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Abstract. Quantified Constraint Satisfaction Problems (QCSPs)
are CSPs in which some variables are universally quantified. For each
possible value of such variables, we have to find ways to set the re-
maining, existentially quantified, variables so that the constraints are
all satisfied. Interest in this topic is increasing following recent ad-
vances in Quantified Boolean Formulae (QBFs), the analogous gen-
eralisation of satisfiability (SAT). We show that we can encode QC-
SPs as QBFs. We introduce a simple generalisation of the direct en-
coding of CSPs into SAT. We then introduce some adaptations of this
encoding to make it effective in a QBF solver. We solve some QCSP
test instances orders of magnitude faster than using a specialised
QCSP solver, taking advantage of the more advanced state of the
art in QBF solving. Our conclusions are twofold. First, there is con-
siderably more subtlety required in encodings in QBF than in SAT.
Second, in an area such as QCSP where algorithmic techniques are
not yet highly developed, encodings into a better understood prob-
lem can give access to extremely advanced search methods with very
little implementation effort.

1 Introduction

A particular advantage of encoding one search problem as another
occurs when search techniques for the target problem are more highly
developed than the original. This is to be expected when a new search
problem starts to be studied intensively. In this paper we consider
Quantified Constraint Satisfaction Problems (QCSPs), which has
only recently started to be researched [11, 2, 4]. By contrast, a num-
ber of solvers are available for Quantified Boolean Formulae (QBFs),
exploiting a variety of sophisticated techniques, e.g. conflict-directed
[12] and solution-directed backjumping [10]. Therefore, we expect
encoding QCSPs into QBFs to be a competitive method of solving
QCSPs. Furthermore, we expect it to indicate areas for future of
QCSP algorithmic research. In this paper, we show that these two
expectations are justified.

A more unexpected result of our research is that the fine tuning
of encodings to be effective for search is considerably more involved
than in the case of SAT, where encodings often have an elegant sim-
plicity. This issue occupies the bulk of this paper. A simple way of
lifting CSP encodings to QCSP is very ineffective, and we need new
ideas without analogues in SAT to make search effective. The end
result is an encoding which, on the encoded instances, can run many
times faster than a QCSP algorithm on the original.

A final issue we address in this paper, which is familiar from other
problems such as CSP and QBF, is that of flaws in random instances.
We show that flaws arise in the QCSP instance generator proposed by
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Mamoulis & Stergiou, and indeed quickly infect all generated prob-
lems. This is an important problem for experiments in QCSP, but we
as yet do not have a solution to it.

2 Background

QCSPs are more expressive than CSPs and in general are PSPACE-
complete. They allow formulation of problems where all contingen-
cies must be allowed for, for example where configuration must be
possible for all possible sequences of user choices. We briefly de-
scribe QCSPs, but refer the reader elsewhere for more details [2, 4].
A binary QCSP is of the formQC whereQ is a sequence of quan-
tifiersQ1v1...Qnvn, where eachQi quantifies (∃ or ∀) a variablevi

and each variable occurs exactly once in the sequenceQ. C is a con-
junction of binary constraints. Each constraint involves two variables
vp, vq (which may be universally or existentially quantified) and a
set of conflictsR. A conflict c ∈ R is a pair〈sp, sq〉. If vp := sp

andvq := sq then the constraint is violated. A QCSP of the form
∃v1Q2v2...QnvnC is true if Q2v2...QnvnC[v1 := s] is true for
some value ofs. Similarly, a QCSP of the form∀v1Q2v2...QnvnC
is true ifQ2v2...QnvnC[v1 := s] is true for all values ofs.

We provide some basic details of QBF, but refer the reader else-
where for a more detailed introduction [3]. A Quantified Boolean
Formula is of the formQC whereQ is defined above (however in
this case the domain of each variable isT, F ). C is a Boolean for-
mula in conjunctive normal form (CNF), a conjunction of clauses
where each clause is a disjunction of literals. Each literal is a variable
and a sign. The literal is said to be negative if negated and positive
otherwise. The semantic definition is the same as for QCSP.

2.1 Assumptions throughout the paper

A common structure in our encodings is the following, wherea indi-
cates the truth of the disjunction:(x1 ∨ x2 ∨ ... ∨ xn) ⇐⇒ a.
This can be reduced ton + 1 CNF clauses:(¬a ∨ x1 ∨ x2 ∨
... ∨ xn) ∧

∧n
i=1(¬xi ∨ a). Throughout the paper, we present the

equivalences in this form for pedagogical purposes, while in im-
plementation we use the clause set. In some cases, the equivalence
only applies if a variablez is false, in which case we have that
((x1 ∨ x2 ∨ ... ∨ xn) ⇐⇒ a) ∨ z. The clauses that arise are
the same as before, with the addition of the literalz to each clause.

We present experimental results throughout the paper. Experi-
ments were run on a cluster of computers using Intel Pentium II
processors running at 450 MHz, each with 386MB RAM. We used
the ‘k-QCSP’ instance generator [11] with quantifier sequence∃∀∃
andn/3 variables in each block. We set thep (constraint graph den-
sity) parameter to 0.5 and variedq (constraint looseness) andn. We



report runtimes on 100 encoded instances using our own implemen-
tation of CBJ for QBF: we found that Solution directed backjumping
[10] did not reduce search but caused overheads. We compare against
Mamoulis and Stergiou’s specialised algorithms for QCSPs [11]. We
use the same instances in each case to reduce variation dependent on
properties of the instance. We do not include translation times in our
results for QBF, but these are not large. The largest average time over
a sample was 0.1sec on a 3GHz machine, and this could be improved
by more careful implementation. Our results on hard instances taking
thousands of seconds would not be affected.

3 Global Acceptability Encoding

In this section we show that the direct encoding of CSP into SAT can
be lifted to work for QCSPs, using what we call the global accept-
ability encoding. The name comes from the use of a single variable
to encode acceptability of the QBF assignment to universal variables.
We will find that the encoding presented in this section is ineffective
for search, but its relative simplicity allows us to focus on the key
issues of lifting an encoding correctly from CSP to QCSP, without
getting lost in the minutiae of adapting the encoding to be effective.

In the direct encoding, variablev takes valuea in the CSP if and
only if the variableva is true in the SAT instance. Therefore an ‘ac-
ceptable’ assignment of the SAT variables is one where each of the
underlying CSP variables has one value. In SAT, it is simple to rule
out unacceptable assignments by making the formula false in those
cases. In QBF the situation is more complex: ifv is existentially
quantified, then the Boolean variablesxv

1 ...xv
d are existentially quan-

tified, and the situation is the same as with SAT. However, ifv is
universally quantified, for the formula to be true overall requires that
it is true for each value ofv. Hence the Boolean variablesv1...vd

must be universally quantified. The formula should only be falsified
overall if an acceptable assignment is false, so unacceptable assign-
ments to universals should cause the formula to be true. To achieve
this, we use existentially quantified ‘indicator’ variables. This fol-
lows Gent and Rowley’s technique for addressing a similar problem
in encoding the game of Connect-4 in QBF [8].

3.1 Encoding the QCSP variables

Each QCSP variablev is represented by a set of Boolean variables
xv

1 ...xv
d whered is the domain size ofv. These variables are quanti-

fied existentially or universally depending on the type of the QCSP
variable. In either case all QBF variables forv are quantified to-
gether, and the order of the original QCSP quantifications is pre-
served. The intended semantics of the Boolean variables are given
by v 7→ i ≡ xv

i 7→ T . Not all QBF assignments correspond to any-
thing in the original QCSP, for example those which set a variable to
three different values. So we define an “acceptable assignment”:

Definition 1 An acceptable assignment of an encoded QBF is one
which corresponds to an assignment of the QCSP. For each QCSP
variable v, exactly one of the corresponding QBF variablesxv

i is
true. A partial assignment is acceptable if it extends to an acceptable
full assignment.

We encode that the assignment to either existential or universal
variables is acceptable. The approaches to doing so are very different:
it is easiest to discuss existential variables first. We simply rule out
an existential taking no values.

• ALO (at least one value)

(xv
1 ∨ xv

2 ∨ ... ∨ xv
n)

Two groups of clauses are necessary to set the appropriate indica-
tor variable when the universal assignment is unacceptable. We use
indicator variables of three types:

1. lv indicates (when true) that¬(xv
1 ∨ ...∨xv

d) (i.e.v has no values)
2. mv

i,j indicates thatxv
i ∧ xv

j (i.e.v has at least two values)
3. z indicates the assignment is unacceptable because some universal

variables are set incorrectly. It is true iff one or more of the other
indicator variables is true.

• ALO (at least one value)

(xv
1 ∨ xv

2 ∨ ... ∨ xv
d) ⇐⇒ ¬lv

• AMO (at most one value)

d∧
i=1

d∧
j=i+1

(
(¬xv

i ∨ ¬xv
j ) ⇐⇒ ¬mv

i,j

)
For any assignment to the universal variables in the QBF, there ex-

ists a corresponding assignment to the indicator variables. So the in-
dicator variables are existentially quantified in a block after all other
variables. The global indicator variablez is defined with the state-
ments below, whereU is the set of all universal QCSP variables.

• Indicator collector clauses:

[∨
v∈U

(
lv ∨

d∨
i=1

d∨
j=i+1

mv
i,j

)]
⇐⇒ z

3.2 Encoding the constraints

The clauses encoding the constraints are the same as in the direct
encoding from SAT to CSP, via what are called ‘conflict clauses’ with
the addition of the global indicator variablez. This means that all
constraint clauses are true if a universal variable is set unacceptably.
A constraintC between two variablesa andb with domainsA andB
is represented by the relationRa,b ⊆ A×B containing the allowed
pairs. Soa = i andb = j satisfiesC if and only if 〈i, j〉 ∈ Ra,b.

• Conflict clausesFor all tuples〈i, j〉 /∈ R,

(¬xa
i ∨ ¬xb

j ∨ z)

With the direct encoding from CSP to SAT, the AMO clauses may
be omitted. However, in the quantified case this causes complica-
tions. We do omit AMO clauses for existential variables – a valid
QBF assignment withn assignments to an existential QCSP vari-
able would representn valid QBF assignments. However, if multiple
assignments to universal variables were allowed, an unacceptable as-
signment to a universal variable would falsify the formula, so AMO
clauses for universal variables are essential to prevent this.

3.3 Correctness and Experimental Analysis

In an acceptable assignment, there is a natural correspondence be-
tween assignments of the QBF and the QCSP, so for examplexv

2 = T
corresponds tov = 2. The other, indicator, variables all depend on
the value of the variablesxv

i and are set from them by unit propa-
gation, and when we talk of the QBF assignment corresponding to a
QCSP, we assume these assignments of the extra variables.

Theorem 2 A QCSP is true if and only if the encoded QBF is true,
for the global acceptability encoding.



Proof: We use induction on the unassigned QCSP variables, work-
ing from the innermost quantified variables out. The induction hy-
pothesis is that any QCSP under an acceptable partial assignmentA
with the lastk quantified variables unassigned is true iff the encoded
QBF under the corresponding acceptable assignment toA is true.

The base is a full assignment to the QCSP, corresponding to a
full and acceptable assignment to the QBF. In the full QBF assign-
ment, all indicator variables are false. Thus indicator clauses can all
be discarded as all are true. The ALO/AMO clauses can similarly be
discarded as all are satisfied in an acceptable assignment. We are left
with the constraint clauses excluding thez literal as it is false. But
these are all satisfied iff no conflict occurs in the direct encoding. So
the QBF is true iff the corresponding assignment satisfies the QCSP.

For the step, we need to show that the result extends one quan-
tification level. First, consider acceptable assignments to thek + 1st

innermost variablev in the QCSP quantifier. Each acceptable assign-
ment to the corresponding QBF variables has the correct truth value,
by the induction hypothesis. We have to show that the QBF is true iff
one of these one of these acceptable extensions is true (for thek+1st

variable existential) or iff one of them is false (for universal.)
First, consider thek + 1st variablev being existential. It must be

given at least one value as otherwise an ALO clause will be false. A
solution may exist with an unacceptable assignment to the QBF, with
more than one valuexv

i = T assigned. But then we just choose (say)
the least numbered value, and the acceptable existential assignments
corresponding to that value will also satisfy the QBF, as all occur-
rences of the variablexv

i in constraint clauses are negative literals.
There remains the case of setting universal QBF variables unac-

ceptably. For any (acceptable or not) setting of universal variables,
the existential indicator variables can be set appropriately to satisfy
all indicator clauses. In an unacceptable assignment, the indicator
clauses are true only whenz has to be true, and hence all constraint
clauses are satisfied. That is, for any unacceptable setting of univer-
sal variables, there is a setting of existentials which makes all clauses
true, so the QBF is true in these cases. Since a universal node is false
iff one of its children is false, the falsity of the node depends only on
the status of acceptable children, as required.

Finally, note that the result applies to the empty assignment of a
QCSP, since an empty QBF assignment is acceptable.QED

The global acceptability encoding performed dreadfully. For ex-
ample, atn = 15, p = 0.5, median performance was> 1000 sec for
all q > 0.55 except0.92. This compares to an absolute maximum of
53.79 sec for FC1 [11], and a largest median of 1.72 sec.

It is not hard to see why the global acceptability encoding performs
so badly. One important reason is that propagation is crippled by the
necessary presence of the global indicator variablez. Therefore we
have no equivalent of the result from SAT, that the algorithm DP
performs FC on the direct encoding [6]. For example, consider the
conflict clause(¬xv

1∨¬xw
3 ∨z), settingxv

1 = T fails to setxw
3 = F ,

because the status ofz is unknown. This simple propagation fails to
take place, yet it is fundamental to making the direct encoding act
like forward checking. Worse,z cannot be set false untilall universal
variables are set acceptably. In the next section we will introduce a
more complicated way of encoding acceptable assignments, which
ameliorates these problems and improves search.

4 Local Acceptability Encoding

The key problem we identified with the global acceptability encoding
was the fact thatz could not be set until all universal variables were.
The solution to this is to use many indicator variables to encode ac-

ceptability, one for each universal QCSP variable. Then, as soon any
of these is set true, the remainder of the problem is satisfied.

We introduce an indicator variablezv corresponding to each uni-
versal QCSP variable. As before,zv is existentially quantified in a
final block with the other indicator variables. For presenting the en-
coding, we assume thatu, v are consecutive, universally quantified,
QCSP variables, possibly with intervening existential variables. In
clauses involvingu andv, we omit zu if v is the first universally
quantified variable. We first change the collector clauses as follows,
the indicator variablesc being existential and quantified together
with the other indicator variables at the end:

• Indicator collector clauses:

(zu ∨ cv) ⇐⇒ zv(
lu ∨

d∨
i=1

d∨
j=i+1

mu
i,j

)
⇐⇒ cv

Note that this makes unacceptability monotonic, so ifu is assigned
unacceptably we say that all future universals are. We now adapt
other clauses so that oncezv becomes true it makes all clauses true
relating to deeper quantification levels.

To save space, we do not show the changes to most clauses, but
describe them. For constraint clauses, we changez to zv as follows:
for constraints involving existentials we usezv for the last universal
v quantified before thefirst existential QCSP variable; for constraints
involving a universalv we usezv, or the innermost if the constraint
involves two universals.2 That leaves the ALO/AMO clauses for uni-
versals, and we make a critical change so that as soon as a universal
variableu is set unacceptably, there is no requirement to set any fu-
ture universal correctly.3

• ALO (at least one value)

zu ∨ ((xv
1 ∨ xv

2 ∨ ... ∨ xv
d) ⇐⇒ ¬lv)

• AMO (at most one value)

d∧
i=1

d∧
j=i+1

zu ∨
(
(¬xv

i ∨ ¬xv
j ) ⇐⇒ ¬mv

i,j

)
Theorem 3 A QCSP is true if and only if the encoded QBF is true,
for the local acceptability encoding.

Proof: Most of the proof is as before. For example the reader can
check that again in a full acceptable assignment, the conflict clauses
correctly encode the semantics of the constraints. The difficulty is in
the induction step for a universal QCSP variablev. It is no longer the
case that all constraint clauses are satisfied by the globalz. Instead,
we claim that if an unacceptable assignment to the universal leads
to falsity, an acceptable assignment does too. No constraint clause
involving anyxv

i can be falsified later in the search tree, as it will be
satisfied byzv. Therefore, any search node with a false clause could
also be reached by an acceptable assignment of the QBF variablesxv

i

and corresponding changes to the indicator variables. This justifies
the claim. QED

The point of the local acceptability variables is to enable more
propagation. In fact, in the case of the direct encoding, unit propa-
gation performs at least as many domain reductions as Mamoulis &
Stergiou’s generalisation FC0 of FC [11]. FC0 removes values of fu-
ture variables when they are in conflict with the assigned value of the

2 In fact a constraint between universal variables renders the problem trivially
false if any conflict exists, but we include this case for completeness.

3 We do not report results here, but found that this change dramatically im-
proved search when added to the rest of the local acceptability encoding.



current variable. This clearly happens from unit propagation in the
conflict clauses, because when the outer variable is set, the indicator
variable must already be false in an acceptable assignment. So if a
variablexa

i is true, the variablexb
j must be set false by the conflict

clause, equivalent to FC0’s removal of the valueb = j.
Experimentally, the local acceptability encodings provide im-

proved search over the global encodings, but still performs orders
of magnitude worse than Mamoulis & Stergiou’s techniques. For ex-
ample, atn = 15, p = 0.5 andq = 0.56, median run time is 53.41
sec compared to 1877 sec for the global encoding, but compared to
unmeasurable (< 0.01 sec) median time for FC1.

5 Adapted Log Encoding

In SAT, it has often been noted that just three variables are needed
to encode 8 values of a CSP variables, instead of the 8 in the direct
encoding [5, 13], reducing the branching factor from 256 to 8. How-
ever, since only one value is allowed by ALO/AMO clauses, there
is no real reduction, and the use of three variables in clauses for one
CSP variable reduces the effect of propagation [13]. For QCSPs we
show that the log encoding can be very effective when applied to uni-
versal variables only. We show that with subtle adaptations, search on
true instances can be greatly improved. We call this the ‘adapted log’
encoding to distinguish it from the conventional log encoding in SAT.

In the adapted log encoding, we express existential variables as
before. For a universal QCSP variablev, we havedlog2 de universal
QBF variablesbv

i . The setting of these variables corresponds to the
values of the QCSP variable in the obvious way (except that we as-
sume QCSP domains start with 1, so we subtract one before encoding
into binary.) Unlike the standard log encoding in SAT, we do not use
combinations of these QBF variables in constraint clauses. Instead,
we introduce new existential variablesxv

i , one for each value of the
universal QCSP variable. These are quantified at the end with other
indicator variables. For example, ifd = 5 we enforce that theb’s set
thex’s as follows, ifu is the previous universally quantified variable:

• Log value clauses:

zu ∨ xv
1 ∨ bv

2 ∨ bv
1 ∨ bv

0

zu ∨ xv
2 ∨ bv

2 ∨ bv
1 ∨ ¬bv

0

zu ∨ xv
3 ∨ bv

2 ∨ ¬bv
1 ∨ bv

0

zu ∨ xv
4 ∨ bv

2 ∨ ¬bv
1 ∨ ¬bv

0

zu ∨ xv
5 ∨ ¬bv

2 ∨ bv
1 ∨ bv

0

There is now no need for the ALO/AMO clauses for universal vari-
ables. However, there are still unacceptable assignments, when the
binary variables suggest a value outside the domain ofv. To resolve
this we introduce new indicator variablesi (as usual existential quan-
tified at the end.) We retain the use of local acceptability variableszv,
to indicate when an illegal value has been given.

• Out of domain indicator clauses:

zu ∨ (iv6 ⇐⇒ (bv
2 ∨ ¬bv

1 ∨ bv
0))

zu ∨ (iv7 ⇐⇒ (bv
2 ∨ bv

1 ∨ ¬bv
0))

zu ∨ (iv8 ⇐⇒ (bv
2 ∨ bv

1 ∨ bv
0))

The indicator collector clauses are defined as in the local acceptabil-
ity encoding, and are omitted here. In the special case thatd is a
power of 2, there is no need for indicator clauses orzv, since there
is no way to obtain unacceptable assignments of universal variables.
In that case we omit the local acceptability variables entirely from
the encoding. This is an unimportant change: if our encoding was
used as presented without change, eachz would be set false by unit
propagation before search started.
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Figure 1. Comparison of the adapted log encoding with FC1+DNI

The subtlety of this encoding is that we omit the clauses which
force equivalence betweenxv

i and the corresponding values ofbv
j .

So we omit clauses such aszu ∨ ¬xv
1 ∨ ¬bv

2 . It might seem that this
is erroneous, as it allows a universal to take two values, ifxv

1 andxv
2

are both true. But there is no way that setting of the universalbv
j can

force more than onexv
i to be true, On the other hand, consider the

extreme case where truth is found with allxv
i true, as for example can

happen ifv occurs in no constraints. This makes all log value clauses
satisfied byxv

i . The benefit of this is that the pure literal rule for
existential variables can work. Ifxv

i only occurs positively, it can be
set to true. If this is the case for all valuesi of v, thebv

i variables will
disappear from the problem, greatly reducing the need for search. So,
with sufficient care, we can use the pure literal rule included in our
QBF solver, and have it work in the QCSP case. Apart from writing
the translator, this is done without any coding effort on QCSPs.

The definition of acceptable assignment is revised to exclude in-
appropriate assignments to thebv

i variables. After checking that un-
acceptable assignments have the properties required in Theorem 3,
the rest of that proof can be used with almost no change. The only
subtlety is the ability to set twoxv

i ’s true. As argued above, this can
be done only when it makes no difference to the truth value of the
problem. So we state without proof:

Theorem 4 A QCSP is true if and only if the encoded QBF is true,
for the adapted log encoding.

Like local acceptability, the log encoding performs FC0 propagation.
The improvement the adapted log encodings gives over the previ-

ous encodings is extraordinary. It is now not only competitive with
FC1+DNI (the best algorithm reported in [11]) but can be orders
of magnitude better. Figure 1 shows results using the two methods,
with the minimum, median and maximum of the 100 samples at each
point. We see that there is a crossover at aboutq = 0.86. For smaller
q, FC1+DNI is clearly better, although the worst case time of the
QBF solving is never more than a second. Forq > 0.84, the log en-
coding gives better results, and very dramatically so. Atq = 0.96
the worst case time for the QBF encodings was 0.21 sec, compared
to a median of 8.36 sec but a worst case of 11,173 sec for FC1+DNI.

It is obviously pleasing to be able to report more than four or-
ders of magnitude improvement. And while QCSP techniques can
be faster in Figure 1, this only happens on easy problems while the
QBF technique is better on hard ones. More importantly, perhaps, we
can use these results to suggest algorithmic improvements for QCSP
solving. In particular, we suggest that the log encodings ability to ex-
ploit the pure literal rule in QBF may be important, and perhaps this
can be incorporated into QCSP techniques.



6 Flaws in QCSPs

In our experiments atn = 21, we did not see the typical phase transi-
tion one might expect. The only data set atp = 0.5 with any soluble
problems was the highest possible value ofq = 0.96, and only 58%
of instances were soluble. We now show that this is because the k-
QCSP generator is subject to a flaw similar to those found in some
generators of CSPs [1] or QBF [9]. Suppose we can find assignments
v1 = 7, v2 = 2, . . . vk = 3, and an existentiale quantified later than
all thevi. If every value ofe conflicts with one of the chosen values
of one of the universals, this assignment is false. But it remains false
irrespective of assignments to other universals or existentials and so
the problem is trivially false as a whole. Even taking the extreme case
of only one conflict per constraint, this can happen as long as there
are many universals beforee as values in its domain. In this case,
i.e. q = 1 − 1/d2, if there is a constraint between variables with
probability p, the probability of a flaw betweene andd particular
universals isP (e) =

∏d−1
i=0 p(d− i)/d. With k existential variables

quantified insided universals, the probability of no flaw occurring is
(1 − P (e))k. SinceP (e) does not depend onk, with fixedd andp
this probability tends to 0 ask → ∞. Not only are flaws certain to
occur, but there is no phase transition: i.e. for anyp > 0 almost all
problems are false asymptotically.

The flaw dramatically affects experiments in the k-QCSP model
at small problem sizes. Atn = 39, p = 0.5, q = 0.96, each one of
100 random instances had the flaw. Atn = 21, p = 0.5, q = 0.96,
42 problems were flawed: that means that all instances were either
flawed or soluble. We conclude that there is an urgent need for an un-
flawed QCSP generation method in order to provide more representa-
tive test instances. In the absence of such a method, we have reported
results with k-QCSP in order to compare the specialised QCSP al-
gorithms with encodings into QBF. This comparison is still fair, as
neither technique takes explicit advantage of the flaw. However, it is
possible that translation into QBF allows advanced techniques such
as conflict-directed backjumping to make flawed problems easy: if
so, this highlights the advantages of translating new problems such
as QCSP into mature domains like QBF.

Note that the flaw is simply a situation in which search can be
terminated. As such it might give rise to interesting new propagation
techniques in QCSP, or valuable new clauses in QBF encodings.

7 Discussion & Conclusions

We suggested that at an early stage into research into a new problem
like QCSP, encoding into a more studied problem like QBF would
provide competitive performance. We showed this to be the case, and
indeed showed that on some instances we could do four orders of
magnitude better than a specialised QCSP algorithm. However, these
excellent results should not be oversold, as our identification of a flaw
in the generator might mean that performance would be reversed on
more representative instances.

We also suggested that performance of encodings and techniques
used in QBF solving might indicate directions for future research
into QCSP solving techniques. Our very good results on the log en-
coding suggest two areas to investigate more directly for QCSPs.
First, we suggested that the success of the log encoding was its abil-
ity to take advantage of the pure literal rule in QBF, so introducing
an analogue of that into QCSPs might be effective. Second, we used
conflict-directed backjumping in our solver [12, 10], and this could
also be incorporated into QCSP algorithms. On the other hand, we
found that solution-directed backjumping [10] did not help search,

so extending that technique to QCSP does not seem to be a priority.
What about other encodings of CSPs into SAT? The ‘support en-

coding’, in which clauses express support instead of conflicts, has
been shown to be more effective than the direct encoding in SAT, be-
cause unit propagation in the encoded instance establishes arc con-
sistency in the CSP [7]. The support encoding can easily be lifted
to work in the global and local acceptability encodings. We need to
include AMO clauses for existentials, and we replace the conflict
clauses with support clauses, exactly as in SAT excepting the ad-
dition of indicator variablesz. Like their direct counterparts, these
encodings perform very badly. Unfortunately, we cannot simply re-
place conflict with support clauses in the adapted log encoding. This
is because the encoding does not equatexv

i with the relevantb’s, giv-
ing the freedom of more than onexv

i being true. If more than one
are true, both can be used to support two existential variables, while
neither on its own would support both. Thus correctness is lost. We
can include clauses to force at most onexv

i to be true, but then we
lose the ability to setxv

i by pure literal, which we found to be a key
advantage in the direct version of the adapted log encoding. Informal
experiments confirm that performance is extremely poor compared
to the direct version of adapted log. Finding an effective analogue of
the support encoding remains an open research problem.
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