
Tractable symmetry breaking using restricted search
trees

Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, Steve Linton 1

Abstract. We present a new conceptual abstraction in symmetry
breaking – the GE-tree. The construction and traversal of a GE-tree
breaks all symmetries in any constraint satisfaction or similar prob-
lem. We give a polynomial-time algorithm for this construction in the
case of CSPs with arbitrary value symmetries. We have implemented
this technique, and supply experimental evidence of its practical ef-
fectiveness.

1 Introduction and motivation

Many search problems are symmetric, and this can cause significant
problems for search. Not only do we find the same solution many
times over, but worse, we search the same non-solutions time and
time again. Without specialised techniques to break this symmetry
and to eliminate or at least reduce duplicates, many problems are not
amenable to solution as constraint satisfaction problems (CSPs).

Such a significant problem has led to a large body of research. Ap-
proaches taken include adding symmetry breaking constraints before
search [3, 5], using constraints generated dynamically during search
[1, 10], checking for duplicate nodes before visiting them [2, 4, 6],
and constructing a specialised tree without symmetry [14]. An impor-
tant development is the use of techniques from computational group
theory to speed the symmetry breaking process [2, 8, 9, 12]. In this
article we show how to build specialised trees without symmetry us-
ing computational group theory.

In [14], Van Hentenryk, Flener, Pearson and Ågren gave an effi-
cient method for breaking three specific forms of value symmetry in
CSPs. This motivated us to develop a new conceptual abstraction, the
GE-tree, which can be defined for arbitrary symmetries of a search
problem. The algorithms presented by [14] can be seen as efficient
ways to construct GE-trees for those specific value symmetries. Us-
ing computational group theory techniques, we give a polynomial
time algorithm for constructing GE-trees for any value symmetry of a
CSP. We have implemented this and show its success in practice. Ex-
tensive investigations remain to be done, but just from the evidence
presented in this article, we suggest that GE-trees are an important
new concept.

We have found GE-trees to be an invaluable tool in two main ways.
Firstly, they are useful as a conceptual tool: any search tree contains
a GE-tree, and it is helpful to analyse the efficacy of symmetry break-
ing techniques by seeing how nearly they reduce the search space to
that of a minimal GE-tree. We have also found that it is useful when

1 School of Computer Science, University of St Andrews,
St Andrews, Fife, KY16 9SS, UK. {colva, ipg, tom,
sal}@dcs.st-and.ac.uk. The second author is supported by a
Royal Society of Edinburgh SEELLD Support fellowship. Our research is
also supported by EPSRC grant numbers GR/R29666 and GR/S30580.

discussing these types of problem to separate an analysis of the sym-
metries of a problem from a discussion of the constraints involved.

Secondly, GE-trees are a useful practical tool. For instance, it has
proved possible to construct GE-trees for a great many types of sym-
metry. In this article we discuss only value symmetry, for reasons of
space, but we have also been able to construct GE-trees for certain
kinds of variable symmetry, and for some fully general (i.e. mixed
variable and value) symmetry. A great deal of work remains to be
done in this area.

In the next section we formally define GE-trees. The following
two sections contain a description of a fast and memory-efficient
technique for constructing a GE-tree for arbitary value symmetry.
After this we discuss the interactions between GE-trees and con-
straints, and compare the construction of GE-trees with other meth-
ods of symmetry breaking, namely SBDS [10] and SBDD [4]. We
then present some experimental data, before concluding.

2 GE-trees
Definition 1 A CSP is a set of constraints C acting on a finite set of
variables ∆ : A1, A2, . . . , An, each of which has finite domain of
possible values Di := Dom(Ai) ⊆ Λ. A solution to a CSP is an in-
stantiation of all of the variables in ∆ such that all of the constraints
in C are satisfied. Statements of the form (var = val) are literals.

Definition 2 Given a CSP L, with a set of constraints C, and a set χ
of literals, a symmetry of L is a bijection f : χ → χ such that:

1. A (partial or full) assignment A of L satisfies all constraints in C
if and only if f(A) does.

2. An assignment A of L is a nogood if and only if f(A) is a nogood.

We denote nodes in a search tree by calligraphic letters, and ele-
ments of the symmetry group by lower case letters. The letter G is
reserved for the symmetry group. Elements of the symmetry group
act on the right, thus (A = α)g denotes the image of the literal
(A = α) under the symmetry g.

We consider trees to consist of nodes which are labelled by vari-
ables (except for the leaves, which are unlabelled), and edges labelled
by values. We think of this as meaning that the variable is set to that
value as one traverses the path from the root of the tree toward the
leaves. At a node N , the partial assignment given by reading the la-
bels on the path from the root to N (ignoring the label at N itself)
is the state at N . We often identify nodes with their state, when the
meaning is clear. By the values in N we mean the values that oc-
cur in literals in the state at N , and similarly for variables. We often
speak of a permutation as mapping a node N to a node M, although
strictly speaking the permutation maps the literals in the state at N
to the literals in the state at M.

Before giving a formal definition of a GE-tree, we need some more
group-theoretic definitions.

Definition 3 Let G be a group of symmetries of a CSP. The stabiliser
of a literal (X = α) is the set of all symmetries in G that map
(X = α) to itself. This set is itself a group. The orbit of a literal
(X = α), denoted (X = α)G, is the set of all literals that can be
reached from (X = α) by a symmetry in G. That is

(X = α)G := {(X = α)g : g ∈ G}.

The orbit of a node is defined similarly.

Definition 4 A Group Equivalence tree (GE-tree) for a constraint
satisfaction problem with symmetry group G is any search tree satis-
fying the following:

1. No node is isomorphic under G to any other node.
2. Given a full assignment A, there is at least one leaf of the tree

which lies in AG.

Therefore, the nodes of the tree represent equivalence classes of
partial assignments under the group, and the action of the group on
the tree fixes every node.

We define a GE-tree to be minimal if the deletion of any node (and
its descendants) will delete at least one full assignment.

3 Construction of GE-trees for value symmetries

In this section we describe how to construct a GE-tree when the sym-
metries of the problem act on values. In the most general case, a value
symmetry is any permutation g where if (A1 = α)g = (A2 = β)
then A1 = A2. Note in particular that this allows the existence of
symmetries g acting as follows:

(A1 = α)g = (A1 = β), (A2 = α)g = (A2 = γ).

Our description in this section makes no mention of constraints: see
Section 5 for a discussion of how constraints interact with the sym-
metry breaking.

The first step is to relabel the values such that the domains of the
variables are pairwise disjoint. We may now consider the permuta-
tions to be acting on the values themselves, rather than on literals.
The size of the set upon which G acts is

Pn

i=1 |Di|.
With the previous example, we might make the values distinct by

adding subscripts, to show which variable can be assigned to them.
The action of g would then be written

α1g = β1, α2g = γ2.

We construct a tree as follows. Suppose that a node N has state
V

1≤i≤k
(Ai = αi). We compute the subgroup of G that stabilises

each of {αi : 1 ≤ i ≤ k} (the pointwise stabiliser of the αi) and de-
note this subgroup by G(αi:1≤i≤k). We select a variable Ak+1 which
is not in N (it does not matter whether we always choose the same
variable at the same depth), and label N with Ak+1. We then com-
pute the orbits {Oj : 1 ≤ j ≤ ok+1} of G(αi:1≤i≤k) on Dk+1. For
each such orbit Oj we select a representative βj . For 1 ≤ j ≤ ok+1

we then create an edge from N labelled with βj .

Theorem 5 A tree T constructed as in the preceding paragraph is a
GE-tree.

Proof: Suppose first that two nodes are isomorphic. This means
that there exists a g ∈ G and nodes N and M with Mg = N . We
will show that M = N .

Let P be the node of greatest depth in the tree that is an ancestor
of both M and N and let X be its label. If M 6= N then the state
at M contains more literals than the state at P , and so for some α, β
we must have (X = α) ∈ N and (X = β) ∈ M. However, since
Mg = N we have αg = β. The symmetry g must fix P , since
M and N agree on the variables in P . So α is in the same orbit
as β under the pointwise stabiliser of the values in P , which is a
contradiction. Thus M = P = N .

Suppose next that A is a full assignment. We must show that there
exists a g ∈ G such that Ag is a leaf in T. We write A as

m
^

i=1

(Ai = αi).

Without loss of generality, A1 is the label on the root of T. Denote
the orbit of α1 under G by αG

1 . There is a unique β1 ∈ Λ such that
β1 is a label of an edge under the root and β1 ∈ αG

1 . Let g ∈ G be
such that α1g = β1. Then the first literal of Ag is a node of T.

Suppose that for some gk ∈ G the partial assignment ∧k
i=1(Ai =

αigk) is a node N ∈ T, with label Ak+1. For 1 ≤ i ≤ k, de-
note αigk by βk. We show that there exists a gk+1 ∈ G such
that ∧k+1

i=1 (Ai = αigk+1) is a node in T. Denote the orbits of
G(βi:1≤i≤k) on the domain of Ak+1 by O1, . . . , Os. There exists
a unique j with αk+1 ∈ Oj . Let βk+1 be the representative of Oj

that is a label of a downedge from N , let h ∈ G(βi:1≤i≤k) satisfy
αk+1h = βk+1, and let gk+1 := gkh. Then the first (k + 1) literals
of Agk+1 are the state of a node in T. QED

Proposition 6 A GE-tree T constructed as in Theorem 5 is minimal.

Proof: Suppose that T is not minimal. Then there is a node N ∈ T
such that T \ N is a GE-tree.

The node N cannot be the ancestor of any full assignment, as oth-
erwise deleting N would result in the deletion of a full assignment
A. Since no symmetric equivalent of A lies in T, the tree T \ N
would contain no representative of A under G, a contradiction.

Suppose without loss of generality that N itself has no descen-
dants. This implies that every variable has been used in N , and so N
is a full assignment. This is a contradiction. QED

3.1 Complexity of this construction
We now consider the complexity of this construction of a GE-tree.
This is crucial if we are to compare the use of GE-trees with other
methods of symmetry breaking.

In this section we let di := |Di|. We examine the time required to
construct the edges leading down from level k, and to construct the
nodes at level (k + 1). Recall the “soft-O” notation for complexity,
where we ignore logarithmic terms. Thus O˜(N) = O(N logc N)
for some constant c. For all of the group-theoretic complexity results,
see [13].

We consider the root to be level zero, and let the root be labelled
A1. In a standard search tree, the time required to construct the edges
leading down from the root is O(d1).

In a GE-tree with symmetry group G, a base and strong generating
set for G must be constructed before we construct the tree. We let
N :=

Pn

i=1 di, then there is a deterministic algorithm to do this in
time O˜(N4 + tN2), where t is the number of generators of G.

We may assume that O(t) < O(N), since there is an O(t log N)
algorithm to reduce the number of generators of a group to at most
O(N). For many practical purposes, t < 5.

The time required to compute the number of orbits of G on D1

is O(td1). Denote the number of such orbits by o1. We select a
representative of each orbit. This gives a total time at the root of
O˜(o1 + td1). Note that o1 < d1 and will generally be very small
relative to d1, else the problem does not display much symmetry.

We now compare the time requirement of extending from level k
to level k + 1, where k > 0. For each node N we have a state, given
by the path from the root to N . Suppose for the sake of simplicity
that there is a fixed variable ordering, so that all nodes at level i are
labelled Ai+1 for 0 ≤ i ≤ n − 1. Each node at depth k is therefore
already labelled with Ak+1.

In a standard search tree, the time required to construct level k +
1 is O(

Qk+1
i=1 di), since at each of the O(

Qk

i=1 di) nodes we must
construct dk+1 edges.

We write RX
H to mean a set of orbit representatives for the action

of a permutation group H on a set X . In a GE-tree, the number of
nodes at depth k is

X

α1∈R
D1
G

X

α2∈R
D2
Gα1

. . .
X

αn∈R
Dn
G(α1,...,αn−1)

|R
Dn+1

G(α1 ,...,αn)
|.

For each node N we start by computing the pointwise stabiliser GN

of the values in N , in time O˜(N4 + tN2). We then compute the
orbits of GN on Dk+1, which requires time O(tN dk+1), where tN
is the number of generators of GN . Since dk+1 ≤ N and O˜(tN) =
O˜(N), this is O˜(N2) for each node N . Denote the number of
orbits of GN on Dk+1 by oN ,k+1: note that oN ,k+1 ≤ dk+1 ≤ N .
We finish by selecting a representative of each orbit.Thus the total
cost at each node is is certainly no greater than O˜(N 4).

As a consequence of this discussion we have the following impor-
tant theorem.

Theorem 7 Symmetry-breaking for a CSP with only value symme-
tries is tractable.

4 Global value symmetries
One common form for a problem with value symmetries is for the
symmetries to act globally. We say that the group consists of global
value symmetries if, for all variables X, Y ∈ ∆, values α, β ∈ Λ,
and symmetries g ∈ G, (X = α)g = (X = β) implies that (Y =
α)g = (Y = β).

To determine that a group G acts in this way, it suffices to check
that each of the generators of G acts in this way. Suppose from now
on that this is so. As in Section 3, we consider the symmetries to be
acting on the values directly, rather than on literals. However, we do
not make distinct copies of each value for each variable, but instead
allow the group to act on the union of the domains of each variable.
Note that this means that the group is acting on fewer points than
it was in the previous section: the size of the union of the domains
rather than the sum of the domain sizes.

The tree is then constructed exactly as in the previous section: at
each node N we compute the pointwise stabiliser GN of the values
in N . We then compute the orbits of GN on the domain of the label
of N , and construct one edge for each orbit, labelled with an orbit
representative.

Proposition 8 This construction produces minimal GE-trees.

At this point, our tree can be seen to be a generalisation of the
Compact Variable Decomposition Tree introduced in [14]. Suppose
that G acts via global value symmetries, and is the symmetric group
on these values. This means that given any pair P1, P2 of n-tuples
of distinct values, there is an element of G that can simultaneously
map each coordinate of P1 to the corresponding coordinate of P2.
We denote the symmetric group on n points by Sym(n).

The pointwise stabiliser in the symmetric group of any set of
points acts as the symmetric group on the remaining points. Thus
at a node N we have one edge for each value which we have used
so far (as these have orbits of size 1 under the pointwise stabiliser)
and then a single edge labelled with a representative of the remaining
values. This is precisely the search space described in [14, §3].

Similarly, one may show that the GE-trees which we construct
contain a unique representative of each node that is explored in the
other two cases considered in [14]. Consider, for instance, the direct
product case (which they term “piecewise interchangeable CSPs”).
Here G = Sym(a)×Sym(b) for some a and b, and the a+ b values
are partitioned into two subsets Λ1 and Λ2 of size a and b that cannot
be interchanged. The pointwise stabiliser in G of any set S of points
has the following orbits on the full set of values. For each α ∈ S
there is an orbit {α} of length 1. There is an orbit consisting of all
points of Λ1\S , and an orbit which contains all points of Λ2\S . Thus
if a node N is labelled with X then it has the following downedges:
one for each value in N that lies in the domain of X , one labelled
with an element of Λ1 that lies in the domain of X and is not in N
and one labelled with an element of Λ2 that lies in the domain of X
and is not in N .

Figure 1. A GE-tree for G = Sym(a) × Sym(b)

1 α

α α α α α

1

1 1 1 1

β

β β β γ22 3 21 α 1 2 β

1 2 α α

The first three levels of the resulting GE-tree are shown in Fig-
ure 1. We use natural numbers for elements of Λ1 and greek letters
for elements of Λ2. Since the choice of variable at each node is com-
pletely arbitrary, we do not label the nodes. We have labelled the final
level of edges at their ends purely for clarity.

The partial assignments given by the tree in Figure 1 are precisely
the options considered in [14, §3]. A similar, but longer argument
shows that the same is true for the final case that they consider, that
of wreath product action.

4.1 Complexity of this construction
The complexity of this construction is similar to that for the preced-
ing section. However, the group is now acting on the union of the
domains for each variable, rather than a set whose size is the sum of
the sizes of the domains for each variable. Therefore we now have

N := | ∪n
i=1 Di|. The formula for the number of nodes at level k is

the same as in Section 3.1, as is the formula for the time cost at each
node (but with the new meaning for N).

5 GE-trees and search

Whilst we have described GE-trees as static objects, they will nor-
mally be constructed dynamically during search and hence the issue
arises of how the GE-tree construction interacts with constraints.

We consider the situation where a CSP has arbitrary value sym-
metry and no variable symmetry. Recall that the edges below a node
N labelled X are orbit representatives for the pointwise stabiliser of
the partial assignment at N on the domain of X .

Lemma 9 Let α ∈ Dom(X) be an orbit representative under GN .
If there exists β ∈ αGN such that β 6∈ Dom(X) then there are no
solutions extending N ∧ (X = α).

Proof: Since β 6∈ Dom(X), the value β must have been pruned
from the domain of X at some point higher in the search tree. This
implies that for some partial assignment M ⊆ N , the partial assign-
ment M ∧ (X = β) causes failure. Thus any partial assignment in
the orbit under G of M∧ (X = β) causes failure. But there exists a
g ∈ GN such that (X = β)g = (X = α) and Mg = M ⊆ N , so
N ∧ (X = α) will cause failure. QED

Thus during dynamic construction of a GE-tree for value symme-
tries we do not construct these branches, leading to even greater time
savings.

We next compare the search trees constructed by SBDD and
SBDS.

Lemma 10 SBDS, using all symmetries of the group, constructs a
GE-tree.

Proof: It is well-known that SBDS will find exactly one of each
equivalence class of solutions, if the whole group is used.

We therefore need only show that under SBDS no two nodes are
isomorphic. Suppose nodes M and N are isomorphic. This means
that there is a g ∈ G such that Mg = N . This in turn implies that
M = N , or else an SBDS constraint would have prevented us from
constructing both nodes. QED

Lemma 11 SBDD constructs a GE-tree, if the dominance check is
applied at every node.

Proof: It is well-known that SBDD will find exactly one of each
equivalence class of solutions, provided that dominance checks are
applied to the leaf nodes.

We therefore need only show that under SBDD no two nodes are
isomorphic. Suppose nodes M and N are isomorphic, and that M
is to the left of N in the tree. But then M dominates N unless M =
N . QED

A more subtle problem is to determine when SBDD and SBDS
construct the same tree for a problem with value symmetry as the GE-
tree constructed in Section 3, when one includes the branch pruning
of Lemma 9. We suppose that the values have been ordered, and that
SBDD and SBDS always try the smallest value first, and that the
smallest value in an orbit under a symmetry group is always chosen
as an orbit representative.

Remark 12 Suppose that a CSP has only value symmetries, that
there are no constraints, and that no propagation other than forward
checking is carried out. Under the above value ordering heuristic,
SBDS will construct exactly the same tree as our GE-tree construc-
tion given in Section 3, provided that all symmetries are used and
that checks are carried out at every node, and that both techniques
select the same next variable on being given a partial assignment.

To see this, let N be a partial assignment and X the next vari-
able to consider. We wish to show that exactly the same images are
considered for X under SBDS as in the GE-tree construction of Sec-
tion 3. It is clear that if N = ∅ then SBDS and our GE-tree construc-
tion will choose the same values for X , in the same order. SBDS
will consider the possible values from smallest to largest through the
domain of X . It will construct a branch if N ∧ (X = α) is not
symmetrically equivalent to any previous node. Therefore, α is the
smallest member of its orbit under GN . All such smallest members
are constructed. For suppose that β is the minimal member of an or-
bit of GN on Dom(X), and that SBDS does not construct a branch
for (X = β). Then N ∧ (X = β) is symmetrically equivalent to a
node M. But this means that N must be symmetrically equivalent
to some other node, since we only have value symmetry and β is the
first element of its orbit that we have considered. But by induction,
N cannot be mapped to any other node.

A second consideration is how the construction of a GE-tree
for a subgroup of the symmetry group would interact with other
symmetry-breaking techniques, principally SBDS and SBDD.

Theorem 13 Let T be a GE-tree for the subgroup H of value symme-
tries of the symmetry group G of a CSP, constructed as in Section 3.
If SBDS or SBDD is performed whilst searching T then exactly one
of each equivalence class of solutions will be found.

Proof: We provide a proof for SBDD; the SBDS case is similar.
Let A be a solution. Then T will contain at least one terminal node
which is a symmetric equivalent of A. Denote these by A1 := Ag1,
A2 = Ag2, . . . ,At = Agt, where gi ∈ G.

We must show that exactly one of these equivalent states will be
found when searching T using SBDD. No more than one state is
found, for if Ai is the first such then since Ai.g

−1
i gj = Aj , the node

Ai dominates all other Aj .
If the first symmetric variant of a partial assigment is always the

one (if any) to be accepted as a node of a GE-tree then it is clear that
a representative of each equivalence class of solutions is found, as
SBDD will only reject states that contain symmetric equivalents of
nogoods.

A problem might arise if the first of an equivalence class of so-
lutions is not the chosen representative for the GE-tree. For then it
might it might happen that a node N is posted as a nogood even
though the subtree under it rooted at M has not been explored (be-
cause Mg is the chosen representative). We need to show that N
does not dominate (and hence rule out) the orbit representative Mg.
This follows because g is a value symmetry, so both M and Mg are
below N . Therefore Mg will always be explored before N is posted
as a nogood, and the resulting tree will always contain a representa-
tive of each equivalence class of solutions. QED

Remark 14 If a GE-tree is constructed for the group of value sym-
metries of a CSP, then by Theorem 13 it is safe to use SBDD or SBDS
to break all other symmetries. This combined approach has lower
complexity than using SBDD or SBDS alone, as both are exponential
whilst our GE-tree construction is low-degree polynomial.

6 Experiments
In this section we present results from an implementation of value-
symmetry CSP solving by GE-tree construction. We model and con-
strain the problem in the ECLiPSe [15] CSP system. We search by
attributing to each variable its current partial assignment and its cur-
rent domain. This information is passed to the GAP [7] computa-
tional algebra system. GAP returns a domain containing only sym-
metrically distinct values. Backtrack search proceeds (in ECLiPSe)
on this (hopefully much smaller) domain.

Our initial experiments involved colouring non-symmetric graphs.
Here the value symmetry is Sym(n), where n is the number of
colours. We compared the GE-tree method to SBDD using GAP–
ECLiPSe [9]. We found that solution times were markedly reduced.
For example, finding all 7-colourings of a 12-vertex graph took
50.10 cpu seconds (28.35 GAP, 21.75 ECLiPSe) using SBDD. Solv-
ing the same problem by GE-tree construction took 8.87 cpu sec-
onds (6.12 GAP, 2.75 ECLiPSe). These results are expected: GAP–
ECLiPSe SBDD performs a potentially exponential search for a
dominating group element at each variable-value choice, whereas
GE-tree construction has low-degree polynomial complexity (as de-
scribed in Section 3.1). This motivated experimentation with more
complex value symmetry.

A most perfect magic square [11] of size n×n (where n ≡ 0 mod
4) has entries 1 . . . n2 such that (i) each row, column and diagonal
(including wrap around) has sum (n3 + n)/2, (ii) each 2 × 2 block
(including wrap around) has sum 2(n2 +1), and (iii) any pair distant
by n/2 along a diagonal (including wrap around) sum to n2 +1. Any
solution is one of 2n+1((n/2)!)2 symmetric equivalents [11]. Many
of these symmetries do not preserve constraints, and are therefore
difficult to handle without computational group theory.

The natural model for this problem has cells as variables and en-
tries as values. In addition to the constraints given above, we add the
implied constraints that any two entries n/2 along any row (resp. col-
umn) with the left entry in an even column (resp. row) have the same
sum. However, we cannot use the polynomial time algorithm because
we have only variable symmetries. But the values of the n2 variables
are a permutation of 1 . . . n2. So we search using a different model
in which the variables are entries and the value is the cell the entry
goes in. Now all symmetries are value symmetries and we construct a
GE-tree to break them completely. However, the constraints are most
naturally expressed on the original model, so we simply add chan-
neling constraints between the dual sets of variables. Thus we have
the simple expression of the constraints of the natural model, com-
bined with the complete polynomial time symmetry breaking using
the dual model.

Method n sols GAP Eclipse Σcpu
SBDD 4 3 0.3 0.3 0.6

8 10 5.4 125.4 130.8
12 42 2748.2 12519.8 15268.0

GE-tree 4 3 0.2 0.1 0.3
8 10 0.7 90.0 90.7

12 42 29.1 10901.8 10930.9
Table 1. Most Perfect Magic Squares

Our results are summarised in Table 1, where the number of so-
lutions are correct for SBDD and GE-tree, and the timings are cpu
time in seconds using a 2.4GHz Pentium 4 processor. Since there are
294,912 symmetric equivalents of each solution for n = 8, breaking
no symmetry is not a sensible option. Using SBDD on the value sym-
metries works well, but the GAP dominance checks are still poten-
tially exponential. Solution by GE-tree construction is the most effec-

tive method, primarily due to the tractable group-theoretic questions
being posed during construction. This suggests a practical and effec-
tive method for symmetry breaking in CSPs. If – either by formula-
tion and/or the use of channeling constraints – all the symmetries are
value symmetries, then GE-tree construction provides a polynomial
time method for complete symmetry breaking. This is a win when-
ever the reduced cost of symmetry breaking outweighs the cost of a
sub-optimal formulation and/or additional constraints.

7 Conclusion
In this article we have introduced a new conceptual abstraction, the
GE-tree. This is a search tree containing a unique representative of
each class of full assignments, which also has the property that no
node is isomorphic to any other node. We have given a polynomial-
time algorithm to construct this tree in the case of arbitary value sym-
metries, and have shown that for certain kinds of symmetry it can be
viewed as a generalisation of the tractable symmetry-breaking tech-
niques discussed in [14]. We have also presented experimental data
which allows us to conclude that this is an efficient practical approach
to symmetry breaking.

Future areas of interest include further experimentation on value-
symmetry CSPs, analysis of GE-tree construction for CSPs with
mixed variable-value symmetry and for non-CSP problems, and fur-
ther investigation into the relationship between GE-tree construction
and existing symmetry breaking techniques.

REFERENCES
[1] R. Backofen and S. Will, ‘Excluding symmetries in constraint-based

search’, in Proc. CP-99, pp. 73–87. Springer, (1999).
[2] C.A. Brown, L. Finkelstein, and P.W. Purdom, Jr., ‘Backtrack searching

in the presence of symmetry’, in Proc. AAECC-6, ed., T. Mora, pp. 99–
110. Springer-Verlag, (1988).

[3] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, ‘Symmetry-breaking
predicates for search problems’, in Proc. KR’96, pp. 149–159, (Novem-
ber 1996).

[4] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann, ‘Symmetry
breaking’, in Proc. CP 2001, ed., T. Walsh, pp. 93–107, (2001).

[5] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynap Kızıltan, Ian
Miguel, Justin Pearson, and Toby Walsh, ‘Breaking row and column
symmetries in matrix models’, in Proc. CP 2002, ed., Pascal Van Hen-
tenryck, pp. 462–476. Springer-Verlag, (2002).

[6] Filippo Focacci and Michaela Milano, ‘Global cut framework for re-
moving symmetries’, in Proc. CP 2001, ed., T. Walsh, pp. 77–92,
(2001).

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.3, 2003. (http://www.gap-system.org).

[8] Ian P. Gent, Warwick Harvey, and Tom Kelsey, ‘Groups and constraints:
Symmetry breaking during search’, in Proc. CP 2002, ed., Pascal Van
Hentenryck, pp. 415–430. Springer-Verlag, (2002).

[9] I.P. Gent, W. Harvey, T. Kelsey, and S.A. Linton, ‘Generic SBDD using
computational group theory’, in Proc. CP 2003, ed., Francesca Rossi,
pp. 333–347. Springer-Verlag, (2003).

[10] I.P. Gent and B.M. Smith, ‘Symmetry breaking in constraint program-
ming’, in Proc. ECAI 2000, ed., W. Horn, pp. 599–603. IOS Press,
(2000).

[11] Dame Kathleen Ollerenshaw, ‘On most perfect or complete 8x8 pandi-
agonal magic squares’, Proc. Royal Soc. London, 407, 259–281, (1986).

[12] Jean-François Puget, ‘Symmetry breaking revisited’, in Proc. CP 2002,
ed., Pascal Van Hentenryck, pp. 446–461. Springer-Verlag, (2002).

[13] Akos Seress, Permutation group algorithms, number 152 in Cambridge
tracts in mathematics, Cambridge University Press, 2002.

[14] P. van Hentenryk, P. Flener, J. Pearson, and M. Agren, ‘Tractable sym-
metry breaking for CSPs with interchangeable values’, in Proc. IJ-
CAI’03, (2003).

[15] M. G. Wallace, S. Novello, and J. Schimpf, ‘ECLiPSe : A platform for
constraint logic programming’, ICL Systems Journal, 12(1), 159–200,
(May 1997).

