [P303 MOU dY3J S93PNTPAT x
*
dVMS AI IS0D «
*/

93

Constraint Modelling Challenge 2005

{

}
(pToA)uOT3INTOS }29UD
Jur

{0 uanjzax

J948U ST uoT3aNnTos ' ‘uorinros Tewr3do ay3 Mouy JOU Op dM 9DUTIS //

/¥
‘PTTRA ST UOTINTOS 8Y3 JT SYO9YD «
¥
NOIINTOS MOFHD =«
*/

{
FTpuSH
{0=dems passed pe

NAvmEHammmumeummuommummﬁmﬁ
MYVWHONAE ~ FOPFT#

10T = Xew 3Ie3SaIl pe
== X®eu 3JIe3sal pe) 3IT
s3Ie3S91 FO IOqQUNN //

(T

{SHSTANVHOUVNEN%00T = ITWIT 3Ie3S2I pe
(T- == 3TWTT 3I23SaX pe) 3IT
(2zTs warqoxd ay3z uo spuadap) 3Iv3s9I Aq SUOTIPISIT FO ITOqUNN //

{0017 = 3usdxad 3esax
(1- == 3usdxad 38s81) IT
3103591 bHUTINp po3asal 9[qeIIPA JO 3JuddIdd //

{SHSTANVHOYVWEN = 3ITWIT 39581 pe
(1- == 3TWTT 3981 pe) 3IT
jIP3lS89I 8I10F9q nNQqe3l JO I8qUNN //

{0 = dems oz2913 pe
(1- == dems szsai1J pe) 3IT
senbruyoe3 nqeg bursn jou I0F (03 33S //

{SHSTANVHONYVYWEN = UTW 00T ©z991J pe
(I- == uTw 00T °9z991J pe) IT
1STT yoxess aar3depe oyl //

{0T = utw 20T 3daTas qoxd pe
(T- == utw 20T 2309Tas qoxad pe) 3T
$0I ST uTw TeOOT B 309[8s 03 A3TTTqRqoad oyl //

“ouazlxmmunlvm

{0 = anTea aseq pe

STTP39p IOJ UOT3IPIUSUNOOP 3FBUBOPO) puP zZPTQ 03 I2IdY //
szo3awezed s,I9ATOS 8y3 I0J sanfea 3[neyaq //

FTpUSH
{
f(,m,)33uTad

{
L4((C/T)aTavevdas”’ , p%.) 33utad
} (++[!sINIITOEN>L !0=[)zoz
} (++T !SINIITOEN>T !0=T)IoF
{(,m:so[qeredsg,) 3auTad
des xtxzew ay3z Aerdstag //
MYYWHONAE FOPuFT#

{
i
{
S((L7y) awaTgoddx (T/3) ana1g0dd) =+ (L T) I19vdIvads
} (++43 ! SESTANVHOUVYWEN>Y ! 0=3) X0F
{0=(L'T)TTaVYVdES
} (++C{SINITTOEN>C {0=L)a03
} (++T{SINIITOEN>T ! 0=T)a0F
deg xTa3ew oy3 e3ndwoo-sid //

{

{suuoToosun=[[]sun

{
{(1/[)EANATIOUd=+2UUOTOOSUN
} (+4T {SINIITOEN>T {0=T) 3I0F
{p=2uuoToOSUN
} (++[!SESIANVHONVWEN>[{0=[)ao3
(3onpoxd jyo) uwntoo Aq s, FO I9qunu ay3x 8I03S //

() 3T309334 3IN0D=FT3093FOIN0DINSTTTAU

94

Constraint Modelling Challenge 2005

Using Customer Elimination Orderings to Minimise the Maximum Number of
Open Stacks

A Submission for the First Constraint Modelling Challenge

Nic Wilson and Karen Petrie
Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
{n.wilson k.petri¢@4c.ucc.ie

1 Introduction when the stack for: ends, when the last product thatre-

L . quires is made. We will often abbreviattartT andend; to
The minimisation of the maximum number of open stacks tart, andend,, respectively. In the examplatart, — 1

problem involves a set of customers, each which requires 3ndenct — 3 since the first broduct in the solution sequence
particular subset of a set of products. A solution is a tota ired E . pl d he f X q q
ordering of the products; the aim is to find a solution which€quired by customer c is placed at the first time point, an

minimises a particular cost function, the maximum numberthe. Ias't: pI’OthCt req;ur_ed k.)y c '_Sl [;lac.e?/at the third gme-
of open stacks (see below). Equivalent problems, such a%oglt'_ orma y_’??/rt” ,_Ymm {Wd (Y) : ¥ € prod,} an
minimisingpathwidth have been studied in the literature (Seeenéciv_enmzxigluti(onlr. fore t?rrrg)eg(};intj c (....m
http.//www.dcs.st-and.ac.qk/|pg/challenge/). _ the setoper(j) of open stacks a is defined to be
The approach we describe in this paper is using a brancqhe set of customers whose stack is open jati.e
and-bound algorithm based on a remodelling of the prob-x . start, < j < end,}. The cost of solutionyrj 'S dé:
lem. Instead of searching for orderings of products, we searcﬁne'd to be Jth_e siie. of the largest seper(j), ie
for orderings of customers, specifically, when they are eIimi—maX_ loper(j)|. The aim is ?0 find a solati,on .vv'i’th
nated from the problem. Perhaps not surprisingly, this simpl ini?neéll’(':'brg% per)l-
idea has been suggested before for this problem, in: H. '

Yanasse, On a pattern sequencing problem to minimize the The entriesx in the table indicate that a customer has

maximum number of open stackSuropean Journal of Op- an open stack at a particular timepoint. For example, there
erational Researchvol. 100, 454-463, 1997. In this paper IS an open stack fo_r customerat timepoint 2, this is be-
we analyse this approach in some depth, and describe our i ause timepoint 2 is in the intervgstart,, end] = [1,3].

: . : : ; here are five open stacks at timepoint 3, when product C is
El)evI\;n tef:}r:aaté%r;ou:éﬂgn;:igﬂitggZ;F;gg;%mmmg. We also dISCuSmade. The cost of this solution, i.e., of the product ordering

(A,B,C,D, E,F)is equal to 5, since the maximum number

. of open stacks at any timepoint is 5.
2 Problem and Notation

Timepointsj: | 1 | 23| 4| 5 6
We first describe the problem with our notation. We have AB|C|D]| E F
a setC of n customers and a sét of m products, both of a 1 | 1] * 1
which we totally order in some arbitrary way. Each customer b 1111 * | % * 1
x requires a sgbrod, of products. C 11 * |1
In the table below we consider an instance with customers d 11 x| 1
{a,b,c,d,e, f} and product A, B,C, D, E, F}. The ele- e 111 1
ments ‘1’ within the above table indicate which customer re- f 1 1
quires which product. For example, the geod, of prod- loper(j)] 3141514 4 2
ucts required by customer c is equalftd, C'}. There are Eliminated cldlaelbF
also m timepoints, {1,...,m}. A solution states which : :
product is produced at which timepoint. Formally, a solu- L
tion 7 is a function from the set of timepoints to the set3 Customer Elimination
of products. Product(1) is made first, followed byr(2), |n this section we show how that it is sufficient to focus on a
and thenr(3),...,m(m). Hence a solution can be consid- special type of solution, based on an ordering of customers.
ered as a sequence of products. ProducX is made at
timepoint7—!(X). The table illustrates the solution = Generating a Customer Ordering from a Solution
(A,B,C,D,E,F),i.e.,n(1) = A, n(2) = B etc. We can generate a permutation of the customers from a solu-

For customerz, let start] be the timepoint in the solu- tion, by considering the order in which customers are elimi-
tion = when the stack fox: begins, i.e., when the first prod- nated, i.e., the ordering of the valueserfd, over customers
uct thatx requires is made. Similarly letnd; be the point z. This is not usually unique, but we can break ties using

95

Constraint Modelling Challenge 2005

the initial ordering of customers. In the example, customer ¢ Let Prod® be the (possibly empty) set of products appear-
is eliminated first, at timepoint 3, sin@nd. = 3, thend at ing in positionsj; + 1,..., 2 in the solutionw. We per-
timepoint 4, followed by: ande at timepoint 5, and andf at mute Prod” to put products required by customes first,
timepoint 6, sincend, = end; = 6. We use the alphabetical and putting those products in input products order. Again,
ordering to break ties giving a customer elimination orderingno customer is eliminated in this interval, so this cannot in-

(C?d7.(']’7e7b7.f)' . 3
This defines a functiorf from solutions to customer or-

crease the cost of the solution. We continue this process with
Prod®, ..., Prod".

derings. (Formally, a customer ordering is defined to be a Applying this sequence of operations generates solution

function from{1,...,n} to C.) We write the effect off on

solution7 as f (). For customers andy, custometz is or-

dered before by f(x) if and only if either (i)z is eliminated
beforey by 7 (i.e.,end; < end)), or (i) = is eliminated si-
multaneously withy by = (i.e., end; = end)), andz < y

(according to the input total order on customers).

Generating a Solution from an Ordering of Customers

We will generate a functiop that maps a customer orderipg

to a solutiong,,. The idea is that the products required by the
first customer (according tp) are introduced first, and then

g(f(m)). None of the operations increases the cost of the
solution, sacos{g(f (7)) < cos{r), as required. o

This result leads to the following result, which means that
we can search for customer elimination orderings, without
losing completeness. The casis(p) of a customer elimi-
nation ordering is defined to beos{g(p)), the cost of the
associated product ordering.

Proposition 2 Suppose elimination ordering has minimal
cost, i.e., for all elimination orderingg’, cos{p’) > cos{p).

additional products required by the second customer etc. Tieﬁheng(p) is an optimal solution, i.e., for all solutions,

are broken by the input ordering on products. In the exam
ple, the customer ordering d, a, e, b, f generates a product
orderingA,C, B, D, E, F.

Let G(X) be the earliest position in the customer or-
dering p that requires productX, so that G(X)
min{p~!(z) : prod, > X}. Theng, is defined as follows:
X is ordered beforé” by g, if and only if either (i)G(X) <
G(Y)or (i) G(X) = G(Y) andX < Y;thatis, eitherX is
first required by an earlier customer (in orderpgjghany’, or
they are both first required by the same customer,and Y’
in the input product ordering.

The example illustrates that applying then ¢ does

not necessarily give the same solution as we started With['

A, B,C,D,E,FischangedtA,C, B, D, E, F. In fact the
cost is even changed: the cost of the second solution is just
as opposed to 5 for the first solution. The following proposi-
tion states that applying and therng can never increase the
cost of a solution.

Proposition 1 If we start with a solutionr and generate the
associated customer elimination sequerf¢e), and gener-
ate from that its associated solutigif (7)), then the cost of
this new solution is no worse than that of the original solu-
tion: cos{g(f(m)) < cos{().

Sketch of proof: Consider any solutiomr. Write the asso-
ciated customer elimination orderiffdr) asxy, xo, . . . , .
Fori = 1,...,n, letj; = end,, be the position at which
customerz; is eliminated.

tos(m) > cos(g(p)) = coslp).
Proof: Letw be any solution. By the previous proposition,
cos{m) > cos{g(f(m)), which by definition is equal to
cos{ f(m)), the cost of the elimination ordering(«). By the
hypothesiscost f (7)) > cos{p) = cos{g(p)), proving that
cos{m) > cos{g(p)), Sincer was an arbitrary solution, this
proves the optimality of solutiog(p). 0

Cost in terms of neighbourhoods

TheneighbourhoodVbd(x) of a customer: is defined to be

he set of customers that share a common product with cus-
merz, i.e.,{y € C : prod, N prod, # 0}. In the example,
bd(c) = {a,b,c,e}; this is because requires productst

andC, anda andb also required, and customersg ande also

require productC'.

We say that a customer elimination orderipgs feasi-
ble if there is some solution which hasas its associated
customer elimination ordering, i.e., if there exists solution
m with p = f(m). It can be checked that if we generate
an elimination orderingg = f(x) from a solutionr, then
generate a solution(p) from that, and an elimination order-
ing f(g(p)) fromthat, we get the same elimination ordering:
p = f(g(p)). This implies that a customer elimination order-
ing is feasible if and only ip = f(g(p)).

Consider a feasible customer elimination orderjng=
(z1,x9,23,...), and its associated solutigrip). Whenax;

Let Prod' be the sequence of products appearing in posiis eliminated, i.e., at timepoirgnd,,, the products required

tions1,...,j; in the solutionr, i.e.,{n(1),...,7(j1)}. The
open stacks setspery(j) occurring at positiong correspond-
ing to elements oProd; are increasing in size (since no cus-
tomer is eliminated in this interval), so with the largest occur-
ring atji, as customes; is eliminated. Permuting the prod-

by z; have been made, which means that there is an open
stack for every neighbour of;. We write Stackéz,) =
Nbd(xz1) = Nbd(p(1)). Similarly, whenz is eliminated,

at timepointend,,, (unlessend,, = end,,) there is an open
stack for every neighbour af;, or of x5, except for customer

ucts inProd; cannot make the last such set any larger, and s@,, which has been eliminated. We writacké(z1,r2)) =

cannot increase the cost of the solution. We perrfute!' to
put products required by customey first, and putting those

products in input products order. Hence these products are seq

the order dictated by(f(r)).

Nbd(.CCl) U Nbd($2) - {ZCl}

More generally for a sequence of customers
= (z1,...,m;) we write Stack$§seq =
(Nbd(xl) y .- u Nbd(l‘l)) — {Il,...7l‘i_1 . We

96

can compute this iteratively using the
Stack$(a:1, . ,xi)) = (Stacké(xl, . ,xi—l)) — {.131'_1}) U
(Nbd(l’z) — {iL’l, e ,Sﬂi_l}).

For elimination ordering p, let ncostp) =
max;—1, . n |Stacké(z1,...,x;))]. It is only at time-
points in{end,, : i =1,...,n} that the number of open

stacks could decrease. ffis feasible then customers get
eliminated fromg(p) in the orderp (sincep = f(g(p))),
so the largest set of open stacks for solutigp) is equal
to Stack$(z1,...,x;)) for somei = 1,...,n. Hence, for
feasiblep, cos{p) = ncostp).

For any customer elimination ordering we have:
ncosfp) > cos{p). Letp’ = f(g(p)), which is a feasible

Constraint Modelling Challenge 2005

equation A lower bound for the optimal cost is the size of the small-

est neighbourhood. This is because the set of open stacks
when the first customer is eliminated is that customer’s neigh-
bourhood. If for some customer, Nbd(z) # C then elimi-
natingz first leads to an elimination sequence with cost less
thann. This implies that the optimal cost is equaktaf and

only if every customer is a neighbour of every other customer,
i.e., forallz € C, Nbd(z) = C.

Let w be the cost of the optimal solution. Suppose, dur-
ing the algorithm, an initial sequene®q of length (n —
maxStackshas been chosen, so that — maxStacKscus-
tomers have been eliminated, and there ragxStackgus-
tomers remaining to be eliminated. |Btack$seg| <

customer elimination ordering. Then, using Proposition 1 maxStackthen any choices for the remainder of the sequence

ncostp’) = cos{p’) < cos{p) < ncostp). So the minimum
of ncostp) over all customer elimination orderingss equal
to the minimum ofcos{p) over all customer elimination or-

will succeed, since there are ontyaxStacksustomers re-
maining in the problem. This implies thatriiaxStacks> w
then success or failure will be determined by choosing a se-

derings, which, by Proposition 2, is equal to the minimumquence of at most — maxStacksustomers, and hence at

of cos{r) over all solutionsr, i.e., the cost of the optimal

solutions. This shows that allowing infeasible customer elim-

mostn — w customers.
If maxStacks< w then the algorithm will return ‘fail’,

ination orderings in our search algorithms does not affect thgince there is no solution with cost at masaxStacksMore-
result. The basic algorithm below performs a search over cussver, no sequence longer than- w + 1 will be generated.

tomer elimination orderings.

4 Basic Customer Elimination Algorithm

This is because if a sequence of length- w + 1 were to
succeed with the test in (b) then the largest number of stacks
generated so far would be not more thaaxStack&nd so

The algorithm is based on chronological backtracking searctit mostw — 1; but then any extension of this sequence will
The valuemaxStackss the maximum number of open stacks Nave cost at most — 1 (since onlyw — 1 customers remain),
allowed. For example, if we have already found a solutionwhich contradictsw being the cost of the optimal solution.

with costR then we could sahaxStacks= R — 1 to see if it
is possible to improve on this solution.

Alternatively, we could run the algorithm repeatedly, incre-

mentingmaxStack®ach time, starting witlmaxStacks= 1

Therefore we have:

Finding an optimal solution (and proving optimality) for fam-
ilies of instances witlh — w bounded by a constant is poly-
nomial in the number of customers and products

(or maxStackequalling the size of the smallest neighbour-

hood). The optimal cost will be the value wlaxStack# the
first run that succeeds.

A sequence of customesgqis built up incrementallyseq
is initialised as the empty sequence.
While seqdoesn’t contain all customers, do (a) and (b):
(a) Choose customer not in seq and addr to the end of
sequencseq

(b) If |Stackésed| > maxStackshen backtrack to the last

5 Implementation with CP

The CP-based implementation of the customer elimination
algorithm hasn search variables, ..., z, all of domain
{1,...,n} representing the ordering in which the cus-
tomers are eliminated. The only constraint on these search
variables is a global ‘altlifferent’ which forces the ordering
to form a permutation.

The method commences by a preprocessing step which

reassignable choice (i.e., the last choice such that ther@ims to calculate a lower bound for the optimal value. This
exists an alternative not yet tried). If no such choice ex-is done by calculating the neighbourhood $ébd(x), for

ists, return ‘fail’ and stop.
If the algorithm doesn’t return ‘fail’, then (the finafeq

each customeg. This is done in a similar manner to that
described in Section 3. The lower-bouridh§) for the opti-

is a customer elimination sequence with cost no more thafal value is then calculated, which corresponds to the car-

maxStackswhich can be converted to a solutig(seg with
cost no more thamaxStackslf the algorithm returns ‘fail’,

dinality of the smallest neighbourhood set. At this stage
another set of variableg,,...,y, is created with domain

then every customer elimination sequence has cost greatéfwb, ..., n}. Intuitively these variables correspond to the
thanmaxStacksin which case there is no solution with cost optimal value of the current partial or full customer elimina-

less thanmaxStacks (These properties follow from the re-
sults and the discussion above.)

Complexity for problems with high optimum cost

tion ordering, with lower bound aj;, given by the size of the
setStacksézy, . .., zk).

Once the bound has been calculated, andytivariables
have been allocated their corresponding domains, then

It can be seen that this algorithm will find the optimal costbranch-and-bound search commences. This takes the form

quickly (and prove optimality) for problems with high path-

of a standard branch-and-bound search acrossheables.

width, i.e., where the optimal cost is close to the number ofEvery time a search variable is instantiated, the corresponding

customers.

y variable is calculated to give the current bound on the opti-

97

Constraint Modelling Challenge 2005

mal solution. There is a global ‘max’ constraint across this sePropagation from before statements Obviously:

of variables so that every time a partial ordering is found withbeforgz, y) andbefor€y,) imply befordx, z).

a worse optimal value than a previous solution, early prunindf befordx, y) and overlapy, z) then notbefore z,), and

can take place. The combination of this early pruning throughalsoend, < end..

the use of the global constraints, and the good bound on the This latter implication restricts the search for customer

objective value, creates an efficient solving mechanism foelimination orderings: we can assume thappears earlier

this problem. in the sequence thanin the customer elimination ordering.
beforestatements also strongly restrict directly the possible

6 Further Techniques solutions (ordering of products).

6.1 A simple dominance condition removing
infeasible elimination orderings

Propagation from overlaps Consider a sei? of r cus-
tomers, every pair of which overlap, i.e., for al]y € R,
overlapz, y). Then the cost of the solution is at mesiThis
is because at the pointin {end, : i € R}, there is an open
stack for each customer iR.

If z andy overlap then, when the first of them is eliminated,
there is an open stack for both customers. In particular, if
end, < end, then at the point that is eliminated, the current
set of open stacks includes battandy.

We could therefore construct a search tree by at each node
choosing two customers, and constructing a branch for each
of the three possibilities above. We will need relatively few
beforedecisions at (above) a node for either inconsistency,
or becoming close to generating a solution with cost within
C" which dominates:. the upper boundhaxStackssincebeforestatements strongly

When we have scheduled customérswe only need to restrict solutions and customer elimination orderings. Nodes
consider undominated customers to schedule next. The re@ith almost alloverlapdecisions associated allow weaker di-
son for this is that if: is not undominated there always exists rect propagation. However, then searching for feasible cus-
ay which is undominated and which dominatesand any ~tomer elimination sequences at such a node may well be ef-
customer ordering beginnirgeq = is no better than the cor- fective, since the increased number of overlaps will tend to
responding customer ordering where customés brought increase the number of open stacks, potentially clashing with

forward just before: (and so beginningeqy, z). the upper bound and allowing backtracking. (Causing fur-
ther overlaps is similar to increasing the neighbourhoods of

hThrlf View alsp sugﬁjejtsl, a S'mplﬁ heuristic f(_)rh Choolls'ngcustomers; customer elimination is very effective when the
which customer: to schedule next: choose one with smallesty,oiohhourhoods get larger.)

setNbd(xz) — S.

Suppose we have scheduled a subset of the custdifieas
seq LetC” = C — C’ be the remaining unscheduled cus-
tomers. LetS be the union of neighbourhoods of each el-
ement inC”, i.e., S = (U,ecr Nbd(z)). Letz andy be
two remaining customers. If we schedul@ext then the set
Nbd(xz) — S get added to the current open stacks. Sayghat
dominatese (givenC’ or seq if either of the following hold:

(i) Nbd(z)—S 2 Nbd(y) — S
(i) Nbd(x) — S = Nbd(y) — S andy < z.
Say thatr € C” is undominated if there does not existc

7 Discussion
.) . We analysed and proved equivalence of a simple reformula-
Here we discuss another kind of decision to branch ovefion of the problem (customer elimination sequences), with
which can be used on its own or in conjunction with customergp gassociated branch-and-bound approach. We implemented
elimination. this approach with CP technology; as expected, given the ear-

6.2 Before-overlap branching

Letz andy be two customers. We say customsas before
customery (with respect to some solution) éind, < start,,
i.e., if the stack forr closes before that of opens. We say
thatz andy overlapif = is not beforey, andy is not before

lier discussion, the approach works very well when the op-
timum cost is high, as demonstrated by the experimental re-
sults. However, the approach is also very successful for many
problems with much lower optimum cost; propagating the

, i.e., if there exists some point in which both the stacks forlower bound based on the sizes of the neighbourhoods seems

x andy are open. This happens if and onlysthrt, < end,
andstart, < endc,. If z andy are neighbours (i.e., they
require a common product) then customerandy overlap.
For any two customers andy, exactly one of the following
three possibilities occurs (in any given solution):

(i) « is beforey;

(ii) y is beforex;

(iii) = andy overlap.

to be very effective for some of these problems.

Acknowledgements

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 00/P1.1/C075. We are
grateful for valuable discussions with many of our colleagues
including Radek Szymanek, Gilles Pesant, Steve Prestwich,
David Burke, Gene Freuder, Tom Carchrae, Armagan Tarim,
Joe Bater, Mark Hennesey, Alex Ferguson and Brahim Hnich.

Implied constraints can be generated in each case, espe-

cially (i) and (ii).

98

Appendix: Experimental Results
Experimental Conditions:

All experiments were run on a Dell Latitude D400 laptop
with a 2GHz 4M Pentium processor, and 1GB of RAM.

ECL'PS 5.8479 was used for the implementation of the
full algorithm, the code relies on thé&:, ic_global,
ic_search and thebranch_and_bound algorithms.

One run was used for each instance.
The maximum time allowed for each run was 5 minutes.

The method of gauging search effort islaep backtrack
count. A deep backtrack is where a variable has been setto a
value and search has continued, and later this search tree node
has had to be returned to, and the alternative branch taken.
Therefore the deep backtrack count does not inclsfuk-
low backtrackswhere a variable is assigned a value which is
found purely by propagation to be inconsistent.

The mean, median and maximum number of backtracks to
find the optimal solution have not been included in the two
tables of aggregate results. This is because in‘PSLa
handler is triggered when a better optimal solution is found
than the incumbent. It is possible to print the number of
backtracks at this point (as we did with the single instances),
but we could not see how to get the program to store such a
value. The large number of instances made it impractical to
go through the program output and calculate such values by
hand.

99

Constraint Modelling Challenge 2005

Constraint Modelling Challenge 2005

File Best Solved Runtime | Search effort (bts) to| Total search effort
value | Optimally? (sec) | find optimal solution (backtracks)
Miller19 13 Yes 1.26 0 40
GP1 45 Yes 0.34 0 2
GP2 40 Yes 0.93 0 3
GP3 40 Yes 0.88 1 1
GP4 30 Yes 2.04 0 2
GP5 95 Yes 2.06 0 1
GP6 75 Yes 13.3 0 0
GP7 75 Yes 16.7 0 1
GP8 60 Yes 36.4 0 2
NWRS1 3 Yes 0.01 0 0
NWRS2 4 Yes 0.01 0 1
NWRS3 7 Yes 0.50 1 97
NWRS4 7 Yes 0.02 0 0
NWRS5 12 Yes 0.16 0 4
NWRS6 | 12 Yes 0.24 0 8
NWRS7 | 10 Yes 199.7 0 17544
NWRS8 | 16 Yes 9.33 0 484
SP1 9 Yes 199.2 0 35195
SP2 20 No 299.2 254 5455
SP3 38 No 283.7 1 1450
SP4 59 No 292.7 1 503

Table 1: Individual results

100

Constraint Modelling Challenge 2005

% solved | mean best | time per instance (sec) Total effort p. i. (bts)

File optimally | value found| mean | median| max mean | median| max
problem10.10.dat 100 8.03 0.01 0.04 0.8 2.17 12 120
problem10.20.dat 100 8.92 4.28 0.02 0.09 0.80 6 40
problem15.15.dat 100 12.8 0.03 0.11 1.20 4.6 23 209
problem15_30.dat 100 14.02 0.009| 0.04 0.09 0.96 7 13
problem20.10.dat 100 15.87 1.40 0.74 | 209.46| 154.77 96 30182
problem?20.20.dat 100 17.97 0.11 0.24 2.21 7.77 18 172
problem30.10.dat 94 23.95 2596 | 2.21 | 299.75| 1091.26| 445 26361
problem30.15.dat 99 25.97 7.27 0.89 | 297.30| 272.94 83 12271
problem30.30.dat 100 28.32 0.17 0.15 1.87 5.45 14 60
problem40_20.dat 96.4 36.38 20.55| 0.53 | 298.50| 341.08 70 6211
Shawlnstances.txt 100 13.68 0.36 0.32 1.32 20 22 68

wbo_10.10 100 5.925 0.01 0.03 0.04 25 5 13
wbo_10_20 100 7.35 0.007 | 0.02 0.02 1.6 4 6
wbo_10_30 100 8.2 0.006 | 0.02 0.02 1.3 4 6
wbo_15.15 100 9.35 0.08 0.10 0.30 11 16 52
wbo_15.30 100 11.58 0.09 0.10 0.81 14 14 143
wbo.20_10 100 12.9 2.1 0.30 112 317 41 18, 812
wbo_20_20 98.8 13.69 5.17 0.25 | 299.09| 868.4 24 55225
wbo_30.10 90 20.05 47.76 | 3.33 | 299.16| 2039.38| 148 17155
wbo_30.15 90.8 20.96 40.86 | 2.47 | 299.34| 2075.06| 226 26696
wbo_30_30 90 22.58 4266 | 1.54 | 299.71] 2108.03| 247 24227
wbop.10.10 100 6.75 0.005| 0.01 0.02 0.73 2 6
wbop.10_20 100 8.08 0.006 | 0.03 0.06 1.83 4 20
wbop.10_30 100 8.55 0.003| 0.02 0.02 0.83 4 6
wbop.15.15 100 10.37 0.04 0.09 0.35 4.83 10 60
wbop 1530 100 12.15 0.04 0.10 0.32 5.48 12 47
wbop 20.10 100 14.28 0.26 0.15 3.60 26.15 20 401
wbop 20_20 100 14.87 0.25 0.21 4.28 20.52 21 435
wbop 30_10 92.5 22.48 32.67| 1.03 | 299.72| 1513.8 50 14966
wbop.30.15 95 22.38 2526 | 1.12 | 299.17| 1813.35 83 26968
wbop.30_30 98.5 23.84 9.56 0.55 | 299.61| 442.45 71 16291
wbp_10_10 100 7.28 0.01 0.03 0.13 4.13 5 68
wbp_10_20 100 8.71 0.005| 0.02 0.03 0.97 4 8
wbp_10_30 100 9.31 0.003| 0.02 0.02 0.53 3 5
wbp_15.15 100 11.05 1.023| 0.11 34.36 | 292.50 14 10152
wbp_15.30 100 13.09 0.023| 0.060 | 0.371 | 3.075 11 54
wbp_20.10 100 15.13 8.08 0.35 | 146.07| 1386.15 18 32319
wbp_20_20 98.8 15.41 7.61 0.18 | 298.72| 1705.12 39 101327
wbp_30_10 90 23.20 46.07 | 2.55 | 299.71| 2094.25 80 15758
wbp_30_15 85 23.03 49.72| 0.90 | 299.92| 2816.48 75 29906
wbp_30_30 914 24.47 34.70 | 0.99 | 299.73| 2545.60| 149 93548

Table 2: Aggregate results

101

