Symmetry and Consistency

lan P. Gentt, Tom Kelsey, Steve Lintor, Colva Roney-Dougal

1School of Computer Science, University of St Andrews, St Andrews,
Fife, KY16 9SX, UK
{ipg,tom,sal,colvha@dcs.st-and.ac.uk

Abstract. We introduce a novel and exciting research area: symmetrising levels

of consistency to produce stronger forms of consistency and more efficient mech-
anisms for establishing them. We propose new levels of consistency for Con-
straint Satisfaction Problems (CSPs) incorporating the symmetry group of a CSP.
We first define Syrfi, j)-consistency, show that even Sym(1,0)-consistency can
prune usefully, and study some consequences of maintaining Sym(i, 0)-consistency.
We then present pseudocode for SymPath consistency, and a symmetrised version
of singleton consistency, before presenting experimental evidence of these algo-
rithms’ practical effectiveness. With this contribution we establish the study of
symmetry-based levels of consistency of CSPs.

1 Introduction

Symmetries arise in many Constraint Satisfaction Problems (CSPs). A rapidly growing
literature looks at avoiding redundant search (and duplicate solutions) through a variety
of techniques, such as enforcing a lexicographic ordering by enforcing lexicographic
constraints [1], adding constraints dynamically during search [2], backtracking from
the current node when it can be shown to be equivalent to a previous nogood [3] or
constructing trees in which the symmetry has been eliminated [4].

Constraint solving is a balance between search and inference. There are various
levels of consistency that can be maintained while searching for a solution, and many
algorithms for enforcing levels of consistency. One can pick a level of consistency such
as arc consistency (AC), a particular approach such as AC-3, and still find a variety of
algorithms using interesting variants of that technique [5-7].

This work is foundational in establishing how symmetry and inference can be in-
corporated to the benefit of search in CSPs. At the heart of the thinking behind this
research is the simple fact that any time we learn something about a CSP, the same is
true of its symmetric equivalents. We suggest ways in which this insight can be used,
specifically a number of new levels of consistency. These levels of consistency do one
of two things: they either exploit the group structure to establish a higher level of con-
sistency than corresponding notions without symmetry; or they establish the same level
of consistency but the algorithm to establish consistency can exploit the group structure
to potentially run faster. This paper considers both possibilities. The only precursor we
are aware of is an exploitation of symmetry in a variant of AC2001 [8].

In Section 2 we introduce the fundamental definitions of CSPs, symmetries and con-
sistency. In Section 3 we define a new, symmetric, kind of consistency called ,Sym
consistency, and go on to study various specialisations of it such ag $yronsistency.

In Section 4 we present pseudocode for enforcing a symmetrised version of path con-
sistency, then in Section 5 we present pseudocode for enforcing symmetrised singleton
consistency. Both of these algorithms generalise the optimal known algorithms for their
unsymmetrised versions. In Section 6 we present experimental evidence of the practical
effectiveness of our new algorithms, before concluding with a discussion some of the
possible directions for this exciting new research area.

2 Background and Definitions

Definition 1. A CSPPis atriple (A, D,C), whereA is a finite indexed set of variables
x1,Z2,...,T,, €ach of which has finite domain of possible vallgs= Dom(z;) C
A.ThesetD = {D; : 1 < i < n}, and the set is a finite set of constraints on the
variables inA. A solutionto a CSP is an instantiation of all of the variablesdhsuch
that all of the constraints i€ are satisfied.

Statements of the forrfvar = val) areliterals: we denote the set of all literals of
the CSP byx (A4, D), or simply x when the meaning is clear. We will write the literal
(z; = a) as(x;, a), or occasionally(i, a).

Definition 2. A set of literals is gpartial assignmerif each variable occurs at most
once in it, and dull assignmentf each variable occurs exactly once.

Let C be constraint and a partial assignment, then Biar(C') we denote thecope
of C, namely the variables over which the constraihts defined, and byar(Z) we
denote the variables ifi. We say thatZ satisfiesC' if Z contains assignments to all
variables inVar(C'), and the restriction of to Var(C) is a permitted tuple of’. The
partial assignmerif violatesC if it contains assignments to all variables in the scope
of C, but the restriction of to Var(C) is a forbidden tuple of’. A partial assignment
7 is consistentf it satisfies all of the constraints that have no uninstantiated variables.
A permutationf of a setX is a bijectionf : X — X. We will denote the image
of a pointz € X under the magf by xf. This notation (which comes from group
theory) means that if we apply a permutatipmo 2 € X and then a permutatiopnto
the result we can simply writef g, rather than the more cumbersog(g (z)). Given
any permutatiory on a setX we will abuse notation and allow to act on (ordered or
unordered) subsets &f, via{z1,...,z,} f == {z1f,..., 2, f}. Sincef is aninjection
the size of the image set is the same as the size of the original set.

Definition 3. Given a CSPP = (A, D,C), a symmetryof P is a permutation of
x(4, D) such that a full assignmett is a solution if and only ifAf is a solution.

It is well known that the collection of all symmetries of a CSP forngr@up, that
is, the composition of any two symmetries is itself a symmetry, and the inverse of a
symmetry is a symmetry. To see this we note that &éndg are symmetries of a CSP
P, then for any solutiorS C x (A, D) the setSfg = (Sf)g is a solution. To see
that the inverse of a symmetry is a symmetry, note th& i§ a solution, andS f—!
is not a solution, therf is not a symmetry, sinceSf~1)f = S. Any groupG has a
distinguished element called thentity, denoted ¢ or simply1, with the property that
acting with1 fixes everything.

Let G be a group of permutations of a s@t and leta € £2. Theorbit, «“, of a
underG is the set of all elements @? to whicha may be mapped by permutationgin

Formally,a® := {ag : g € G}. Thestabiliserofain GisG, :={g € G : ag = a},
the set of all permutations i&v that mapa to itself. Let A := {ay,...,an} C 2.
Then thepointwise stabilisenof Ais G4y := {g € G : a;g = a;for1 <i < m},
namely the set of all permutations @i that map each point id to itself. Thesetwise
stabiliserof Ais G4y := {g € G : forallithere existg with a;g = a;}. That s,
the setwise stabiliser is the set of all permutationé&/ithat map the setl to itself. It
is an elementary fact that for amy< (2 the point stabiliserz, is a subgroup o€7 (a
subset ofG that is itself a group under the same operation aS)inand also that any
setwise or pointwise stabiliser is a subgroug-of
Our definition of symmetry is very general. In particulardifis a consistent partial
assignment, then, provided thdtis not a subset of a solution, it is possible that there
exists a symmetry such thatdg violates a constraint. For example, [Btbe a CSP
with variablesz, y, z, each with domairi1, 2], and constraint sefx = y,y = z}.
Then the symmetries aP allow us to freely interchangér, i), (y,4) and(z,1), for
any fixed: € [1, 2], as this will preserve both of the solutions. Thus in particular there
is a symmetryf which maps(y,2) — (z,2), (2,2) — (y,2), and fixes all other
literals. However, the partial assignmelrt, 1), (z,2)} is mapped byf to the partial
assignmenf(z, 1), (y, 2)}, and this latter partial assignment violates a constraint.
Symmetries need not even map partial assignments to partial assignments, and this
is perfectly acceptable. In the 8-queens puzzle, there is a symmetry which rotates the
square by 90 degrees. Suppose we use the standard model, with one variable for the
placement of the queen in each row. The partial assignfEp, 3), (@2, 3)} maps
to {(@s,8),(Qs,7)}, which involves two values fo); and therefore is not a partial
assignment. However, the initial assignment violates the constraint that there is only
one queen in each column. This observation generalises: if a symyneiaps a partial
assignment4 to a set of literalsAf that is not a partial assignment, thghis not a
subset of any solution. To see this, suppose that S for some solutiorsS, and note
that by definition off we haveAf C Sf. Conversely, the inverse of will map a
collection of literals that a not a partial assigment to one that is, infthamapsAf to
A. This is one reason why we define symmetries as acting on literals and then induce up
to sets of literals, rather than defining them originally as acting on partial assignments.

Definition 4. Given a CSPP = (A, D,C), a symmetryf of P is strictif for all sets
A C x(A, D) of literals, A is a consistent partial assignment if and onlyA4ff is a
consistent partial assignment.

A symmetry isnotstrict if it can map a partial assignment violating some constraint
to a partial assignment not violating any constraintsjioce versa

Definition 5. Let L = (A, D, C) be a CSP with symmetry grodp. A value symmetry
of L is a symmetry € G such that if(z;,a)g = (z;,b) thenz; = z;. Denote the
elements oD; € D by a;;. A variablesymmetry of_ is a symmetry; € G such that
if (z5,a:5)9 = (zx,br) thenj = [. In the case where the variables have common
domains then we denote the elementd @fs a, and the condition for a symmetry to
be a variable symmetry can be simplified to(af, ax)g = (z;, a;) thena, = q;. That
is, the symmetry fixes the values in each literal.

We distinguish value and variable symmetries, as these have particularly nice algo-
rithmic properties. If all elements aff are pure value symmetries (value symmetries

such that if(z;,a)g = (z;,b) then for allj we have(z;,a)g = (z;,b)) then we can
considerG to consist of permutations of. Similarly, if G contains only pure variable
symmetries then we can consider it to consist of permutations &ee [4, 9] for more
details. Note that we cannot in general wrte,a)g as(z;g,ag) as the variable in
(x;,a)g may depend on the choice of value The 8-queens example before Defini-
tion 4 gives a symmetry which demonstrates this.
We finish this section with some definitions of consistency. A @3Rk-consistent
if given a consistent partial assignment on &nyl variables, along with &-th variable,
one can find a value for thieth variable such that the resulting partial assignment of
sizek is consistent. A CSP that isconsistent need not f& — 1)-consistent: see [10].
We now recall the more general form of consistency calied)-consistency11].

Definition 6. Suppose that in a CSP, given any consistent partial assignmention
variables, and given any othgivariables, it is possible to find values for the additional
j variables such that resulting partial assignment of gize; is consistent. The® is

(i, j)-consistent

Thus in this notatiork-consistency igk — 1, 1)-consistency, and arc consistency is
(1, 1)-consistency. We enforcg, j)-consistency by posting constraints of arityhat
expressly forbid eachtuple that cannot be extended.

We denote a binary constraint betwegrandz; by ¢;;. ACSPP = (A,D,C) is
path consistenif and only if for anyc;; € C, any tuple(a, b) € ¢;; and any variable
zi € A\ {x;,z;}, there exists a value € Dy, such that{(z;,a), (z;,b), (xx,v)} is
a consistent partial assignment. For CSPs with no ternary constraints, path consistency
is the same a&2, 1)-consistency; however in the presence of ternary constraints path
consistency and-consistency differ.

3 Consistency and symmetry

In this section we extend, j)-consistency to use additional information from the sym-
metry group of a CSP. We will then examine when this coincides with existing levels of
consistency. The following proposition is one of the main motivations for our work.

Proposition 1. If the partial assignmenf(z;,a;) : i € I} can be extended to a solu-
tion of a CSP, then for all symmetrigghe assignmenf(z;,a;)g : i € I} violates no
constraints.

Proof. Suppose not, that is, suppose thét;,a;) : ¢ € I U J} is a solution, but that
for some symmetry the assignmen(x;,a;)g : ¢ € I} violates a constrain®. Then
{(zs,a;)g9 : i € TUJ}is afull assignment which is not a solution, contradicting the
definition of a symmetry.

Thus if one discovers thdt(x;,a;) : ¢ € I} violates a constraint then none of
its images undeé can be part of a solution, hence they can all be forbidden without
compromising soundness.

Lemmal. For any X C A, the assignmend := {(z;,a;) : z; € X} can be
consistently extended Iy := {(z;,a;) : z; € Y C A} if and only if for all strict
symmetrieg the assignmentlg can be consistently extended By.

Recall the definition of orbit at the end of Section 2. One consequence of the above
lemma is to say that a suppaft exists for a literal(x;, a) if and only if there exist
images of the support which are support for each literal in the orljit ofz) under the
group of strict symmetries. That is, when symmetries are strict we may reuse symmetric
support. Conversely, i& may be pruned fronD;, similar domain deletions occur for
each element ofz;,a)“, even wherG contains nonstrict symmetries.

Definition 7. A CSPP with symmetry groug is Sym(s, j)-consistentf for each con-
sistent partial assignmerit of sizei, for each symmetry € G and each set of
variables that do not lie in th&ar(Zg), it is possible to find values for thogevari-
ables such that the+ j values taken together (the image of the initiaind the newy)
satisfy all constraints on thoget j variables.

Note that since all symmetry groups contain the identity permutation this definition
encompasses that of stand#idj)-consistency given in Definition 6. Thus, Syity)
consistency is at least as strong(ag)-consistency.

As an initial example, we illustrate the fact that even Sym(1,0)-consistency is an
interesting concept. Consider a simple graph 3-colouring problem on 4 nodes A, B, C,
and D, containing all possible edges except between A and D. As a graph colouring
problem, we add a not-equals constraint between all pairs of variables except A and
D. Initially, each node has domajm, 2, 3], so the groug= of symmetries of the CSP
contains a symmetry which simultaneously interchangé®, i) with (C,4) for i €
[1,2,3]. There are also three symmetrigs g2, 95 € G, such thatg; swaps(A, 1)
with (D, i) and leaves all other literals fixed. Of course, the overall symmetry group
of this CSP contains all combinations of these four symmetries. Suppose now that our
first choice during search is to set, 1). We make the problem arc consistent, giving
domainsA = [1], B = [2,3], C = [2,3], andD = [1,2,3]. However, because of
the symmetries that interchange A and D, the problem is not Sym(1,0) consistent. The
new symmetry group is the stabiliser @ of the positive decisiofiA, 1). Thus it still
containsf, go and gs. We can establish Sym(1,0)-consistency by removing 2 and 3
from the domain of D (ag. maps(D,2) to (A4,2), which has been deleted aggd
maps(D, 3) to (A4, 3)). We can see that this is a correct deduction: since A=1, then B
and C have to share the values 2, 3, and since D is connected to both, only the value
1 is available for D. Thus we see Sym(1,0) making useful deductions in this simple
example. We will explore more deeply the concept of Gyi)-consistency below.

We establish when Syfh j)-consistency is stronger than that(efj)-consistency.

Lemma 2. If the symmetry group of a CSP contains only strict symmetries(:Sym
consistency is the same @sj)-consistency for all, ;.

Proof. Let P be a CSP whose symmetry groGpcontains only strict symmetries, and
suppose thaP is (i, j)-consistent. We show thd? is Syn(i, j)-consistent. Lef be

a consistent partial assignment of sizand letg € G. Then sincey is a strict sym-
metry,Zg is a consistent partial assignment of siz&hus for any; further variables
there exists an extension @fy to a consistent partial assignment of size j, by

(i, 7)-consistency. Thu® is Sym(i, j)-consistent. The converse is clear, considering
the identity element of the symmetry group of the CSP.

Even though the levels of consistency are not different when symmetries are strict,
one may use symmetries to speed up the inference process. Suppose we have three vari-
ableszy, x2, x3, with Dom(z;) = Dom(zs) = [2,3,4] andDom(x3) = [3]. Suppose
our constraints are; = x5 andxy < x3, SO that our symmetry group interchanges
x1 andzs, and fixeses. Then in enforcing (1,1)-consistency we first prungom the
domain ofx, and then on a second iteration prune it from the domain;pfvhereas
when enforcing Sym(1, 1)-consistency we perform both domain deletions at once, as
we know that there is a symmetry swappingandzs.

Suppose thaP is a CSP whose symmetry groapis not strict. In particular, sup-
pose thayy € G maps a consistent partial assignmérdf sizei to a collection of lit-
eralsZg which violates at least one constraint, or has two values for the same variable.
It is still possible thatP is (4, j)-consistent for somg. However,P is not Syn{s, j)-
consistent for any, as for any choice of additional variables there is no way of ex-
tendingZg to a consistent partial assignment of size j. Thus Synfi, j)-consistency
is stronger tharii, j)-consistency.

We now consider a yet stronger type of symmetric consistency, cali@dyngi, j)-
consistencylt differs from Syn{i, j)-consistency in its requirements on support: for
Sym(i, j)-consistency we require that for each image of a partial assignment and each
choice ofj additional variables there exists a support. Now we reverse some quantifiers
and require that there is a suppgrtfor our initial partial assignmerf such that for all
symmetries irGG, the image of the support is a support of the imagé.of

Definition 8. A CSPP is total Syn{i, j)-consistentf given any consistent partial as-
signmentZ of sizei, and a furtherj-tuple of variables, there exists atuple 7 of
assignments to those variables such that forgale G the assignmenfg U Jg is
consistent.

Note that ifZU.7 is contained in a solution then by definitiggU.7 g will be consis-
tent for allg. Thus enforcing total Syf, j)-consistency will not jeopardise complete-
ness. Total Syifi, j)-consistency is potentially expensive to maintain: to find support
for a consistent-tuple of assignments may involve testing many possiHigples and
symmetriesg. However, as we will see in Section 4, if the symmetry gr@ggon-
sists only of pure variable symmetries then total $im) consistency can be no more
expensive than its non-total variant, whilst enforcing a stronger level of consistency.

We finish this section with a discussion of the special case of(Syjimconsistency
wherej = 0. A CSP is Syn{, 0)-consistent if wheneveE is a consistent partial as-
signment of sizg, the imageZg of Z under any symmetry € G is also a consistent
partial assignment. Since the symmetry grétipartitions the set of all-sets of literals
into orbits, each orbit is either entirely consistent o dliples in the orbit are expressly
prohibited. The reason for our interest is the following key theorem.

Theorem 1. A CSP is both Sy, 0)-consistent ands, j)-consistent if and only if it is
Synti, j)-consistent.

Proof. Let P be a CSP that is both Sy(i0)-consistent ands, j)-consistent. Lefl
be any consistent partial assignment of siz&hen sinceP is Sym(i, 0)-consistent,

the imageZy is consistent, for any in the symmetry group of. SinceP is (i, j)-
consistent, given the assignméhnt and any set7 of j further variables, we can find
a set of values for the variables ji such that the assignment of ali- j variables is
consistent. Thu® is Sym(i, j)-consistent.

Conversely, letP be a CSP that is Syf j)-consistent. Then it is clearly both
(i, j)-consistent (consider the identity permutation) and Syf)-consistent, for given
a consistent partial assignméhof sizei, and anyy in the symmetry groug- of L, the
partial assignmerifg can be extended to a consistent partial assignment of sizg
for any choice ofj further variables, so must itself be consistent.

Standard (nonsymmetrig}, 0)-consistency is vacuous, as there is nothing to test.
Sym(i, 0)-consistency is the same as total Sym)-consistency, as there are no addi-
tional assignments to make.

One of the most useful levels of Syimo0)-consistency is Syi,0), which is an
intriguing strengthening of forward checking: if a domain valug a) is deleted at any
point, the orbit(z;, a)“ is computed and all of its images are deleted too, even though
they may currently appear to be consistent, as we know that they cannot occur in any
solution. LetG be generated by permutations (a finite group generatedoy a set of
permutations if the group consists of all possible products of the permutations in the set
with one another). The cost of computing an o®ibf G is O(s|O|) [12]. Since for
most practical applications the symmetry group of a CSP can be generated by a very
small number of generators (typically 2), the cost of enforcing Qyfi-consistency
will generally be a small constant multiple of the number of domain deletions that it
finds. Thus this is an extremely cheap and effective technique.

Before presenting an algorithm to enforce §gni)-consistency on binary CSPs,
we briefly discuss which groups of symmetries should be used at which point in search,
and the cost of computing these symmetry groups. At the root, it is clear that the group
of symmetries is the full symmetry group of the CSP (or as much @ as the con-
straint programmer has been able to identify). At later stages in search, an appropriate
choice of symmetries to break is the setwise stabiliseF iof the positive decisions
made so far. Computing this setwise stabiliser can be moderately expensive, but the
use of setwise stabilisers has been shown in [13] to be an effective technique to reduce
search space, so if we wish to use these groups for inference purposes they are available
“for free”. If the symmetry group of the CSP consists only of value symmetries then at
a node)V it suffices to take the pointwise stabiliser of the values seen so far, as in the
current partial assignment the setwise stabiliser is equal to the pointwise stabiliser. Let
d :=|A|. Then, as is shown in [4], after an initial cost©fd®) for setup, the running
time isO (d?) at each node, wher@ " is the “soft-O” notation which means that we
ignore logarithmic factors. Once again, if one were using a GE-tree based approach dur-
ing search, these groups would already be computed by the search process, and hence
could be used during inference at no extra cost.

4 An algorithm to enforce SymPC

Here we present a version of PC2001/3.1 [14] which has been adapted to use symmetry.
Recall the definition of path consistency from Section 2. Our algorithm reduces pre-

cisely to PC2001/3.1 when no symmetries are specified, and hence has the best known
time complexity in the worst case.

For this section, variables;, € A are denoted, and literals(z;, a) are denoted
(i,a). To enforce path consistency it is necessary to assume that there is a constraint
between any pair of variables i. If there exist an unconstrained pair of variables, we
add the universal relation between them, which permits them to take any pair of values.
The relation between variablésnd; is denoted;;.
SYMPC2001/3.1(P)
1 SyMmINITIALISE(P);
2 while Q # () do
3 Select and delete artyi, a), 7) from Q;
4 SYMREVISEPATH((,a), 7, Q);

SYMINITIALISE (P)
1 forall (4,a),(j,b) € x and allk € A do

2 Last(i,a), (j,b), k):=false ;
3 forall 4,5,k € Awithi # j # k # i do
4 forall a € D;,be Dj;do
5 if (a,b) € ¢i; and Last(i, a), (j,b), k) =false then
6 if there is now € Dy, s.t.(a,v) € ¢i; A (v,b) € cij then
7 forall g € Gdo
8 (ilval) = (i,a)g; (j/’bl) = (4, b)g;
9 remove(a’, b’) from ¢; ;5 and(b’, a’) from ¢;ry;
10 Q::QU{((i,7a/)7j/)v((.jlabl)vil)};
11 else
12 Letv € Dy, be the first value satisfyinz, v) € cix A (v,b) € ck;
13 Last(i,a), (4,b), k) := (v,true),
14 forall g € G,g # 1do
15 if (i,a)g, (4,b)g, (k,v)g is consistent and
Last((¢,a)g, (,b)g, Var((k,v)g)) isfalse then
16 (K',v") == (k,v)g;
17 if G contains only pure variable symmetrigsen
18 Last(i,a)g, (j,b)g, k) := (v true);
19 else
20 Last(i,a)g, (j,b)g, k') := (v false);

The path consistency algorithm, which we have namet BC2001/3.1, is in
two parts: initialisation and propagation. The initialisation function YsuSNITIAL -
1ze,which seeks a first support for each ordered pair of liteffls:), (7, b)) and each
third variablek. In line 6, if we cannot find support for a pdifi, a), (4, b)), then(a, b)
is removed front;;, and we also remove all of its images from the corresponding con-
straints. For the sake of clarity, we have written line 7 (and later line 14) to loop through
all group elements, in fact we will loop only over the distinct image& of) and(j, b).
For each removal we enqueue in line 10 an imagg(of), j) and ((j,b),7) onto Q.
If support can be found, then in line 13 we store this support in(ast), (4,0), k),
along with a boolean valuieue to indicate that the support was found directly. If we
find support for((i, a), (4,b), k) then in lines 14 to 19 we reuse all of its images, but
if G contains any symmetries other than pure variable symmetries we set a boolean to

false to indicate that the value’ that we are storing as support may not be the min-
imal possible support iy . If G consists only of pure variable symmetries théis
in fact minimal sincgk, v)g = (k’,v), so the boolean value is setttoe .

The second function is¥81 REVISEPATH, which takes as input an elemeiit, a), j)
from @, and checks every variablec A\ {i, j} to see if any tuple in;; is affected
by the modification ot;;. There are two possibilities for the search for support. If this
is the first time that;; has been examined with respectitcand the previous support
was the image undér of some other support and hence might not be minimabjn
then in line 6 YMREVISEPATH tries to find a support from scratch. Otherwise, the
boolean in Lasi(i, a), (j,b), k) istrue and SYMREVISEPATH starts its search in line
7 from the previous bookmarked value. If support cannot be found then in lines 10 to
14 we not only removéa, b) from ¢;; but also all of its images from the corresponding
constraints. If support can be found then we store it.

SYMREVISEPATH((4, a), j, Q)
1 forall kwithi# k # jdo
2 forall b € Dy s.t.(a,b) € Ci, do

3 (v, z) := Las{(i,a), (k,b),5);

4 while v # NIL A ((a,v) € ci; V (v,b) & cji) do

5 if =false then

6 v:=min{D;}; x :=true ;

7 else

8 v := suce(v, Dj);

9 if v = NIL then

10 forall g € G do

11 (#',a') == (i,a)g; (K', V) :== (k,b)g;

12 Removea’, b') from ¢y and(b', a’) from cpry;
13 Q ::QU{(i/>al)7k/)7((k/>bl)7i/)};

14 elif G consists only of pure variable symmetriégn

15 forall g € G do

16 (v, z):=Last(i, a)g, (k,b)g, Var((j,v)g));

17 if v < v then

18 Las{(i,a)g, (k,b)g, Var((7,v)g)) := (v, true);
19 else

20 Last(i, a), (k,b),j) := (v, true);

21 else

22 Last(i,a), (k,b),7) := (v,true);

If G consists only of pure variable symmetries, then the algorithm has been mod-
ified to enforce total symmetric path consistency. This is because of the following ob-
servation: suppose that we are considering the pair of assignif{ents, (4,)) and
the variablek, and suppose that we have foundo be the smallest element @i
such that(i, a), (4,), (k,v) is consistent. Then since no elemenidhffects the val-
ues in any literal, for any € G no element ofDy,,((,)4) that comes before can
be used as support when enforcing total SymPC. To see this note that ib then
((i,a)g, (j,b)g, (k,c)g)g~* is inconsistent. Therefore in line 18 of the initialisation
function we reuse the image of a support without needing to mark it as reused, and in
lines 15 to 20 of SMREVISEPATH we ensure that the supports agree for a whole orbit
of ordered pairs of literals.

5 Symmetrised singleton consistencies

A type of consistency which has been attracting much attention recently is thiat- of
gletonconsistency. Like the notion of symmetrised consistency, it is different from other
consistency techniques because of its meta character: it is not a standalone technique
such as AC or PC, but improves the pruning techniques of all of them.

Let P = (A,D,C) be aCSP, and let; € A anda € D;. By P|(,,) We denote
the CSP obtained fron?® by setting(z, = a) and deleting all other values from the
domain ofz;: we call this the CSIhducedfrom P with respect to(z;, a). Singleton
consistency extends any consistency leXeby requiring that for all;; € A and all
a € D;, the problemP|,, ,) is X-consistent. For instance, a C$P= (A,D,(C) is
singleton arc consistent (SAC) if for aly € A and alla € D;, the CSPP|(,,) is arc
consistent.

One advantage of singleton consistency is that enforcing it does not change the
constraints of a problem — no matter what level of consistexiaye choose, singleton
X consistency will result in domain deletions.

Singleton consistency is a good candidate for symmetrisation: the basic notion to be
applied is that whenever we discover a domain deletion, we can delete an entire orbit
of literals without needing to recheck tBé-consistency of each of the corresponding
induced CSPs. Thus, as in Section 3, at a &4s{(x;, a)“|), whereG is generated by
s permutations andir;, a) is a literal to be deleted, we can avai|(z;, a)“|) calls to
enforceX -consistency on an entire induced CSP. If some symmetries are nonstrict then
we may be able to delete literals that would not be deleted by singlétoansistency
alone, thus symmetrised singletéfrconsistency is more pruningful than its unsym-
metrised variant.

A second potential gain, which we can make at the cost of compromising complete-
ness, is to only test th& -consistency of?|,, ,) when(z;, a) is the orbit representa-
tive for (x;, a)“. If all symmetries of the problem are strict then this approach is clearly
complete as well as sound. In the pseudocode below weotitake this approach, as
in our experiments in Section 6 we wished to preserve completeness, however it would
only require a minor adjustment to the algorithm.

Definition 9. LetP := (A, D,C) be a CSP with symmetry grodpand letX be a level
of consistency. TheR is symmetrised singletoX -consistenfwritten SymSingletonX-
consistent) if for allz; € A, for all @ € D; and for allg € G, P|,.q)4 IS X-
consistent. We say thdt is X+SymSingletonX-consisterift P is both X consistent
and SymSingletonX consistent.

It is clear that, provided enforcing-consistency is sound, so is enforcing sym-
metrised singletorX -consistency.

There are many different algorithms for enforcing singleton consistency. Most of
these are for enforcing SAC, where Dubruyne and Bxsshitially proposed an algo-
rithm that is similar in style to AC1 [15]. This was upgraded in the style of AC4 by
Bartak and Erben [16], and then further improved to give ‘SAC-Opt’ by Bassand
Dubruyne, which has optimal time complexity [17]. It is this latter, optimal algorithm
which we symmetrise: we present an algorithm X#SINGLETONX, which enforces

X-consistency and symmetrised singlet&iaconsistency for any levek of consis-
tency. We have chosen to present code which enfakcesnsistency orP because in
our experiments the level of consistency which we will test is the default level of
consistency in ECIPS[18], which is enforced automatically. If the lev&l of con-
sistency is arc consistency, and the group of symmetries is trivial, then our algorithm
reduces to SAC-Opt, and hence is time optimal in the worst case.

In X+SYMSINGLETONX we denoteD; := Dom(z;), as hormal, ang denotes the
set of all literals(z;, a) of P; by x;, we denote the set of all literals of the induced
problempP;,.

X+SYMSINGLETONX(P)

1 PROPAGX(P, 0);

2 forall (i,a) € x do /* initiation phase*/

3 P, := P;

4 if not PROPAGX(Piq, {(4,b) : b € D; \ {a}}) then * seti = a in subproblem */
5 if PROPAGX(P, (4, a)€) then

6 forall (5,b) € (i,a)° do

7 for all Py such thafj,b) € xx. do

8 Qke = Qre U{(J,0)};

9 PendingList:= PendingList{(k, c)};
10 else returnfalse ;
11 while PendingList# () do [* propagation phase */

12 pop(s, a) from PendingList;
13 if PROPAGX(Piq, Qia) then Q;q = 0;

14 else

15 if not PROPAGX(P, (i,a)€) then

16 return false ;

17 forall (j,b) € (4,a) do

18 for all Py. such thatj,b) € xx. do

19 Qre == Qrc U{(5,0)};

20 PendingList:= PendingList{(k, c)};

21return true ;

The function takes as input a CSPR and runs in two phases - initialisation and
propagation. In line 3 we initialis®;,, where(i,a) € x, to be a copy ofP. If X is
a level of consistency that only results in domain deletions (rather than the posting of
non-unary constraints) then i, we record only the domains and data structures of
P, rather than all of the constraints, as we re-use the constraiitslimline 4 we call
the algorithm RoOPAGX, which takes as input a CSP and a set of domain deletions (in
this case can no longer take any value in; \ {a}), and propagates the effect of these
deletions under consistency levEl. Any algorithm to enforceX can be used at this
point. We assume thatR®PAGX returnsfalse if and only if propagating deletions
in P, results in an empty domain, and retutnge otherwise. We also assume that
PropPacX will modify P;, to make it X-consistent, either by pruning values, or by
posting additional constraints, or both. If a wipeout occurs in line 4 then we know that
every image ofi, a) underG is not part of any solution t@, so in line 5 we compute
all images of(i, a), delete them from our seg of literals (and hence also from the
corresponding domains), and then check tRatan still be madeX-consistent after
these domain deletions. If it can be, then for each deleted litgral, and each already

created restricted problef,. with (4, b) in its setyy.. of literals, in line 8 we addy, b)
to the list of future domain deletions to be madefpn., and in line 9 we addk, ¢) to
the list PendingList of subproblems to be processef. ¢hnnot be mad& -consistent
after deleting(é, a)“ then P is unsatisfiable and in line 10 we retufaise

Once the initialisation phase has finished, we know that PendingList contains all val-
ues(i, a) for which some symmetrised singletdh inconsistent value removals (con-
tained inQ;,) have not yet been propagatediy,. The loop in line 11 propagates each
of these removals, along with any others which are forced by this propagation. In line
13, if we can successfully delete all of these values then we cleap thentry and
move on. When propagation fails, this means ffiat) is symmetrised singletoX
inconsistent, and that the same will hold for all of its images urdetherefore in
line 15 we delete all images ¢f, a) from P, and check whether the resulting CSP can
still be madeX -consistent. If it cannot, theR has no solutions. If it can, then in lines
17-20 we update our list of subproblems which require further propagation of domain
deletions.

6 Experiments

To test our SMPC2001/3.1 algorithm we used a collection of graph colouring prob-
lems. We define an infinite family of graphs based around triangles, as follows.(Level
consists of a single triangle, as in the figure below. To make lefreim level0 we add

a triangle to each vertex of the original triangle, giving a graph Witkertices, shown
below. To make level 2 from level one we add a triangle to each vertex of vateimcy

the levell graph. This process can clearly be carried on indefinitely, adding a triangle
to each vertex of valency on leveli to produce level + 1.

C2 C1
C
B
A B
level 0
Al A2 BI B2

These graphs have a large symmetry group. We can freely permute the three vertices
of the central triangle, giving an automorphism group of size six. For graphs of level
at least 1, after determining the images of the central three vertices, we can still swap
vertices Al and A1, or vertices B1 and B2, or vertices C1 and C2, or any combination
of these swaps. Thus there are a tota2df 6 = 48 symmetries of the level graph.

When going from level to leveli + 1 we have an additional x 2¢~! triangles, each

of which can be independently flipped over, giving an egfa symmetries. Thus

the symmetry group of the graph at levietontains6 x Hi‘:l 23x27 7 symmetries.
Specifically, the level 1 graph has 48 symmetries, the level 2 graph 3072, level 3 about
12.3 million and level 4 abow x 10™. These act as pure variable symmetries on the
colouring problem.

Given this basic setup, we can now assign domains to each node to produce prob-
lems which will respond differently to path consistency. We have three main families of

problems. In the first, the vertices of valertiiave domain$l, 2] and all other vertices

have domains$l, 2, 3, 4]. This problem is unsatisfiable, a fact which will be discovered

by path consistency and SymPC. We use the full group of automorphisms of the graph,
as well as the pure value symmetry which intercharigasd2 and the pure value sym-

metry which interchange®sand4. In fact, since the problem is unsatisfiable, we could
have used any symmetries whatsoever, as there are no solutions to preserve. However, it
is reasonable to assume that the constraint programmer would not know in advance that
the problem was unsatisfiable, and hence would only use the obvious graph and colour
symmetries. Our results are summarised in Table 1.

Table 1.Results for SMPC2001/3.1 with the first family of problem

level Full Syms Graph Syms No Syms

checks time| checks time| checks time
1 212 19 245 5 7627 49
2| 186201 116Q 177544 994 165303 1128
3| 2604343 19802 2427594 16794 3427582 23963
4|268035644245532455912(38640837290536714441

For our second family of experiments, with results given in Table 2, we give vertex
Adomain[1, 2, 3,4, 5], vertices of valencg domain[1, 2], and all other vertices domain
[1,2,3,4]. Here we lose a factor of three in the number of graph automorphisms, as we
can no longer rotate the central triangle. The value symmetries remain unchanged from
problem1. Path consistency and SymPC will deduce that only the valtm A is
consistent, but the problem overall is satisfiable.

Table 2. Results for §SMPC2001/3.1 with the second family of problem

level Full Syms Graph Syms No Syms
checks time| checks time| checks time
12791 114 12930 105 19345 157
253719 5480 250597 1672 369540 2135
2972582 33732 2851446 30186 4248742 40004

2835521749555126803731479862401304117120085

P WOWNPE

For our third family of experiments, with results described in Table 3, we give all
vertices domairjl, 2, 3], so that neither PC nor SymPC make any deductions at all.

Table 3.Results §SMPC2001/3.1 with the third family of problem

level Full Syms Graph Syms No Syms
checks time| checks time| checks time
4668 80 5093 65 14064 90
72559 2144 74970 1893 218736 2576
768740 53292 776944 53952 2315472 30090

701376363844670351855741082109672(763494

P WOWDNPE

The vertex numbering follows in turn the pre-order traversal of the binary trees
rooted at each of the vertices of the central triangle. All times are in milliseconds, on a
Pentium M 2.1GHz. The implementation differed from the pseudocode in the following
ways. In the loops at lines 7 and 14 of Symlinitialize we use the orbit algorithm men-
tioned above to find all distinct images @f, a’), (j/,b") (resp.(’,d’), (57, b"), (K',v"))
without actually looping over all of5. We do the same at lines 10 and 15 of SymRe-
visePath. This is essential for handling larger groups. If the last allowed pair is removed
from a constraint, then we terminate the calculation, reporting the problem unsatisfi-
able. We take advantage of the fact that the given symmetries of this problem are, in
fact, strict symmetries to avoid the consistency check in line 15 of Syminitialize.

We have also succesfully implemented our X&SINGLETONX algorithm. The
generality of the algorithm meant that by implementing in the ECLIPSE constraint
logic programming system [18], the base level of consistency X was that established by
ECLIPSE. We do not know the internal details of the system, so we do not know what X
is, but nevertheless, our algorithm is general enough to implemeny¥-88VGLETONX.

For group-theoretic calculations, we used the GAP-ECLIPSE interface [19, 20]. We
use GAP to obtain orbits of singleton assignments. To evaluate our implementation,
we compared X+38M SINGLETONX against X+3NGLETONX. For the latter, the algo-
rithm we presented above specialised to the trivial group formed the comparison.

As a test, we used constraint problems based on the same triangle graph schema
used above, with different constraints on triangles. For example, suppose each variable
has domain . .. 4, and we constrain the sum of each triangle. If the outermost triangles
have to sum to either 3 or 12 (and not any value inbetween), ECLIPSE performs no
propagation — presumably because it is using bounds consistency. Setting a variable in
a triangle and propagating in ECLIPSE results in failure if it is set to 2 or 3. Singleton
consistency therefore removes those values, leaving domaifis 45 We performed
atest in which the outermost triangles were restricted to suffi,tt2}, while all inner
triangles had to sum to a value {8, 4, 12}. The result is that the domains of variables
in outer triangles becomél, 4} and other variables becorde, 2, 4} since the value
3 is impossible. We obtain the same deductions with both symmetric and asymmetric
versions of singleton consistency, and the computation times were comparable. An in-
teresting feature is that the high power of singleton consistency means that, in practice,
the initialisation phase does all the work, and we did not see propagation happening
after that. Under any sensible X, trying every possible singleton is so powerful that it is
hard to construct examples where any domain deletions remain after initialisation.

7 Conclusions and Future Work

We have introduced a new research area: symmetrising levels of consistency to produce

stronger forms of consistency and more efficient mechanisms for establishing them.
Many forms of consistency can be adapted to take advantage of symmetries of a

CSP. We have focussed on two particular levels of consistency, and given algorithms

and implementations of symmetrised versions of them. In the case of path consistency,

experiments showed that we could improve runtime performance, despite having to

maintain data structures representing groups of size, for exarfiple We have shown

that if the CSP has nonstrict symmetries then these new levels of consistency do not

coincide with any previously defined levels of consistency. We have discussed how, even

in the case of strict symmetries, it is possible to take advantage of symmetry to improve
the performance of consistency algorithms. For high levels of consistency the cost of
the added group theoretic machinery is negligible compared to the cost of maintaining
consistency, although there is a need for optimisations to avoid repeating work.

Acknowledgements

We thank our reviewers for their helpful comments. Our research is supported by a
Royal Society of Edinburgh SEELLD Support fellowship, and by EPSRC grant num-
bers GR/R29666 & GR/S30580. Special thanks go to lain McDonald.

References

1.

10.
11.
12.

13.
. C. Besgire, J-C. Rgin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consis-

15.
16.
17.
18.
19.

20.

P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, & T. Walsh. Breaking
row and column symmetries in matrix modelBroc. CP 2002 pages 462—-476. Springer,
2002.

. R. Backofen and S. Will. Excluding symmetries in constraint-based se&roic. CP-99

pages 73-87. Springer, 1999.

. C.A. Brown, L. Finkelstein, and P.W. Purdom Jr. Backtrack searching in the presence of

symmetry.Nordic Journal of Computing3(3):203—-219, 1996.

. C.M. Roney-Dougal, I.P. Gent, T. Kelsey, and S.A. Linton. Tractable symmetry breaking

using restricted search tred2roc. ECAI'04 2004.

. A. K. Mackworth. Consistency in networks of relationAttificial Intelligence 8:99-118,

1977.

. C. Besgre and J-C. Bgin. Refining the basic constraint propagation algorithRtoc.

IJCAI'01, 2001.

. Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithroc. IJCAI'01, 2001.
. I.LP. Gent and I. McDonald. Symmetry and propagation: Refining an AC algoriBmoc.

SymCon032003.

. T.Kelsey, S.A.Linton, and C.M.Roney-Dougal. New developments in symmetry breaking in

search using computational group theoryPhoc. AISC’04 2004.

E.C. Freuder. A sufficient condition for backtrack-free sealotrnal of the ACM29(1):24—
32, 1982.

E.C. Freuder. A sufficient condition for backtrack-bounded seaidonrnal of the ACM
37(4):755-761, 1985.

A. SeressPermutation group algorithmdNumber 152 in Cambridge tracts in mathematics.
Cambridge University Press, 2002.

J.-F. Puget. Symmetry breaking using stabilizer®rbt. CP-03 2003.

tency algorithm Artificial Intelligence 165:165-185, 2005.

R. Debruyne and C. Bessé. Some practicable filtering techniques for the constraint satis-
faction problem.Proc. IJCAI'97, pages 412-417, 1997.

R. Barék and R. Erben. A new algorithm for singleton arc consisteRoyc. FLAIRS 2004

2004.

C. Besgire and R. Debruyne. Optimal and suboptimal singleton arc consistency algorithms.
Proc. IJCAI'05 2005.

M. G. Wallace, S. Novello, and J. Schimpf. ECLIiPSe : A platform for constraint logic
programming.ICL Systems Journal2(1):159-200, May 1997.

I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking during
search.Proc. CP 2002pages 415—-430. Springer, 2002.

I.P. Gent, W. Harvey, T. Kelsey, and S.A. Linton. Generic SBDD using computational group
theory. Proc. CP 2003pages 333-347. Springer, 2003.

