
Watched Literals for Constraint Propagation in
Minion ?

Ian P. Gent1, Chris Jefferson2, Ian Miguel1

1School of Computer Science, University of St Andrews, St Andrews, Fife, UK
2Oxford University Computing Laboratory, University of Oxford, Oxford, UK

{ipg,ianm}@dcs.st-and.ac.uk, Chris.Jefferson@comlab.ox.ac.uk

Abstract. Efficient constraint propagation is crucial to any constraint
solver. We show that watched literals, already a great success in the sat-
isfiability community, can be used to provide highly efficient implemen-
tations of constraint propagators. We describe three important aspects
of watched literals as we apply them to constraints, and how they are
implemented in the Minion constraint solver. We show three successful
applications of to constraint propagators: the sum of Boolean variables;
GAC for the ‘element’ constraint; and GAC for the ‘table’ constraint.

1 Introduction

Efficient constraint propagation is the bedrock of any implementation of con-
straint programming. We show that watched literals can be used to provide
faster implementations of constraint propagators. Watched literals are one of the
main reasons for the dramatic improvements seen in SAT solvers in this decade
[12]. They allow the key progagation algorithm, unit propagation, to run much
faster than previous implementations. Used as triggers to fire constraint prop-
agations, watched literals have three features different to triggers as normally
used. Watched literals only cause propagation when a given variable-value pair
is deleted; their triggering conditions can be changed dynamically during search;
and they remain stable on backtracking so do not use memory for restoration.
These features can be used separately, and we report on doing so.

We first identify what we consider to be the two key benefits of watched
literals: the reduction of work when no propagation is possible, and the reduc-
tion in work on backtracking. We detail the three aspects of watched literals
mentioned above. Then we report implementations of three different constraints
using watched literals. The first is a slight generalisation of the SAT clause,
and so it is no surprise that this allows us to improve the speed of propagating
SAT clauses in a constraint solver. In fact, our results show that SAT clauses
? Ian Miguel is supported by a UK Royal Academy of Engineering/EPSRC Fellowship.

This research was supported by EPSRC Grants GR/S30580 and EP/D032636 and
the EPSRC funded SymNET. We thank Peter Jeavons, Steve Linton, Iñes Lynce,
Angela Miguel, Karen Petrie, Judith Underwood, and our CP reviewers.

propagate almost as fast as in a state-of-the-art SAT solver. Next, we show that
watched literals are ideally suited to implementing generalised arc consistency
(GAC) for the ‘Element’ constraint. Using classical triggers, it is hard to achieve
GAC efficiently. Our third example is to implement GAC for the ‘Table’ con-
straint, i.e. an arbitrary constraint specified by an explicit list of allowed tuples,
based on GAC-2001/3.1 [4]. By using watched literals, we automatically convert
this from being a constraint-based to a support-based algorithm. Furthermore,
by the nature of watched literals, we do not need to restore the state of support
data structures on backtracking.

We report on how we provide the infrastructure to allow watched literals to
work in a practical constraint solver. All our implementation and experimenta-
tion is based on the Minion constraint solver [7]. Minion’s design principles
are to reduce user choice to allow greater optimisation; and to maintain a low
memory profile, especially for state information that needs to be restored on
backtracking. We have shown that this does lead to exceptionally fast runtimes
[7]. Thus, the run-time improvements we report here are compared to the state
of the art. Watched literals have been incorporated into Minion. Since Minion
is open source, our implementations are available for use and research.1

2 Motivation and Terminology

Conventionally, constraints are triggered by a particular variable’s domain being
changed in one of three ways: by being assigned, by having any value in its
domain removed, or by having either its lower or upper bound removed. We call
these kinds of triggers classical. A watched literal can trigger on the removal
of any given variable-value pair in the problem. We use the word “literal” for a
variable-value pair. This is completely consistent with its usage in SAT, where
a literal is a variable together with a polarity. A literal trigger is one which
causes its constraint to act when the given value is removed from that variable.
Literal triggers can be found in the cc(FD) language, in which constraints can be
attached directly to individual domain elements [9]. We use the word ‘literal’ is
to avoid a clash with the classical ‘domain trigger’, which will fire when any value
of its variable is removed. After a watched literal is triggered, its constraint can
move the trigger to another literal, delete it, or add a new watched literal. We
say that a dynamic trigger is one which can be moved in this fashion. Dynamic
triggers are a valid concept on non-literal triggers. We can have dynamic triggers
which fire on domain removal, bounds removal, or variable assignment, and these
are implemented in Minion. By contrast, a static trigger is one whose firing
conditions are guaranteed to remain fixed during the lifetime of a constraint.2

Watched literals have to remain valid on backtracking, so that we can avoid
storing their state information in backtrackable memory. A trigger with this
property is a backtrack-stable trigger, or just ‘stable trigger’ for short.3 We
1 http://minion.sourceforge.net. We used revision 138 in this paper.
2 Under this definition a classical bounds trigger is static although the exact domain

removals that trigger it will change.
3 We thank Steve Linton for suggesting this name.

explain this concept in more detail below. For brevity and to emphasise the
historical linkage with the SAT concept, we say that a watched trigger is a
dynamic and backtrack-stable one. Thus a watched literal is just a dynamic,
stable, literal trigger.

It might be helpful to think of a dynamic trigger being a generalisation of a
classical bounds trigger. A bounds trigger fires, say, on the value 2, but after it
propagates it will fire on the new lower bound, perhaps 7. For a dynamic trigger,
the constraint itself decides where the new trigger will be, rather than being fixed
at the new lower bound. It can move the trigger to another value of the same
variable, to any value of any other variable in the constraint. It can move some
or all dynamic triggers associated with a constraint to different places. It can
even add or delete dynamic triggers.

We see the key advantage of watched literals and dynamic triggers as the
flexibility it gives constraint propagators to avoid unnecessary work. In many
situations where a constraint cannot propagate, it causes no work at all. To
enable this, each constraint using dynamic triggers must provide what we call
the propagation guarantee: that its intended level of consistency is satisfied
unless at least one of its dynamic triggers fires. For a watched literal, when a
domain value is deleted, we only need to wake up constraints which are watching
that literal (i.e. that value of its variable.) The advantage extends to, for example,
dynamic assignment triggers. A constraint on ten variables may be able to set
up dynamic assignment triggers on just two of them: this constraint will cause
no work when of the other eight are assigned.

Watched triggers (but not dynamic triggers) have another significant advan-
tage because they are backtrack-stable. This lets us reduce memory management
overheads greatly. Conventionally, on backtracking, we ensure that the state of
all propagators are exactly as they were when we left that node going forwards,
necessitating some data structures and maintenance to support this.4 Backtrack-
stability lets us lift this restriction. It is enough to ensure that when we backtrack,
all constraints are in a state which lets them provide the propagation guarantee.
It is perfectly acceptable for a constraint’s set of watched triggers to be com-
pletely different on returning to a node to the set when we left the node, as long
as both sets provide the propagation guarantee in that search state. The ideal
way to achieve this is for constraints to define sets of watched triggers which do
not need to be changed on backtracking, i.e. backtrack-stable triggers. Where
we can do this perfectly, the constraint needs put nothing into backtrackable
memory. This means that no copying is done on backtracking, so once again we
have reduced the cost associated with the constraint to zero.

Defining backtrack-stable triggers can require nonintuitive thinking, but some
general rules apply and we will see examples in the detailed descriptions to
follow. Many cases are simple, because the notion of support monotonic in many
constraints: i.e. if a set of values supports some literal, they still support it as
we restore values to domains on backtracking. However, more subtle cases arise,

4 This is not always true. For example, Régin describes how versions of the MAC
algorithms can be modified to avoid state restoration upon backtracking [13].

as in GAC for the table constraint in Section 5. When we fail to find support
for a value and so the constraint forces its deletion, the natural thing to do is
to remove the watch on the literal. This is correct for dynamic triggers but not
for watched triggers. When we backtrack, the value we have just deleted will be
restored to its domain, as will the literal whose deletion caused its removal. If
we delete the trigger, we will lose the propagation guarantee on backtracking.
Instead, we leave the watched literal in place.

There is one general disadvantage that should be mentioned with watched
triggers, although not with dynamic triggers. Because triggers may move ar-
bitrarily between leaving a node and returning to it, it is often not possible
to use a propagation algorithm which is optimal in the worst case in terms of
propagation work performed down a single branch. An example is our variant of
GAC-2001/3.1 below. This has to be set against the great potential for efficiency
gains we have outlined, so we do not think this will often be a major disadvan-
tage. The same problem arises in SAT but watched literals are very widely used,
and we will see experimentally that our non-optimal watched version of GAC
outperforms an optimal but unwatched one.

3 Watched Literals for Sum of Booleans

The first constraint we consider is the sum of an array of Boolean variables B
being greater than or equal to a constant value c. Where c = 1, this is just a SAT
clause and our method is exactly the standard use of watched literals in SAT
[12]. As such it serves as a good introduction to watched literals for constraint
programming. Our approach is only novel in being incorporated in a constraint
solver: watched literals for the (more general) weighted sum of a Boolean array
was reported by Chai and Kuehlmann [5].

We watch c + 1 different literals in the domain of c + 1 different variables
in B. In each case we watch the value 1. If, at initialisation, we can find only
c such literals we immediately set them all to be 1, and if we cannot find even
that many we fail: in neither case is any more work on this constraint required.
In general, the watched literals are B[i1] = 1, B[i2] = 1, . . . , B[ic+1] = 1. The
watched literals, on their own, more than satisfy the constraint, so all other
literals could be set to 0 without any propagation happening.

When one of the values being watched is removed, we have some B[ij] = 0.
In this case, we have to find a new value i′j so that B[i′j] still has 1 in its domain
and is not one of the other k literals currently being watched. In the worst case,
we have to scan each unwatched variable in the array to see if it has 1 in its
domain. If we find such a literal, we simply stop watching B[ij] = 1 and start
watching B[i′j] = 1: we call this moving the watch from one literal to the other.
From the propagation guarantee, we cannot propagate until one of these literals
is deleted. On backtracking, we can only make the constraint looser by enlarging
domains, so the watched literals are backtrack-stable. The more interesting case
is if we cannot find any other literal to watch. In this case, we know there are
at most c literals with 1 in their domain, and all must be set to 1 to satisfy the
constraint. So we can immediately set all of them to be 1. This will either cause

GAC Propagator for Sum of Booleans
∑

B[1..n] ≥ c

OneRemovedFromWatchedVar(i)
Triggered by DomainRemovalOf B[i] = 1

A01 j := Last

A02 repeat j := j + 1 mod n− c− 1
A03 until (j = Last) or (1 ∈ Domain(B[UnWatched[j]])
A04 if (j 6= Last) then // We found a new literal to watch, so update data structures

A04.1 MoveWatchFrom B[i] = 1 To B[UnWatched[j]] = 1;
A04.2 UnWatched[j] := i; Last := j
A05 else // No new literal found to watch, so at most c 1’s possible in B

A05.1 foreach k such that WATCHED[B[k] = 1]
A05.2 if(k 6= i) then AssignVariable(B[k] = 1)

Fig. 1. Propagator for the Boolean Sum constraint. UnWatched is an array of integers.
Its values are all different and represent the set of unwatched literals: in general it will
not remain sorted during search. Last points to the array element in UnWatched that
was set to be watched the last time we updated this constraint. Neither UnWatched nor
Last needs to be restored on backtracking: therefore both reside in non-backtrackable
memory. AssignVariable sets a variable to a value and triggers necessary propagations
while MoveWatchFromTo updates the watched literal store.

immediate failure (if another one of the watched literals can no longer be 1) or
guarantees to satisfy the constraint. However, we continue to watch all the c+1
literals we were watching previously. All watched literals are now set and will
cause no propagation, so there is no cost in leaving them in place. Pseudocode for
this is shown in Fig. 1. As mentioned above, it is essential to leave the watches
in place so that they will be correct on backtracking. In the cases studied in this
paper it is always correct to leave watches in place when a constraint is either
satisfied or unsatisfied. The last time the constraint was fired, the propagation
guarantee held and the set of watched triggers were backtrack-stable. Therefore,
if we backtrack past the current point in search, we return to a state where we
know a set of backtrack-stable triggers satisfied the propagation guarantee.

Our first set of experiments are on SAT problems. These are encoded into a
constraint problem with a Boolean variable for each SAT variable and a Boolean
sum greater than 1 for each clause. In no way can Minion compete with spe-
cialist SAT solvers because it does not have specialised heuristics or techniques
such as nogood learning. However, these experiments demonstrate the value of
incorporating watched literals into a constraint solver for this kind of constraint.
We compare Minion using its sum-≥ constraint using classical triggers against
our new implementation using watched literals. For reference we also compare
these against the same model encoded into ILOG Solver 5.3 (a more recent ver-
sion was not available to us) and a state-of-the-art SAT solver, MiniSAT [6]. We
ran on two sets of SAT benchmarks from SATLib [10], uniformly unsatisfiable
random instances with 150 variables, and the QG benchmark set. Results are
shown in Table 1. We ran experiments on a variety of machines for this paper,
but any comparison between methods on an identical instance were run on a sin-
gle machine for consistency to enable valid comparisons. Our SAT experiments

Classical Watched ILOG Solver 5.3 MiniSat
Problem Time(s) Nodes Nds./s Time(s) Nds./s Time(s) Nds./s Time(s) Decisions Dec./s
Random 96.20 621,798.1 63,360 100.0 62,180 462.9 13,225 0.0858 3,577.1 41,614
QG1.7 8.13 58 7 7.83 7 2.77 21 0.14 121 864
QG1.8 628.47 188,270 300 101.89 1,848 3604 .09 27 0.75 7,951 10,601
QG2.7 8.16 32 4 7.89 4 2.20 14 0.125 54 432
QG2.8 1,137.31 340,747 300 165.16 2,063 3604 .09 25 10.328 48,933 4,737
QG3.8 1.08 150 139 1.06 141 0.36 415 0.046 283 6,152
QG3.9 18.42 82,404 4,474 14.09 5,847 107.63 766 6.703 55,003 8,205
QG4.8 1.06 909 855 1.03 882 0.92 987 0.078 1,003 12,859
QG4.9 1.56 461 295 1.52 304 0.94 491 0.046 28 608
QG5.9 2.83 187 66 2.75 68 1.30 143 0.62 26 419
QG5.10 5.44 1,453 267 4.63 314 10.84 134 0.093 74 795
QG5.11 6.77 506 75 6.20 82 7.97 63 0.14 79 564
QG5.12 269.84 139,581 517 76.33 1,829 2132.67 65 0.296 1,440 4,864
QG5.13 4,847.28 1,798,176 371 1,125.83 1,597 3602 .88 48 6.156 30,776 4,999
QG6.9 2.19 28 13 2.13 13 0.53 51 0.046 16 348
QG6.10 3.53 313 89 3.33 94 2.05 153 0.109 458 4,202
QG6.11 7.58 2,522 333 5.66 446 21.03 120 0.296 2,632 8,892
QG6.12 50.09 26,847 536 20.95 1,281 358.88 75 4.484 22,519 5,022
QG7.9 2.19 8 4 2.14 4 0.50 14 0.046 8 174
QG7.10 3.81 816 214 3.47 235 4.58 178 0.093 124 1,333
QG7.11 16.64 11,616 698 8.16 1,424 104.94 111 0.187 1,866 9,979
QG7.12 277.41 159,907 576 70.53 2,267 2370.37 68 0.593 5,731 9,664
QG7.13 786.55 312,108 397 180.66 1,728 3602 .19 52 0.265 1,307 4,932

Table 1. Experiments with Random SAT instances (mean of 100) and QG SAT in-
stances. Bold indicates which of the three constraint solvers searched most nodes per
second – nodes searched in each case were identical. Italics in the Solver column indicate
timeouts after 1 hour. The number of SAT variables in QGi.n is n3.

were run under Windows (XP SP2), with a Pentium 4 3GHz and 2GB of RAM,
compilation being done using g++ 3.4.4 under cygwin.

On random instances, watched literals are a slight overhead, presumably be-
cause all clauses have only 3 literals. Both versions of Minion outperform Solver
on random instances. MiniSAT easily outperforms both versions of Minion. Al-
though Minion does search more nodes per second than MiniSAT, its very small
runtimes may make these figures unduly affected by setup times. For the struc-
tured QG benchmarks, we see that in all cases the watched literal propagator
outperforms the classical version by up to 6 times in run time. ILOG Solver
does outperform Minion on a number of instances, but only on easy instances:
we suspect that this is because of Minion’s larger initialisation costs. Minion
searches faster on all instances where either solver takes even 10 seconds. On
hard instances Minion can search many times faster than Solver, up to 82 times
in the case of QG2.8. Minion is again outclassed easily by MiniSAT. However, on
instances where it takes 10 seconds, Minion, is never as much as 6 times slower
than MiniSAT in terms of decisions per second. Certainly Minion is not a com-
petitive SAT solver. However, the efficiency with which it propagates clauses does
suggest that it is ideally suited for solving hybrid instances containing significant
numbers of SAT clauses together with more expressive constraints.

4 Element Constraint

The “Element” constraint is a great addition to the expressivity of a constraint
language. It allows one to use an integer variable for the index of an array [8].

Suppose that A is an array of n integer variables and that Index and Result are
two more integer variables. The Element constraint is that A[Index] = Result.
Although the constraint is implemented in constraint toolkits such as ILOG
Solver, Gecode [14], and Choco [11], we are not aware of a literature on how
to propagate it. This may be because, using classical triggers, some aspects of
Element are hard to propagate efficiently enough to repay the overheads.5 In
contrast, using watched literals, establishing and maintaining GAC is straight-
forward to implement and efficient. In particular, where little propagation occurs
little overhead is incurred. We start by establishing the exact definition of GAC:

Theorem 1. The domains of variables in an Element constraint are Generalised
Arc Consistent if and only if all of the following hold:

Dom(Index) = {i} =⇒ Dom(A[i]) ⊆ Dom(Result) (1)
i ∈ Dom(Index) =⇒ Dom(A[i]) ∩Dom(Result) 6= ∅ (2)

Dom(Result) ⊆
⋃

i∈Dom(Index)

Dom(A[i]) (3)

Proof: (If) Suppose all the conditions hold. By (2) there is a value to support
each value of Index. If Dom(Index) is a singleton then (1) and (3) show that
Dom(A[Index]) = Dom(Result), and any value of one variable is supported by
the same value of the other. If |Dom(Index)| > 1, every value for each A[i] is
unconstrained since it is supported if Index 6= i. Also, (3) ensures that each value
j of Result is supported by a pair Index = i, A[i] = j. (Only If) Suppose the
domains of Index, Result, and each A[i], are GAC. If Dom(Index) = {i} then
certainly any value in Dom(A[i]) must be in Dom(Result). If i ∈ Dom(Index)
then there must be at least one value in the domain of both Dom(A[i]) and
Dom(Result). Finally, for any value v ∈ Dom(Result) there must be an index
i ∈ Dom(Index) such that v ∈ Dom(A[i]). QED

This proof shows the close link between the conditions and the support for
each value of each variable in the constraint. We make this explicit, by describing
support for each value of A[i], Index and Result. Notice that each kind of
support involves at most two other variables, instead of a tuple involving all
variables in the constraint. There are three cases, corresponding exactly to (1),
(2) and (3) above.

Support for A[i] = j: either |Dom(Index)| > 1 or j ∈ Dom(Result).
Support for Index = i: any j such that j ∈ Dom(A[i]) and j ∈ Dom(Result).
Support for Result = j: any i such that i ∈ Dom(Index) and j ∈ Dom(A[i]).

We now describe how we proceed if the support is lost, i.e. when values are
removed which were supporting a variable-value pair in one of the cases above.

1. There are two cases where we might have lost support for A[i] = j. The
support in either case is independent of i, depending only on the values of
Index or Result respectively.

5 Choco and Gecode achieve GAC on Element, but we believe Solver 5.3 does not.

(a) If Index is assigned to i (i.e. its domain is the singleton {i}) then we
have to remove all values from Dom(A[i]) not in the domain of Result.
This can be achieved by a classical trigger on the assignment of Index.

(b) If a value j is removed from the domain of Result, and Index has already
been assigned to i, then we remove j from the domain of Dom(A[i]).
There are a number of ways to achieve this: in our pseudocode and
implementation we use a classical domain reduction trigger on Result.

2. If the value j is removed from either Dom(A[i]) or Dom(Result), we try to
find another value j′ in the domain of both. If we succeed, this is the new
support for Index = i. If not, then we remove i from the domain of Index.
We implement this by watching the literals A[i] = j and Result = j. If we
find j′ then we move the watched literals to be on A[i] = j′ and Result = j′.
If we do not find a new support, we leave the watched literals in place, so
that they will be correct when j returns to the domain on backtracking.

3. If the value i is removed from Dom(Index), or j is removed from Dom(A[i]),
we try to find another pair of values i′, j′ with i ∈ Dom(Index) and j ∈
Dom(A[i]). These will be the new support for Result = j, or else we insist
that Result 6= j. We implement this by watching Index = i and A[i] = j,
moving these to Index = i′ A[i′] = j′ if possible. If not, we again leave the
watches in place.

We find this development very natural. We started from the definition of domains
being GAC, moved to what is needed to support each value of each domain, and
finally showed how new supports could be sought when old supports are lost.
This last stage can be implemented in Minion. Pseudocode for this implemen-
tation is in Fig. 2, where the four constituent functions correspond exactly with
the four cases above. We have not discussed initialisation because it is a straight-
forward variant on the pseudocode of Fig. 2. Finding the initial watched values
is essentially the same as finding new ones from old, and values are removed if
we cannot find initial supports for them.

We have not compared our approach empirically with existing classical im-
plementations, but we argue that watched literals have the potential to be much
faster. For each i in Dom(Index) we are watching two things, and for each j
in Dom(Result) we are watching two things. If the array is size 500 and each
domain is of size 100, we therefore have 1,200 literals to watch in addition to
the conventional triggers on Index and Result. Yet in total in A[i], Index, and
Result, there are 500,600 domain elements, so we watch less than 0.25% of all
domain elements. This argument also shows why it is important that we do not
need to restore trigger data on backtracking when using watched literals. If we
did have to, we would have to restore the values of 1,200 triggers on backtrack-
ing, an overhead which would outweigh the benefits we have gained. The only
genuine efficiency loss compared to conventional methods happens when we fail
to find new support, for example in line C01 in Fig. 2. We have to search the
whole domain instead of just the remaining part of the domain.

To compare with our watched literal implementation, we wrote two other
propagators using classical triggers. Both are triggered any time any literal is

GAC for Element Constraint: A[Index] = Result

SupportLostForArrayValue-a(i)
Triggered by AssignmentOf Index = i

// Remove from domain of A[Index] any values not in domain of Result

A01 foreach k in the current domain of A[i]
A01.1 if k 6∈ Domain(Result) then
A01.2 RemoveFromDomain(A[i],k)

SupportLostForArrayValue-b()
Triggered by AnyDomainRemovalOf Result

// If Index is assigned to i then Dom(A[i]) ⊆ Dom(Result)

B01 if VariableIsAssigned(Index) then
B02 foreach k in the current domain of A[i]
B02.1 if k 6∈ Domain(Result) then
B02.2 RemoveFromDomain(A[i],k)

SupportLostForIndexValue(i, j)
Triggered by RemovalOf A[i] = j or RemovalOf Result = j

// Previously we supported Index = i because j ∈ Domain(A[i]) ∩ Domain(Result)

// Now we must find a replacement for j or insist that Index 6= i

C01 foreach k in the current domain of A[i]
//See caption for details of how we step through domains

C02 if k in the current domain of Result then
C02.1 MoveWatchFrom A[i] = j To A[i] = k;
C02.2 MoveWatchFrom Result = j To Result = k;
C03.3 return // We are finished, leave function

C04 endforeach // We failed to find a new support so Index 6= i

C05 RemoveFromDomain(Index,i)

SupportLostForResultValue(i, j)
Triggered by RemovalOf Index = i or RemovalOf A[i] = j
// Previously we supported Result = j because i ∈ Domain(Index) and j ∈ Domain(A[i])

// Now we must find a replacement pair for (i, j) or insist that Result 6= j

D01 foreach k in the current domain of Index
D02 if j in the current domain of A[k] then
D02.1 MoveWatchFrom A[i] = j To A[k] = j;
D02.2 MoveWatchFrom Index = i To Index = k;
D03.3 return
D04 endforeach // We failed to find a new support so Result 6= j

D05 RemoveFromDomain(Result,j)

Fig. 2. Propagator for the Element constraint. Note that we mix types of triggers
freely. The first function triggers when a variable is assigned, and the second triggers
on a domain removal. The final two functions both trigger when one of two literals
being watched is removed. At line C01 search the domain starting from j, and looping
back to j if we reach the end of the domain. A similar approach is taken at D01.

removed from a variable, and are told the literal removed. One of these accom-
plishes GAC, by looking at all literals which could have lost support by the
removal of this literal, and checking if support for them still exists.6 This has
the advantage of being very space efficient, using no memory which must be
backtracked at all, at the cost of extra computation at each node. The second,
non-GAC implementation, checks only each time any variable is assigned, and
performs only those checks which are possible in O(1) time.

Langford’s Problem is problem 24 in CSPLib: L(k, n) requires finding a list
of length k ∗ n, which contains k sets of the numbers 1 to n, such that for all
m ∈ {1, 2, . . . , n} there is a gap of size m between adjacent occurrences of m.
For example, 41312432 is a solution to L(4, 2). We modelled L(2, n) in Minion
using two vectors of variables, V and P , each of size 2n. Each variable in V
has domain {1, 2, . . . , n}, and V represents the result. For each i ∈ {1, 2, . . .}
the 2ith and 2i + 1st variables in P are the first and second positions of i in V .
Each variable in P has domain {0, 1, . . . , 2n− 1}, indexing matrices from 0. We
write =elem to distinguish the usage of the element constraint from indexing of
a vector by a constant. Where i ranges from 1 to n, the constraints are:

V [P [2 ∗ i]] =elem i

V [P [2 ∗ i + 1]] =elem i

P [2 ∗ i] = i + P [2 ∗ i + 1]

We found all solutions to Langford’s problem up to n = 8 using this model.
Experiments for increasing values of n were performed for our three propagators
for element presented in this paper. These were run under Mac OS X (10.4.6)
running on a 1.2Ghz PowerPC G4 with 768MB RAM compiled with g++ 4.0.1.
Results are presented in Table 2. Performing GAC on the element constraints
improves solving time by an order of magnitude. The watched GAC propagator
is over twice as fast as the non-watched GAC propagator, and in terms of nodes
searched per second is only slightly slower than the non-GAC propagator. We
also performed experiments on constraint encodings of Quasigroup construction
problems, shown in Table 3. Experiments were performed under Windows as
described earlier, and under Linux (Fedora Core 4) with a Pentium 4 3.4 GHz
dual processor with 8GB RAM, with compilation by g++ 4.0.2. On QG3, GAC
performs no additional propagation, but remarkably our GAC algorithm using
watched literals is faster than the non-GAC algorithm. We suggest this is because
of the benefit of watched literals avoiding unnecessary work. On QG7, we get
significant search reductions, but here speed per node is greatly reduced by the
extra work and the overheads are not repaid. In both cases the watched literal
GAC propagator is much faster than the classical version.

5 Watched-GAC for the Table Constraint

The ‘Table constraint’ provides generalised arc consistency for any user-defined
constraint, given by a list of acceptable tuples of the variables involved in the
6 This approach is similar to the GAC algorithm in Choco, as seen in its source code.

Non-GAC Classical-GAC Watched-GAC
Solutions Time(s) Nodes Nodes/s Time(s) Nodes Time(s) Nodes Nodes/s

L(4,2) 2 <0.1 378 - <0.1 46 <0.1 46 -
L(5,2) 0 0.1 6,956 - <0.1 694 <0.1 694 -
L(6,2) 0 2.3 169,275 73,000 0.6 15,388 0.3 15,388 59,000
L(7,2) 52 76.8 4,912,580 64,000 16.7 413,573 7.5 413,573 55,000
L(8,2) 300 3,276.9 176,320,552 54,000 635.7 13,471,366 267.2 13,471,366 50,000

Table 2. Comparison of propagators in Minion on Langford’s problem.

Non-GAC Classical-GAC Watched-GAC
Problem Time(s) Nodes Nodes/s Time(s) Nodes Time(s) Nodes Nodes/s
QG3.6 0.016 51 - 0.031 51 0.031 31 -
QG3.7 0.031 11 - 0.047 11 0.016 11 -
QG3.8 7.031 105,414 14,992 43.453 105414 6.453 105,414 16,335
QG3.9 0.047 26 - 0.141 26 0.031 26 -
QG3.11 0.078 132 - 0.375 132 0.078 132 -
QG7.7 <0.1 844 - 0.03 311 0.02 311 -
QG7.8 0.08 12,450 155,625 0.5 4,628 0.33 4,628 14,024
QG7.9 <0.1 233 - 0.02 83 0.01 83 -
QG7.10 205.56 31,383,717 152,674 840.33 3,408,114 329.8 3,408,114 10,333.9

Table 3. Propagators in Minion on Quasigroup Existence Problems. (QG3.10 was not
solved in an hour by any propagator.) QG3 ran under Windows, QG7 under Linux.

constraint. This can be very useful where critical parts of a problem have no
natural expression in primitive constraints, but which need to be propagated
effectively. The table constraint can be implemented using any GAC algorithm,
provided it is suitably adapted to work correctly in a backtracking environment.
We base our algorithm on GAC-2001/3.1 [4].

This section shows the third significant benefit of using watched literals.
We have already seen it greatly speed up propagation of SAT-like constraints
and enable the simple and efficient implementation of GAC for the element
constraint. Here, we show that we can convert an easy-to-implement but coarse-
grained GAC algorithm into a fine-grained algorithm where the required data
structure maintenance is provided entirely by an already-implemented central
infrastructure. GAC-2001/3.1 was presented as a coarse-grained algorithm, i.e.
it is a constraint-oriented propagation algorithm [4]. By using watched literals,
we convert it into a fine-grained algorithm, i.e. “the deletion of a value in the
domain of a variable will be propagated only to the affected values in the domains
of other variables” [4]. The watched literal infrastructure provides the services to
make this happen automatically, so we need only minimal adaptations to a non-
watched version of the algorithm. This is enormously much more straightforward
than the complicated data structures which need to be implemented to enable
classical fine-grained GAC algorithms such as AC-6, AC-7, or GAC-Schema [3,
2, 1] to work correctly and efficiently on backtracking. The penalty is that our
version of GAC-2001/3.1 is no longer time-optimal in the worst case.

Pseudocode for Watched-GAC is given in Figure 3. Each literal is associated
with a set of triggers. These are initially attached to the literals which provide
the first support for the literal that can be found. During search, if any of these
literals are deleted, the trigger is activated, and either a new support is found, or
if no support can be found the literal is deleted. As with earlier examples, there
is no need to backtrack these supports. If a new support is found, that support

GAC Propagators for Table Constraint 〈X1, X2, . . . , Xn〉 ∈ Table

Global Variables: tupleList, Last

Setup(inputTupleList, V ars)
A01 tupleList = inputTupleList
A02 foreach v ∈ vars
A02.1 foreach i ∈ Dom(v)
A02.1.1 Last(v, i) = tupleList[0]
A02.1.2 if Supported(Last(v, i))
A02.1.2.1 Last(v, i) = FindNextSupportingTuple(v, i, τ)
A02.2 if Last(v, i) 6= nil
A02.2.1 RemoveFromDomain(v, i)
A02.3 else
A02.3.1 foreach v′ ∈ vars
A02.3.1.1 AttachNewTriggerTo(v′, Last(v′, i))

SupportingTupleLost(i, j)
B00 Triggered by DomainRemovalOf some Xk = l in Last(Xi, j)

// Xi = j was supported by the tuple Last(Xi, j)

// We must find new supporting tuple, or set Xi 6= j

B01 τ = FindNextSupportingTuple(i, j, Last(Xi, j));
B02 if τ 6= nil
B02.1 then
B02.2 for k = 1 to n
B02.2.1 MoveWatchFrom Last(Xi, j)[k] To τ [k]
B02.3 Last(Xi, j) = τ
B02.4 else // We failed to find a new support so Xi 6= j

B02.5 RemoveFromDomain(Xi,j)

FindNextSupportingTuple(i, j, τ)
C01 if(check = τ + 1; check < sizeof(TupleList); check = check + 1)
C02.1 if(Supported(tupleList[check]))
C02.1.1 return tupleList[check]
C03 if(check = 0; check < τ ; check = check + 1)
C04.1 if(Supported(tupleList[check]))
C04.1.1 return tupleList[check]
C05 return nil

Fig. 3. Propagator for the Table constraint. We write τ [k] for the variable-value pair
at position k in the tuple.

will also be valid after backtracking. If a new support cannot be found, then we
leave the triggers where they are. When search backtracks past this search node,
the deleted literal will be restored, as will the literals in the old support. They
must have all been present at the end of the previous node, else they would have
been moved then.

This does introduce one problem when compared with GAC 2001. In GAC
2001, the tuple supporting each literal at a node is restored when backtracking

Dynamic Watched
Problem Time(s) Nodes Nodes/s Time(s) Nodes/s
4 0.21 3,373 16,062 0.1 33,730
5 0.17 954 5,612 0.07 13,629
6 69.94 268,113 3,833 21.01 12,761
7 7,146.25 10,354,130 1,449 4637.11 2,233

Table 4. Comparison of propagators for the table constraint in Minion on the Prime
Queen Attacking problem. For size 7, the problem was not solved to optimality in
reasonable time. The time given is to reach the same sub-optimal value.

to that node. This allows every tuple to be checked at most once down any
branch. The watched implementation of GAC-2001 does not have this property,
because the supporting tuple can change when search continues beneath a node,
and it is not restored on backtracking. Therefore when checking for support, it is
necessary to scan through all tuples. The current implementation always begin
searching from the current support, which means that at any particular node
each possible tuple will be checked at most twice, as after one pass through the
tuples there must be no support, which may require one more pass through to
prove. Also, this behaviour could be repeated at several nodes down a branch.
We also implemented GAC for the table constraint using dynamic (i.e. non-
watched) triggers. We no longer have to loop in searching for support, therefore
we retain optimality down a branch, but the penalty is the overhead of storing
dynamic triggers and support information in backtrackable memory.

The prime queen attacking problem (number 29 at www.csplib.org) is to put
a queen and the numbers 1, ... n2 on the cells of an an n×n chess board such that
any number i is reachable via a knight’s move from the cell containing i−1. The
number of primes not attacked by the queen should be minimised (the queen
does not attack its own cell). To model this problem, we use a vector V of n2

variables, each with domain 0..(n2−1) to indicate the cell to which each value is
assigned. To constrain consecutive values to be placed a knight’s move apart, we
use a binary table constraint between each adjacent pair of elements of V . We
also introduce a variable to represent the cell to which the queen is assigned, also
with domain 0..(n2 − 1). For each prime value between 2 and n2, we introduce
a 0/1 variable. A ternary table constraint ensures that this 0/1 variable is set
to 1 iff the queen is attacking the corresponding value. We maximise the sum of
these 0/1 variables. Experiments, shown in Table 4, for the table constraint were
performed under Linux as described earlier. They show that the watched table
constraint is faster than the dynamic one: i.e. the overhead of additional search
are less than the overhead of restoring dynamic data structures. The limited
range of experiments, and the lack of comparison against other techniques, means
that we cannot draw extensive conclusions. We do conclude that watched literals
provide a realistic and relatively straightforward way to implement GAC-table.

6 Implementing Watched Literals in Minion

We report briefly on our infrastructure for watched literals in Minion. This
infrastructure is used by each of the propagators in this paper and is available
for future propagators to be implemented. Since the intention is to use watched
literals to make propagation and search faster in practical constraint solvers, it

is important that implementation is done in a space and time-efficient manner.
Our implementation respects two primary goals. These are that the maintenance
of watched literals requires constant space after initialisation, and that key data
access and update operations are fast. The key operations are finding the location
of literals being watched when a value is removed, and changing which literals are
being watched. We also provide infrastructure for non-stable dynamic triggers:
it is almost identical except that triggers are stored in backtrackable memory.

In Minion, watched literals can be created and destroyed at any time, but
each constraint has to declare at initialisation the maximum number of watched
literals it will need at any one time. Each watched trigger is associated with a
variable and constraint and also with a unique identifier within its constraint,
while a watched literal also stores the value being watched. The constraint is
responsible for maintaining any other information it needs for the trigger. For
example the table constraint requires the current supporting tuple associated
with a watched literal: this is stored in an array indexed by the trigger identifier.

A watched trigger consists of four values. These are: the identifier of the
trigger; a pointer to the constraint associated with this trigger; and two pointers
which are used to splice the trigger in and out of doubly linked lists. Once search
begins, no trigger is ever moved or copied to another place in memory. Instead
the pointers are used to change which list the trigger is in. Every literal in the
CSP has a doubly linked list which contains the list of watches currently attached
to it. Note that this requires O(nd) space if we have n variables each of domain
size d. Each variable also has a list for watched triggers for domain, bounds,
and assignment triggers. When a literal is deleted, the solver moves through
this list, triggering each constraint in turn. Thus, no work is done for these
literals with no watches currently associated with them, unlike in a traditional
solver where each constraint the literal is in would have to be notified. This
is one of the key features behind watched literals. When a constraint moves a
watched trigger t, in the general case we execute t.next.prev = t.prev and
t.prev.next = t.next. Thus a watched trigger movement is achieved in O(1),
and the space used by the trigger is free to be reused for its new location, with its
pointers updated accordingly. Constraints are free to move their watched literals
from watching one literal to a different one. This needs to be a fast operation,
so we need random access to their location in the list associated with a variable
value pair. This again is achieved by a pointer.

There are further complications. (We plan to report more details at the Min-
ion website, minion.sourceforge.net.) Constraints can leave triggers on variable-
value pairs which have been removed, so we cannot just assume the trigger list
will be emptied. Second, while a list of triggers is being processed, constraints
may delete or move some of the triggers on it, or even move other triggers from
other literals onto this list. This complicates the process of propagating all con-
straints attached to a literal, as the obvious methods have problems when trig-
gers are removed from the list while the constraints are being triggered. While
we raise the issue as an important implementation issue, we do not discuss our
solution in detail as being of too low a level to be of general interest.

Our infrastructure for dynamic and watched triggers makes it possible to
adapt Minion to add constraints dynamically, although this has not yet been
implemented. A new constraint set up with dynamic triggers will automatically
be retracted on backtracking past it, while a constraint using watched triggers
will persist for the rest of search. This would enable techniques such as learning
nogoods during search, a technique that has proved vital in SAT.

7 Further Work and Conclusions

We have demonstrated the utility of watched literals in constraint solving. In
particular, we have shown how three propagators, Sum of Booleans, Element,
and Table can benefit from their use. It is important to emphasise, however,
that watched literals do not render classical propagation triggering mechanisms
useless. Classical triggers have a lower overhead than watched literals and so are
more efficient when their use is appropriate. Many are still used in Minion.

A natural and important piece of future work is to explore the integration of
nogood learning into Minion. Learning is also a crucial component of a modern
SAT solver, and there is every reason to believe that it can also be of great ben-
efit to constraint solving. Minion’s ability to manage large numbers of nogoods
efficiently is clearly a substantial advantage in pursuing this goal.

References

1. C. Bessière and J.C. Régin. Arc consistency for general constraint networks: Pre-
liminary results. IJCAI, 398–404, 1997.

2. C. Bessière. Arc-consistency and arc-consistency again. AIJ, 65(1):179–190, 1994.
3. C. Bessière, E. C. Freuder, and J.-C. Régin. Using inference to reduce arc consis-

tency computation. IJCAI, 592–599, 1995.
4. C. Bessière, J.-C. Régin, R. H. C. Yap, and Yuanlin Zhang. An optimal coarse-

grained arc consistency algorithm. AIJ, 165(2):165–185, 2005.
5. D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver. DAC, 830–

835. ACM, 2003.
6. N. Eén and N. Sörensson. An extensible SAT-solver. SAT, 502–518, 2003.
7. I.P. Gent, C. Jefferson, and I. Miguel. Minion: A fast, scalable, constraint solver.

ECAI, 2006.
8. P. Van Hentenryck and J.-P. Carillon. Generality versus specificity: An experience

with ai and or techniques. AAAI, 660–664, 1988.
9. P. Van Hentenryck, V.A. Saraswat, Y. Deville: Design, implementation, and eval-

uation of the constraint language cc(FD). J Log. Program. 37(1-3): 139-164 (1998)
10. H. H. Hoos and T. Stützle. SATLIB: An online resource for research on SAT. SAT,

283–292, 2000.
11. F. Laburthe. CHOCO: implementing a CP kernel. In Workshop on Techniques for

Implementing Constraint programming Systems (TRICS), 2000.
12. M. Moskewicz, C. Madigan, Y. Zhao, S. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. DAC, 2001.
13. J.-C. Régin: Maintaining Arc Consistency algorithms during the search without

additional space cost. CP 2005: 520-533
14. C. Schulte and P. J. Stuckey. Speeding up constraint propagation. CP, 619–633,

2004.

