
Groups and Constraints:

Symmetry Breaking during Search�

Ian P. Gent1, Warwick Harvey2, and Tom Kelsey1

1 School of Computer Science, University of St Andrews
St Andrews, Fife, KY16 9SS, UK
{ipg,tom}@dcs.st-and.ac.uk

2 IC-Parc, Imperial College
Exhibition Road, London SW7 2AZ, UK

wh@icparc.ic.ac.uk

Abstract. We present an interface between the ECLiPSe constraint
logic programming system and the GAP computational abstract algebra
system. The interface provides a method for efficiently dealing with large
numbers of symmetries of constraint satisfaction problems for minimal
programming effort. We also report an implementation of SBDS using
the GAP-ECLiPSe interface which is capable of handling many more
symmetries than previous implementations and provides improved search
performance for symmetric constraint satisfaction problems.

1 Introduction

Dealing with symmetries in constraint satisfaction problems has become quite
a popular topic for research in recent years. One of the main areas of recent
study has been the modification of backtracking search procedures so that they
only return unique solutions. Such techniques currently broadly fall into two
main categories. The first involves adding constraints whenever backtracking
occurs, so that symmetric versions of the failed part of the search tree will not
be considered in future [1, 12]; we will collectively refer to these techniques
as SBDS (Symmetry Breaking During Search). The second category involves
performing checks at nodes in the search tree to see whether they are dominated
by the symmetric equivalent of some state already considered [7, 9]. Note that
these two kinds of approaches are closely related; the main difference is when
and how the symmetry-breaking conditions are enforced.

The SBDS approach as implemented to date (with one exception) has one
main drawback when it comes to problems with large numbers of symmetry: it
requires an explicit list of all the symmetries of the problem. It works well if the
number of symmetries is small, and has been used effectively with a list of up
to about 8000 symmetries, but clearly if a problem has billions of symmetries,
a complete explicit list is not practical. Since the symmetries of a problem form
� This paper is dedicated to Alex Kelsey, 1991–2002

P. Van Hentenryck (Ed.): CP 2002, LNCS 2470, pp. 415–430, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

416 Ian P. Gent et al.

a group, one obvious candidate for representing and manipulating these sym-
metries implicitly is to use computational group theory (CGT). Modern CGT
systems such as GAP [10] are very efficient: they allow rapid calculations to be
done on large groups without the need to iterate over or explicitly represent more
than a tiny fraction of the group elements. As well as offering a clear benefit in
both time and space, using a CGT approach can make the expression of the
symmetries by the programmer much easier: typically only a handful of example
symmetries are required to generate the full symmetry group, even for very large
groups.

Iain McDonald [13] has performed some early experiments using group theory
to represent the symmetries in an SBDS implementation, but still only handled
a few thousand symmetries. In this paper we present a much more sophisticated
approach capable of handling several orders of magnitude more symmetries than
any previous SBDS implementation. We interface the constraint logic program-
ming system ECLiPSe [14] with GAP, running as a sub-process. We use GAP to
specify the group and perform stabiliser calculations, passing the results back to
ECLiPSe, which uses them to reduce the computational effort required to solve
the problem. Note that while the examples in this paper have integer domain
values, our implementation is general, allowing other classes of domain variables
to be used.

In Section 2 of this paper we introduce the group theory concepts utilised
by our system. These include the definition of symmetries as bijective mappings
from an initial subset of the positive integers to itself, groups formed by com-
position of these maps, subgroups, generators of groups, elements which leave
points unchanged (stable), and points which are the image of maps (orbits).

We describe the GAP-ECLiPSe interface in Section 3 and our SBDS imple-
mentation in Section 4. Examples of the use of GAP-ECLiPSe to improve SBDS
are given in Section 5. We discuss our results and highlight future avenues of
research in Section 6.

2 Group Theory for CSPs

Consider a constraint satisfaction problem, 〈C,D〉, consisting of a constraint, C,
over variables x1, . . . , xn, with finite domains D(xi). Suppose that the domain
elements are also indexed from D(xi)1 to D(xi)mi . It is possible that 〈C,D〉
contains symmetries in either the variables, the domain values, or both. By
symmetry, we mean a permutation of either the variables or the domain values,
or both, which preserves solutions.

Example 1: Symmetry in Domains. A graph colouring problem 〈C,D〉 with
domain

D(xi)1 = red,D(xi)2 = green,D(xi)3 = blue

for each variable, has the same solutions as the problem 〈C,D′〉, where D′

is any permutation of the indexing of D. Hence D′(xi)1 = blue,D′(xi)2 =
green,D′(xi)3 = red is a symmetric version of D. Since there are n! permu-
tations of n elements in a set, 〈C,D〉 has 3! = 6 symmetric variants.

Groups and Constraints: Symmetry Breaking during Search 417

Example 2: Symmetry in Variables. Suppose that we wish to solve

A

BC
+

D

EF
+

G

HI
= 1

where each letter is a distinct member of {1, . . . , 9}, and BC denotes 10∗B+C.
By the associativity and commutativity of arithmetic over the rationals, if {A �→
5, B �→ 3, C �→ 4, . . . } is a solution, then so is {G �→ 5, H �→ 3, I �→ 4, . . . }. Again
we have 3! permutations of the variables which preserve solutions.

Symmetries as Group Elements. A group is a tuple 〈S, ◦〉 where S is a set
and ◦ is a closed binary operation over S such that:

1. ◦ acts associatively: (a ◦ b) ◦ c = a ◦ (b ◦ c) for every a, b, c ∈ S;
2. there is a neutral element, e, such that a ◦ e = e ◦ a = a for every a ∈ S;
3. each element has an inverse, so that a ◦ a−1 = a−1 ◦ a = e.

Let Ω = {1, 2, . . .N} for some N , where each integer might represent (de-
pending on the nature of the symmetries in a given problem) a CSP variable,
a value, or a variable/value pair. Our set, SΩ, is the set of bijective mappings
from Ω to itself (i.e. permutations of the elements of Ω), and we take ◦ to be
the composition of such mappings. 〈SΩ, ◦〉 forms a group since

1. ◦ is clearly closed and associative;
2. the identity mapping, denoted by (), is a neutral element: composing () with

any other mapping has no effect;
3. by our restriction to bijective mappings, we ensure that each mapping has

an inverse.

〈SΩ, ◦〉 is known as SN , the symmetric group over N elements. SN has N !
elements (one for each possible bijective permutation), each of which can be
represented by the image of the relevant mapping from Ω to Ω. For example,
f(i) = (i + 1) mod N has the image [2, . . . , N, 1]; and g, the swapping of only
points 1 and 2, has the image [2, 1, 3, . . . , N]. The inverses of f and g are easy
to describe, and their composition f ◦ g has the image [1, 3, . . . , N, 2].

Each member of SN is a permutation of the numbers {1, 2, . . . , N}, and each
symmetry of a CSP will have an associated permutation. An arbitrary CSP need
not have N ! symmetries: for example, an N -queens problem has the number of
symmetries of a square, which is 8 for any value ofN . This motivates a discussion
of subgroups of SN .

Symmetries as Subgroups. The tuple 〈T, ◦〉 is a subgroup of 〈S, ◦〉 if T is
subset of S which forms a group under the ◦ operation. Trivial subgroups are
obtained when T consists of only the identity permutation, and when T = S.
Lagrange’s theorem states that the order (number of elements) of a subgroup
divides the order of the group. In terms of CSPs, we wish to identify permutations
which generate the subgroup of SN which correctly describes the symmetries of a
given CSP. The process of subgroup generation involves choosing a small number

418 Ian P. Gent et al.

of permutations, and repeatedly forming other permutations by composition
until a closed subset of SΩ is obtained. For example, consider a CSP involving
the symmetries of a 2×2 square, in which we have labelled the cells 1 . . . 4 from
top left via top right and lower left to lower right. The S4 elements p1 = [3, 1, 4, 2]
and p2 = [3, 4, 1, 2] define a rotation by 90◦ and a flip through the horizontal
axis respectively. We see that p1 and p2 generate a subgroup of S4 order 8:

p1 ◦ p1 = [4, 3, 2, 1] rotation by 180◦

p1 ◦ p1 ◦ p1 = [2, 4, 1, 3] rotation by 270◦

p1 ◦ p1 ◦ p1 ◦ p1 = [1, 2, 3, 4] rotation by 360◦ : identity
p2 ◦ p1 = [4, 2, 3, 1] rotate by 90◦ then flip
p1 ◦ p2 = [1, 3, 2, 4] flip then rotate by 90◦

p1 ◦ p1 ◦ p2 = [2, 1, 4, 3] flip through vertical axis

It is straightforward to check that any composition involving only p1 and p2

gives one of the above elements. The generated group is known as the dihedral
group with 8 elements, D4, and is clearly a subgroup of S4. Note that 8 divides
4! = 24 as required by Lagrange’s theorem.

In order to identify and deal with symmetries during search, we need to
identify the images of points in Ω after permutation by group elements (orbits
of points), and those elements which leave certain points unchanged after per-
mutation (stabilisers of points). The idea is to keep track of the stabilisers of
(the identifiers of) forward labelling steps. If a choice is backtracked, we find
its orbit in our symmetry group, and add constraints excluding configurations
corresponding to each of the points in the orbit. This is justified since points in
the orbit are symmetrically equivalent to the choice point, with respect to the
current state of our search.

Orbits, Stabilisers and Cosets. Let G be a permutation group acting on N
points, so that G is a subgroup of SN . We define the orbit, Oi(G), under G of a
point i ∈ {1, . . . , N} as

Oi(G) = {g(i) | g ∈ G}.
In the above example, O3(D4) = {1, 2, 3, 4} since p2 moves 3 to 1, p1 ◦ p1 moves
3 to 2, the identity leaves 3 unchanged, and p1 moves 3 to 4.

We define the stabiliser of point i in G as

StabG(i) = {g ∈ G | g(i) = i}.
Using the same example, StabD4(3) = {(), p2 ◦p1}, since applying either of these
permutations leaves point 3 unchanged (and no others do).

The concepts of orbit and stabiliser can easily be extended to cover more
than one point, and it can be shown that any stabiliser of a point acted on
by a group is a subgroup of that group. Moreover, the orbit-stabiliser theorem
provides the useful result that |Oi(G)| |StabG(i)| = |G|, i.e. the order of a group
is the order of the stabiliser of any point times the size of the associated orbit.

Groups and Constraints: Symmetry Breaking during Search 419

In Section 4 we shall consider chains of stabilisers of points, together with
representative permutations of associated orbits. To illustrate this, consider the
symmetric group consisting of the 24 permutations of {1, 2, 3, 4}. We compute a
chain of stabilisers of each point, starting arbitrarily with point 1:

StabS4(1) = {(), [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2]}.

This is the group consisting of the 6 permutations of the set {2, 3, 4}. We can
define a binary relation on the elements of any finite G with subgroup H by
setting a ∼ b iff b ◦ a−1 ∈ H . This is an equivalence relation (since a ∼ a,
a ∼ b ⇒ b ∼ a, and a ∼ b ∧ b ∼ c ⇒ a ∼ c), and the equivalence classes are
called right cosets of H in G. A simple calculation shows that the right cosets of
StabS4(1) in S4 are:

c1 = StabS4(1)
c2 = [2, 1, 4, 3], [2, 1, 3, 4], [2, 4, 3, 1], [2, 3, 4, 1], [2, 4, 1, 3], [2, 3, 1, 4]
c3 = [3, 4, 1, 2], [3, 4, 2, 1], [3, 1, 2, 4], [3, 2, 1, 4], [3, 1, 4, 2], [3, 2, 4, 1]
c4 = [4, 3, 2, 1], [4, 3, 1, 2], [4, 2, 1, 3], [4, 1, 2, 3], [4, 2, 3, 1], [4, 1, 3, 2]

Note that the cosets partition S4, with cj consisting of the permutations which
send 1 to j. A right-transversal of H in G is a list of canonical representatives
from the cosets. We only need one representative of each coset, since any member
of cj is equivalent to any other member in terms of where the point fixed by the
stabiliser, 1, gets mapped to.

To complete the stabiliser chain we have

StabStabS4(1)(2) = {(), [1, 2, 4, 3]}

which is the subgroup of StabS4(1) which leaves point 2 unchanged, and

StabStabStabS4
(1)(2)(3) = {()}

since only the identity permutation leaves point 3 unchanged. Stabiliser chains,
in general, collapse quickly to the subgroup containing only the identity since
the order of each new stabiliser must divide the order of the stabilisers above it.
Once an order 1 stabiliser is reached, all stabilisers further down the chain are
trivial.

3 GAP-ECLiPSe

In this Section we briefly describe the interface between the GAP computational
group theory system and the ECLiPSe Constraint Logic Programming system.
The idea is that GAP acts as a black box. While an ECLiPSe implementation
is performing tree search to solve a CSP involving symmetries, GAP is asked to
provide group theoretic results such as the symmetry group itself, stabilisers of

420 Ian P. Gent et al.

points, and members of cosets of stabilisers. The ECLiPSe implementation uses
these results to break any symmetries that arise during search.

GAP [10] (Groups, Algorithms and Programming) is a system for computa-
tional discrete algebra with particular emphasis on, but not restricted to, com-
putational group theory. GAP includes command line instructions for generating
permutation groups, and for computing stabiliser chains and right transversals.
Note that GAP does not explicitly create and store each element of a group.
This would be impractical for, say, the symmetric group over 30 points, which
has 30! elements. Instead group elements are created and used as required by
the computation involved, making use of results such as Lagrange’s theorem and
the orbit-stabiliser theorem to obtain results efficiently. GAP can also be pro-
grammed to perform specific calculations in a modular way. GAP is available
from http://www.gap-system.org/

ECLiPSe is a Constraint Logic Programming system which includes libraries
for finite domain constraint solving. In addition to its powerful modelling and
search capabilities, ECLiPSe has three important features which we utilise to
prune search trees using results from computational group theory.

The first, and most important, feature is efficient communication with sub-
processes. It is straightforward to write ECLiPSe programs which start a GAP
subprocess and send and receive information which can be used to prune search.
We have implemented an ECLiPSe module which exports predicates for

– starting and ending GAP processes;
– sending commands to a GAP process;
– obtaining GAP results in a format which is usable by ECLiPSe;
– loading GAP modules; and
– receiving information such as timings of GAP computations.

The second ECLiPSe feature is the provision of attributed variables. These
allow us to attach extra information to a variable and retrieve it again later. We
use this feature to avoid requiring the user to thread extra symmetry-related
data through their code: during the search, any symmetry data one needs in
relation to any variable (including the global symmetry-breaking state) can be
retrieved directly from that variable.

The third feature is the provision of suspended goals. This allows us to eval-
uate and impose constraints in a lazy fashion, which is a crucial feature of our
approach.

4 Using GAP-ECLiPSe to Break Symmetries

We describe a GAP-ECLiPSe implementation of SBDS in which symmetric
equivalents of assignments are determined by computation within GAP. We as-
sume that the ECLiPSe user has a constraint satisfaction problem of the form

C ∧ x1 ∈ D(x1) ∧ · · · ∧ xn ∈ D(xn),

Groups and Constraints: Symmetry Breaking during Search 421

where C represents the constraints of the problem and D(xi) is the domain of
the ith variable. We first obtain some global symmetry information, and then run
a binary backtrack search procedure using SBDS [12]. In the context of a partial
assignment A, after the assignment Var = Val fails, SBDS posts the constraint
g(A) ⇒ g(Var �= Val) for each element g in the symmetry group. This ensures
that if we ever visit a symmetric equivalent of A we never try the equivalent of
Var = Val.

4.1 Mapping between ECLiPSe Assignments and GAP Points

Before we can begin describing the symmetries of a CSP, we need to decide on a
mapping between the points manipulated by GAP (1 . . . N for some N) and the
constraints imposed by ECLiPSe during search (xi = dj , xi �= dj). To allow full
symmetry generality, one needs to assign a distinct point to each possible assign-
ment; for example, one could assign the points 1 . . .m to the assignments x1 =
1, . . . , x1 = m, points m + 1 . . . 2m to the assignments x2 = 1, . . . , x2 = m,
etc., but any order will do. Note that we do not have to consider disequality
constraints separately since they are affected by symmetries in exactly the same
way as the corresponding equality constraint, and the type of constraint (= or
�=) will be known from context.

If the problem has only simple variable symmetry (or simple value symme-
try), then having one point for each potential assignment is overkill since all as-
signments involving a given variable (resp. value) are affected by the symmetries
in the same way. Instead one can associate points with variables (resp. values),
and when computing the symmetric equivalents of assignments retain the value
(resp. variable) from the original assignment.

In our implementation, the relevant mapping is encapsulated in a pair of
ECLiPSe predicates. The first takes a variable-value pair and returns the corre-
sponding GAP point. The second takes a GAP point and the original variable-
value pair (only used for simple variable or value symmetries), and returns the
corresponding variable-value pair.

4.2 Using GAP to Obtain a Symmetry Group

There is no need to explicitly code every symmetry of the CSP. Indeed, this
would be impractical for a balanced incomplete block design (henceforth, BIBD)
with, say, a 7×7 matrix model, which has full symmetry on both the rows and
columns. In other words, any solution matrix is symmetrically equivalent to the
same matrix after swapping any number of rows and columns. In this case the
symmetry group is S7×S7, the direct product of the row and column symmetry
groups, with order 7!× 7! = 25, 401, 600.

A more efficient approach is to identify a small number of symmetries, and
use GAP to obtain the generated symmetry group. For example, to generate SN

it is sufficient to provide one permutation that switches exactly two elements,
and another permutation that cycles each element by one position. The following
GAP session illustrates this for the symmetric group on 7 points:

422 Ian P. Gent et al.

gap> p1 := PermList([2,1,3,4,5,6,7]);;
gap> p2 := PermList([2,3,4,5,6,7,1]);;
gap> g := Group(p1,p2);;
gap> Size(g);

5040

As a further example we generated the symmetry group of a square from one
rotational symmetry and one flip symmetry in Section 2. The greatest number
of generators needed is O(log2(N)), and this bound is reached only for a small
class of permutation groups. In general, it is sufficient to identify one example
of each type of symmetry in the problem for GAP to generate the correct sym-
metry group. A useful heuristic is to use the first 3 or 4 symmetries that can be
easily written down. If this process omits a class of symmetries, then symmetry
breaking will still happen, but only for a subgroup of the underlying symmetry
group. The CSP practitioner then has the option of identifying other symme-
tries (so as to generate the largest possible group), or accepting the number of
symmetric solutions obtained.

4.3 Symmetry Breaking during Search

We assume that our search algorithm has arrived at a value to variable assign-
ment point. The idea is to try assigning Val to Var, and if that fails, to exclude
all symmetrically equivalent assignments. The procedure takes as argument:

– Stab, the member of the stabiliser chain computed at the previous assign-
ment node (i.e. the subgroup of G which stabilises each SBDS point assigned
so far) ;

– A, the current partial assignment of values to variables;
– RTchain, a sequence of the right transversals corresponding to the assign-

ments made so far, 〈RT1, . . . ,RTk〉, where RTi is a set containing a rep-
resentative group element for each coset of Stabi in Stabi−1. We define
g ∈ RTchain as any group element g which can be expressed as g = pk ◦
pk−1 ◦ . . . ◦ p1 where pi ∈ RTi. Note that RTchain implicitly represents
the partial assignments symmetric to A, since any such assignment can be
obtained by applying some g ∈ RTchain to A.

Our implementation is based on the pseudo-code given in Figure 1. We first
choose a variable-value pair, and map this pair to a GAP point. The next stage
is to use GAP to compute the next member of the stabiliser chain, and the
right transversal of this in the previous member of the stabiliser chain. Once
this is done, we update RTchain. Since RTchain is made up of (products of)
group elements which appear in the orbits of the points fixed by the current
partial assignment, RTchain can be thought of as the current set of potentially
applicable symmetries. We are now ready to test assignments.

If the assignment Var = Val leads to a successful search, we stop searching
and the final A is a solution to the CSP which is not symmetric to any other
solution found using the same search method. If Var = Val leads to a failure, we

Groups and Constraints: Symmetry Breaking during Search 423

sbds search := proc(Stab, A, RTchain)

localPoint , NewStab, RT , NewA, BrokenSymms , g;

choose(Var , Val) ;

Point := var value to point(Var , Val) ;

NewStab := Stabilizer(Stab, Point) ;

RT := RightTransversal(Stab, NewStab) ;

NewRTchain = RTchain ^ RT ;

assert(Var = Val) ;

if sbds search(NewStab, A ∧ Var = Val ,NewRTchain) = true

then
return TRUE

else
retract(Var = Val) ;

BrokenSymms := lazy check(NewRTChain, A) ;

for g inBrokenSymms do

assert (g(A) ⇒ g(Var �= Val));

end do ;

return sbds search(Stab, A, RTchain)

end if
end proc

Fig. 1. SBDS using GAP and ECLiPSe

backtrack and (effectively) want to impose the constraint g(A) ⇒ g(Var �= Val)
for each symmetry g.1 By symmetry we mean a member of our revised RTchain,
which is, perforce, a member of the original symmetry group. However doing
this by iterating over every symmetry would be very inefficient; indeed it would
be completely impractical for large symmetry groups. Instead there are several
observations we can make which allow us to cut down the number of considered
symmetries drastically.

First, there are potentially many symmetries which map A∧Var �= Val to the
same constraint; we need only consider one such g. Indeed, this is where RTchain
comes in: each member of RTchain is a representative of the set of symmetries
which agree on what to map each of the variable/value pairs in A ∧ Var �= Val
to. Note that this can be generalised: any members of RTchain which select the
same pi ∈ RTi for i = 1 . . . j agree on what to map the first j elements of A to.
This also means that the truth value of the first j elements of A is the same for
these members of RTchain, suggesting that they should be considered together.

The next observation is that we need not post the constraint for any symme-
tries for which the precondition g(A) is false. For some g this may be true for the
entire search subtree under consideration; for some it may be true for some part
1 Note that we need not explicitly impose Var �= Val, since the identity permutation
(or something equivalent) will be one of the symmetries considered.

424 Ian P. Gent et al.

of the subtree; for others it may never be true. We combine this observation with
the previous one to in effect evaluate g(A) lazily, only imposing the constraint
g(Var �= Val) when g(A) is known to be true, sharing as much of the evaluation
as possible between different g, and deferring that evaluation until it is known
to be needed.

Suppose we have a prefix of RTchain of length i ≥ 0 (call it RTchaini)
and some pi ∈ RTchaini such that the prefix of A of length i is mapped to
something which is true for the current point in the search tree. If RTchaini+1 =
RTchaini^〈RTi+1〉 then we wish to consider pi+1 = rti+1 ◦ pi for all rti+1 ∈
RTi+1. All such pi+1 map the first i elements of A to the same thing (indeed,
the same thing as pi), but each maps the i+1th element to something different.
For each such pi+1 we have three cases:

1. The i+1th element of A is mapped to something which is true. In this case,
proceed to considering the i+ 2th element.

2. The i + 1th element of A is mapped to something which is false. In this
case, do not consider this pi+1 any further. (This excludes all symmetries
which map the first i + 1 elements of A to the same thing from further
consideration.)

3. The i+ 1th element of A is mapped to something which is neither true nor
false at this point in the search. In this case we delay further computation
based on this pi+1 until the truth value is known, and then apply the ap-
propriate case above. We delay in order to avoid considering the next right
transversal in RTchain until we know that we must. This is because each
time we consider a new right transversal RT for a permutation under consid-
eration, that permutation is expanded into |RT| candidate permutations for
the next iteration, and to remain practical we need to minimise the number
of such multiplicative expansions.

Whenever the computation determines that g(A) in its entirety is true, g(Var �=
Val) is asserted.

The check on classes of elements of RTchain is crucial to the efficiency of the
search procedure, and is made possible by careful use of variable attributes and
suspended goals in ECLiPSe. It also ensures that we post at most one constraint
for each set of symmetries which map A (as a tuple) to the same thing.

4.4 Comparison with [13]

In a prior implementation [13] of SBDS using group theory, on backtracking
the orbit of the current partial assignment under the action of the full symme-
try group is computed from scratch, and then a constraint is imposed for each
member of the orbit, excluding that particular partial assignment. The idea is to
ensure that each constraint posted is different, since different symmetries applied
to a partial assignment can yield the same constraint. The main drawbacks of
this implementation are that the orbit is computed from scratch each time, and
no account is taken of whether the constraints are already entailed. The latter is

Groups and Constraints: Symmetry Breaking during Search 425

important since it may be that many constraints are posted excluding different
partial assignments, but that many of these constraints are useless for the same
reason; e.g. because they involve excluding configurations where X = 1 when we
already know that X = 2.

In contrast, our approach is incremental, tries to share computation between
symmetries, and exploits knowledge of entailment and disentailment to minimise
the work done. On the other hand, our approach can result in the same constraint
being imposed more than once because it treats assignments as (ordered) tuples
rather than sets; e.g. it might post both X �= 1∧ Y �= 2 and Y �= 2∧X �= 1. We
hope to be able to remove this unnecessary duplication in future.

5 Examples

In this section we present examples of the use of our GAP-ECLiPSe implemen-
tation applied to constraint satisfaction problems having symmetry groups of
sizes up to about 109. We give CPU times for a 600 MHz Intel PIII processor,
version 5.3 of ECLiPSe and version 4r2 of GAP.

Colouring Dodecahedrons. For our first example we consider the problem of
colouring the vertices of a dodecahedron, the regular polyhedron having 12 pen-
tagonal faces and 20 vertices. The variables x1, . . . , x20 represent the 20 vertices.
The values c1, . . . , cm are the m colours in question. It can be shown that the
symmetry group of the dodecahedron is isomorphic to the group of even permu-
tations of five objects, known to group theorists as A5, which has 60 elements.
Since any permutation of a colouring is allowed, the symmetry group of the val-
ues is Sm. The total number of symmetries is then 60 × m!, acting on 20 × m
points. We construct this group in GAP from just four generators: one rotation
of the vertices about a face, one rotation about a vertex, swapping the first two
colour indices, and cycling the colour indices by one place. The constraints of
the CSP are of the form xi �= xj whenever vertex i is joined by an edge to ver-
tex j. We seek the number of colourings for a given m, such that no colouring is
a symmetric equivalent of another. A standard CSP solver will return all legal
assignments. Our approach has the advantage that all symmetries inherent in
the problem are dealt with during the initial search.

Table 1. Dodecahedron colouring using GAP-ECLiPSe

Parameters GAP-ECLiPSe ECLiPSe

m Symms. Sols. Time Backtracks Sols. Time Backtracks

3 360 31 1.0 43 7200 0.2 6840
4 1440 117902 1600 100234 1.7 × 108 5270 1.0 × 108

Table 1 gives a comparison of GAP-ECLiPSe performance against a standard
ECLiPSe implementation. While the overheads are not repaid for 3-colouring (for

426 Ian P. Gent et al.

so few symmetries one might as well use one of the existing SBDS approaches),
we obtain more than a three-fold speedup for 4-colouring.

Alien Tiles. The alien tiles puzzle (http://www.alientiles.com) is Prob-
lem 27 in CSPLib (http://www.csplib.org) and consists of an n× n array of
coloured tiles. A click on any tile in the array changes all tiles in the same row
and column by one colour in a cycle of m colours. For n = 4, m = 3, we look at
the following two problems, as described in detail in [11]:

1. What is the largest possible number of clicks required in the shortest se-
quence of clicks to reach any goal state from the start state?

2. How many distinct goal states are there requiring this number?

By distinct we mean not symmetrically equivalent to another sequence. The
symmetries of the problem are given by a flip along any diagonal axis (2 symme-
tries) followed by any permutation of the rows and columns. The total number
of symmetries is 2× n!× n!, for 1152 when n = 4. The group is straightforward
to generate using three generators: one for a flip and two for permuting the rows
(a permutation of the columns can be obtained by doing a flip, permuting the
rows and flipping back).

Table 2. Alien tiles comparison: GAP-ECLiPSe – SBDS – no symmetry break-
ing

Problem GAP-ECLiPSe ECLiPSe SBDS ECLiPSe

Sol. GCPU ECPU ΣCPU Sol. Time Sol. Time

min. cost 0.95 8.66 9.61 44.95 600.75
dist. sols. 19 0.98 8.51 9.41 19 43.83 11232 862.63

These questions have been answered previously using SBDS with all 1151
non-trivial symmetries explicitly considered [11]: the minimum number is 10
and there are 19 distinct solutions. The use of SBDS led to a 40-fold runtime
speedup using ILOG Solver. We implemented the problem in ECLiPSe with
each symmetry explicitly considered, obtaining identical results with slightly
less speedup. We then used our GAP-ECLiPSe system to solve the problem
starting from the three generators. This gave a further run-time improvement
of a factor of 5 over SBDS without GAP, again obtaining a minimum cost of 10
with 19 distinct solutions. We see an overall speedup by a factor of 60 to 90. We
see that the use of GAP-ECLiPSe leads to a much faster solution with only a
small amount of programming effort required to encode the symmetries of the
problem.

So far we have used groups up to size 1,440. Our ability to handle groups of
this size efficiently and easily is a significant step forward in the application of
symmetry breaking in constraint problems. In fact, up to this size there are as
many as 49,500,455,063 distinct groups. Each one could arise as the symmetry

http://www.alientiles.com
http://www.csplib.org

Groups and Constraints: Symmetry Breaking during Search 427

group of a variety of different constraint problems. However, we can also apply
SBDS to problems with symmetry groups several orders of magnitude bigger
than could be handled previously, as we now show.

Balanced Incomplete Block Designs. To show that large numbers of sym-
metries can be dealt with, we consider the problem of finding v×b binary matrices
such that each row has exactly r ones, each column has exactly k ones, and the
scalar product of each pair of distinct rows is λ. This is a computational version
of the (v, b, r, k, λ) BIBD problem [5]. Solutions do not exist for all parameters,
and results are useful in areas such as cryptography and coding theory. A so-
lution has v! × b! symmetric equivalents: one for each permutation of the rows
and/or columns of the matrix.

Table 3. Balanced incomplete block designs using GAP-ECLiPSe

Parameters GAP-ECLiPSe ECLiPSe

v b r k λ Sols. GCPU ECPU ΣCPU Sols. Time

7 7 3 2 1 1 0.71 0.68 1.39 151200 3149.7
6 10 5 3 2 1 0.89 5.57 6.46 > 4× 105

For the (7, 7, 3, 3, 1) problem, GAP-ECLiPSe finds the unique solution in
about one second of combined CPU time. Keen algebraists will note that the
number of solutions found by ECLiPSe with no symmetry breaking is 151, 200 =
7!2/168. The denominator, 168, is the size of the automorphism group of the
projective plane of order 2 defined by the 2-(7, 3, 1) block design. This shows
that ECLiPSe is successfully finding only those solutions which are distinct with
respect to the formulation of the problem.

The (6, 10, 5, 3, 2) BIBD has 6!×10! = 2, 612, 736, 000 symmetries. Again, we
can find the unique solution in a few seconds. The number of symmetric solutions
is so large that an ECLiPSe program failed to enumerate them after 12 hours
elapsed computation time. Taken together, these results demonstrate that many
symmetric equivalent solutions are excluded during search in an efficient manner.
Both groups were generated from only 4 permutations, and neither group was
created as an explicit collection of elements by either ECLiPSe or GAP, allowing
search that is efficient in space as well as time.

For constraint models in the form of a matrix, such as a BIBD, an alternative
means of breaking symmetry is to insist that both rows and columns are lexico-
graphically ordered [8]. While this may not break all symmetry, it successfully
obtained a unique solution on both BIBDs we studied, in run times at least 10
times faster than our implementation of SBDS.

The lexicographic constraints force only a particular solution to be accept-
able. This might conflict with the variable and value ordering heuristics being
used, while SBDS will accept the first solution found and remove all symmetric

428 Ian P. Gent et al.

Table 4. Comparison of symmetry breaking using lexicographic ordering and
SBDS in GAP-ECLiPSe and combinations of heuristics. The variable ordering
heuristic + enumerates squares in rows starting from the top left, while - reverses,
starting from the bottom right. The value ordering heuristic + tries 0 before 1,
while - reverses this

Parameters Heuristics Lex-ECLiPSe GAP-ECLiPSe

v b r k λ Var Val 1st CPU All CPU 1stΣCPU All ΣCPU

7 7 3 3 1 + + 0.09 0.13 1.06 1.39
+ - 0.12 0.13 0.70 0.76
- + 1.42 1.62 1.12 1.44
- - 0.27 1.62 0.80 0.82

6 10 5 3 2 + + 0.11 0.17 4.51 6.46
+ - 0.13 0.16 3.06 4.57
- + 126.50 243.29 4.57 6.52
- - 116.83 242.85 3.08 4.60

equivalents of it. We investigated this experimentally, with results shown in Ta-
ble 4. Using the wrong variable ordering heuristic can make a difference of three
orders of magnitude in the run time using lexicographic constraints, while we
see almost no difference in the run time used by SBDS. We suggest this arises
because the reversed heuristic starts with the bottom right corner, and the lex-
icographic constraints are unable to prune until late in the search tree. We do
see a change in run time in both methods when reversing the value ordering. For
lexicographic constraints, it makes almost no difference to total time, but it can
affect dramatically the time to find the first solution. In the (7,7,3,3,1) BIBD,
the reversed value ordering is best with the reversed variable ordering heuristic,
because the preferred solution has a 1 in the bottom right square. We do see an
improved overall run time with the reversed value ordering heuristic for SBDS.
While we do not fully understand this, it seems to be more constraining to choose
1 before 0, and SBDS can exploit this to reduce the size of the overall search
tree. We conclude that the low overheads of lexicographic ordering can make it
very effective, provided that the programmer is aware of how the constraints will
interact with the variable and value ordering heuristics. In comparison, SBDS is
relatively unaffected by the choice of variable and value orderings.

6 Discussion

We have shown that constraint logic programming and computational group
theory systems can be coupled to provide an efficient mechanism for

A: generating symmetry groups for constraint satisfaction problems, and
B: using group theoretic calculations within search to rule out symmetrically

equivalent solutions.

Our implementation utilises features of ECLiPSe and GAP that allow lazy eval-
uation of properties of representatives of subsets of the symmetries. We obtain

Groups and Constraints: Symmetry Breaking during Search 429

significant increases in computational efficiency for a range of CSP problems
with well defined symmetry groups containing as many as 109 elements.

There are two areas of future research interest. First, we would like to use the
GAP-ECLiPSe framework to implement another symmetry breaking paradigm.
For example, a purely group theoretic approach to symmetry breaking was used
to implement efficient backtrack search in [3]. The idea, a precursor of [7], is to
perform a backtrack search for broken symmetries within the backtrack search
for a solution. It should be possible to implement the subsidiary search in GAP,
leaving ECLiPSe to deal with the resulting (pruned) search tree. It would also
be interesting to explore the application of our work to the satisfiability problem,
in which Crawford et al [6] successfully applied group theoretic techniques.

The second area is the extension of our approach to more practical CSP
problems. In particular the areas of symmetry in model checking [4], and vehicle
routing and scheduling [2].

Acknowledgements

The St Andrews’ authors are assisted by EPSRC grant GR/R29666. We thank
Steve Linton, Ursula Martin, Iain McDonald, Karen Petrie, Joachim Schimpf,
Barbara Smith and Mark Wallace for their assistance.

References

[1] R. Backofen and S. Will, Excluding symmetries in constraint-based search, Pro-
ceedings, CP-99, Springer, 1999, LNCS 1713, pp. 73–87. 415

[2] J. C. Beck, P. Prosser, and E. Selensky, On the reformulation of vehicle routing
problems and scheduling problems, Tech. Report APES-44-2002, APES Research
Group, February 2002. 429

[3] C.A. Brown, L. Finkelstein, and P.W. Purdom, Jr., Backtrack searching in the
presence of symmetry, Proc. AAECC-6 (T. Mora, ed.), no. 357, Springer-Verlag,
1988, pp. 99–110. 429

[4] M. Calder and A. Miller, Five ways to use induction and symmetry in the verifi-
cation of networks of processes by model-checking, Proc. AVoCS, 2002, pp. 29–42.
429

[5] C.H. Colbourn and J. H. Dinitz (eds.), The CRC handbook of combinatorial de-
signs, CRC Press, Rockville, Maryland, USA, 1996. 427

[6] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, Symmetry breaking predicates for
search problems, Proc. KR 96, Morgan Kaufmann, 1996, pp. 148–159. 429

[7] T. Fahle, S. Schamberger, and M. Sellmann, Symmetry breaking, Proc. CP 2001
(T. Walsh, ed.), 2001, pp. 93–107. 415, 429

[8] P. Flener, A.M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh,
Symmetry in matrix models, Tech. Report APES-30-2001, APES Research Group,
October 2001. 427

[9] F. Focacci and M. Milano, Global cut framework for removing symmetries, Proc.
CP 2001 (T. Walsh, ed.), 2001, pp. 77–92. 415

[10] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.2,
2000, http://www.gap-system.org. 416, 420

430 Ian P. Gent et al.

[11] I. P. Gent, S.A. Linton, and B.M. Smith, Symmetry breaking in the alien tiles
puzzle, Tech. Report APES-22-2000, APES Research Group, October 2000. 426

[12] I. P. Gent and B.M. Smith, Symmetry breaking in constraint programming, Pro-
ceedings of ECAI-2000 (W. Horn, ed.), IOS Press, 2000, pp. 599–603. 415, 421

[13] I. McDonald, Unique symmetry breaking in CSPs using group theory, Proc. Sym-
Con’01 (P. Flener and J. Pearson, eds.), 2001, pp. 75–78. 416, 424

[14] M.G. Wallace, S. Novello, and J. Schimpf, ECLiPSe : A platform for constraint
logic programming, ICL Systems Journal 12 (1997), no. 1, 159–200. 416

	Groups and Constraints: Symmetry Breaking during Search
	Introduction
	Group Theory for CSPs
	GAP-ECLiPSe
	Using GAP-ECLiPSe to Break Symmetries
	Mapping between ECLiPSe Assignments and GAP Points
	Using GAP to Obtain a Symmetry Group
	Symmetry Breaking during Search
	Comparison with 13

	Examples
	Discussion

