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Abstract

Conditional symmetry arises in a sub-problem
of a constraint satisfaction problem, where
the sub-problem satisfies some condition un-
der which additional symetries hold. Typically,
the condition is a set of assignments of values
to variables, i.e. a partial assignment reached
during systematic search. Like unconditional
symmetry, conditional symmetry can cause re-
dundancy in a systematic search for solutions.
Breaking this symmetry, in addition to break-
ing unconditional symmetry, is therefore an im-
portant part of solving a constraint satisfaction
problem effectively. This paper examines three
ways in which this can be done: by adding con-
ditional symmetry-breaking constraints, by re-
formulating the problem to remove the symme-
try, and by augmenting the search process to
break the conditional symmetry dynamically.

1 Introduction

Constraint programming has been used with great suc-
cess to tackle a wide variety of combinatorial problems
in industry and academia. In order to apply constraint
programming tools to a particular domain, the problem
must be modelled as a constraint program. However,
constraints provide a rich language, so typically many
alternative models exist for a given problem, some of
which are more effective than others. Constructing an
effective constraint program is a difficult task.

One important aspect of modelling is dealing with
symmetry. Symmetry is a solution-preserving transfor-
mation; symmetry in a model can result in a great deal
of wasted effort when the model is solved via systematic
search. Hence, it is necessary to ensure that symmetry
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is broken effectively. The majority of research in sym-
metry in constraint models considers only the symmetry
present in a model before search begins. However, as we
will discuss, it is commonly the case that symmetry can
form during search. We refer to this as conditional sym-
metry, since its formation depends on the choices made
during search. In order to avoid redundant search, it is
important to break this symmetry in addition to uncon-
ditional symmetry breaking.

All symmetry breaking trades the reduction in search
gained versus the cost of breaking the symmetry. The
detection of the condition for the symmetry to arise adds
a further cost when creating a conditional symmetry-
breaking scheme. Therefore, the reduction in search gen-
erally has to be significant to make the effort worthwhile.
A further consideration is how frequently during search
the condition is likely to be satisfied. The greater the
proportion of search that is within sub-problems where
conditional symmetry arises, the greater the impact con-
ditional symmetry breaking is likely to have.

This paper discusses three ways to deal with condi-
tional symmetry. First, to add constraints to a model to
detect and break the symmetry as it arises. Second, to
reformulate the problem such that the new model does
not have the conditional symmetry. Finally, we discuss
how conditional symmetry can be broken during search.

2 Background

The finite domain constraint satisfaction problem (CSP)
consists of a triple 〈X, D, C〉, where X is a set of vari-
ables, D is a set of domains, and C is a set of constraints.
Each xi ∈ X is associated with a finite domain Di ∈ D
of potential values. A variable is assigned a value from
its domain. A constraint c ∈ C, constraining variables
xi, . . . , xj , specifies a subset of the Cartesian product
Di × . . . × Dj indicating mutually compatible variable
assignments. A constrained optimisation problem is a
CSP with some objective, which is to be optimised.

A partial assignment is an assignment to one or more
elements of X . A solution is a partial assignment that
includes all elements of X and satisfies all the con-
straints. This paper focuses on the use of systematic
search through the space of partial assignments to find
such solutions. A sub-CSP, P ′, of a CSP P is obtained



from P by adding one or more constraints to P . Note
that assigning a value v to a variable x is equivalent to
adding the constraint x = v.

A symmetry in a CSP is a bijection mapping solutions
to solutions and non-solutions to non-solutions. A condi-
tional symmetry of a CSP P holds only in a sub-problem
P ′ of P . The condition for the symmetry to arise is the
conjunction of constraints necessary to generate P ′ from
P . Conditional symmetry is a generalisation of uncondi-
tional symmetry, since unconditional symmetry can be
seen as a conditional symmetry with an empty condi-
tion. For the most part, we focus herein on conditions
in the form of partial assignments.

As with unconditional symmetry, we can distin-
guish between instance-independent conditional symme-
try, which has the potential to arise in all elements of a
problem class, and instance-dependent conditional sym-
metry, which can arise in some instances of a problem
class, but not in others. We will see examples of both
types in the following section.

Symmetry breaking is made difficult by the interaction
of the various symmetries in a problem. Breaking some
or all of one symmetry might break some, all or none of
another. This remains true of conditional symmetry, as
will be discussed. Furthermore, we will see how breaking
an unconditional symmetry can simplify the condition of
a conditional symmetry, and therefore reduce the cost of
conditional symmetry breaking. Symmetry can often be
broken in a variety of ways. Hence, it might be preferable
to choose a scheme whose consequences are beneficial to
conditional symmetry breaking in this way.

3 Conditional Symmetry-breaking

Constraints

One method of breaking conditional symmetries is to
add symmetry-breaking constraints of the form:

condition → symmetry-breaking constraint

where condition is a conjunction of constraints, for in-
stance a partial assignment such as x = 1 ∧ y = 2,
that must be satisfied for the symmetry to form. As
in unconditional symmetry breaking [1], the symmetry-
breaking constraint usually takes the form of an ordering
constraint on the conditionally symmetric objects. This
section discusses two case studies of breaking conditional
symmetry in this way.

3.1 Graceful Graphs

The first case study is of conditional symmetry in finding
a graceful labelling [5] of a class of graphs. As noted in
[5], labelled graphs have a variety of applications, rang-
ing from coding theory to radar astronomy. A labelling
f of the vertices of a graph with e edges is graceful if f
assigns each vertex a unique label from {0, 1, ..., e} and
when each edge xy is labelled with |f(x) − f(y)|, the
edge labels are all different. (Hence, the edge labels are
a permutation of 1, 2, ..., e.)

Finding a graceful labelling of a given graph, or prov-
ing that one does not exist, can easily be expressed
as a constraint satisfaction problem. The CSP has a
variable for each vertex, x1, x2, ..., xn each with domain
{0, 1, ..., e} and a variable for each edge, d1, d2, ..., de,
each with domain {1, 2, ..., e}.

The constraints of the problem are:

• if edge k joins vertices i and j then dk = |xi − xj |

• x1, x2, ..., xn are all different

• d1, d2, ..., de are all different (and form a permuta-
tion)

Figure 1 shows an instance of a class of graphs listed

in Gallian’s survey of graceful graphs [5] as C
(t)
n : they

consist of t copies of a cycle with n nodes, with a common
vertex. For n = 3, these graphs are graceful whenever
t ≡ 0 or 1 (mod 4), so the graph shown is graceful.

Figure 1: The windmill graph C
(4)
3

The nodes in Figure 1 are numbered to show the num-
bering of the variables in the CSP model, i.e. node 0 is
the centre node and is represented by the variable x0.

The CSP has three instance-independent symmetries:

• swap the labels of the nodes other than the cen-
tre node in any triangle, e.g. swapping the labels of
nodes 1 and 2;

• permute the triangles, e.g. swap the labels of nodes
1 and 2 with those of nodes 3 and 4;

• change every node label xi for its complement e−xi.

The centre node cannot have a label > 1 and < e − 1.
Since there must be an edge connnecting two nodes la-
belled 0 and e, if the centre node’s label is not 0 or e,
then two other nodes in a triangle, e.g. nodes 1 and 2,
must be labelled 0 and e. But then, unless the centre
node is labelled 1 or e − 1 there is no way to label an
edge e − 1, given that the largest node label is e. The
labels 0, 1, e − 1 and e are possible for the centre node,
however, if there is a graceful labelling.

Relabelling a Triangle

Consider a graceful labelling of a graph in this class, with
the centre node labelled 0. In any triangle, where the
other two nodes are labelled a and b, with a < b, we can
replace a with b − a to get another solution. Note that
b− a was unused: otherwise, since the centre is labelled
0, there would have been two edges labelled b−a. Figure
2 shows how the edge labels in the triangle are permuted.



Figure 2: Relabelling a triangle in a graceful labelling
with centre node labelled 0.

Any graceful labelling of C
(t)
3 with centre node labelled

0 has 2t equivalent labellings by changing or not chang-
ing the labels within each of the t triangles in this way.
However, for a specific instance of this symmetry, on
nodes 0, 1, 2, say, in order to describe its effect, if any,
we need two pieces of information. We need to know
both whether node 0 is labelled 0 and which of nodes 1
and 2 has the smaller label; hence, we need to know the
assignments to these three variables.

A graceful labelling with the centre node labelled 1 can
be transformed into an equivalent labelling similarly: a
triangle labelled 1, a, b, with a < b can be relabelled
1, b − a + 1, b. Again, this is conditional on the three
assignments. There are equivalents for the other possible
labels for the centre node, i.e. e − 1 and e.

Labellings with Centre Node Labelled 1

As already mentioned, there are graceful labellings where
the centre node is labelled 1. In such a labelling, there
must be a triangle labelled 1, 0, e, since there must be an
edge whose endpoints are labelled 0 and e. The remain-
ing nodes have labels in the range 3, .., e − 1. (There is
no edge labelled 2, since it has to be connected to the
centre node, giving a second edge labelled 1.)

Figure 3: Transforming a labelling with centre node la-
belled 1.

Figure 3 (left) shows the 1, 0, e triangle and another
representative triangle. We can transform the labels of
all the nodes as shown on the right. If the original la-
belling is graceful, so is the transformed labelling, and
the centre node is now labelled 0. Hence, any labelling
with centre node labelled 1 is equivalent to one with
centre node labelled 0. The reverse is true only if there
exists a triangle labelled 0, 1, e. The condition for this
symmetry is thus a conjunction of constraints specifying
that a 0, 1, e triangle exists. Similarly, if the centre node
is labelled e−1, we can transform any resulting graceful

labelling into one with the centre node labelled e, and
vice versa if there exists a triangle labelled 0, e − 1, e.

We can also view these particular conditional symme-
tries as dominance relations [10]. Labelling the centre
node with 0 dominates labelling it with 1, and labelling
the centre node with e dominates labelling it with e− 1.
These relations are typically exploited by disallowing the
dominated value, which, as we will see, corresponds to
the way we break the conditional symmetry here. Ex-
ploring the connection between dominance and condi-
tional symmetry is an important item of future work.

Symmetry-Breaking Constraints
Ignoring the conditional symmetries for now, the sym-
metries of the CSP can easily be eliminated by adding
constraints to the model.

1. In each triangle, we can switch the labels of the
nodes that are not the central node. Constraints to
eliminate this are: x2i−1 < x2i, i = 1, 2, ..., t

2. We can permute the triangles. Given the previous
constraints, we can add the following to eliminate
this: x2i−1 < x2i+1, i = 1, 2, ..., t− 1

3. To eliminate the complement symmetry, we can
post: x0 < e/2.

The conditional symmetry where the central node is 0
can be eliminated easily. It also requires knowing which
of the two other nodes in each triangle has the smaller
label. Notice that, because of symmetry-breaking con-
straint 1 above, this condition is simplified: the node
with the smaller label has the smaller index. Hence,
we can add a conditional constraint: if x0 = 0, then
2x2i−1 < x2i, for i = 1, 2, ..., t. In terms of Figure 2, we
choose the labelling 0, a, b for the triangle and want this
to be lexicographically smaller than 0, b − a, b.

Given symmetry-breaking constraint 3 to eliminate
the complement symmetry, 0 and 1 are the only pos-
sible labels for the central node. We have shown that
the labellings with the central node labelled 1 are equiv-
alent to some of the labellings with node 0 labelled 0.
Hence, we can simply add x0 = 0 to eliminate the condi-
tional symmetry where there exists a triangle labelled
0, 1, e. This, in turn, simplifies the conditional con-
straints given earlier: if we know that x0 = 0, then we
can drop the condition from the earlier constraints and
just have 2x2i−1 < x2i, for i = 1, 2, ..., t.

Hence, in this example, all the symmetries, including
the conditional symmetry, can be eliminated by simple
constraints.

Results
Using symmetry-breaking constraints (1-3) to eliminate
the graph and complement symmetries, the graph in Fig-
ure 1 has 144 graceful labellings. Eliminating the condi-
tional symmetries reduces these to 8. The resulting re-
duction in search would be greater still for larger graphs

in the same class, C
(t)
3 . This case study demonstrates

that conditional symmetry can sometimes be eliminated
with little overhead and reduce the search effort enor-
mously.



3.2 Steel Mill Slab Design

Our second case study is the steel mill slab design prob-
lem [4] (problem 38 at www.csplib.org). Steel is pro-
duced by casting molten iron into slabs. A finite number,
σ, of slab sizes is available. An order has two properties,
a colour corresponding to the route required through the
steel mill and a weight. The problem is to pack the d in-
put orders onto slabs such that the total slab capacity is
minimised. There are two types of constraint:

1. Capacity constraints. The total weight of orders
assigned to a slab cannot exceed the slab capacity.

2. Colour constraints. Each slab can contain at
most p of k total colours (p is usually 2). This con-
straint arises because it is expensive to cut the slabs
up to send them to different parts of the mill.

A Matrix Model

It is natural to use a matrix model to represent this
problem. Under the assumption that the largest order
is smaller than the largest slab, at most d slabs are re-
quired to accommodate all the input orders. Hence, a
one-dimensional matrix of size d, slabM , can be used to
represent the size of each slab used, with a size of zero
indicating that there is no corresponding slab in the solu-
tion. In addition, a d×d 0-1 matrix, orderM , can be used
to represent the assignment of orders to slabs, where a
‘1’ entry in the ith column and jth row indicates that
the ith order is assigned to the jth slab. Constraints on
the rows ensure that the slab capacity is not exceeded:

∀j ∈ {1..d} :
∑

i∈{1..d}

weight(i) × orderM [i, j] ≤ slabM [j]

where weight(i) is a function mapping the ith order to
its weight. Constraints on the columns ensure that each
order is assigned to one and only one slab:

∀i ∈ 1..d :
∑

j∈{1..d}

orderM [i, j] = 1

A second 0-1 matrix, colourM with dimensions k × d,
is used to represent the relation between the slabs and
the colours. A ‘1’ entry in the ith column and jth row
indicates that the ith colour is present on the jth slab.
Constraints link orderM and colourM :

∀i ∈ {1..d}∀j ∈ {1..d} :

orderM [i, j] = 1 → colourM [colour(i), j] = 1

where colour(i) is a function mapping the ith order to its
colour. Constraints on the rows of colourM ensure that
orders with at most p colours are assigned to each slab:

∀j ∈ {1..d} :
∑

i∈{1..k}

colourM [i, j] ≤ p

Symmetry and Conditional Symmetry

In this initial model, slabM has instance-independent
column symmetry: a (non-)solution can be transformed
into a (non-)solution by permuting the values assigned to

each element of slabM and permuting the corresponding
rows of orderM . This symmetry can be broken simply
by ordering the elements of slabM as follows:

slabM [1] ≥ slabM [2] ≥ . . . slabM [d]

Furthermore, orderM has instance-dependent partial
column symmetry. When two orders have equal weight
and colour, a (non-)solution can be mapped to a (non-
)solution by exchanging the columns associated with
these two orders. This symmetry can be broken by com-
bining symmetric orders into a single column. The sum
of that column is then constrained to be equal to the
number of orders it represents.

Symmetry on the rows of orderM is, however, con-
ditional: only if two slabs have equal size can their
contents be exchanged in a (non-)solution to obtain a
(non-)solution. This symmetry is instance-independent.
Notice also that the unconditional symmetry-breaking
on slabM simplifies breaking the conditional slab sym-
metry, since it constrains rows of orderM representing
equal-sized slabs to be adjacent. Hence, conditional slab
symmetry can be broken statically in a straightforward
manner using lexicographic ordering:

∀i ∈ {1..d − 1} :

(slabM [i] = slabM [i + 1]) → (orderM [i] ≥lex orderM [i + 1])

There is a further instance-dependent symmetry con-
ditional on the way that orders are assigned to slabs.
Consider 3 ‘red’ orders, order a of weight 6 and two
instances of order b, with weight 3 (the last two are rep-
resented by a single column). Consider the following
partial assignments to orderM :

(

a b . . .

slab1 1 0 . . .
slab2 0 2 . . .
. . . . . . . . . . . .

) (

a b . . .

slab1 0 2 . . .
slab2 1 0 . . .
. . . . . . . . . . . .

)

These assignments are symmetrical. Note that the sym-
metry is conditional on both instances of b being assigned
to the same slab, effectively creating a single ‘super’ or-
der symmetrical to a. This is the simplest case of com-
pound order symmetry, where individual orders combine
to become symmetrical to single larger orders (such as
the instance of a in the example — we will call these unit
compounds) or other compounds.

The conditional lexicographic ordering of the contents
of the slabs interacts with the compound order symme-
try. In the above example, if the size of the first slab is
the same as that of the second then only the first partial
assignment is allowed. This is not, however, the case in
general. We now describe how compound order symme-
try can be detected and broken effectively.

Formation of Compound Order Symmetry

To break compound order symmetry, we must know
when and where the symmetry forms. For simplicity, we
consider only compound orders composed from multi-
ple instances of the same order. The encoding described
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Figure 4: Conditional formation of two compound orders
of size 3.

here can be extended straightforwardly to support com-
pounds formed from orders of different sizes. Consider
an instance with 6 red orders of size 1. The assignment
of these orders to slabs is represented by a single column
of orderM , whose sum is constrained to be six. Con-
sider now the formation of a red compound order of size
three. Up to two such compounds can form from the six
red orders. Figure 4 presents example cases for which we
must cater. In every example all the orders have been
assigned to a slab, but in some cases one (Fig.4d, Fig.4e,
Fig.4f) or both (Fig.4a) compounds have not formed.

It is useful to consider a first compound (formed from
the first three orders, counting down the column) and a
second compound (formed from the second three). No-
tice that, counting from the top of each column, a com-
pound can form only when a sufficient number of orders
have been assigned. In the example, this is three and six
orders for the first and second compounds, respectively.
To exploit this observation, for each column on which
compound orders may appear, we introduce a column of
variables, subsumM , which record the cumulative sum of
assigned orders read down the column. Figure 5 presents
the subsumM variables for our examples.

Given the subsumM variables, we can introduce a po-
sition variable for each compound, whose domain is the
set of possible slab indices, constrained as follows:

subsumM [position − 1] < compoundSize × instanceNo

subsumM [position] ≥ compoundSize × instanceNo

where compoundSize indicates the number of orders nec-
essary to form the compound in question, and instan-
ceNo denotes which of the compounds of compoundSize
on this column that position is associated with. This pair
of constraints ensure that position indicates a unique slab
when the corresponding column of orderM is assigned.

The remaining question, given some partial assign-
ment, is whether the compound order associated with
position has formed on the slab indicated by position.
This is recorded in a 0/1 variable, switch, paired with
each position variable and constrained as follows:

switch = (orderM [column][position] ≥ compoundSize)

where column is the column of orderM on which the com-
pound may form.

Breaking Compound Order Symmetry

Consider n symmetrical compound orders. We order
these compounds ascending by the column on which they

a)













1
2
3
4
5
6













b)













3
6
6
6
6
6













c)













0
0
6
6
6
6













d)













1
2
3
6
6
6













e)













1
4
5
6
6
6













f)













3
4
6
6
6
6













Figure 5: Assignments to subsumM variables corre-
sponding to order variable assignments in Figure 4.

appear, breaking ties by ordering the ‘first’, ‘second’, . . .,
‘nth’ compounds in a column, as defined in the previous
section, ascending. We denote the switch and position
variables of the ith compound under this ordering as
switchi and positioni. The conditional symmetry can be
broken straightforwardly as follows:

∀i < j ∈ {1, . . . , n} :

(switchi = 1 ∧ switchj = 1) → positioni ≤ positionj

We have been careful to ensure that these order-
ing constraints are compatible with the slab conditional
symmetry breaking constraints given above. Consider
the following example, where slabs one and two have
equal size, and the compound formed from two instances
of order three is symmetrical to an instance of order two:

(

order1 order2 order3

slab1 1 1 0
slab2 1 0 2

)

The lexicographic ordering constraints used to break the
conditional symmetry on the slabs, and the compound
order symmetry-breaking constraints, as given above,
are both satisfied. If, however, the compound orders
were ordered in the reverse direction, in this example
they would clash with the lexicographic ordering con-
straints, potentially pruning solutions.

Note that we post the transitive closure of the ordering
constraints. This is contrary to unconditional symmetry
breaking; given a set of symmetrical objects, it is usually
only necessary to order adjacent elements in the enumer-
ation of the set [3]. However, we cannot be certain that
any particular conditional symmetry will form.

Experimental Results

As noted, conditional slab symmetry is instance-
independent, while compound order symmetry is
instance-dependent. To experiment with the effects of
both slab and compound order symmetry breaking, we
constructed 12 instances where compound order symme-
tries were highly likely to form by using only one colour
for all orders, and choosing the size and number of the
smaller orders such that multiple instances of a small
order sum to the size of one of the larger orders. In con-
structing these instances, we made use of the following
observation: if the steel mill is able to create slabs whose
size is small, the likelihood that individual orders will be
assigned to a slab alone is increased, and therefore the
likelihood that compounds will form is decreased.



No Conditional Slab Conditional Compound Order Slab & Compound Order
Symmetry Breaking Symmetry Breaking Conditional Symmetry Breaking Conditional Symmetry Breaking

Problem Choices Time(s) Choices Time(s) Choices Time(s) Choices Time(s)
1 18,014,515 1120 79,720 5.64 - - 68,717 36.4
2 6,985,007 439 15739 1.45 - - 13,464 6.79
3 7,721 0.741 1,798 0.26 6,461 3.48 1,472 0.971
4 155,438 8.86 60,481 4.10 49,234 31.0 30,534 16.2
5 146,076 7.48 56,590 3.45 46,599 23.4 27,921 12.4
6 117,240 6.01 49,098 2.82 39,411 17.7 24,112 9.70
7 147,148 7.1 60,035 3.34 70,881 36.3 37,672 18.0
8 171,781 8.02 77,187 4.13 80,557 37.1 45,293 19.3
9 206,138 9.52 92,526 4.87 97,072 44.9 53,666 23.0
10 348,716 16.6 140,741 7.55 178,753 94.8 84,046 41.5
11 313,840 15.7 130,524 7.21 164,615 98.5 79,621 44.4
12 266,584 13.9 110,007 6.19 138,300 82.5 68,087 37.8

Table 1: Steel Mill Slab Design: Experimental Results. Times to 3 significant figures. A dash indicates optimal
solution not found within 1 hour. Hardware: PIII 750MHz, 128Mb. Software: Ilog Solver 5.3 (Windows version).

The results (Table 1) show that both types of condi-
tional symmetry breaking reduce search significantly. In
the case of slab symmetry breaking, the overhead of the
symmetry-breaking constraints is negligible, hence there
is also a reduction in time. The overhead of compound
order symmetry breaking is more significant. Although
this technique clearly reduces search — in the instances
tested a further reduction of as much as 50% is gained
by adding compound order symmetry breaking to slab
symmetry breaking — overall time taken is increased.

These results confirm that if a conditional symmetry
can be detected and broken cheaply, then it is probably
worthwhile to do so. Another positive indicator is if the
symmetry is likely to appear in many sub-problems. In
the case of the steel mill, although there is a clear re-
duction in search gained from breaking compound order
symmetry, the challenge is to make the encoding of de-
tection of this symmetry sufficiently lightweight that it
can be used without fear of increasing the overall effort.

4 Breaking Conditional Symmetry by

Reformulation

While reformulation is very important, we discuss it only
briefly in this paper as our major success in this area is
discussed fully in another paper [8].

Formulation of constraint problems can be essential to
success in solving them, affecting solution times by many
orders of magnitude. So an appropriate reformulation of
a constraint problem can turn an insoluble problem into
a soluble one in practical terms.

Formulation and reformulation are equally, or even
more, important for symmetry breaking. Different for-
mulations of the same problem can have different num-
bers of symmetries. Also, one formulation can have sym-
metries which are easier to deal with than in another for-
mulation. For example, in one formulation symmetries
might be the full permutation group Sn, which is usually
easy to deal with, while another formulation with fewer
symmetries may yield a group that is more difficult to
deal with. Thus, reformulation of a problem into a differ-
ent model may be the critical step in dealing with sym-
metries. Unfortunately, there is no general technique for
suggesting reformulations for breaking symmetry, and to

date it has been achieved only by the insight of the par-
ticular constraint programmer.

If anything, conditional symmetry intensifies the prob-
lems inherent in reformulation to break symmetry. This
can be seen in the case of all-interval series problem, re-
ported by Gent, McDonald and Smith [8]. They achieved
a speedup of a factor of 50 on the state-of-the-art by
reformulating the problem based on identifying a condi-
tional symmetry. The problem itself has 4 symmetries,
and the conditional symmetry doubles this to 8 where it
occurs. In fact, one of n conditional symmetries always
occurs. The reformulation in fact changed the problem
slightly, so goes beyond what can be achieved by chang-
ing the constraint model of the original problem. In the
new problem, the conditional symmetry has become un-
conditional, and indeed all n of the possible conditional
symmetries apply in each case. So we have both in-
creased the number of symmetries, and used formulation
to make conditional symmetries unconditional: both of
these tricks have the aura of a rabbit pulled out of the
hat rather than a generalisable technique. The reason
this works so well is that it is extremely easy to break
all symmetry in the new problem, leading to the excel-
lent runtimes, and from solutions to the new problem we
can read off solutions to the original very easily. So this
example shows how effective reformulation can be, with-
out apparently suggesting how to do it in other cases of
conditional symmetry.

In summary, there is little we can say in general about
reformulating to break conditional symmetry. To achieve
this seems to require considerable insight on a case-by-
case basis, so general techniques for reformulation that
could be useful even in families of constraint problems
would be highly desirable, but remain in the future.

5 A Generic Method of Breaking

Conditional Symmetries

It is preferable for breaking conditional symmetries – as
it is for ordinary, non-conditional symmetries – to have
a generic method where the symmetries and conditions
can be described easily and broken efficiently. Hence, we
examine how previous methods of breaking symmetries
could be modified to cope with conditional symmetries.



Gent, McDonald and Smith provided two implemen-
tations of SBDS [9] modified to work for conditional
symmetries [8]. These implementations provided proof
of concept only as both had serious problems. In both
methods the efficiency of constraint solving was reduced
by its introduction. The first method required a differ-
ent symmetry function for each possible conditional sym-
metry, and naturally there will always be many more
than the unconditional symmetries. For example, the
all-interval series problems has 4 unconditional symme-
tries but 4(n−1) conditional ones. The second modifica-
tion of SBDS removed this problem, but the implemen-
tation was grounded heavily in the specific CSP. Thus no
general purpose method proposed to date for conditional
symmetries can be regarded as satisfactory.

In this section we show what the main disadvantage
of using SBDS like approaches (such as GHK-SBDS [6])
is when dealing with conditional symmetry. We also
explain how SBDD [2] can be modified to effectively
deal with generic conditional symmetries, although im-
plementing this modification remains future work.

5.1 The problem with using SBDS to
break conditional symmetry

SBDS adds constraints to the local subtree. These con-
straints are discarded upon backtracking from the root
node of a the subtree. However, this means that we
must have an SBDS constraint for each possibly applica-
ble symmetry. In the case of conditional symmetry, this
is a particularly high overhead where, as in the example
of all-interval series, there are many more conditional
symmetries than unconditional ones.

An alternative is to check at a node whether or not a
condition holds, and only to add the SBDS constraints
in a local subtree where the condition is known to hold
(Figure 6). Unfortunately, this approach fails. We
might backtrack from this point and therefore discard
the SBDS constraint, going back up the tree to a node
where the condition is no longer true. Since the condi-
tion is not true, no conditional symmetry will be posted.
Unfortunately, the condition could become true again
on further backtracking and reassignment of variables.
Thus, this approach is untenable because it will miss
duplicate (non-)solutions (Figure 7). In order to solve
this problem to use SBDS, we need to either post global
constraints, or search the failed subtrees for conditional
symmetries that were true. Even then, the constraints
posted for breaking conditional symmetries would be of
larger arity, since they contain the condition as well as
the symmetry breaking constraints. Thus, we do not yet
have a satisfactory approach for using a variant of SBDS
as a generic method for breaking conditional symmetries.

5.2 Using SBDD to break conditional
symmetries

In contrast to SBDS, SBDD should adapt very natu-
rally to the conditional case. This is because the check
is performed at a node about to be explored. At this
point, we can calculate which conditional symmetries

X
g(X')

X'

Figure 6: Upon backtracking to the highlighted node
from X ′ SBDS posts a constraint to forbid g(X ′) in the
local subtree.

X
g(X)

Figure 7: The symmetrical variant g(X) of the nogood
X , does not exist in the local subtree. SBDS can cope
with such a situation by forbidding g(X ′) (as shown in
Figure 6). The condition that makes a bijective map-
ping h a symmetry, for example, may not hold at the
node X ′, hence the nogood h(X ′) will not be ruled out.

are known to hold. We can then calculate the resulting
group, and check this against previously visited nodes.
Unlike SBDS, when we backtrack from a node, we do not
need to know what conditional symmetry holds in some
future node. We can maintain the database of nodes
visited in the same way as conventional SBDD: that is,
we need merely to record the nodes at the roots of fully
explored search trees. At a search node of depth d there
are at most d such roots to store.

In the case of conditional-SBDD, we need to check
whether the current node is dominated by some previ-
ously visited node. That is, does some conditional sym-
metry hold which maps one of the roots of a failed tree
into the current node? In the terms of this paper, does
it map a previous node representing a CSP P into an-
other CSP P ′, such that the current node P ′′ is a sub-
CSP of P ′? It might seem that we have to consider all
nodes representing sub-CSP’s of P , as different condi-
tional symmetries can occur at different sub-CSP’s, and
perhaps one of these but not others will dominate P ′′.
This is the problem that bedevils extending SBDS for
conditional symmetries. However, we can solve this ap-
parent problem by a simple reversal: if a conditional
symmetry maps a sub-CSP of P into a super-CSP of the



current node P ′′, then its inverse must be a conditional
symmetry mapping P ′′ into a sub-CSP of P .

We look at the question the opposite way round be-
cause we need to calculate the conditional symmetries
that apply only at the current node. Specifically, we
can calculate the symmetries known to apply at the cur-
rent node. There may be sub-CSP’s of the current node
where more conditional symmetries apply, but we cannot
deal with this. However, we do not see this as a major
problem in general. If some subproblem P ′ of P maps to
a superproblem of P ′′, then in most cases the symmetric
version of the condition that holds at P ′ will hold in the
superproblem of P ′′ and so in P ′′ itself.

This reversal allows us to apply SBDD methods almost
unchanged from current implementations. The new fea-
ture is that at any node where we check dominance, we
have to calculate which conditions apply and therefore
which symmetries to check. Having done this, and thus
having perhaps a different group at each node, we can
use any existing implementation technique for SBDD,
adapting it as necessary to allow for a different group
holding each time the dominance check is called.

For example, consider using computational group the-
ory methods for SBDD following Gent, Harvey, Kelsey,
and Linton [7]. The advantage for conditional SBDD is
that we do not need to deal separately with all condi-
tional symmetries. Instead, we need some method for
testing the existence of generating symmetries. For ex-
ample, consider the case of conditional compound order
symmetry in the steel mill problem. At a point where
we want to perform the SBDD check, it is very easy to
examine the problem to see if the symmetry has formed.
We just look at each slab to see if it has definitely been
assigned two copies of the same order. While the switch
variable could be used for this purpose, alternatively we
could perform a simple check before performing the dom-
inance check. Having done so, we then know which of
these conditional symmetries hold. These can be ex-
pressed, as required by [7], as a permutation. The group
of symmetries that hold is therefore as generated by the
conventional symmetries, and the detected conditional
symmetries. Passing each detected conditional symme-
try as a permutation to the computational algebra sys-
tem, automatically allows all combinations of symme-
tries – conditional and unconditional – to be used in
the dominance check. The computational algebra sys-
tem using essentially the same algorithm to check dom-
inance as in the unconditional case [7]. In the example
discussed, note that we did not need to have anything
stored for conditional symmetries which do not arise. A
simple program is written to see which symmetries hold,
and for each one we only need to construct one generat-
ing permutation on the fly. This does not lead to large
overheads compared to an unconditional SBDD imple-
mentation. On the algebraic side, the main inefficiency
is in having to start with potentially a new group on
each check, but it remains to be seen how significant a
problem this is.

It thus seems that conditional SBDD has the poten-

tial to give a general and efficient way of dealing with
conditional symmetries. We intend to implement our
proposed conditional-SBDD in the near future. It thus
remains to be seen if this approach can provide effective
symmetry breaking with low enough overheads.

6 Conclusions and Future Work

This paper has discussed the phenomenon of conditional
symmetry, and methods to exploit this symmetry to re-
duce search. The first, adding conditional symmetry-
breaking constraints to a model, is most effective when
the condition for the symmetry to arise is a) simple and
therefore easy to check, and b) likely to be satisfied
often during search. As with unconditional symmetry
breaking, adding constraints to break one conditional
symmetry can partially break another. Furthermore,
choosing unconditional symmetry-breaking constraints
carefully can simplify conditional symmetry-breaking in
some cases, as was shown in both the Graceful Graphs
and Steel Mill Slab Design problems studied herein. For-
mulating general rules to guide the modelling of a prob-
lem and the choice of symmetry-breaking constraints to
take advantage of these insights is a considerable chal-
lenge, which we are beginning to explore.

The second method, reformulating the model to re-
move the conditional symmetry, can give a much im-
proved model, but it is not clear that such a reformula-
tion will always be possible or, if possible, achievable
through general methods rather than special purpose
reasoning. Finally, we discussed how a generic, dynamic
method of breaking conditional symmetries might be
constructed based on SBDD. A principal item of future
work is in developing this method.
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