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Abstract. We introduce groupoids – generalisations of groups in which
not all pairs of elements may be multiplied, or, equivalently, categories in
which all morphisms are invertible – as the appropriate algebraic struc-
tures for dealing with conditional symmetries in Constraint Satisfaction
Problems (CSPs). We formally define the Full Conditional Symmetry
Groupoid associated with any CSP, giving bounds for the number of
elements that this groupoid can contain. We describe conditions under
which a Conditional Symmetry sub-Groupoid forms a group, and, for
this case, present an algorithm for breaking all conditional symmetries
that arise at a search node. Our algorithm is polynomial-time when there
is a corresponding algorithm for the type of group involved. We prove
that our algorithm is both sound and complete – neither gaining nor
losing solutions.

1 Introduction

Conditional symmetries in CSPs are parts of a problem that become interchange-
able when some condition is satisfied. Typically the condition is that a subset of
the variables have been given particular values. Definitions of conditional sym-
metry, together with initial approaches for identifying and breaking them, are
given in [1,2,3,4]. A key problem is that the set of conditional symmetries of a
CSP does not, in general, form a group. This motivates the research question: is
there a suitable mathematical abstraction of conditional symmetry that can be
used to identify, classify and break such symmeteries in an arbitrary CSP?

We describe groupoids as the class of mathematical objects that are the appro-
priate abstraction for conditional symmetries. Using groupoids we can describe,
enumerate and analyse conditional symmetries for any CSP. Given a CSP, the
Full Conditional Symmetry Groupoid, containing elements that capture both
the symmetry and the condition under which it arises. This approach allows
us to classify conditional symmetries in terms of the sub-groupoid(s) in which
they are contained. Moreover, we can identify conditional symmetries that have
properties that allow us to develop effective symmetry breaking techniques.

Groupoids are generalisations of groups, in which not all elements can be
composed. A basic introduction to groupoids is given in [5]. The reason that we
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have to leave groups behind when talking about conditional symmetries is that
every element of a symmetry group can be applied to all partial assignments,
and hence one cannot capture the concept of “condition”.

2 Groupoids and Conditional Symmetries

We will use the following notation throughout: the set of variables will denoted
with a V , individual variables v1, . . . , vn and sometimes w. For simplicity, we
will assume that there is a single domain D for all variables (since constraints
can be added to give different domains for chosen variables ). A literal of a CSP
is a pair (w, d) where w ∈ V and d ∈ D.

Definition 1. A partial assignment f is a set of literals that contains at most
one literal for each variable. A partial assignment g is an extension of f , if
f ⊆ g.

We say that a partial assignment f is complete if |f | = |V |. That is, all variables
are assigned values by f . A solution to a CSP is a complete partial assignment
that violates no constraint.

Definition 2. A groupoid is a set G, and a basis set B, together with a partial
operation, composition, and two maps s and t from G to B that together satisfy
the following:

1. composition, gh, of two elements, g and h in G is defined only when t(g) =
s(h) — this is what is meant by saying that the composition is partial;

2. if the products gh and hk are defined then g(hk) = (gh)k is defined;
3. for every g in G there are left and right identity elements λg and ρg s.t.

λgg = g = gρg;
4. Each element has an inverse g−1 s.t. gg−1 = λg and g−1g = ρg.

Often groupoids will be presented as collections of triples, (s(g), g, t(g)), with
composition of two elements g and h can written as: (s(g), g, t(g))(s(h), h, t(h)) =
(s(g), gh, t(h)), provided that t(g) = s(h). convention of “acting from the right”
so that gh means “do g then do h”.

A subgroupoid of a group G is a subset of the elements of G that itself forms
a groupoid under the same partial operation. The base set of a subgroupoid is
the set of all sources and targets that occur for elements of the subgroupoid.

We now turn to formalising conditional symmetries as groupoid elements. The
key problem in providing the definitions is that for composition to be defined,
the target of one element has to be equal to the source of the next. This makes
it impossible to represent sources and targets as the simple condition given by
the constraint. Instead, we have a separate groupoid element for every partial
assignment that satisfies a condition. We will develop the theory and show that
this leads to well-defined groupoids and useful theoretical results.

We will denote the image of an object α under a map φ by αφ. A literal
bijection of a CSP is a bijection φ from the set of literals of the CSP to itself.
The following definition begins the process of capturing the notion of a condition.
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Definition 3. A literal bijection is a symmetry with respect to a, where a is
a subset of literals, if in its induced action on sets of literals, whenever f is a
solution that contains a then fφ is a solution and whenever f is a non-solution
that contains a then fφ is a non-solution.

Before defining conditional symmetry groupoids, we need precise descriptions of
conditions and symmetries arising from conditions. A condition is a predicate on
literals. Any such predicate can be described by listing the sets of literals upon
which it holds. If a symmetry in a CSP is present only when some condition
holds, we will describe this situation by adding one generator to the conditional
symmetry groupoid for each set of literals which satisfy the condition.

Definition 4. We define the full conditional symmetry groupoid G of a CSP
P to be the set of all triples as follows:

G = {(g, π, f) : g, f sets of literals, π a symmetry with respect to g, gπ = f}.

The product (in this order) of two groupoid elements (g, π, f), (h, σ, k) is defined
only if h = f in which case the product is (g, πσ, k) and gπσ will equal k.

We work throughout with subgroupoids of the full conditional symmetry groupoid
of the CSP. Note that if (g, π, f) ∈ G and h is a set of literals that contains g, then
(h, π, hπ) ∈ G, as π is a symmetry with respect to g only if it is a symmetry with
respect to all extensions of g. We say that (h, π, hπ) is an extension of (g, π, f),
and that the conditional symmetry groupoid is closed under extensions. We call
the first entry of each triple its precondition and the last its postcondition.

Lemma 1. With these definitions, the full conditional symmetry groupoid G of
a CSP is a groupoid.

Proof. The set of elements of G is clear, its base set is the power set of the set of
literals. We must show that composition, where defined, is associative and that
each element has left and right identities and inverses. Let (g1, π1, f1), (g2, π2, f2)
and (g3, π3, f3) ∈ G, and suppose that g2 = f1 and g3 = f2. Then

((g1, π1, f1)(g2, π2, f2))(g3, π3, f3) = (g1, π1π2, g
π1π2
1 )(g3, π3, f3).

Now, g2 = f1 = gπ1
1 , so f2 = gπ2

2 = gπ1π2
1 . Hence g3 = f2 = gπ1π2

1 and the product
of the two groupoid elements in the previous displayed equation is defined, and
is equal to (g1, π1π2π3, g

π1π2π3
1 ). Conversely

(g1, π1, f1)((g2, π2, f2)(g3, π3, f3)) = (g1, π1, f1)(g2, π2π3, g
π2π3
2 )

= (g1, π1π2π3, g
π1π2π3
1 ),

as required. The right identity of (g, π, f) is (f, 1, f), the left identity is (g, 1, g),
and the inverse is (f, π−1, g), where by 1 we mean the identity mapping on the
set of all literals.
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Lemma 2. The full conditional symmetry groupoid of a CSP has a well-defined
partial action on the set of all sets of literals, which maps (non-)solutions to
(non-)solutions.

Proof. The action of an element (g, π, f) on a set h of literals is as follows.
If g �⊆ h then the condition of (g, π, f) is not satisfied, and so the action is
undefined. If g ⊆ h then h(g,π,f) := hπ. To show that this is an action, we note
that h(g,π1,f)(f,π2,k) is defined if and only if g ⊆ h are sets of literals in which
case we have

h(g,π1,f)(f,π2,k) = h(g,π1π2,k) = hπ1π2 = (h(g,π1,f))(f,π2,k),

and that h(g,1,f) = h whenever g ⊆ h. Whenever h is a full assignment and
h(g,π,f) is defined, then, since π is a symmetry with respect to g and g ⊆ h, hπ

is a (non-)solution exactly when h is a (non-)solution.

Next we show that our notions of conditional symmetry strictly generalise the
standard notions of unconditional symmetry.

Lemma 3. The full conditional symmetry groupoid of a CSP P contains the
group of all symmetries of P .

Proof. Elements of the symmetry group of the CSP are of the form (∅, π, ∅).
In general, however, the full conditional symmetry groupoid of a CSP is far too
large for practial computation, and we must restrict the situation somewhat.

Lemma 4. The full conditional symmetry groupoid of a CSP P with |V | = n
and |D| = d has order at least 2dn and at most 2dn(dn)!.

Proof. A precondition can be any subset of literals and the corresponding permu-
tation can be any permutation of the full set of literals. The identity permutation
is a symmetry with respect to any set of literals.

Of course, in practise we cannot identify all conditional symmetries of a CSP
before solving it, so we identify as many non-identity conditional symmetries as
possible, and then form the resulting groupoid.

Definition 5. We say that a collection of conditional symmetry groupoid ele-
ments {(gi, πi, fi) : 1 ≤ i ≤ k} generate a conditional symmetry groupoid G
if G is the smallest subgroupoid of the full conditional symmetry groupoid that
contains all of the elements and is closed under extensions.

The reason why any conditional symmetry groupoid is defined to be closed un-
der extensions is that it must always be possible to consider conditions that are
stronger than those initially given: if (v1, α) implies some symmetry, then so
does {(v1, α), (v2, β)}. Later, when we discuss computing with conditional sym-
metry groupoids, we will describe a technique which avoids the creation of these
additional elements.
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Lemma 5. The conditional symmetry groupoid G is generated by elements from
A := {(gi, πi, fi) : 1 ≤ i ≤ k} if and only if each element of G is a product of
elements that are extensions of elements of A and their inverses.

Proof. We first show that the set of all elements of the conditional symmetry
groupoid that are products of extensions of elements of A forms a groupoid and
is closed under extensions. It is clear that it is closed under the partial product
and the associativity follows from the associativity of the generalised conditional
symmetry groupoid. If (x0, σ, xk) = (x0, σ1, x1)(x1, σ2, x2) · · · (xk, σk+1, xk+1) is a
product of extensions of elements of A, then we note that (x, 1, x) is an extension of
a left identity of an element of A, and similarly for (y, 1, y), and that (xi, σ

−1
i , xi−1)

and (xi+1, σ
−1
i+1, xi) are extensions of right and left inverses of elements of A. Thus

this set forms a groupoid. If (x, σ, y) is an extension of (x0, σ, xk) then it is clear
that it is a product of elements of the form (xi, σi+1, xi+1), where xi is a partial
assignment that extends xi.

Conversely, if (x, σ, y) is a product of extensions of elements of A then it
must be contained in any groupoid that contains A, and so is an element of the
groupoid generated by A. Thus the result follows.

3 Symmetry Breaking with Groupoids

Symmetry breaking by dominance detection for groups of symmetries uses the
following principle: given the current search node g then for each previously found
nogood f , and each symmetry π test the inclusion fπ ⊆ g. This can be done
either by some supplied procedure, as in SBDD, or by adding new constraints
that rule out all images under the symmetry group of extensions of f .

Lemma 6. If f ⊆ g are partial assignments, and (h, π, k) is an element of the
full conditional symmetry groupoid, then f (h,π,k) ⊆ g(h,π,k).

Proof. If h is not a subset of f , then neither map is defined. Otherwise, f (h,π,k) =
fπ = (f \ h)π ∪ k and g(h,π,k) = gπ = (g \ h)π ∪ k. Since (f \ h)π ⊆ (g \ h)π , we
have fπ ⊆ gπ as required.

When implementing SBDD efficiently for groups or groupoids, the fact that
groupoid actions are well-behaved with respect to extensions of partial assign-
ments means that only failures at the top of subtrees need be stored during
depth first search.

To check the dominance in SBDD in the group case we search for an element
π of the symmetry group such that g is an extension of fπ. The situation with
groupoids is a bit more complicated, as the action is only partial and so the
following two cases have to be checked:

– Does there exist a groupoid element (h, γ, k) such that f ⊆ h and g ⊆ fγ?
– Otherwise we must search for some extension, f ′, of f and a groupoid element

(h, γ, k) such that f ′ ⊆ h and g ⊆ f ′γ .
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Note that in case (ii) it is only worth considering extensions of f that assign
values to no more variables than g, and one should only consider extensions that
enable some new conditional symmetry to be used.

To avoid this two-case analysis, we reverse the normal process of SBDD and
instead look for conditional symmetries that map the current partial assignment
to a partial assignment that is an extension of the previous nogood.

Definition 6. A partial assignment g is dominated by a nogood f with respect
to a conditional symmetry groupoid G if there exists an element (h, γ, k) ∈ G
with h ⊆ g and f ⊆ gγ.

This simplification is possible because groupoids are closed under inversion, and
so if a map exists in one direction we can always consider its inverse.

Lemma 7. Let G be a conditional symmetry groupoid of a CSP P and let a be
a fixed partial assignment of P . The set of all elements of G of the form (a, π, a)
form a group.

Proof. Let (a, π1, a), (a, π2, a) ∈ G. The product (a, π1π2, a) is defined and is
of the correct form. Associativity holds because within this set of elements the
product of two elements is always defined. The element (a, 1, a) ∈ G and is the
identity of this subgroup. The inverse (a, π−1

1 , a) ∈ G is of the correct form.

Definition 7. Let P be a CSP with conditional symmetry groupoid G generated
by X := {(ai, πij , bi) : 1 ≤ i ≤ m, j ∈ Ji}. Let A be a partial assignment, and let

C :=
⋃

ai⊆A

ai.

Then the local group at A with respect to X, denoted LX(A) is the group con-
sisting of the permutations σ of all elements of G of the form (C, σ, C).

It follows from Lemma 7 that the group at A is always a group, if nonempty.
Since there is always the identity unconditional symmetry, the group at A is
always nonempty, although it may be the trivial group (C, 1, C).

Lemma 8. Checking for dominance under the LX(A) is sound.

Proof. Since all elements of LX(A) are symmetries with respect to a subset of
A, they will all map (non-)solutions extending A to (non-)solutions.

We now consider a special case where checking for dominance under the group
at A is also complete.

Theorem 1. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set X = {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji}, where each ai is a partial
assignment. Assume that for 1 ≤ i, k ≤ m we have a

πkj

i = ai for all j ∈ Jk.
Then checking for dominance under LX(A) is complete as well as sound.
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Proof. Let H := LX(A). We show that if (g, σ, h) ∈ G and g ⊆ A then σ ∈ H . It
is clear that if σ is a product of πij for ai ⊆ A then σ ∈ H . We wish to show that
if σ is a product including at least one πkj for some ak �⊆ H then (g, σ, h) does
not act on A. It is clear that no extension of (ak, πkj , ak) can act on g as ak �⊆ A,
and hence that one cannot postmultiply any extension of (ak, πkj , ak) to make
it act on A. We show that one cannot premultiply any extension of (ak, πkj , ak)
by an element of G to make it act on A. Since aπil

k = ak for all l, if (x, σ, y) can
premultiply an extension of (ak, πkj , ak) then ak ⊆ y and so ak ⊆ x and hence
x �⊆ A and we are done.

Using this theorem, we can identify some special cases where testing dominance
is possible in polynomial time.

Theorem 2. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji} where each ai is a partial assignment.
Assume that for 1 ≤ i, k ≤ m, whenever ai ∪ ak is a partial assignment then
a

πkj

i = ai for all j ∈ Jk. If the actions of πij on the set of extensions of ai all
belong to a class of symmetries for which there exists a polynomial time algorithm
to determine group dominance, then testing conditional symmetry dominance
under the groupoid G can be done in polynomial-time at each node.

Proof. By Theorem 1 it is both sound and complete to test each partial assign-
ment A for dominance by previous nogoods using only the local group at A with
respect to X . The local group at A with respect to X can be constructed in
polynomial-time, by examining which conditions of which generators are subsets
of A and then generating a group with the corresponding permutations. Hence

Preprocessing For each generator (ai, πij , bi) do

(i) If ai �= bi then return “inapplicable”.
(ii) If πij is not a value symmetry on all literals in ai, and on all literals involving

variables not in ai then return “inapplicable”.
(ii) For each (ak, πkl, bk) with k �= i such that ai ∪ ak is a partial assignment do

• If aπkl
i �= ak then return “inapplicable”.

At node A

1. Make a set L of the generators of G such that ai ⊆ A.
2. Construct the local group LX(A), which is 〈σ : (a, σ, a) ∈ L〉.
3. For each nogood B do

(a) If B contains any literals with different variables from those in A, consider the
next nogood.

(b) Otherwise, by repeatedly computing point stabilisers check whether there ex-
ists a σ ∈ LX(A) such that for all (w, α) ∈ A with (w, β) ∈ B for some β we
have (w, α)σ = (w, β).

(c) If such a σ exists, return “dominated”.
4. Return “not dominated”.

Fig. 1. Algorithm for sound and complete conditional symmetry breaking



830 I.P. Gent et al.

if there exists a polynomial-time algorithm for testing whether A is dominated
by a nogood by an element of a group of symmetries then it can now be applied.

Corollary 1. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji} where each ai is a partial assignment.
Assume that for 1 ≤ i, k ≤ m, whenever ai ∪ ak is a partial assignment then
a

πkj

i = ai for all j ∈ Jk. If the actions of πij on the set of extensions of ai are
value symmetries then testing conditional symmetry dominance is in P.

Proof. This is immediate from Theorem 2 and [6].

Fig. 1 shows a polynomial-time algorithm which takes as input a set of con-
ditional symmetry groupoid generators for a CSP and determines whether the
conditions of Corollary 1 apply and if so tests for groupoid dominance.

As in SBDD, we can safely backtrack when dominated, and continue to the
next search node otherwise. Our approach is not restricted to value symme-
tries. We can obtain polynomial-time algorithms whenever a polynomial-time
algorithm exists for symmetry breaking in the unconditional case.

4 Conclusions and Further Work

We have shown that careful use of the theory of groupoids allows us fully to
capture the notion of conditional symmetry in CSPs.

We have identified the algebraic structure of conditional symmetries. With this
we can study the whole set of conditional symmetries of a problem, rather than
just a small subset given to us by a programmer, and analyse sub- and super-
groupoids. We have shown the enormous numbers of conditional symmetries and
complicated structure that arises when we generate them all. We have provided
definitions and algorithms for conditional symmetry breaking. We have defined
a notion of dominance, allowing us to give an analogue of SBDD for conditional
symmetries. We have also shown that it is possible to identify useful conditional
symmetry sub-groupoids that are small enough to permit effective conditional
symmetries breaking.
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