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Abstract.  Quantified Constraint Satisfaction Problems (QCSPs)Mamoulis & Stergiou, and indeed quickly infect all generated prob-
are CSPs in which some variables are universally quantified. For eadems. This is an important problem for experiments in QCSP, but we
possible value of such variables, we have to find ways to set the reas yet do not have a solution to it.

maining, existentially quantified, variables so that the constraints are

all satisfied. Interest in this topic is increasing following recent ad-

vances in Quantified Boolean Formulae (QBFs), the analogous ge  Background

eralisation of satisfiability (SAT). We show that we can encode QC- . .

SPs as QBFs. We introduce a simple generalisation of the direct er@CSPS are more expressive than CSPs and in general are PSPACE'
coding of CSPs into SAT. We then introduce some adaptations of thigpmplete. They allow formulation of problems whe_re aII_contlngen-
encoding to make it effective in a QBF solver. We solve some QCSF9'es must be allowed for, for example where configuration must be
test instances orders of magnitude faster than using a specialis&?

ssible for all possible sequences of user choices. We briefly de-
QCSP solver, taking advantage of the more advanced state of tﬁgribe QCSPs, but refer the reader elsewhere for more details [2, 4].
art in QBF solving. Our conclusions are twofold. First, there is con-

A binary QCSP is of the fornQQC whereQ is a sequence of quan-
siderably more subtlety required in encodings in QBF than in sarlifiers Qvy..

.Qnvy, Where eacld); quantifies g or V) a variablev;
Second, in an area such as QCSP where algorithmic techniques aﬁl@d each variable occurs exactly once in the sequende is a con-
not yet highly developed, encodings into a better understood proH

unction of binary constraints. Each constraint involves two variables
lem can give access to extremely advanced search methods with vefy (which may be universally or existentially quantified) and a
little implementation effort.

set of conflictsk. A conflictc € R is a pair(sp, sq). If vp := sp
andv, := s, then the constraint is violated. A QCSP of the form
F1Q2v2...Qnv,C is true if Qavz...Qrv,Clv1 = s] is true for
1 Introduction some value of. Similarly, a QCSP of the formtv; Qzvz...Qn v, C

_ . is true if Q2v2...Qn v, Clur := s] is true for all values of.
A particular advantage of encoding one search problem as another . provide some basic details of QBF, but refer the reader else-

occurs when search techniques for the target problem are more highlyhere for a more detailed introduction [3]. A Quantified Boolean
developed than the original. This is to be expected when a new searqurmula is of the formQC where( is defined above (however in
problem starts to be studied intensively. In this paper we considefis case the domain of each variablefisF). C is a Boolean for-
Quantified Constraint Satisfaction Problems (QCSPs), which haﬁwula in conjunctive normal form (CNF), a conjunction of clauses
only recently started to be researched [11, 2, 4]. By contrast, & NUMy e each clause is a disjunction of literals. Each literal is a variable
ber of solvers are available for Quantified Boolean Formulae (QBFS),q a4 sign. The literal is said to be negative if negated and positive
exploiting a variety of sophisticated techniques, e.qg. conflict-directeq)therwise. The semantic definition is the same as for QCSP.
[12] and solution-directed backjumping [10]. Therefore, we expect
encoding QCSPs into QBFs to be a competitive method of solvin .
QCSPs. Furthermore, we expect it to indicate areas for future (?Z-l Assumptions throughout the paper
QCSP algorithmic research. In this paper, we show that these th
expectations are justified.

A more unexpected result of our research is that the fine tuning_ . )
of encodings to be effective for search is considerably more involvegrh'\‘j' ;a)n /\bi\Jed(ucfdvt?z)+T:1rgllj\;oclz?ltﬁssp;§)aervv$ ;;/re?er:i the
than in the case of SAT, where encodings often have an elegant sim-_*. " =18 M ' . ' S
plicity. This issue occupies the bulk of this paper. A simple way Ofequwalences in this form for pedagogical purposes, while in im-

lifting CSP encodings to QCSP is very ineffective, and we need nev‘PIementayon we use the cl_ause set._ In SOme cases, the equivalence
%:lly applies if a variable: is false, in which case we have that
t

common structure in our encodings is the following, wheradi-
cates the truth of the disjunctiofz; V z2 V ... V z,) <= a.

ideas without analogues in SAT to make search effective. The en VSRVERY v 2. The cl that ari
result is an encoding which, on the encoded instances, can run ma 1V a2 V.V an) . a).. z. 'he crauses nat arse are
times faster than a QCSP algorithm on the original. e same as before, wlth the addition of the literéd each clause. _
Afinal issue we address in this paper, which is familiar from other W(te present experlmelntetll resfults thr(iughou’_[ th? tpallpsr. tExpe::-
problems such as CSP and QBF, is that of flaws in random instancer:y.ren s werrer rLrj]:.r?n 'i Z;os '\e/IrHo comhpu .3:53;2',&% S:M 3\7 ium q
We show that flaws arise in the QCSP instance generator proposed 096550 S u Ing & Z, eacn wi o - e use
e 'k-QCSP’ instance generator [11] with quantifier sequéetice

1 School of Computer Science, University of St Andrews, St Andrews, Fife,andn /3 variables in each block. We set théconstraint graph den-
KY16 9SS, UK {ipg,pn,agdr}@dcs.st-and.ac.uk sity) parameter to 0.5 and varigdconstraint looseness) and We




report runtimes on 100 encoded instances using our own implemen- Two groups of clauses are necessary to set the appropriate indica-
tation of CBJ for QBF: we found that Solution directed backjumping tor variable when the universal assignment is unacceptable. We use
[10] did not reduce search but caused overheads. We compare agaiirsficator variables of three types:

Mamoulis and Stergiou’s specialised algorithms for QCSPs [11]. We

use the same instances in each case to reduce variation dependeni o’ indicates (when true) that(z? V... vV z3) (i.e.v has no values)
properties of the instance. We do not include translation times in ou#. m; ; indicates that:{ A z7 (i.e.v has at least two values)

results for QBF, but these are not large. The largest average time ov@r z indicates the assignment is unacceptable because some universal
a sample was 0.1sec on a 3GHz machine, and this could be improved variables are set incorrectly. It is true iff one or more of the other
by more careful implementation. Our results on hard instances taking indicator variables is true.

thousands of seconds would not be affected. « ALO (at least one value)

3 Global Acceptability Encoding (Y VayV..Vay) = "

In this section we show that the direct encoding of CSP into SAT care AMO (at most one value)

be lifted to work for QCSPs, using what we call the global accept-

ability encoding. The name comes from the use of a single variable 4 d

to encode acceptability of the QBF assignment to universal variables. /\ /\ ((ﬁx;’ VozY) = ﬁm;j)

We will find that the encoding presented in this section is ineffective i=1j=it+1

for search, but its relative simplicity allows us to focus on the key For any assignment to the universal variables in the QBF, there ex-

issues of lifting an encoding correctly from CSP to QCSP, withoutists a corresponding assignment to the indicator variables. So the in-

getting lost in the minutiae of adapting the encoding to be effective. dicator variables are existentially quantified in a block after all other
In the direct encoding, variabletakes value: in the CSP if and  variables. The global indicator variableis defined with the state-

only if the variablev, is true in the SAT instance. Therefore an ‘ac- ments below, wher# is the set of all universal QCSP variables.

ceptable’ assignment of the SAT variables is one where each of the

underlying CSP variables has one value. In SAT, it is simple to rule® Indicator collector clauses:

out unacceptable assignments by making the formula false in those

cases. In QBF the situation is more complexwifs existentially d d

quantified, then the Boolean variables ..« are existentially quan- { \/ <lv v \/ \/ mf,j)] — z

tified, and the situation is the same as with SAT. However, i§ veu i=lj=it+1

universally quantified, for the formula to be true overall requires that

it is true for each value ob. Hence the Boolean variables...v; 3.2 Encoding the constraints

must be universally quantified. The formula should only be falsified

overall if an acceptable assignment is false, so unacceptable assighPe clauses encoding the constraints are the same as in the direct

ments to universals should cause the formula to be true. To achievcoding from SAT to CSP, via what are called ‘conflict clauses’ with

this, we use existentially quantified ‘indicator’ variables. This fol- the addition of the global indicator variabte This means that all

lows Gent and Rowley’s technique for addressing a similar problenfonstraint clauses are true if a universal variable is set unacceptably.

in encoding the game of Connect-4 in QBF [8]. A constraintC' between two variables andb with domainsA and B
is represented by the relatid?, , C A x B containing the allowed
3.1 Encoding the QCSP variables pairs. Saa = 7 andb = j satisfiesC' if and only if (i, j) € Ra,».

Each QCSP variable is represented by a set of Boolean variables® Conflict clausesFor all tuples(i, j) ¢ R,

x7...xy whered is the domain size of. These variables are quanti- . b

fied existentially or universally depending on the type of the QCSP (-2 VoV oz)

variable. In either case all QBF variables forare quantified to- With the direct encoding from CSP to SAT, the AMO clauses may
gether, and the order of the original QCSP quantifications is prebe omitted. However, in the quantified case this causes complica-
served. The intended semantics of the Boolean variables are givdions. We do omit AMO clauses for existential variables — a valid
byv — i = z¥ — T. Not all QBF assignments correspond to any- QBF assignment with: assignments to an existential QCSP vari-
thing in the original QCSP, for example those which set a variable ta@ble would represent valid QBF assignments. However, if multiple
three different values. So we define an “acceptable assignment”: assignments to universal variables were allowed, an unacceptable as-

o ) ] signment to a universal variable would falsify the formula, so AMO
Definition 1 An acceptable assignment of an encoded QBF is 0ngayses for universal variables are essential to prevent this.
which corresponds to an assignment of the QCSP. For each QCSP

variable v, exactly one of the corresponding QBF variablés is 3.3 Correctness and Experimental Analysis
true. A partial assignment is acceptable if it extends to an acceptable

full assignment. In an acceptable assignment, there is a natural correspondence be-

We encode that the assignment to either existential or universdlVeen assignments ofthe QBF and the QCSP, so for exartipieT

variables is acceptable. The approaches to doing so are very diﬁererﬁorreSpondS te = 2. The other, indicator, variables all depend on

it is easiest to discuss existential variables first. We simply rule Ou{he_value of the variables; and are set f_rom them by unit propa-
an existential taking no values. gation, and when we talk of the QBF assignment corresponding to a

QCSP, we assume these assignments of the extra variables.

Theorem 2 A QCSP is true if and only if the encoded QBF is true,
(zf Vas V..Va,) for the global acceptability encoding.

e ALO (at least one value)



Proof: We use induction on the unassigned QCSP variables, workeeptability, one for each universal QCSP variable. Then, as soon any
ing from the innermost quantified variables out. The induction hy-of these is set true, the remainder of the problem is satisfied.
pothesis is that any QCSP under an acceptable partial assigniment We introduce an indicator variable corresponding to each uni-
with the lastk quantified variables unassigned is true iff the encodedversal QCSP variable. As before, is existentially quantified in a
QBF under the corresponding acceptable assignmefitisdrue. final block with the other indicator variables. For presenting the en-
The base is a full assignment to the QCSP, corresponding to eoding, we assume that v are consecutive, universally quantified,
full and acceptable assignment to the QBF. In the full QBF assignQCSP variables, possibly with intervening existential variables. In
ment, all indicator variables are false. Thus indicator clauses can afllauses involvingu andv, we omit z,, if v is the first universally
be discarded as all are true. The ALO/AMO clauses can similarly bejuantified variable. We first change the collector clauses as follows,
discarded as all are satisfied in an acceptable assignment. We are léfe indicator variableg being existential and quantified together
with the constraint clauses excluding thditeral as it is false. But  with the other indicator variables at the end:
these are all sat_isfied iff no conflic_t occurs in the dire_ct _encoding. SQ |ndicator collector clauses:
the QBF is true iff the corresponding assignment satisfies the QCSP.
For the step, we need to show that the result extends one quan-
tification level. First, consider acceptable assignments té thel ** (

(Zu Vv Cv) < Zuv

d d
l“v\/ \/ m?’j) = ¢,

i=1j=i+1

innermost variable in the QCSP quantifier. Each acceptable assign-

ment to the corresponding QBF variables has the correct truth value,

by the induction hypothesis. We have to show that the QBF is true iffNote that this makes unacceptability monotonic, so i assigned

one of these one of these acceptable extensions is true (forth& unacceptably we say that all future universals are. We now adapt

variable existential) or iff one of them is false (for universal.) other clauses so that onee becomes true it makes all clauses true
First, consider thé + 1°* variablev being existential. It must be relating to deeper quantification levels.

given at least one value as otherwise an ALO clause will be false. A To save space, we do not show the changes to most clauses, but

solution may exist with an unacceptable assignment to the QBF, witldescribe them. For constraint clauses, we chanigez, as follows:

more than one value! = T assigned. But then we just choose (say) for constraints involving existentials we usg for the last universal

the least numbered value, and the acceptable existential assignmemtguantified before théirst existential QCSP variable; for constraints

corresponding to that value will also satisfy the QBF, as all occur-involving a universab we usez,, or the innermost if the constraint

rences of the variable! in constraint clauses are negative literals. ~ involves two universal$That leaves the ALO/AMO clauses for uni-
There remains the case of setting universal QBF variables una¢ersals, and we make a critical change so that as soon as a universal

ceptably. For any (acceptable or not) setting of universal variablesyariableu is set unacceptably, there is no requirement to set any fu-

the existential indicator variables can be set appropriately to satisfiure universal correctiy.

all indicator clauses. In an unacceptable assignment, the indicatqy AL O (at least one value)

clauses are true only whenhas to be true, and hence all constraint

clauses are satisfied. That is, for any unacceptable setting of univer- 2o V(2] Va3 V... Vay) < )

sal variables, there is a setting of existentials which makes all clausesé AMO (at most one value)

true, so the QBF is true in these cases. Since a universal node is false

iff one of its children is false, the falsity of the node depends only on v . v v

the status of acceptable children, as required. /\ /\ zu V ((mal v —af) <= -mi)
Finally, note that the result applies to the empty assignment of a s _ _ _

QCSP, since an empty QBF assignment is acceptaDED Theorem 3 A QCSP is true if ar_1d only if the encoded QBF is true,
The global acceptability encoding performed dreadfully. For ex-for the local acceptability encoding.

ample, at = 15, p = 0.5, median performance was 1000 secfor  proof:  Most of the proof is as before. For example the reader can
all ¢ > 0.55 except0.92. This compares to an absolute maximum of check that again in a full acceptable assignment, the conflict clauses
53.79 sec for FC1[11], and a largest median of 1.72 sec. correctly encode the semantics of the constraints. The difficulty is in
Itis not hard to see why the global acceptability encoding performspe induction step for a universal QCSP variahlé is no longer the
so badly. One important reason is that propagation is crippled by thgase that all constraint clauses are satisfied by the globastead,
necessary presence of the global indicator variabléherefore we  \ye claim that if an unacceptable assignment to the universal leads
have no equivalent of the result from SAT, that the algorithm DPyy f5isity, an acceptable assignment does too. No constraint clause
performs FC on the direct encoding [6]. For example, consider thgyolying anyz? can be falsified later in the search tree, as it will be
conflict clausg—zi v —z3' Vv 2), settinget = T failstosetrs’ = I, gagisfied byz,. Therefore, any search node with a false clause could
because the status efis unknown. This simple propagation fails to 5150 pe reached by an acceptable assignment of the QBF vatidbles
take place, yet it is fundamental to making the direct encoding ach corresponding changes to the indicator variables. This justifies
like forward checking. Worse; cannot be set false unéll universal  he claim. QED
variables are set acceptably. In the next section we will introduce a The point of the local acceptability variables is to enable more
more complicated way of encodi_ng acceptable assignments, Whicbropagation. In fact, in the case of the direct encoding, unit propa-
ameliorates these problems and improves search. gation performs at least as many domain reductions as Mamoulis &
Stergiou’s generalisation FCO of FC [11]. FCO removes values of fu-

4 Local Acceptability Encoding ture variables when they are in conflict with the assigned value of the

. e . . .2 |n fact a constraint between universal variables renders the problem triviall
The key problem we identified with the global acceptability encoding false if any conflict exists, but we include this case for comp’))leteness. /

was the fact that could not be set until all universal variables were. 3 we do not report results here, but found that this change dramatically im-
The solution to this is to use many indicator variables to encode ac- proved search when added to the rest of the local acceptability encoding.



current variable. This clearly happens from unit propagation in the

conflict clauses, because when the outer variable is set, the indicator n=21p=05

variable must already be false in an acceptable assignment. So if a ——

variablez{ is true, the variable’? must be set false by the conflict 10000 FClFSS;mLZZ: $

clause, equivalent to FCO’s removal of the value ;. 1000 | FCL1+DNI Min ——
Experimentally, the local acceptability encodings provide im- 5 Log encoding Max -+

proved search over the global encodings, but still performs orders & 100p L°9L‘*0”g°‘;:‘c"fdm:d“‘;: o

of magnitude worse than Mamoulis & Stergiou’s techniques. For ex- £ 10l

ample, atn = 15, p = 0.5 andg = 0.56, median run time is 53.41 z

sec compared to 1877 sec for the global encoding, but compared to L

unmeasurable< 0.01 sec) median time for FC1. 01t — 5 o

s =
0.01 — b4

055 06 065 07 075 08 085 09 095 1
q

5 Adapted Log Encoding

In SAT, it has often been noted that just three variables are needed Figure 1. Comparison of the adapted log encoding with FC1+DNI
to encode 8 values of a CSP variables, instead of the 8 in the direct

encoding [5, 13], reducing the branching factor from 256 to 8. How-  The subtlety of this encoding is that we omit the clauses which
ever, since only one value is allowed by ALO/AMO clauses, therefgce equivalence betweerf and the corresponding values if.
is no real reduction, and the use of three variables in clauses for ongy e omit clauses such as v —a¥ \V —b3. It might seem that this
CSP variable reduces the effect of propagation [13]. For QCSPs Wg erroneous, as it allows a universal to take two values) #indz?3
show that the log encoding can be very effective when applied to unixre poth true. But there is no way that setting of the univérsaan
versal variables only. We show that with subtle adaptations, search ogyce more than one:? to be true, On the other hand, consider the
true instances can be greatly improved. We call this the ‘adapted logiytreme case where truth is found withzlltrue, as for example can
encoding to distinguish it from the conventional log encoding in SAT-happen ifv occurs in no constraints. This makes all log value clauses
In the adapted log encoding, we express existential variables agyisfied byz. The benefit of this is that the pure literal rule for
before. For a universal QCSP variablewe haveflog, d] universal  existential variables can work. 42 only occurs positively, it can be
QBF variablesh;. The setting of these variables corresponds to theset to true. If this is the case for all valuisf v, theb? variables will
values of the QCSP variable in the obvious way (except that we asjisappear from the problem, greatly reducing the need for search. So,
sume QCSP domains start with 1, so we subtract one before encodiRgih sufficient care, we can use the pure literal rule included in our
into binary.) Unlike the standard log encoding in SAT, we do not USEOBF solver, and have it work in the QCSP case. Apart from writing
combinations of these QBF variables in constraint clauses. Insteaghe transiator, this is done without any coding effort on QCSPs.
we introduce new existential variable$, one for each value of the The definition of acceptable assignment is revised to exclude in-
universal QCSP variable. These are quantified at the end with Oth%ppropriate assignments to thievariables. After checking that un-
indicator variables. For example,df= 5 we enforce that thé's set acceptable assignments have the properties required in Theorem 3,
thex’s as follows, ifu is the previous universally quantified variable: e rest of that proof can be used with almost no change. The only

e Log value clauses: subtlety is the ability to set twe;’s true. As argued above, this can
2o V¥V by V bY V by be done only when it makes no difference to the truth value of the
2y V x5 V bV BY V by problem. So we state without proof:

zu V 25 V by V b} V by
zu V 4 V by V —b] V —bg
zu V xg V —bs V bY V by

Theorem 4 A QCSP is true if and only if the encoded QBF is true,
for the adapted log encoding.

. . . Like local acceptability, the log encoding performs FCO propagation.
There is now no need for the_ALO/AMO clauses _for universal vari- The improvement the adapted log encodings gives over the previ-
ables. However, there are still unacceptable assignments, when thgis encodings is extraordinary. It is now not only competitive with
binary variables suggest a value outside the domain @ resolve  £~14pn| (the best algorithm reported in [11]) but can be orders
this we introduce new indicator variables usual existential quan- ¢ magnitude better. Figure 1 shows results using the two methods,
tified at the end.) We retain the use of local acceptability variahles  \.ith the minimum, median and maximum of the 100 samples at each

to indicate when an illegal value has been given. point. We see that there is a crossover at agodt0.86. For smaller

¢ Out of domain indicator clauses: g, FC1+DNI is clearly better, although the worst case time of the
zu V (ig <= (b3 Vb7 V bg)) QBI_: soI\{mg is never more than a second. Eo_:s 0.84, the log en-
v v\, v v coding gives better results, and very dramatically sog At 0.96
Zu\/(l7 < (bg\/bl \/_‘bo)) . .
2 V(i = (b3 VBV EY)) the worst case time for the QBF encodings was 0.21 sec, compared

to a median of 8.36 sec but a worst case of 11,173 sec for FC1+DNI.
The indicator collector clauses are defined as in the local acceptabil- It is obviously pleasing to be able to report more than four or-
ity encoding, and are omitted here. In the special casedhata  ders of magnitude improvement. And while QCSP techniques can
power of 2, there is no need for indicator clauseg.grsince there  be faster in Figure 1, this only happens on easy problems while the
is no way to obtain unacceptable assignments of universal variableQBF technique is better on hard ones. More importantly, perhaps, we
In that case we omit the local acceptability variables entirely fromcan use these results to suggest algorithmic improvements for QCSP
the encoding. This is an unimportant change: if our encoding wasolving. In particular, we suggest that the log encodings ability to ex-
used as presented without change, eaalould be set false by unit  ploit the pure literal rule in QBF may be important, and perhaps this
propagation before search started. can be incorporated into QCSP techniques.



so extending that technique to QCSP does not seem to be a priority.

What about other encodings of CSPs into SAT? The ‘support en-
In our experiments at = 21, we did not see the typical phase transi- coding’, in which clauses express support instead of conflicts, has
tion one might expect. The only data sepat 0.5 with any soluble  heen shown to be more effective than the direct encoding in SAT, be-
problems was the highest possible valug et 0.96, and only 58%  cause unit propagation in the encoded instance establishes arc con-
of instances were soluble. We now show that this is because the kistency in the CSP [7]. The support encoding can easily be lifted
QCSP generator is subject to a flaw similar to those found in someo work in the global and local acceptability encodings. We need to
generators of CSPs [1] or QBF [9]. Suppose we can find assignmentgclude AMO clauses for existentials, and we replace the conflict
v1 = 7,v2 = 2,...v; = 3, and an existential quantified later than  clauses with support clauses, exactly as in SAT excepting the ad-
all thew;. If every value ofe conflicts with one of the chosen values dition of indicator variableg. Like their direct counterparts, these
of one of the universals, this assignment is false. But it remains falsencodings perform very badly. Unfortunately, we cannot simply re-
irespective of assignments to other universals or existentials and slace conflict with support clauses in the adapted log encoding. This
the problem is trivially false as a whole. Even taking the extreme casgs because the encoding does not equéteith the relevand’s, giv-
of only one conflict per constraint, this can happen as long as thergg the freedom of more than ong being true. If more than one
are many universals beforeas values in its domain. In this case, are true, both can be used to support two existential variables, while
i.e.q = 1 —1/d? if there is a constraint between variables with neither on its own would support both. Thus correctness is lost. We
probability p, the probability of a flaw betweea andd particular  can include clauses to force at most arfeto be true, but then we
universals isP(e) = [{~) p(d — i)/d. With k existential variables |ose the ability to set? by pure literal, which we found to be a key
quantified insidel universals, the probability of no flaw occurring is  advantage in the direct version of the adapted log encoding. Informal
(1 — P(e))*. SinceP(e) does not depend oh, with fixedd andp  experiments confirm that performance is extremely poor compared
this probability tends to 0 a8 — oco. Not only are flaws certain to  to the direct version of adapted log. Finding an effective analogue of
occur, but there is no phase transition: i.e. for any 0 almost all the support encoding remains an open research problem.
problems are false asymptotically.

The flaw dramatically affects experiments in the k-QCSP model
at small problem sizes. At = 39, p = 0.5, ¢ = 0.96, each one of ACKNOWLEDGEMENTS
100 random instances had the flaw.7"At= 21,p = 0.5,¢ = 0.96,  We thank Nikos Mamoulis and Kostas Stergiou for the use of their
42 problems were flawed: that means that all instances were eithgfistance generator and QCSP code. The first author is supported by
flawed or soluble. We conclude that there is an urgent need for an ur Royal Society of Edinburgh SEELLD Support Fellowship, the sec-
flawed QCSP generation method in order to provide more representand by an EPSRC Doctoral Training Grant, and the third by EPSRC
tive test instances. In the absence of such a method, we have reportgehnt GR/55382. The authors are members of the APES and CP Pod

6 Flawsin QCSPs

results with k-QCSP in order to compare the specialised QCSP alesearch groups and thank other members, and our reviewers.

gorithms with encodings into QBF. This comparison is still fair, as
neither technique takes explicit advantage of the flaw. However, it i
possible that translation into QBF allows advanced techniques su
as conflict-directed backjumping to make flawed problems easy: if[1]
s0, this highlights the advantages of translating new problems such
as QCSP into mature domains like QBF. 2]
Note that the flaw is simply a situation in which search can be

terminated. As such it might give rise to interesting new propagation|3]
techniques in QCSP, or valuable new clauses in QBF encodings.

(4]

[5]
We suggested that at an early stage into research into a new problem
like QCSP, encoding into a more studied problem like QBF would [g]
provide competitive performance. We showed this to be the case, and
indeed showed that on some instances we could do four orders of’]
magnitude better than a specialised QCSP algorithm. However, the\z&]
excellent results should not be oversold, as our identification of a fla
in the generator might mean that performance would be reversed on
more representative instances. [l
We also suggested that performance of encodings and techniques
used in QBF solving might indicate directions for future researthO]
into QCSP solving techniques. Our very good results on the log en-
coding suggest two areas to investigate more directly for QCSPs.
First, we suggested that the success of the log encoding was its abil-t]
ity to take advantage of the pure literal rule in QBF, so introducing
an analogue of that into QCSPs might be effective. Second, we us 92]
conflict-directed backjumping in our solver [12, 10], and this could
also be incorporated into QCSP algorithms. On the other hand, wid3]
found that solution-directed backjumping [10] did not help search,

7 Discussion & Conclusions

eferences

D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy,
and Y.C. Stamatiou, ‘Random constraint satisfaction: A more accurate
picture’, inProc. CP97 pp. 107-120. Springer, (1997).

L. Bordeaux and E. Monfroy, ‘Beyond NP: Arc-consistency for quan-
tified constraints’, irProc. CP-2002pp. 371-386, (2002).

M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi, ‘An algo-
rithm to evaluate quantified boolean formulae and its experimental eval-
uation’, Journal of Automated Reasonir2(2), 101-142, (2002).

P. Jeavons F. Boerner, A. Bulatov and A. Krokhin, ‘Quantified con-
straints: algorithms and complexity’, Proc. CSL-2003(2003).

A. Frisch and T.J. Peugniez, ‘Solving non-boolean satisfiability prob-
lems with stochastic local search’, IProc. 1IJCAI-01 pp. 282-288,
(2001).

R. Genisson and P. Jegou, ‘Davis and Putnam were already forward
checking’, inProc. ECAI-96 pp. 180-184, (1996).

I.P. Gent, ‘Arc consistency in SAT’, iProceedings of ECAI 200Dp.
121-125. 10S Press, (2002).

I.P. Gent and A.G.D. Rowley, ‘Encoding connect-4 using quantified
boolean formulae’, iModelling and Reformulating Constraint Satis-
faction Problemsed., A.M. Frisch, pp. 78-93, (2003).

I.P. Gent and T. Walsh, ‘Beyond NP: the QSAT phase transition’,
in Proceedings of the 16th National Conference on pgd. 648—653.
American Association for Atrtificial Intelligence, (1999).

E. Guinchiglia, M. Narizzano, and A. Tacchella, ‘Backjumping for
quantified Boolean logic satisfiability’, inJCAI-01, pp. 275-281,
(2001).

Nikos Mamoulis and Kostas Stergiou, ‘Algorithms for quantified con-
straint satisfaction problems’, Technical Report APES-78-2004, APES
Research Group, (January 2004).

P. Prosser, ‘Hybrid algorithms for the constraint satisfaction problem’,
Computational Intelligenced, 268-299, (1993).

T. Walsh, ‘SAT v CSP’, inProc. CP-2000pp. 441-456, (2000).



