
Symmetry and Consistency

Ian P. Gent1, Tom Kelsey1, Steve Linton1, Colva Roney-Dougal1

1School of Computer Science, University of St Andrews, St Andrews,
Fife, KY16 9SX, UK

{ipg,tom,sal,colva}@dcs.st-and.ac.uk

Abstract. We introduce a novel and exciting research area: symmetrising levels
of consistency to produce stronger forms of consistency and more efficient mech-
anisms for establishing them. We propose new levels of consistency for Con-
straint Satisfaction Problems (CSPs) incorporating the symmetry group of a CSP.
We first define Sym(i, j)-consistency, show that even Sym(1,0)-consistency can
prune usefully, and study some consequences of maintaining Sym(i, 0)-consistency.
We then present pseudocode for SymPath consistency, and a symmetrised version
of singleton consistency, before presenting experimental evidence of these algo-
rithms’ practical effectiveness. With this contribution we establish the study of
symmetry-based levels of consistency of CSPs.

1 Introduction
Symmetries arise in many Constraint Satisfaction Problems (CSPs). A rapidly growing
literature looks at avoiding redundant search (and duplicate solutions) through a variety
of techniques, such as enforcing a lexicographic ordering by enforcing lexicographic
constraints [1], adding constraints dynamically during search [2], backtracking from
the current node when it can be shown to be equivalent to a previous nogood [3] or
constructing trees in which the symmetry has been eliminated [4].

Constraint solving is a balance between search and inference. There are various
levels of consistency that can be maintained while searching for a solution, and many
algorithms for enforcing levels of consistency. One can pick a level of consistency such
as arc consistency (AC), a particular approach such as AC-3, and still find a variety of
algorithms using interesting variants of that technique [5–7].

This work is foundational in establishing how symmetry and inference can be in-
corporated to the benefit of search in CSPs. At the heart of the thinking behind this
research is the simple fact that any time we learn something about a CSP, the same is
true of its symmetric equivalents. We suggest ways in which this insight can be used,
specifically a number of new levels of consistency. These levels of consistency do one
of two things: they either exploit the group structure to establish a higher level of con-
sistency than corresponding notions without symmetry; or they establish the same level
of consistency but the algorithm to establish consistency can exploit the group structure
to potentially run faster. This paper considers both possibilities. The only precursor we
are aware of is an exploitation of symmetry in a variant of AC2001 [8].

In Section 2 we introduce the fundamental definitions of CSPs, symmetries and con-
sistency. In Section 3 we define a new, symmetric, kind of consistency called Sym(i, j)-
consistency, and go on to study various specialisations of it such as Sym(i, 0)-consistency.

In Section 4 we present pseudocode for enforcing a symmetrised version of path con-
sistency, then in Section 5 we present pseudocode for enforcing symmetrised singleton
consistency. Both of these algorithms generalise the optimal known algorithms for their
unsymmetrised versions. In Section 6 we present experimental evidence of the practical
effectiveness of our new algorithms, before concluding with a discussion some of the
possible directions for this exciting new research area.

2 Background and Definitions

Definition 1. A CSPP is a triple(∆,D, C), where∆ is a finite indexed set of variables
x1, x2, . . . , xn, each of which has finite domain of possible valuesDi := Dom(xi) ⊆
Λ. The setD = {Di : 1 ≤ i ≤ n}, and the setC is a finite set of constraints on the
variables in∆. A solutionto a CSP is an instantiation of all of the variables in∆ such
that all of the constraints inC are satisfied.

Statements of the form(var = val) areliterals: we denote the set of all literals of
the CSP byχ(∆,D), or simplyχ when the meaning is clear. We will write the literal
(xi = a) as(xi, a), or occasionally(i, a).

Definition 2. A set of literals is apartial assignmentif each variable occurs at most
once in it, and afull assignmentif each variable occurs exactly once.

Let C be constraint andI a partial assignment, then byVar(C) we denote thescope
of C, namely the variables over which the constraintC is defined, and byVar(I) we
denote the variables inI. We say thatI satisfiesC if I contains assignments to all
variables inVar(C), and the restriction ofI to Var(C) is a permitted tuple ofC. The
partial assignmentI violatesC if it contains assignments to all variables in the scope
of C, but the restriction ofI to Var(C) is a forbidden tuple ofC. A partial assignment
I is consistentif it satisfies all of the constraints that have no uninstantiated variables.

A permutationf of a setX is a bijectionf : X → X. We will denote the image
of a pointx ∈ X under the mapf by xf . This notation (which comes from group
theory) means that if we apply a permutationf to x ∈ X and then a permutationg to
the result we can simply writexfg, rather than the more cumbersomeg(f(x)). Given
any permutationf on a setX we will abuse notation and allowf to act on (ordered or
unordered) subsets ofX, via{x1, . . . , xn}f := {x1f, . . . , xnf}. Sincef is an injection
the size of the image set is the same as the size of the original set.

Definition 3. Given a CSPP = (∆,D, C), a symmetryof P is a permutation of
χ(∆,D) such that a full assignmentA is a solution if and only ifAf is a solution.

It is well known that the collection of all symmetries of a CSP forms agroup, that
is, the composition of any two symmetries is itself a symmetry, and the inverse of a
symmetry is a symmetry. To see this we note that iff andg are symmetries of a CSP
P , then for any solutionS ⊆ χ(∆,D) the setSfg = (Sf)g is a solution. To see
that the inverse of a symmetry is a symmetry, note that ifS is a solution, andSf−1

is not a solution, thenf is not a symmetry, since(Sf−1)f = S. Any groupG has a
distinguished element called theidentity, denoted1G or simply1, with the property that
acting with1G fixes everything.

Let G be a group of permutations of a setΩ, and leta ∈ Ω. Theorbit, aG, of a
underG is the set of all elements ofΩ to whicha may be mapped by permutations inG.

Formally,aG := {ag : g ∈ G}. Thestabiliserof a in G is Ga := {g ∈ G : ag = a},
the set of all permutations inG that mapa to itself. Let A := {a1, . . . , am} ⊆ Ω.
Then thepointwise stabiliserof A is G(A) := {g ∈ G : aig = ai for 1 ≤ i ≤ m},
namely the set of all permutations inG that map each point inA to itself. Thesetwise
stabiliserof A is G{A} := {g ∈ G : for all i there existsj with aig = aj}. That is,
the setwise stabiliser is the set of all permutations inG that map the setA to itself. It
is an elementary fact that for anya ∈ Ω the point stabiliserGa is a subgroup ofG (a
subset ofG that is itself a group under the same operation as inG), and also that any
setwise or pointwise stabiliser is a subgroup ofG.

Our definition of symmetry is very general. In particular, ifA is a consistent partial
assignment, then, provided thatA is not a subset of a solution, it is possible that there
exists a symmetryg such thatAg violates a constraint. For example, letP be a CSP
with variablesx, y, z, each with domain[1, 2], and constraint set{x = y, y = z}.
Then the symmetries ofP allow us to freely interchange(x, i), (y, i) and (z, i), for
any fixedi ∈ [1, 2], as this will preserve both of the solutions. Thus in particular there
is a symmetryf which maps(y, 2) 7→ (z, 2), (z, 2) 7→ (y, 2), and fixes all other
literals. However, the partial assignment{(x, 1), (z, 2)} is mapped byf to the partial
assignment{(x, 1), (y, 2)}, and this latter partial assignment violates a constraint.

Symmetries need not even map partial assignments to partial assignments, and this
is perfectly acceptable. In the 8-queens puzzle, there is a symmetry which rotates the
square by 90 degrees. Suppose we use the standard model, with one variable for the
placement of the queen in each row. The partial assignment{(Q1, 3), (Q2, 3)} maps
to {(Q3, 8), (Q3, 7)}, which involves two values forQ3 and therefore is not a partial
assignment. However, the initial assignment violates the constraint that there is only
one queen in each column. This observation generalises: if a symmetryf maps a partial
assignmentA to a set of literalsAf that is not a partial assignment, thenA is not a
subset of any solution. To see this, suppose thatA ⊂ S for some solutionS, and note
that by definition off we haveAf ⊂ Sf . Conversely, the inverse off will map a
collection of literals that a not a partial assigment to one that is, in thatf−1 mapsAf to
A. This is one reason why we define symmetries as acting on literals and then induce up
to sets of literals, rather than defining them originally as acting on partial assignments.

Definition 4. Given a CSPP = (∆,D, C), a symmetryf of P is strict if for all sets
A ⊆ χ(∆,D) of literals,A is a consistent partial assignment if and only ifAf is a
consistent partial assignment.

A symmetry isnotstrict if it can map a partial assignment violating some constraint
to a partial assignment not violating any constraints, orvice versa.

Definition 5. LetL = (∆,D, C) be a CSP with symmetry groupG. A value symmetry
of L is a symmetryg ∈ G such that if(xi, a)g = (xj , b) thenxi = xj . Denote the
elements ofDi ∈ D by aij . A variablesymmetry ofL is a symmetryg ∈ G such that
if (xi, aij)g = (xk, bkl) then j = l. In the case where the variables have common
domains then we denote the elements ofΛ asak, and the condition for a symmetry to
be a variable symmetry can be simplified to: if(xi, ak)g = (xj , al) thenak = al. That
is, the symmetry fixes the values in each literal.

We distinguish value and variable symmetries, as these have particularly nice algo-
rithmic properties. If all elements ofG arepure value symmetries (value symmetries

such that if(xi, a)g = (xi, b) then for allj we have(xj , a)g = (xj , b)) then we can
considerG to consist of permutations ofΛ. Similarly, if G contains only pure variable
symmetries then we can consider it to consist of permutations of∆. See [4, 9] for more
details. Note that we cannot in general write(xi, a)g as (xig, ag) as the variable in
(xi, a)g may depend on the choice of valuea. The 8-queens example before Defini-
tion 4 gives a symmetry which demonstrates this.

We finish this section with some definitions of consistency. A CSPP is k-consistent
if given a consistent partial assignment on anyk−1 variables, along with ak-th variable,
one can find a value for thek-th variable such that the resulting partial assignment of
sizek is consistent. A CSP that isk-consistent need not be(k− 1)-consistent: see [10].

We now recall the more general form of consistency called(i, j)-consistency[11].

Definition 6. Suppose that in a CSPP , given any consistent partial assignment oni
variables, and given any otherj variables, it is possible to find values for the additional
j variables such that resulting partial assignment of sizei + j is consistent. ThenP is
(i, j)-consistent.

Thus in this notationk-consistency is(k− 1, 1)-consistency, and arc consistency is
(1, 1)-consistency. We enforce(i, j)-consistency by posting constraints of arityi that
expressly forbid eachi-tuple that cannot be extended.

We denote a binary constraint betweenxi andxj by cij . A CSPP = (∆,D, C) is
path consistentif and only if for anycij ∈ C, any tuple(a, b) ∈ cij and any variable
xk ∈ ∆ \ {xi, xj}, there exists a valuev ∈ Dk such that{(xi, a), (xj , b), (xk, v)} is
a consistent partial assignment. For CSPs with no ternary constraints, path consistency
is the same as(2, 1)-consistency; however in the presence of ternary constraints path
consistency and3-consistency differ.

3 Consistency and symmetry
In this section we extend(i, j)-consistency to use additional information from the sym-
metry group of a CSP. We will then examine when this coincides with existing levels of
consistency. The following proposition is one of the main motivations for our work.

Proposition 1. If the partial assignment{(xi, ai) : i ∈ I} can be extended to a solu-
tion of a CSP, then for all symmetriesg the assignment{(xi, ai)g : i ∈ I} violates no
constraints.

Proof. Suppose not, that is, suppose that{(xi, ai) : i ∈ I ∪ J} is a solution, but that
for some symmetryg the assignment{(xi, ai)g : i ∈ I} violates a constraintC. Then
{(xi, ai)g : i ∈ I ∪ J} is a full assignment which is not a solution, contradicting the
definition of a symmetry.

Thus if one discovers that{(xi, ai) : i ∈ I} violates a constraint then none of
its images underG can be part of a solution, hence they can all be forbidden without
compromising soundness.

Lemma 1. For any X ⊂ ∆, the assignmentA := {(xi, ai) : xi ∈ X} can be
consistently extended byB := {(xj , aj) : xj ∈ Y ⊂ ∆} if and only if for all strict
symmetriesg the assignmentAg can be consistently extended byBg.

Recall the definition of orbit at the end of Section 2. One consequence of the above
lemma is to say that a supportJ exists for a literal(xi, a) if and only if there exist
images of the support which are support for each literal in the orbit of(xi, a) under the
group of strict symmetries. That is, when symmetries are strict we may reuse symmetric
support. Conversely, ifa may be pruned fromDi, similar domain deletions occur for
each element of(xi, a)G, even whenG contains nonstrict symmetries.

Definition 7. A CSPP with symmetry groupG is Sym(i, j)-consistentif for each con-
sistent partial assignmentI of sizei, for each symmetryg ∈ G and each set ofj
variables that do not lie in theVar(Ig), it is possible to find values for thosej vari-
ables such that thei + j values taken together (the image of the initiali and the newj)
satisfy all constraints on thosei + j variables.

Note that since all symmetry groups contain the identity permutation this definition
encompasses that of standard(i, j)-consistency given in Definition 6. Thus, Sym(i, j)
consistency is at least as strong as(i, j)-consistency.

As an initial example, we illustrate the fact that even Sym(1,0)-consistency is an
interesting concept. Consider a simple graph 3-colouring problem on 4 nodes A, B, C,
and D, containing all possible edges except between A and D. As a graph colouring
problem, we add a not-equals constraint between all pairs of variables except A and
D. Initially, each node has domain[1, 2, 3], so the groupG of symmetries of the CSP
contains a symmetryf which simultaneously interchanges(B, i) with (C, i) for i ∈
[1, 2, 3]. There are also three symmetriesg1, g2, g3 ∈ G, such thatgi swaps(A, i)
with (D, i) and leaves all other literals fixed. Of course, the overall symmetry group
of this CSP contains all combinations of these four symmetries. Suppose now that our
first choice during search is to set(A, 1). We make the problem arc consistent, giving
domainsA = [1], B = [2, 3], C = [2, 3], andD = [1, 2, 3]. However, because of
the symmetries that interchange A and D, the problem is not Sym(1,0) consistent. The
new symmetry group is the stabiliser inG of the positive decision(A, 1). Thus it still
containsf, g2 and g3. We can establish Sym(1,0)-consistency by removing 2 and 3
from the domain of D (asg2 maps(D, 2) to (A, 2), which has been deleted andg3

maps(D, 3) to (A, 3)). We can see that this is a correct deduction: since A=1, then B
and C have to share the values 2, 3, and since D is connected to both, only the value
1 is available for D. Thus we see Sym(1,0) making useful deductions in this simple
example. We will explore more deeply the concept of Sym(i, 0)-consistency below.

We establish when Sym(i, j)-consistency is stronger than that of(i, j)-consistency.

Lemma 2. If the symmetry group of a CSP contains only strict symmetries, Sym(i, j)-
consistency is the same as(i, j)-consistency for alli, j.

Proof. Let P be a CSP whose symmetry groupG contains only strict symmetries, and
suppose thatP is (i, j)-consistent. We show thatP is Sym(i, j)-consistent. LetI be
a consistent partial assignment of sizei, and letg ∈ G. Then sinceg is a strict sym-
metry,Ig is a consistent partial assignment of sizei. Thus for anyj further variables
there exists an extension ofIg to a consistent partial assignment of sizei + j, by
(i, j)-consistency. ThusP is Sym(i, j)-consistent. The converse is clear, considering
the identity element of the symmetry group of the CSP.

Even though the levels of consistency are not different when symmetries are strict,
one may use symmetries to speed up the inference process. Suppose we have three vari-
ablesx1, x2, x3, with Dom(x1) = Dom(x2) = [2, 3, 4] andDom(x3) = [3]. Suppose
our constraints arex1 = x2 andx2 ≤ x3, so that our symmetry group interchanges
x1 andx2, and fixesx3. Then in enforcing (1,1)-consistency we first prune4 from the
domain ofx2 and then on a second iteration prune it from the domain ofx1, whereas
when enforcing Sym(1, 1)-consistency we perform both domain deletions at once, as
we know that there is a symmetry swappingx1 andx2.

Suppose thatP is a CSP whose symmetry groupG is not strict. In particular, sup-
pose thatg ∈ G maps a consistent partial assignmentI of sizei to a collection of lit-
eralsIg which violates at least one constraint, or has two values for the same variable.
It is still possible thatP is (i, j)-consistent for somej. However,P is not Sym(i, j)-
consistent for anyj, as for any choice ofj additional variables there is no way of ex-
tendingIg to a consistent partial assignment of sizei + j. Thus Sym(i, j)-consistency
is stronger than(i, j)-consistency.

We now consider a yet stronger type of symmetric consistency, calledtotal Sym(i, j)-
consistency. It differs from Sym(i, j)-consistency in its requirements on support: for
Sym(i, j)-consistency we require that for each image of a partial assignment and each
choice ofj additional variables there exists a support. Now we reverse some quantifiers
and require that there is a supportJ for our initial partial assignmentI such that for all
symmetries inG, the image of the support is a support of the image ofI.

Definition 8. A CSPP is total Sym(i, j)-consistentif given any consistent partial as-
signmentI of sizei, and a furtherj-tuple of variables, there exists aj-tuple J of
assignments to those variables such that for allg ∈ G the assignmentIg ∪ J g is
consistent.

Note that ifI∪J is contained in a solution then by definitionIg∪J g will be consis-
tent for allg. Thus enforcing total Sym(i, j)-consistency will not jeopardise complete-
ness. Total Sym(i, j)-consistency is potentially expensive to maintain: to find support
for a consistenti-tuple of assignments may involve testing many possiblej-tuples and
symmetriesg. However, as we will see in Section 4, if the symmetry groupG con-
sists only of pure variable symmetries then total Sym(i, j) consistency can be no more
expensive than its non-total variant, whilst enforcing a stronger level of consistency.

We finish this section with a discussion of the special case of Sym(i, j)-consistency
wherej = 0. A CSP is Sym(i, 0)-consistent if wheneverI is a consistent partial as-
signment of sizei, the imageIg of I under any symmetryg ∈ G is also a consistent
partial assignment. Since the symmetry groupG partitions the set of alli-sets of literals
into orbits, each orbit is either entirely consistent or alli-tuples in the orbit are expressly
prohibited. The reason for our interest is the following key theorem.

Theorem 1. A CSP is both Sym(i, 0)-consistent and(i, j)-consistent if and only if it is
Sym(i, j)-consistent.

Proof. Let P be a CSP that is both Sym(i, 0)-consistent and(i, j)-consistent. LetI
be any consistent partial assignment of sizei. Then sinceP is Sym(i, 0)-consistent,

the imageIg is consistent, for anyg in the symmetry group ofP . SinceP is (i, j)-
consistent, given the assignmentIg and any setJ of j further variables, we can find
a set of values for the variables inJ such that the assignment of alli + j variables is
consistent. ThusP is Sym(i, j)-consistent.

Conversely, letP be a CSP that is Sym(i, j)-consistent. Then it is clearly both
(i, j)-consistent (consider the identity permutation) and Sym(i, 0)-consistent, for given
a consistent partial assignmentI of sizei, and anyg in the symmetry groupG of L, the
partial assignmentIg can be extended to a consistent partial assignment of sizei + j,
for any choice ofj further variables, so must itself be consistent.

Standard (nonsymmetric)(i, 0)-consistency is vacuous, as there is nothing to test.
Sym(i, 0)-consistency is the same as total Sym(i, 0)-consistency, as there are no addi-
tional assignments to make.

One of the most useful levels of Sym(i, 0)-consistency is Sym(1, 0), which is an
intriguing strengthening of forward checking: if a domain value(xi, a) is deleted at any
point, the orbit(xi, a)G is computed and all of its images are deleted too, even though
they may currently appear to be consistent, as we know that they cannot occur in any
solution. LetG be generated bys permutations (a finite group isgeneratedby a set of
permutations if the group consists of all possible products of the permutations in the set
with one another). The cost of computing an orbitO of G is O(s|O|) [12]. Since for
most practical applications the symmetry group of a CSP can be generated by a very
small number of generators (typically 2), the cost of enforcing Sym(1, 0)-consistency
will generally be a small constant multiple of the number of domain deletions that it
finds. Thus this is an extremely cheap and effective technique.

Before presenting an algorithm to enforce Sym(2, 1)-consistency on binary CSPs,
we briefly discuss which groups of symmetries should be used at which point in search,
and the cost of computing these symmetry groups. At the root, it is clear that the group
of symmetries is the full symmetry groupG of the CSP (or as much ofG as the con-
straint programmer has been able to identify). At later stages in search, an appropriate
choice of symmetries to break is the setwise stabiliser inG of the positive decisions
made so far. Computing this setwise stabiliser can be moderately expensive, but the
use of setwise stabilisers has been shown in [13] to be an effective technique to reduce
search space, so if we wish to use these groups for inference purposes they are available
“for free”. If the symmetry group of the CSP consists only of value symmetries then at
a nodeN it suffices to take the pointwise stabiliser of the values seen so far, as in the
current partial assignment the setwise stabiliser is equal to the pointwise stabiliser. Let
d := |Λ|. Then, as is shown in [4], after an initial cost ofO(d5) for setup, the running
time isO ˜(d2) at each node, whereO ˜ is the “soft-O” notation which means that we
ignore logarithmic factors. Once again, if one were using a GE-tree based approach dur-
ing search, these groups would already be computed by the search process, and hence
could be used during inference at no extra cost.

4 An algorithm to enforce SymPC

Here we present a version of PC2001/3.1 [14] which has been adapted to use symmetry.
Recall the definition of path consistency from Section 2. Our algorithm reduces pre-

cisely to PC2001/3.1 when no symmetries are specified, and hence has the best known
time complexity in the worst case.

For this section, variablesxi ∈ ∆ are denotedi, and literals(xi, a) are denoted
(i, a). To enforce path consistency it is necessary to assume that there is a constraint
between any pair of variables in∆. If there exist an unconstrained pair of variables, we
add the universal relation between them, which permits them to take any pair of values.
The relation between variablesi andj is denotedcij .
SYM PC2001/3.1(P)
1 SYM INITIALISE (P);
2 while Q 6= ∅ do
3 Select and delete any((i, a), j) from Q;
4 SYM REVISEPATH((i, a), j, Q);

SYM INITIALISE (P)
1 for all (i, a), (j, b) ∈ χ and allk ∈ ∆ do
2 Last((i, a), (j, b), k):= false ;
3 for all i, j, k ∈ ∆ with i 6= j 6= k 6= i do
4 for all a ∈ Di, b ∈ Dj do
5 if (a, b) ∈ cij and Last((i, a), (j, b), k) = false then
6 if there is nov ∈ Dk s.t.(a, v) ∈ cij ∧ (v, b) ∈ ckj then
7 for all g ∈ G do
8 (i′, a′) := (i, a)g; (j′, b′) := (j, b)g;
9 remove(a′, b′) from ci′j′ and(b′, a′) from cj′i′ ;
10 Q := Q ∪ {((i′, a′), j′), ((j′, b′), i′)};
11 else
12 Letv ∈ Dk be the first value satisfying(a, v) ∈ cik ∧ (v, b) ∈ ckj

13 Last((i, a), (j, b), k) := (v,true);
14 for all g ∈ G, g 6= 1 do
15 if (i, a)g, (j, b)g, (k, v)g is consistent and

Last((i, a)g, (j, b)g, Var((k, v)g)) is false then
16 (k′, v′) := (k, v)g;
17 if G contains only pure variable symmetriesthen
18 Last((i, a)g, (j, b)g, k′) := (v′,true);
19 else
20 Last((i, a)g, (j, b)g, k′) := (v′,false);

The path consistency algorithm, which we have named SYM PC2001/3.1, is in
two parts: initialisation and propagation. The initialisation function is SYM INITIAL -
IZE,which seeks a first support for each ordered pair of literals((i, a), (j, b)) and each
third variablek. In line 6, if we cannot find support for a pair((i, a), (j, b)), then(a, b)
is removed fromcij , and we also remove all of its images from the corresponding con-
straints. For the sake of clarity, we have written line 7 (and later line 14) to loop through
all group elements, in fact we will loop only over the distinct images of(i, a) and(j, b).
For each removal we enqueue in line 10 an image of((i, a), j) and((j, b), i) ontoQ.
If support can be found, then in line 13 we store this support in Last((i, a), (j, b), k),
along with a boolean valuetrue to indicate that the support was found directly. If we
find support for((i, a), (j, b), k) then in lines 14 to 19 we reuse all of its images, but
if G contains any symmetries other than pure variable symmetries we set a boolean to

false to indicate that the valuev′ that we are storing as support may not be the min-
imal possible support inDk′ . If G consists only of pure variable symmetries thenv′ is
in fact minimal since(k, v)g = (k′, v), so the boolean value is set totrue .

The second function is SYM REVISEPATH, which takes as input an element((i, a), j)
from Q, and checks every variablek ∈ ∆ \ {i, j} to see if any tuple incik is affected
by the modification ofcij . There are two possibilities for the search for support. If this
is the first time thatcij has been examined with respect tok, and the previous support
was the image underG of some other support and hence might not be minimal inDk,
then in line 6 SYM REVISEPATH tries to find a support from scratch. Otherwise, the
boolean in Last((i, a), (j, b), k) is true and SYM REVISEPATH starts its search in line
7 from the previous bookmarked value. If support cannot be found then in lines 10 to
14 we not only remove(a, b) from cij but also all of its images from the corresponding
constraints. If support can be found then we store it.

SYM REVISEPATH((i, a), j, Q)
1 for all k with i 6= k 6= j do
2 for all b ∈ Dk s.t.(a, b) ∈ Cik do
3 (v, x) := Last((i, a), (k, b), j);
4 while v 6= NIL ∧ ((a, v) 6∈ cij ∨ (v, b) 6∈ cjk) do
5 if x = false then
6 v := min{Dj}; x :=true ;
7 else
8 v := succ(v, Dj);
9 if v = NIL then
10 for all g ∈ G do
11 (i′, a′) := (i, a)g; (k′, b′) := (k, b)g;
12 Remove(a′, b′) from ci′k′ and(b′, a′) from ck′i′ ;
13 Q := Q ∪ {(i′, a′), k′), ((k′, b′), i′)};
14 elif G consists only of pure variable symmetriesthen
15 for all g ∈ G do
16 (v′, x):= Last((i, a)g, (k, b)g, Var((j, v)g));
17 if v′ < v then
18 Last((i, a)g, (k, b)g, Var((j, v)g)) := (v, true);
19 else
20 Last((i, a), (k, b), j) := (v′, true);
21 else
22 Last((i, a), (k, b), j) := (v,true);

If G consists only of pure variable symmetries, then the algorithm has been mod-
ified to enforce total symmetric path consistency. This is because of the following ob-
servation: suppose that we are considering the pair of assignments((i, a), (j, b)) and
the variablek, and suppose that we have foundv to be the smallest element ofDk

such that(i, a), (j, b), (k, v) is consistent. Then since no element ofG affects the val-
ues in any literal, for anyg ∈ G no element ofDVar((k,c)g) that comes beforev can
be used as support when enforcing total SymPC. To see this note that ifc < v then
((i, a)g, (j, b)g, (k, c)g)g−1 is inconsistent. Therefore in line 18 of the initialisation
function we reuse the image of a support without needing to mark it as reused, and in
lines 15 to 20 of SYM REVISEPATH we ensure that the supports agree for a whole orbit
of ordered pairs of literals.

5 Symmetrised singleton consistencies

A type of consistency which has been attracting much attention recently is that ofsin-
gletonconsistency. Like the notion of symmetrised consistency, it is different from other
consistency techniques because of its meta character: it is not a standalone technique
such as AC or PC, but improves the pruning techniques of all of them.

Let P = (∆,D, C) be a CSP, and letxi ∈ ∆ anda ∈ Di. By P |(xi,a) we denote
the CSP obtained fromP by setting(xi = a) and deleting all other values from the
domain ofxi: we call this the CSPinducedfrom P with respect to(xi, a). Singleton
consistency extends any consistency levelX by requiring that for allxi ∈ ∆ and all
a ∈ Di, the problemP |(xi,a) is X-consistent. For instance, a CSPP = (∆,D, C) is
singleton arc consistent (SAC) if for allxi ∈ ∆ and alla ∈ Di, the CSPP |(xi,a) is arc
consistent.

One advantage of singleton consistency is that enforcing it does not change the
constraints of a problem – no matter what level of consistencyX we choose, singleton
X consistency will result in domain deletions.

Singleton consistency is a good candidate for symmetrisation: the basic notion to be
applied is that whenever we discover a domain deletion, we can delete an entire orbit
of literals without needing to recheck theX-consistency of each of the corresponding
induced CSPs. Thus, as in Section 3, at a costO(s|(xi, a)G|), whereG is generated by
s permutations and(xi, a) is a literal to be deleted, we can avoidO(|(xi, a)G|) calls to
enforceX-consistency on an entire induced CSP. If some symmetries are nonstrict then
we may be able to delete literals that would not be deleted by singletonX-consistency
alone, thus symmetrised singletonX-consistency is more pruningful than its unsym-
metrised variant.

A second potential gain, which we can make at the cost of compromising complete-
ness, is to only test theX-consistency ofP |(xi,a) when(xi, a) is the orbit representa-
tive for (xi, a)G. If all symmetries of the problem are strict then this approach is clearly
complete as well as sound. In the pseudocode below we donot take this approach, as
in our experiments in Section 6 we wished to preserve completeness, however it would
only require a minor adjustment to the algorithm.

Definition 9. LetP := (∆,D, C) be a CSP with symmetry groupG and letX be a level
of consistency. ThenP is symmetrised singletonX-consistent(written SymSingletonX-
consistent) if for allxi ∈ ∆, for all a ∈ Di and for all g ∈ G, P |(xi,a)g is X-
consistent. We say thatP is X+SymSingletonX-consistentif P is bothX consistent
and SymSingletonX consistent.

It is clear that, provided enforcingX-consistency is sound, so is enforcing sym-
metrised singletonX-consistency.

There are many different algorithms for enforcing singleton consistency. Most of
these are for enforcing SAC, where Dubruyne and Bessière initially proposed an algo-
rithm that is similar in style to AC1 [15]. This was upgraded in the style of AC4 by
Bart́ak and Erben [16], and then further improved to give ‘SAC-Opt’ by Bessiére and
Dubruyne, which has optimal time complexity [17]. It is this latter, optimal algorithm
which we symmetrise: we present an algorithm X+SYM SINGLETONX, which enforces

X-consistency and symmetrised singletonX-consistency for any levelX of consis-
tency. We have chosen to present code which enforcesX-consistency onP because in
our experiments the levelX of consistency which we will test is the default level of
consistency in ECLiPSe[18], which is enforced automatically. If the levelX of con-
sistency is arc consistency, and the group of symmetries is trivial, then our algorithm
reduces to SAC-Opt, and hence is time optimal in the worst case.

In X+SYM SINGLETONX we denoteDi := Dom(xi), as normal, andχ denotes the
set of all literals(xi, a) of P ; by χia we denote the set of all literals of the induced
problemPia.
X+SYM SINGLETONX(P)
1 PROPAGX(P , ∅);
2 for all (i, a) ∈ χ do /* initiation phase*/
3 Pia := P ;
4 if not PROPAGX(Pia, {(i, b) : b ∈ Di \ {a}}) then /* set i = a in subproblem */
5 if PROPAGX(P, (i, a)G) then
6 for all (j, b) ∈ (i, a)G do
7 for all Pkc such that(j, b) ∈ χkc do
8 Qkc := Qkc ∪ {(j, b)};
9 PendingList:= PendingList∪{(k, c)};
10 else return false ;
11while PendingList6= ∅ do /* propagation phase */
12 pop(i, a) from PendingList;
13 if PROPAGX(Pia, Qia) then Qia := ∅;
14 else
15 if not PROPAGX(P , (i, a)G) then
16 return false ;
17 for all (j, b) ∈ (i, a)G do
18 for all Pkc such that(j, b) ∈ χkc do
19 Qkc := Qkc ∪ {(j, b)};
20 PendingList:= PendingList∪{(k, c)};
21 return true ;

The function takes as input a CSPP , and runs in two phases - initialisation and
propagation. In line 3 we initialisePia, where(i, a) ∈ χ, to be a copy ofP . If X is
a level of consistency that only results in domain deletions (rather than the posting of
non-unary constraints) then inPia we record only the domains and data structures of
P , rather than all of the constraints, as we re-use the constraints inP . In line 4 we call
the algorithm PROPAGX, which takes as input a CSP and a set of domain deletions (in
this casei can no longer take any value inDi \ {a}), and propagates the effect of these
deletions under consistency levelX. Any algorithm to enforceX can be used at this
point. We assume that PROPAGX returnsfalse if and only if propagating deletions
in Pia results in an empty domain, and returnstrue otherwise. We also assume that
PROPAGX will modify Pia to make itX-consistent, either by pruning values, or by
posting additional constraints, or both. If a wipeout occurs in line 4 then we know that
every image of(i, a) underG is not part of any solution toP , so in line 5 we compute
all images of(i, a), delete them from our setχ of literals (and hence also from the
corresponding domains), and then check thatP can still be madeX-consistent after
these domain deletions. If it can be, then for each deleted literal(j, b), and each already

created restricted problemPkc with (j, b) in its setχkc of literals, in line 8 we add(j, b)
to the list of future domain deletions to be made inPkc, and in line 9 we add(k, c) to
the list PendingList of subproblems to be processed. IfP cannot be madeX-consistent
after deleting(i, a)G thenP is unsatisfiable and in line 10 we returnfalse .

Once the initialisation phase has finished, we know that PendingList contains all val-
ues(i, a) for which some symmetrised singletonX inconsistent value removals (con-
tained inQia) have not yet been propagated inPia. The loop in line 11 propagates each
of these removals, along with any others which are forced by this propagation. In line
13, if we can successfully delete all of these values then we clear theQia entry and
move on. When propagation fails, this means that(i, a) is symmetrised singletonX
inconsistent, and that the same will hold for all of its images underG. Therefore in
line 15 we delete all images of(i, a) from P , and check whether the resulting CSP can
still be madeX-consistent. If it cannot, thenP has no solutions. If it can, then in lines
17-20 we update our list of subproblems which require further propagation of domain
deletions.

6 Experiments
To test our SYM PC2001/3.1 algorithm we used a collection of graph colouring prob-
lems. We define an infinite family of graphs based around triangles, as follows. Level0
consists of a single triangle, as in the figure below. To make level1 from level0 we add
a triangle to each vertex of the original triangle, giving a graph with9 vertices, shown
below. To make level 2 from level one we add a triangle to each vertex of valency2 in
the level1 graph. This process can clearly be carried on indefinitely, adding a triangle
to each vertex of valency2 on leveli to produce leveli + 1.

�
�� @

@@
�

�� @
@@

@
@@ �

��

�
�� S

SS �
��

@
@@

A B

C

A B

C

C1

A1 B1

level 1

level 0

A2

C2

B2

These graphs have a large symmetry group. We can freely permute the three vertices
of the central triangle, giving an automorphism group of size six. For graphs of level
at least 1, after determining the images of the central three vertices, we can still swap
vertices A1 and A1, or vertices B1 and B2, or vertices C1 and C2, or any combination
of these swaps. Thus there are a total of23 × 6 = 48 symmetries of the level1 graph.
When going from leveli to level i + 1 we have an additional3 × 2i−1 triangles, each
of which can be independently flipped over, giving an extra23×2i−1

symmetries. Thus
the symmetry group of the graph at leveli contains6 ×

∏i
j=1 23×2j−1

symmetries.
Specifically, the level 1 graph has 48 symmetries, the level 2 graph 3072, level 3 about
12.3 million and level 4 about2 × 1014. These act as pure variable symmetries on the
colouring problem.

Given this basic setup, we can now assign domains to each node to produce prob-
lems which will respond differently to path consistency. We have three main families of

problems. In the first, the vertices of valency2 have domains[1, 2] and all other vertices
have domains[1, 2, 3, 4]. This problem is unsatisfiable, a fact which will be discovered
by path consistency and SymPC. We use the full group of automorphisms of the graph,
as well as the pure value symmetry which interchanges1 and2 and the pure value sym-
metry which interchanges3 and4. In fact, since the problem is unsatisfiable, we could
have used any symmetries whatsoever, as there are no solutions to preserve. However, it
is reasonable to assume that the constraint programmer would not know in advance that
the problem was unsatisfiable, and hence would only use the obvious graph and colour
symmetries. Our results are summarised in Table 1.

Table 1.Results for SYM PC2001/3.1 with the first family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 212 19 245 5 7627 49
2 186201 1160 177544 994 165303 1128
3 2604343 19802 2427594 16794 3427582 23963
4 268035644245532455912038640837290536714441

For our second family of experiments, with results given in Table 2, we give vertex
A domain[1, 2, 3, 4, 5], vertices of valency2 domain[1, 2], and all other vertices domain
[1, 2, 3, 4]. Here we lose a factor of three in the number of graph automorphisms, as we
can no longer rotate the central triangle. The value symmetries remain unchanged from
problem1. Path consistency and SymPC will deduce that only the value5 for A is
consistent, but the problem overall is satisfiable.

Table 2.Results for SYM PC2001/3.1 with the second family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 12791 114 12930 105 19345 157
2 253719 5480 250597 1672 369540 2135
3 2972582 33732 2851446 30186 4248742 40004
4 283552174955572680373147986240130411712005

For our third family of experiments, with results described in Table 3, we give all
vertices domain[1, 2, 3], so that neither PC nor SymPC make any deductions at all.

Table 3.Results SYM PC2001/3.1 with the third family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 4668 80 5093 65 14064 90
2 72559 2146 74970 1893 218736 2576
3 768740 53292 776944 53952 2315472 30090
4 7013763638446703518557410821096720763494

The vertex numbering follows in turn the pre-order traversal of the binary trees
rooted at each of the vertices of the central triangle. All times are in milliseconds, on a
Pentium M 2.1GHz. The implementation differed from the pseudocode in the following
ways. In the loops at lines 7 and 14 of SymInitialize we use the orbit algorithm men-
tioned above to find all distinct images of(i′, a′), (j′, b′) (resp.(i′, a′), (j′, b′), (k′, v′))
without actually looping over all ofG. We do the same at lines 10 and 15 of SymRe-
visePath. This is essential for handling larger groups. If the last allowed pair is removed
from a constraint, then we terminate the calculation, reporting the problem unsatisfi-
able. We take advantage of the fact that the given symmetries of this problem are, in
fact, strict symmetries to avoid the consistency check in line 15 of SymInitialize.

We have also succesfully implemented our X+SYM SINGLETONX algorithm. The
generality of the algorithm meant that by implementing in the ECLIPSE constraint
logic programming system [18], the base level of consistency X was that established by
ECLIPSE. We do not know the internal details of the system, so we do not know what X
is, but nevertheless, our algorithm is general enough to implement X+SYM SINGLETONX.
For group-theoretic calculations, we used the GAP-ECLIPSE interface [19, 20]. We
use GAP to obtain orbits of singleton assignments. To evaluate our implementation,
we compared X+SYM SINGLETONX against X+SINGLETONX. For the latter, the algo-
rithm we presented above specialised to the trivial group formed the comparison.

As a test, we used constraint problems based on the same triangle graph schema
used above, with different constraints on triangles. For example, suppose each variable
has domain1 . . . 4, and we constrain the sum of each triangle. If the outermost triangles
have to sum to either 3 or 12 (and not any value inbetween), ECLIPSE performs no
propagation – presumably because it is using bounds consistency. Setting a variable in
a triangle and propagating in ECLIPSE results in failure if it is set to 2 or 3. Singleton
consistency therefore removes those values, leaving domains as{1, 4}. We performed
a test in which the outermost triangles were restricted to sum to{3, 12}, while all inner
triangles had to sum to a value in{3, 4, 12}. The result is that the domains of variables
in outer triangles become{1, 4} and other variables become{1, 2, 4} since the value
3 is impossible. We obtain the same deductions with both symmetric and asymmetric
versions of singleton consistency, and the computation times were comparable. An in-
teresting feature is that the high power of singleton consistency means that, in practice,
the initialisation phase does all the work, and we did not see propagation happening
after that. Under any sensible X, trying every possible singleton is so powerful that it is
hard to construct examples where any domain deletions remain after initialisation.

7 Conclusions and Future Work
We have introduced a new research area: symmetrising levels of consistency to produce
stronger forms of consistency and more efficient mechanisms for establishing them.

Many forms of consistency can be adapted to take advantage of symmetries of a
CSP. We have focussed on two particular levels of consistency, and given algorithms
and implementations of symmetrised versions of them. In the case of path consistency,
experiments showed that we could improve runtime performance, despite having to
maintain data structures representing groups of size, for example1014. We have shown
that if the CSP has nonstrict symmetries then these new levels of consistency do not
coincide with any previously defined levels of consistency. We have discussed how, even

in the case of strict symmetries, it is possible to take advantage of symmetry to improve
the performance of consistency algorithms. For high levels of consistency the cost of
the added group theoretic machinery is negligible compared to the cost of maintaining
consistency, although there is a need for optimisations to avoid repeating work.

Acknowledgements
We thank our reviewers for their helpful comments. Our research is supported by a
Royal Society of Edinburgh SEELLD Support fellowship, and by EPSRC grant num-
bers GR/R29666 & GR/S30580. Special thanks go to Iain McDonald.

References

1. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, & T. Walsh. Breaking
row and column symmetries in matrix models.Proc. CP 2002, pages 462–476. Springer,
2002.

2. R. Backofen and S. Will. Excluding symmetries in constraint-based search.Proc. CP-99,
pages 73–87. Springer, 1999.

3. C.A. Brown, L. Finkelstein, and P.W. Purdom Jr. Backtrack searching in the presence of
symmetry.Nordic Journal of Computing, 3(3):203–219, 1996.

4. C.M. Roney-Dougal, I.P. Gent, T. Kelsey, and S.A. Linton. Tractable symmetry breaking
using restricted search trees.Proc. ECAI’04, 2004.

5. A. K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8:99–118,
1977.

6. C. Bessìere and J-C. Ŕegin. Refining the basic constraint propagation algorithm.Proc.
IJCAI’01, 2001.

7. Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm.Proc. IJCAI’01, 2001.
8. I.P. Gent and I. McDonald. Symmetry and propagation: Refining an AC algorithm.Proc.

SymCon03, 2003.
9. T.Kelsey, S.A.Linton, and C.M.Roney-Dougal. New developments in symmetry breaking in

search using computational group theory. InProc. AISC’04, 2004.
10. E.C. Freuder. A sufficient condition for backtrack-free search.Journal of the ACM, 29(1):24–

32, 1982.
11. E.C. Freuder. A sufficient condition for backtrack-bounded search.Journal of the ACM,

37(4):755–761, 1985.
12. A. Seress.Permutation group algorithms. Number 152 in Cambridge tracts in mathematics.

Cambridge University Press, 2002.
13. J.-F. Puget. Symmetry breaking using stabilizers. InProc. CP-03, 2003.
14. C. Bessìere, J-C. Ŕegin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consis-

tency algorithm.Artificial Intelligence, 165:165–185, 2005.
15. R. Debruyne and C. Bessière. Some practicable filtering techniques for the constraint satis-

faction problem.Proc. IJCAI’97, pages 412–417, 1997.
16. R. Bart́ak and R. Erben. A new algorithm for singleton arc consistency.Proc. FLAIRS 2004,

2004.
17. C. Bessìere and R. Debruyne. Optimal and suboptimal singleton arc consistency algorithms.

Proc. IJCAI’05, 2005.
18. M. G. Wallace, S. Novello, and J. Schimpf. ECLiPSe : A platform for constraint logic

programming.ICL Systems Journal, 12(1):159–200, May 1997.
19. I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking during

search.Proc. CP 2002, pages 415–430. Springer, 2002.
20. I.P. Gent, W. Harvey, T. Kelsey, and S.A. Linton. Generic SBDD using computational group

theory.Proc. CP 2003, pages 333–347. Springer, 2003.

