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Chapter 10

Symmetry in Constraint Programming

Ian P. Gent, Karen E. Petrie, Jean-François Puget

Symmetry in constraints has always been important but in recent years has become a ma-
jor research area in its own right. A key problem in constraint programming has long been
recognised: search can revisit equivalent states over and over again. In principle this prob-
lem has been solved, with a number of different techniques. As we write, research remains
very active for two reasons. First, there are many difficulties in the practical application
of the techniques that are known for symmetry exclusion, and overcoming these remain
important research problems. Second, the successes achieved in the area so far have en-
couraged researchers to find new ways to exploit symmetry. In this chapter we cover both
these issues, and the details of the symmetry exclusion methods that have been conceived.

Figure 10.1: The solution to the puzzle of finding a chess position containing nine queens
and a king of each colour, with the rule that no piece is on the same line (row, column or
diagonal) as any queen of the opposite colour. Up to symmetry, the solution is unique.
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To illustrate what we mean by symmetry, we consider the chess puzzle shown in Fig-
ure 10.1. The solution to this puzzle is unique “up to symmetry” [115], but what do
we mean by symmetry in this context? By a “symmetry”, we mean an operation which
changes the positions of the pieces, but whose end-state obeys all the constraints if and
only if the start-state does. Given a solution, which by definition satisfies all the con-
straints, we can find a new solution by applying any symmetry to the first solution we find.
For example, given the pictured solution to the puzzle, we can swap the colours of each
piece, so the black queens appear where the white queens are and vice versa. Similarly, we
can rotate the chessboard by any multiple of 90 degrees to yield a new solution. Finally,
we can reflect the chessboard about the horizontal axis, the vertical axis and both of the di-
agonal axes. Since these symmetries can be combined, there are 16 symmetries available,
including the identity operation of leaving everything where it is.

Why is symmetry important? The main reason is that we can exploit symmetry to
reduce the amount of search needed to solve the problem. This is of enormous potential
benefit. For example, suppose we search for a solution to our chess puzzle, and the first
assignment is to place a white queen in the top left hand corner. In fact, the search decision
was not really to try a white queen in the top left corner, but instead the decision was to
try all potential solutions with a queen of either colour in any corner of the board. Since
there are 16 symmetries, we have the potential to reduce search by a factor of 16. A second
reason for symmetry’s importance is that many constraint problems have symmetry in
them. Moreover, the act of modelling can introduce symmetries. For example, if we
modelled the chess puzzle above with a variable for each queen ranging from 1 to 64
expressing its placement, there would be 2(9!)2 symmetric versions of each solution, as
each set of queens can be permuted and the two sets swapped. Yet, this model might be
desirable for effective propagation and heuristics, and so we would like to be able to deal
with its symmetries effectively.

By far the most important application of symmetry in constraint programming is “sym-
metry breaking” in order to reduce search. The goal of symmetry breaking is never to
explore two search states which are symmetric to each other, since we know the result in
both cases must be the same.1 It is common to identify three main approaches to symme-
try breaking in constraint programming. The first approach is to reformulate the problem
so that it has a reduced amount of symmetry, or even none at all. The second is to add
symmetry breaking constraints before search starts, thereby making some symmetric solu-
tions unacceptable while leaving at least one solution in each symmetric equivalence class.
The final approach is to break symmetry dynamically during search, adapting the search
procedure appropriately. This breakdown is simplistic, in that there is enormous variation
within each approach, and great commonalities between approaches. However, it is a very
useful informal categorisation and we will structure our discussion around it.

In the rest of this chapter we hope to answer the following questions: How do we go
about achieving the search reductions that are possible? What general methods are there,
and what tradeoffs are involved? How can we make it as easy as possible for the day-to-day
constraint programmer to use? What research directions remain?

1The phrase “symmetry breaking” might be misleading, because not all methods actually break symmetry
in the sense of creating a problem without symmetry. However, the usage is entrenched in the community and it
would be even more confusing to try to change it.
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10.1 Symmetries and Group Theory

The study of symmetry in mathematics is called group theory. We assume no background
in group theory for reading this chapter, so we introduce all the concepts we need. We
make no apologies for emphasising the role of group theory at this early stage, as it es-
sential to understanding the role of symmetry in constraint programming. We can only
introduce very briefly the key concepts, so this section should be taken only as the light-
est introduction to what is one of the largest research areas in mathematics. Fortunately
for most constraint programmers, a little knowledge of group theory is in fact enough to
understand most of the work done to date. Sadly, introductions to group theory for math-
ematicians often take for granted the link with symmetry, so we will spend a little time
explaining this. We will explain group theory through permutations. First, nothing is lost
since every group can be expressed as a set of permutations. Second, it makes it very
easy to understand the link between a symmetry as an element of a group and a symmetry
as an action. We will emphasise the notion of a group action, since this expresses how
symmetries transform search states, and this is our main interest.

Example 10.1. Chessboard Symmetries
Consider a 3 × 3 chessboard. We label the nine squares with the numbers 1 to 9. These
numbers are the points that will be moved by symmetries. There are eight natural symme-
tries of a chessboard. We always include the identity symmetry, which leaves every point
where it is. The identity is shown at the top left of Figure 10.2. Then, we can rotate the
chessboard by 90, 180, and 270 degrees in a clockwise direction. The resulting locations of
the points are shown in the rest of the top row of Figure 10.2. Finally, there are reflections
in the vertical axis, in the horizontal axis, and in the two main diagonal axes, and these are
shown in the bottom row.

1 2 3
4 5 6
7 8 9

id

7 4 1
8 5 2
9 6 3

r90

9 8 7
6 5 4
3 2 1

r180

3 6 9
2 5 8
1 4 7

r270

3 2 1
6 5 4
9 8 7

x

7 8 9
4 5 6
1 2 3

y

1 4 7
2 5 8
3 6 9

d1

9 6 3
8 5 2
7 4 1

d2

Figure 10.2: The 8 Symmetries of a 3 × 3 chessboard

The link between symmetries and permutations can be seen very simply. A permu-
tation is a one-to-one correspondence between a set and itself. Each symmetry defines a
permutation of the set of points. An easy way to write down permutations is in Cauchy
form. Cauchy form is two rows of numbers. The top row is the complete set of elements,
in ascending order, that the permutation acts over. The second row shows which number
each element of the top rows maps to. For example, the identity symmetry and permutation
maps each point to itself, and is shown in Cauchy form on the top left of Figure 10.3. The
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rotational symmetry by 90 degrees is shown in Cauchy form on the top right. We see that
the point 1 is replaced by 7 after r90, 7 in turn is replaced by 9, 9 by 3, and 3 by 1. This
gives a cycle (1 7 9 3). Another cycle is (2 4 8 6) and there is another trivial cycle just
containing (5). In the main, group theorists do not use Cauchy form, preferring a notation
based on the set of cycles a permutation defines.

id :

„
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

«
r90 :

„
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

r180 :

„
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

«
r270 :

„
1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«

x :

„
1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«
y :

„
1 2 3 4 5 6 7 8 9
7 8 9 4 5 6 1 2 3

«

d1 :

„
1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

«
d2 :

„
1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«

Figure 10.3: Permutations representing the symmetries of a chessboard, written in Cauchy
form

Example 10.2. Cyclic form
The symmetry r90 above contains cycles (1 3 9 7), (2 4 6 8), and (5). The cyclic form of
r90 is (1 3 9 7)(2 4 6 8)(5) although cycles of length one can be omitted. The permutation
maps each point to the succeeding element of the cycle it is in, except that the last element
is mapped to the first and a point in no cycle is mapped to itself. In cyclic form, we can
write the symmetries of the 3 × 3 chessboard as shown in Figure 10.4.

id : () r90 : (1 3 9 7)(2 4 6 8)

r180 : (1 9)(2 8)(3 7)(4 8) r270 : (1 7 9 3)(2 4 8 6)

x : (1 3)(4 6)(7 9) y : (1 7)(2 8)(3 9)

d1 : (2 4)(3 7)(6 8) ha d2 : (1 9)(2 6)(4 8)

Figure 10.4: Permutations representing the symmetries of a chessboard, written in cyclic
form

Comparing Figures 10.3 and 10.4 shows that the cyclic form is far more concise, espe-
cially when many points are unmoved by a permutation. One disadvantage is that it does
not define exactly the set of points that the permutation is acting on: for example none of
the permutations above move the point 5, so the number 5 does not appear in Figure 10.4.
Also, the same permutation can be written down in many different ways, since cycles can
appear in any order and each cycle can start with any element in it. However, the cyclic
form is so natural for people to use that the computational group theory system GAP uses
it as its input language for permutations, even though it then converts them internally into
a more computationally efficient form.



I. P. Gent, K. E. Petrie, J.-F. Puget 333

Both forms of writing down permutations make it easy to see how a permutation acts
on a point. In general, if p is a point and g a permutation, then we will write pg to write
down the point that p is moved to under g. For example, 1r90 = 7, and 1r270 = 3. We
often extend this notation in the natural way to sets of other data structures containing
points. For example, we have {1, 3, 8}r90 = {1r90, 3r90, 8r90} = {7, 1, 6} = {1, 6, 7}:
the equivalence between the last two terms is simply because sets are unordered.

There are certain key facts about permutations which provide the link between them
and groups. We will explain these, then provide the fundamental definition of a group.
First, it is easy to work out the composition of two permutations, which for permutations f
and g we will write as f ◦ g. The result of f ◦ g is calculated by taking, for each point, the
result of moving that point under f and then by g. That is, for any point p, pf◦g = (pf )g.
It is important to notice the order of action, i.e. we do f and then g when we write f ◦ g,
which is the other way round compared to function composition such as sin(cos(x)). Since
both f and g are one-to-one correspondences, so is their composition, so the composition
of two permutations is another permutation. We can calculate the composition pointwise:
we simply work out what 1 moves to under f , then what the result moves to under g, and
repeat for each other point.

Example 10.3. Composition of Permutations

r90 =

„
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

x =

„
1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«

r90 ◦ x =

„
1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«
= d2

We have already described the existence of the identity permutation, which we call id.
This can be defined as the empty set of cycles for any set of points. For any permutation
f there is an inverse permutation, such that f ◦ f−1 = id. This is easily calculated: in the
cyclic form we just reverse the order of each cycle; and in the Cauchy form we swap the
two rows and then reorder the columns so that the first row is in numerical order.

Example 10.4. Inverse of a permutation

r90 =

„
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

„
7 4 1 8 5 2 9 6 3
1 2 3 4 5 6 7 8 9

«
by swapping rows

r90−1 =

„
1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«
by reordering = r270

Finally, we note that composition of permutations is associative. That is, f ◦ (g ◦ h) =
(f ◦ g) ◦ h. The truth of this relies on the definition of permutation composition, i.e. that
g ◦ h gives, for each point, the same result as applying g and then h. So, for example,
7(f◦g)◦h) is the result of applying f to 7, g to the result, and h to the result of that: but this
is exactly the same as 7f◦(g◦h), which is also found by applying f , to 7, g to the result, and
h to the result of that. We now, finally, present the axioms defining a group.
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Definition 10.5. Group Axioms
A group is a non-empty set G with a composition operator ◦ such that:
- G is closed under ◦. That is, for all g, h ∈ G, g ◦ h ∈ G; and
- there is an identity id ∈ G. That is, for all g ∈ G, g ◦ id = id ◦ g = g; and
- every element g of G has an inverse g−1 such that g ◦ g−1 = g−1 ◦ g = id; and
- ◦ is associative. That is, for all f, g, h ∈ G, (f ◦ g) ◦ h = f ◦ (g ◦ h).

Definition 10.6. Order of a Group
The order of a group G is the number of elements in the set G. It is denoted by |G|.

Example 10.7. The set of symmetries of a chessboard {id, x, y, d1, d2, r90, r180, r270}
form a group of order 8. We have that r90−1 = r270, r270−1 = r90, and all other
elements g are self-inverse, i.e. g−1 = g. The group of a chessboard is non-commutative,
since d1 ◦ r90 = x but r90 ◦ d1 = y. In most applications in constraint programming,
the group is not commutative. Note that we omitted mention of the operation associated
with the group, i.e. permutation composition: this is often done where it will not cause
confusion.

Note that our (entirely standard) definition of a group nowhere mentions the action
done by the group element. It is vital to understand that group elements can operate in two
distinct ways. First, there is the action that a group element (i.e. symmetry) has on the
points that it acts on. In the chessboard example, the points were 1 . . . 9, and we wrote pg

for the result of the action of g on point p. This is what we have emphasised up to now.
Second, a group element g operates by the composition operator to permute the values of
other elements in the group. That is, f ◦ g gives another group element. The latter kind
of operation is the focus of most study in group theory. In contrast, it is the group action
which is of far more importance to us, since it is this action which represents the function
of a symmetry on the variables and values in a constraint problem.

For permutations, the operation ◦ is composition as described above. We have already
shown that there is an identity permutation, all permutations have inverses, and that com-
position of permutations is associative. The final condition is closure. We have shown that
the composition of two permutations is another permutation. However, for a set of permu-
tations to form a group, we have to have that the composition of any two permutations is
in the set. This depends on the set of permutations we have chosen. There is an easy way
to guarantee closure, which is to take a set of permutations and generate all permutations
which result from composing them arbitrarily.

Definition 10.8. The Generators of a Group
Let S be any set of elements (for example, permutations) that can be composed by the
group operation ◦ (for example, permutation composition). The set S generates G if every
element of G can be written as a product of elements in S and every product of any se-
quence of elements of S is in G. The set S is called a set of generators for G and we write
G = 〈S〉.

Example 10.9. Generators of Chessboard Symmetries
The chessboard symmetries are generated by {r90, d1} since:
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id = r90 ◦ r90 ◦ r90 ◦ r90 =

„
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

«

r90 = r90 =

„
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

r180 = r90 ◦ r90 =

„
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

«

r270 = r90 ◦ r90 ◦ r90 =

„
1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«

d1 = d1 =

„
1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

«

y = d1 ◦ r90 =

„
1 2 3 4 5 6 7 8 9
7 8 9 4 5 6 1 2

«

d2 = r90 ◦ r90 ◦ d1 =

„
1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«

x = r90 ◦ d1 =

„
1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«

Given any set of permutations, we can always work with the group generated by that
set, since it is by definition closed. Finding and working with generators can be a very
important means of representing groups. If there are |G| elements in a group, there is
always a generating set of size log2(|G|) or smaller.

Definition 10.10. Subgroup
A subgroup H of a group G is a subset of G that is itself a group, with the same composition
operator as G. Two simple and universal examples of subgroups are that G is always a
subgroup of G, as is {id}.

Example 10.11. Subgroup of Chessboard Symmetry:
The set {id, r90, r180, r270} form a subgroup of order 4. As can be seen from Exam-
ple 10.1, this can be generated by the element r90.

Given a subgroup H of a group G and an element g of G, the (right) coset H ◦ g is the
set of elements {h◦ g|h ∈ H}. Two cosets of H in G constructed with different elements
are either disjoint or the same, i.e. if H ◦ f ∩ H ◦ g �= ∅ then H ◦ f = H ◦ g. Thus the
cosets of H partition the elements of G. Furthermore, all the cosets of H have size |H |.
The number of cosets is called the index of H in G and is denoted by |G : H |. If one
element is chosen from each coset of H , then a set of coset representatives is formed, this
set is the right transversal. The group G is the union of the cosets formed by composing
the elements of H with these coset representatives.

Example 10.12. Cosets of Chessboard Symmetries
The group G is the full chessboard symmetries, and H is the rotations of the chessboard.
Then the two cosets of H are: {id, r90, r180, r270} and {d1, x, d2, y}, where H = H ◦ id
and H = H ◦ d1. One set of coset representatives is {id, d1}, but there are a total of 16
possible sets of coset representatives, comprising one element from each coset.
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The orbit of a point in G is a set of the different points that the point can be mapped to
by elements of G.

Definition 10.13. Orbit
The orbit of a point δ in G is the set δG = {δg | g ∈ G}.

Example 10.14. Orbits of Points on Chessboard
Looking back at the diagram of chessboard symmetries given in Example 10.1, the orbits
of a given point can be calculated. For example, the orbit of 1 is {1, 3, 7, 9}, because
1id = 1, 1r90 = 7, 1r180 = 9, 1r270 = 3, and because all other group elements map 1 to
one of these points.

The stabiliser of a point is the set of elements which fixes or stabilises the point. It
indicates which elements can be applied to a point, which do not cause the value of the
point to move.

Definition 10.15. Stabiliser
Let G be a permutation group acting on (amongst others) a point β. The stabiliser of β in
G is defined by: Gβ = {g ∈ G|βg = β}. The stabiliser Gβ is a subgroup of the group G.

Example 10.16. Stabilisers of chessboard symmetries
From Figure 10.2 of chessboard symmetries, the stabiliser of any given point can be iden-
tified. For instance, the stabiliser of point 1 is G1 = {id, d1} as these elements map point
1 back to itself. The stabiliser of point 5 is the whole group G, i.e. G5 = G, since none of
the symmetries move point 5.

10.1.1 Group Theory in Constraint Programming

Whenever a constraint problem has symmetry, we can construct a group to represent the
symmetry in the problem. The elements of the group permute points, dependent on the
symmetries in the particular problem. The points that the elements of the group act on will
typically be variable-value pairs.

Example 10.17. Representing the Symmetry of the Chess problem in Figure 10.1
Variables - The CSP has n2 variables corresponding to the squares of the chessboard, to
represent the variables requires n2 labels
Values- There are 5 possible values for each square of the chessboard: a white queen, a
black queen, a white king, a black queen, or it is empty.
Variable-Value - There are n2 possible labels for the variables, and 5 possible labels for the
variables, to represent variable-value pairs requires 5n2 points.

There is one particularly important group of permutations. The set Sn of all permuta-
tions of n objects forms a group and is called the symmetric group over n elements. The
group Sn is of size n!. This group comes up frequently in constraints because we often
have n objects which are indistinguishable between each other, and which are thus acted
on by Sn. It also arises in combinations. For example, we will see that a commonly oc-
curring situation is a two-dimensional matrix of variables, where we can freely permute
m columns (preserving the rows) and n rows (preserving the columns). Since we can first
permute the columns and then the rows, the group we have is a combination known as the
direct product Sm × Sn.
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10.1.2 Computational Group Theory

Computational Group Theory is a large interdisciplinary research area in mathematics and
computer science. Butler has written a text book on the algorithms used in this area [17]
and Holt et al. [65] have recently written a handbook of computational group theory. There
are two major packages for computational group theory called GAP [46] and Magma [14].
Constraint programmers using symmetry can often employ GAP or Magma as an external
function. However, if that is not available or appropriate, understanding of computational
group theory algorithms is important. The most important algorithm of all is the Schier
Sims algorithm, for which we give an extremely brief outline.

The Schreier Sims algorithm [108] is used to construct a stabiliser chain G0, G1, . . . ,
Gn as follows:

G0 = G

∀i ∈ In, Gi = Gi−1

By definition,

Gi = {σ ∈ G : 0σ = 0 ∧ . . . ∧ (i − 1)σ = i − 1}
Gn ⊆ Gn−1 ⊆ . . . G1 ⊆ G0

The Schreier Sims algorithm also computes set of coset representatives Ui. Those are
orbits of i in Gi: Ui = iGi .

By definition, Ui is the set of values which i is mapped to by all symmetries in G that
leave at least 0, . . . , (i − 1) unchanged.

In constraint programming terms the stabiliser is perhaps the most useful concept of
those outlined above. The stabiliser of a variable/value pair shows what symmetry is left
unbroken once that value is assigned to the given variable, during search. This is explained
in more detail, with regards to GAP-SBDS, in Section 10.5.4. The stabiliser chain rep-
resents the symmetry which remains, after a collection of variables have been assigned
during search.

10.2 Definitions

It might seem self-evident that in order to deal with symmetry in constraint satisfaction
problems (CSPs), practitioners must first understand what is meant by symmetry. This
appears not to be true: many papers on the topic do not offer a precise definition of what
a symmetry is. The papers which do offer definitions often give fundamentally different
ones to each other, while still identifying the same symmetries in a given problem and
dealing with them correctly. There are two broad types of definition: those that define
symmetry as a property of the solution set and those that define symmetry as a property
that can be identified in the statement of the problem, without solving it. These will be
referred to as solution symmetry and problem symmetry. In this section we give a brief
survey of the definitions contained in the literature, before concentrating in more depth on
recent definitions proposed by Cohen et al [21].

An example of a definition of solution symmetry in CSPs is given by Brown, Finkel-
stein & Purdom [16]: “A symmetry is a permutation that leaves invariant the set of so-
lutions sequences to a problem.” Backofen and Will [5] allow for a much broader class



338 10. Symmetry in Constraint Programming

of problem transformations: “A symmetry S for a constraint program CPr , where a set
of solutions for a given problem is denoted ‖ CPr ‖, is a bijective function such that S:
‖ CPr ‖→‖ CPr ‖.” Although not explicitly stated, Backofen and Will allow a symmetry
to be specified by its effect on each individual assignment of a value to a variable, this
allows them to consider symmetries with regard to partial assignments.

Many definitions define restricted forms of symmetry that affect only the variables or
only the values. Interchangeability, as outlined in Definition 10.18 by Freuder [39], is a
limited form of solution symmetry, which only operates over values.

Definition 10.18. Two values a, b for a variable v are fully interchangeable iff every solu-
tion to the CSP containing the assignment 〈v, a〉 remains a solution when b is substituted
for a, and vice versa.

As Freuder notes, in general identifying fully interchangeable values requires finding
all solutions to the CSP. He defines local forms of interchangeability that can be identified
by inspecting the problem. Definition 10.19 outlines neighbourhood interchangeability,
which is a form of constraint symmetry.

Definition 10.19. Two values a, b for a variable v are neighbourhood interchangeable iff
for every constraint C on the variable v, the set of variable-value pairs that satisfies the
constraint with the pair 〈v, a〉 is the same as the set of variable-value pairs that satisfies
the constraints with the pair 〈v, b〉.

Choueiry and Noubir extend the idea of interchangeability to compute another form of
local interchangeability, and showed how to exploit these results in practice [19].

Benhamou [8] extends the ideas of value interchangeability slightly and distinguishes
between semantic and syntactic symmetry in CSPs, corresponding to solution symmetry
and problem symmetry respectively. He defines two kinds of semantic symmetry. Two
values ai and bi for a CSP are symmetric for satisfiability if: there is a solution which
contains the value ai iff there is a solution which contains the value bi. Two values ai

and bi are symmetric for all solutions if: each solution containing the value ai can be
mapped to a solution containing the value bi, and vice versa. If two values are symmetric
for all solutions they are also symmetric for satisfiability. Identifying semantic symmetries
requires solving the CSP to find all solutions, and then examining them. Benhamou defines
syntactic symmetry to mean that the permutation does not change any constraint relation,
defined as a set of tuples.

The notion of interchangeable values has been and is still widely used and studied, e.g.
[72, 55]. However, for the purposes of this overview, we regard interchangeability as a
kind of value symmetry. Thus, we often discuss methods below which can be applied to
interchangeable values, but do not point this out explicitly.

In contrast to this value centric approach, variable centric definitions have also been
proposed. In CSPs, permuting the variables in a constraint defined intensionally will in
general change the constraints, e.g. the constraint x+y = z is not the same as the constraint
x+z = y. Puget [97] defines the notion of a symmetrical constraint, i.e. a constraint which
is not affected by the order of the variables. For instance, the �= constraint is symmetrical.
Puget’s definition means that a symmetry of a CSP is a permutation of the variables which
maps the set of constraints into a symmetrically equivalent set: any constraint is either
unchanged by the permutation or is an instance of a symmetrical constraint and is mapped
onto a constraint on the same set of variables.
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A similar idea was introduced by Roy and Pachet [105]. They define the notion of
intensional permutability. For two variables to be intensionally permutable they must have
the same domain; any constraints affecting either of the two variables must affect both; and
the two variables must be interchangeable in these constraints. The constraint is assumed
to be defined intensionally, i.e. in terms of a formula, hence the name. An example of
intensional permutability can be given by considering a linear constraint: in this case any
two variables with the same coefficient and the same domain are intensionally permutable
with respect to that constraint.

The definitions of symmetry given by Puget [97] and Roy & Pachet are restricted to
permuting variables of the problem. Meseguer and Torras [84] give a definition of symme-
try which acts on both the variables and the values of a CSP. Their definition allows both
variable symmetries (that permute only the variables) and value symmetries (that permute
only the values) as special cases. However, it does not fit every transformation of a CSP
that we would want to recognise as a symmetry. Meseguer and Torras use the chessboard
symmetries as an example, in a commonly used CSP formulation where only one piece
is placed per row, the variables correspond to the rows of the chessboard and the values
correspond to the columns. They show that reflection through 180◦ is a symmetry of the
CSP by their definition, but four symmetries are not: reflection in the diagonals, rotation
through 90◦, and 270◦.

McDonald and Smith [82] state that “a symmetry of P is a bijective function σ : A →
A where A is some representation of a state in search e.g. a list of assigned variables,
a set of current domains etc., such that the following holds: 1. Given A a partial or full
assignment of P, if A satisfies the constraints C, then so does σ(A); and 2. Similarly, if A
is a nogood, then so too is σ(A).” This allows symmetries operating on both the variables
and values; it gives a good intuitive view of problem symmetry space. However, due to
the undefined nature of A it does not provide a rigorous definition, that could be used to
identify the symmetry of a problem.

The above survey of symmetry definitions shows that symmetry definitions differ both
on what aspect of the CSP they act on (only the variables, only the values or variable-value
pairs) and in what they preserve (the constraints or the set of solutions). All definitions
agree that symmetries map solutions to solutions; they disagree over whether this is a
defining property, so that any bijective mapping of the right kind that preserves the solu-
tions must be a symmetry, or a consequence of leaving the constraints unchanged.

Defining symmetry as preserving the set of solutions does not seem to offer a practical
route to identifying symmetry in CSPs. Detecting semantic symmetries is, unsurprisingly,
intractable [85, 111]: to find the full symmetry group we might need all the solutions to the
CSP. On the other hand, the solution symmetry group is well-defined, whereas equivalent
CSPs differing only slightly in the way that constraints are expressed, may have different
problem symmetries. It may be possible, either deliberately or inadvertently, to write the
constraints of a CSP in such a way that the symmetry of the problem being modelled is not
apparent.

For the purpose of this chapter a definition of both solution symmetry, Definition 10.20,
and a definition of problem symmetry, Definition 10.21 are given. These are in the spirit
of [21], but are less formally defined.

Definition 10.20. Solution Symmetry
A solution symmetry is a permutation of the set of 〈variable, value〉 pairs which preserves
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the set of solutions.

Definition 10.21. Problem Symmetry
A problem symmetry is a permutation of the set of 〈variable, value〉 pairs which preserves
the set of constraints.

Both problem and solution symmetry allow variable and value symmetries as special
cases.

In order for Definition 10.21 to be complete, a suitable interpretation of what it means
to preserve the sets of constraints is needed. Any constraint ci with scope Vi ⊆ V can
be defined by a set of satisfying 〈variable, value〉 tuples. A symmetry whose action on
the set of possible 〈variable, value〉 tuples has been specified can be applied to the set of
〈variable, value〉 tuples satisfying a constraint, yielding a new set of 〈variable, value〉
tuples. The resulting 〈variable, value〉 tuples may not all relate to the same set of vari-
ables as the original constraint or each other. However, if the results of applying the sym-
metry to all the 〈variable, value〉 tuples, defining all the constraints is the same set of
〈variable, value〉 tuples, it can be said that the constraints are unchanged by the action
of the symmetry. This definition does not require a symmetry to leave each individual
constraint unchanged, but rather the set of constraints.

A recent paper by Cohen et al., looks more closely at the differences between Solution
Symmetry and Problem Symmetry (which they call Constraint Symmetry) [21]. Cohen
et al. both give more rigorous definitions of the two concepts, and show the difference
between the two definitions in practice.

10.3 Reformulation

Modelling has a substantial effect on how efficiently a problem can be solved. An appro-
priate reformulation of a model can turn an infeasible problem in practical terms into a
feasible one. Modelling and reformulation are equally important for symmetry breaking.
Different models of the same problem can have different symmetries; one formulation can
have symmetries which are easier to deal with than another. In extreme cases, one formu-
lation can have no symmetry at all. In other cases, the amount of symmetry can be greatly
reduced from one model to another. Moreover, once a problem has been reformulated the
remaining symmetries can still be dealt with before or during search, while other symme-
try breaking methods can lead to great difficulties in combination with each other. Thus,
reformulation of a problem can be critical in dealing with symmetries.

For a first example we mention the well known “social golfers problem”, problem 10
in CSPLib, although we will only sketch the issues here since Smith goes into some detail
in her chapter.2 In this problem, 32 golfers want to play in 8 groups of 4 each week, so
that any two golfers play in the same group at most once, for as many weeks as possible,
the difficult case being 10 weeks. We can construct an otherwise sensible model with
32!10!8!104!80 symmetries: we can permute the 32 players; we can permute the 10 weeks;
within each week we can (separately) permute the groups; and within each group we can
(separately) permute the four players. In this model there are more than 10198 symmetric
versions of each essentially different solution, and there is a very good chance that search

2“Modelling”, by Barbara Smith, this Handbook.
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will thrash impossibly. By remodelling, Smith reduces this number to 32!10! [113]. For
each pair of players we have a variable indicating which week they play together in (or
an extra variable if they never meet): the only symmetries left are the week and the player
symmetries. There are still huge numbers of symmetries left, but they are of a much simpler
form.

One important technique is the use of set variables where we have a number of in-
distinguishable variables. Set variables are available in most constraint solvers, and allow
us to express constraints on sets’ size, intersection, union, etc. In the golfers’ problem,
for example, one might encode the groups playing within each week as being eight set
variables. Each one is constrained to be of size 4 and they are pairwise constrained to have
no intersection. Because set variables are implemented with no implicit ordering between
elements, we have lost the 4! symmetries in each group, reducing the total symmetries by
a factor of 2480 in the problem. Furthermore, in the golfers’ problem we can represent
the constraint that two players play together no more than once, by saying that the inter-
section of any two groups in different weeks is of size 1 or 0. There are some theoretical
and practical difficulties associated with set variables. One is that different representations
of set variables by the solver have dramatically different behaviours in propagation [67]:
if a solver happens to use the representation least suitable for the constraints being used,
search can be dramatically increased. Another difficulty occurs when we wish to use a
mixture of set and integer variables. We may have constraints on elements of a set that
are most natural to express on integer variables. “Channelling” between set and integer
variables can be difficult and can again lead to a failure to propagate until late in search.
Alternatively, we might re-introduce integer variables to represent the elements of the set,
thereby bringing back many of the symmetry problems that the set variables avoided in
the first place. Despite these potential disadvantages, set variables remain a very impor-
tant modelling technique to consider in any problem where a number of variables have
the symmetry group Sn. Because of this, representation of set variables and propagation
techniques for them are an important area of study [56, 67, 75, 106]. Another chapter in
this Handbook describes set variables in detail.3

Another example of reformulation again illustrates the dramatic improvements that can
be achieved, while even more dramatically illustrating the extent to which reformulating
is an art more than a science. The all-interval series problem (problem 7 in CSPLib) is
to find a permutation of the n integers from 0 to n − 1 so that the differences between
adjacent numbers are also a permutation of the numbers from 1 to n − 1. There are 4 ob-
vious symmetries in the problem: the identity, reversing the series, negating each element
by subtracting it from n − 1, and doing both. Gent et al [54] report on a reformulation of
the problem based on the observation that we can cycle a solution to the problem about a
pivot to generate another solution. The location of this pivot is dependent on the assign-
ments made. As an example, here are two solutions for n = 11. Differences are written
underneath the numbers:

0 10 1 9 2 8 3 7 4 6 5 3 7 4 6 5 0 10 1 9 2 8
10 9 8 7 6 5 4 3 2 1 4 3 2 1 5 10 9 8 7 6

The difference between the first number (0) on the left and last number (5) is 5. This means
we can split the sequence between the 8 and 3, losing the difference 5. We can join the

3“Constraints over Structured Domains”, by Carmen Gervet, this Handbook.



342 10. Symmetry in Constraint Programming

rest of the sequence on to the start, because the 5 − 0 will now replace 8 − 3. This yields
exactly the solution shown on the right. In this case the pivot is between the values 8 and
3. The difference between first and last terms must always duplicate a difference in the
sequence, so this operation can be applied to any solution. Because of this, we do not
merely reformulate the constraint model, but actually move to solve a different problem,
whose solutions lead to solutions of the original. In the reformulated problem, we find a
permutation of the sequence 0, 1, . . . n − 1, but we now include the difference between
first and last numbers, giving n differences instead of n − 1. The sequence has to obey
two constraints: that the permutation starts 0, n − 1, 1; and that the n differences between
consecutive numbers contain all of 1, . . . n−1 with one difference occurring exactly twice.
[50] show that (for n > 4) each solution gives 8 distinct solutions to the all-interval series
problem, but the reformulation has no symmetry at all. Search in this model is about 50
times faster than any competing technique.

It is possible to take advantage of different ‘viewpoints’ [73] of a constraint problem.
To take a simple example, suppose we insist that n variables, each with the same n values,
must all take different values. We can look at this problem from two points of view: we can
find values for each variable, or we can find variables for each value. If there is symmetry,
then value symmetry in the first viewpoint is interchanged with variable symmetry in the
second viewpoint, and vice versa. This is useful if we have at hand a technique which is
good at one kind of symmetry: for example Roney-Dougal et al [103] used this idea to
break a group of variable symmetries using an efficient technique for value symmetries.
Flener et al [36]. showed how value symmetries in matrix models can be transformed to
variable symmetries by adding a dimension of 0/1 variables to the matrix, the new sym-
metries being broken using techniques described in Section 10.4.5 below. Law and Lee
studied this idea theoretically and generalised it to cases where the translation is not to 0/1
variables [74].

Recently, there has been one significant advance in understanding how reformulation
can be applied mechanically. Prestwich has shown that value symmetries can be eliminated
automatically by a new encoding from constraints into SAT, the ‘maximality encoding’
[93]. This breaks all value symmetries of a special kind Prestwich calls ‘Dynamic Sub-
stitutability’, a variant of Freuder’s value interchangeability [39]. A particular important
aspect of the contribution is that Prestwich’s encoding eliminates all dynamic substitutabil-
ity without any detection being necessary. This means that no detection program needs to
be run, nor does the constraint programmer need to specify the symmetry in any form. A
disadvantage of this technique is its limitation to certain types of value symmetry. How-
ever, as mentioned above, any remaining symmetry in the translated SAT problem can be
detected and broken using standard SAT techniques.

Sadly, for a method with so many advantages, there is very little we can say about
reformulation because there is no fully general technique known. Not only that, but the il-
lustrative examples above show considerable insight about their respective problems. Also,
there was no guarantee (before running the relevant constraint programs) that they would
lead to improved search. About the only truly general comment we can make is that the
very great importance of formulating problems to reduce symmetry is not fairly reflected
in the short space we devote to it in this chapter. There is a wonderful research opening for
the discovery of general techniques akin to the lex-leader method for adding constraints,
moving the area of reformulation from a black art to a science where questions were on
tradeoffs and implementation issues, rather than the need for magical insights.
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10.4 Adding Constraints Before Search

Without doubt, the method of symmetry breaking that has been most used historically
involves adding constraints to the basic model. In this context, the term “symmetry break-
ing” is entirely appropriate. We move from a problem with a lot of symmetry to a new
problem with greatly reduced symmetry – ideally with none at all. The constraints we add
to achieve this are called “symmetry breaking constraints”.

Constraint programmers have always added symmetry breaking constraints in an ad
hoc fashion when they have recognised symmetry in a constraint problem. Often it is easy
to think of constraints that break all or a large part of symmetry. For example, suppose
that we have 100 variables in an array X which are indistinguishable (so that they can
be freely permuted). It is straightforward, and correct, to insist that the variables are in
nondecreasing order, X [1] ≤ X [2] . . . ≤ X [100]. If we further know that all variables
must be different, we can make this strictly increasing order: X [1] < X [2] . . . < X [100].
If it happens that the variables take the values 1..100, then simple constraint propagation
will deduce that X [1] = 1, X [2] = 2, . . . , X [100] = 100. If the programmer notices this
beforehand, then we can reformulate the problem to replace each variable X [i] with the
value i throughout our program. There are many examples where constraint programmers
have added more complicated constraints to break symmetries. A typical example from
the literature is adding constraints to break symmetry in the template design problem [96].
This is fine if done correctly, but can obviously lose solutions if done incorrectly. Standard
methods have been developed which can make the process easier and more likely to be
correct, in the situations where they apply. Even where these are not directly applicable,
a knowledge of them will serve constraint programmers well, as it should simplify the
derivation of correct constraints which can be added by hand.

10.4.1 The Lex-Leader Method

Puget [97] proved that whenever a CSP has symmetry, it is possible to find a ‘reduced
form’, with the symmetries eliminated, by adding constraints to the original problem.
Puget found such a reduction for three simple constraint problems, and showed that this
reduced CSP could be solved more efficiently than in its original form. Following this, the
key advance was to show a method whereby such a set of constraints could be generated.
Crawford, Ginsberg, Luks and Roy outlined a technique, called “lex-leader” for construct-
ing symmetry-breaking ordering constraints for variable symmetries [22]. In later work,
Aloul et al also showed how the lex-leader constraints for symmetry breaking can be ex-
pressed more efficiently [2]. This method was developed in the context of Propositional
Satisfiability (SAT), but the results can also be applied to CP.

The idea of lex-leader is essentially simple. For each equivalence class of solutions
under our symmetry group, we will predefine one to be the canonical solution. We will
achieve this by adding constraints before search starts which are satisfied by canonical
solutions and not by any others.

The technique requires first choosing a static variable ordering. From this, we induce
an ordering on full assignments. The ordering on full assignments is straightforward. The
tuple is simply the values assigned to variables, listed in the order defined by our static
ordering. Since the method is defined for variable symmetries, any permutation g converts
this tuple into another tuple, and we prefer the lexicographically least of these. This method
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A B C
D E F

→ F E D
C B A

1. ABCDEF �lex ABCDEF
2. ABCDEF �lex ACBDFE
3. ABCDEF �lex BACEDF
4. ABCDEF �lex CBAFED
5. ABCDEF �lex BCAEFD
6. ABCDEF �lex CABFDE

7. ABCDEF �lex DEFABC
8. ABCDEF �lex DFEACB
9. ABCDEF �lex EDFBAC
10. ABCDEF �lex FEDCBA
11. ABCDEF �lex EFDBCA
12. ABCDEF �lex FDECAB

Figure 10.5: A 3 × 2 matrix containing 6 variables; and the result of swapping the two
rows and reversing the columns, giving the permutation mapping ABCDEF to FEDCBA.
Also shown are the 12 lex-leader constraints, including the trivial one, arising from its 12
symmetries. Note how each constraint corresponds to a permutation of the variables, as the
method is defined to work for variable symmetries: the illustrated matrix transformation
gives constraint 10.

is, in principle, simple to implement. Each permutation in the group gives us one �lex

constraint. So the set of constraints defined by the lex-leader method is

∀g ∈ G, V �lexV
g (10.1)

where V is the vector of the variables of the CSP, and �lex is the lexicographic ordering
relation. The lexicographic ordering is exactly as is standard in computer science, e.g.
AD�lexBC iff either A < B or A = B and D ≤ C.

A small example illustrates the method. Consider a 3×2 matrix depicted in Figure 10.5,
in a context where the rows and columns may be freely permuted. The symmetries form
the group S3 × S2, with order 3!2! = 12. We pick the variables in alphabetical order,
so the vector of the variables of the problem is ABCDEF. The 12 symmetries lead to the
12 lex-leader constraints shown in Figure 10.5, including the vacuous symmetry from the
identity.

An important practical issue with the lex-leader constraints is that they do not “respect”
the variable and value ordering heuristics used in search. That is, it may well be that the
leftmost solution in the search tree, which would otherwise be found first, is not canonical
and so is disallowed, leading to increased search. This is in contrast to techniques such
as SBDS and SBDD (Sections 10.5.1 and 10.5.2), which do respect the heuristic. Simple
examples have been reported where the “wrong” heuristic can lead to dramatic increases
in runtime [52]. This problem is inherent in the method, but in many cases it is easy to
work out what is the “right” heuristic. In particular, if the same static variable ordering is
used in search as was used to construct the lex-leader ordering, and values are tried from
smallest to largest, this conflict should not occur. However, this does limit the power of the
constraint programmer to use dynamic variable ordering heuristics.

A less easily solved problem with lex-leader is that many groups contain an exponential
number of symmetries. Lex-leader requires one constraint for each element of the group.
In the case of a matrix with m rows and n columns, this is m!n!, which is impractical
in general. Therefore there are many cases where lex-leader is applicable but impractical.



I. P. Gent, K. E. Petrie, J.-F. Puget 345

1. true
2. BE �lex CF
3. AD �lex BE
4. AD �lex CF
5. ABDE �lex BCEF
6. ABDE �lex CAFD

7. ABC �lex DEF
8. ABC �lex DFE
9. ABC �lex EDF
10. ABC �lex FED
11. ABCDE �lex EFDBC
12. ABCDE �lex FDECA

Figure 10.6: The lex-leader constraints for the 3×2 matrix reduced on an individual basis.

2. BE �lex CF
3. AD �lex BE
7. ABC �lex DEF
8. ABC �lex DFE

9. ABC �lex EDF
10. ABC �lex FED
11. ABCD �lex EFDB
12. ABC �lex FDE

Figure 10.7: The lex-leader constraints for the 3 × 2 matrix reduced as a set.

However, lex-leader remains of the highest importance, because there are a number of ways
it is used to derive new symmetry breaking methods. We discuss these in the following
sections.

Finally we reiterate that the lex-leader method is defined only for variable symmetries:
i.e. those which permute the variables but always leave the value unchanged. Thus the
same restriction applies to the methods below based on lex-leader. It is not an issue in
the technique’s original domain, SAT, since there are only 2 values [22]. If necessary,
we can add a new variable to represent the negation of each variable, and so symmetries
which change values can be made into variable symmetries. Unfortunately, if we have
d values, we need d! versions of each variable to apply this simple idea. Therefore, a
proper generalisation of lex-leader to deal with value symmetries would be valuable, even
if restricted to some special cases.

10.4.2 Simplifying Lex-Leader Constraints

Lex-leader constraints can be simplified, or ‘pruned’ to remove redundancies [22, 77]. Fol-
lowing Frisch and Harvey [41], we can illustrate this using the example from Figure 10.5.
The first idea is to look at each constraint individually. For example, consider constraint 2
above, ABCDEF �lex ACBDFE. We can remove the first and fourth variables from each
tuple, since clearly A = A and D = D, giving BCEF �lex CBFE. But if B<C the con-
straint is satisfied whatever the other values, and otherwise we have B=C to satisfy the
constraint. In other words, if the second variables in the tuples are relevant, they must be
equal. Similarly for E and F, so in fact the constraint is equivalent to BE �lex CF. Applying
this reasoning everywhere we get the constraints shown in Figure 10.6. It is interesting
to note that constraints 2 and 3 show that the columns must be lexicographically ordered,
and that constraint 7 forces the rows to be lexicographically ordered. We return to this
observation in Section 10.4.5.

We can go further, treating the constraints as a set and not just individually. For ex-
ample, �lex is transitive, so constraints 2 and 3 imply constraint 4. A more complicated
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example is in constraint 11. The last elements of each tuple are E and C. But if they are
relevant, we have A=E and B=F=D=C. But constraint 3 implies A≤B, from which it fol-
lows that E≤C, so the last elements of the tuple are irrelevant and may be deleted. This
reasoning leads to a set of 8 constraints shown in Figure 10.7, equivalent to the original 12
[41].

Unfortunately, the approach outlined here does not get round the fundamental problem
of the exponential number of symmetries. In general the number of symmetries even in
the reduced set will still be exponential [77]. However, the approach does illustrate how
the set of constraints can be simplified, and we will see in the next section a special case
where the results are quite dramatic.

10.4.3 Symmetry with All-Different

The ‘all-different’ constraint occurs very commonly in constraint programming. It perhaps
occurs even more often in problems with symmetry. Puget has shown that [101] if we have
only variable symmetry (the only case where lex-leader is defined) on a set of n variables
constrained by an all-different constraint, symmetry can be broken completely by only
n− 1 binary constraints. This result applies to any group G acting on the set of variables.
This remarkable result could hardly be bettered, but is in fact relatively simple.

We begin with an example, which contains only variable symmetries on a set of all-
different variables, but in which the group is not a straightforward group such as Sn.

Example 10.22. Graceful Graph
We say that a graph with m edges is graceful if there exists a labeling f of its vertices such
that:

• 0 ≤ f(i) ≤ m for each vertex i,

• the set of values f(i) are all-different,

• the set of values abs(f(i), f(j)) for every edge (i, j) are all-different.

A straightforward translation into a CSP exists where there is a variable vi for each ver-
tex vi, see [78]. The variable symmetries of the problem are induced by the automorphism
of the graph. There is one value symmetry, which maps v to m−v, but we ignore that sym-
metry to leave only value symmetries. More information on symmetries in graceful graphs
is available in [89]. Petrie and Smith have considered various forms of both dynamic and
static symmetry breaking methods in graceful graphs [89], using these techniques they
found instances of graceful graphs that were not previously known. As an example, let us
consider the the graph K3 × P2, which is shown in Figure 10.8. The group allows any of
the 3! permutations of K3, as long as the same permutation is applied to both copies of K3

at the same time, as well as swapping the two triangles. There are thus 12 symmetries. In
fact, the group is isomorphic to that of the matrix in Figure 10.5, so the constraints are the
same as we showed there.

Using the fact that the variable are subject to an all-different constraint, we can signif-
icantly reduce the number of symmetry breaking constraints. For example, consider the
symmetry breaking constraint

ABCDEF�lexACBDFE
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Figure 10.8: The graph K3 × P2.

Since A = A is trivially true, and since B = C cannot be true because of the all-different
constraint, this constraint can be simplified to just be:

B < C

This simplification is true in general and can be formalized as follows. Given a permutation
g, let s(g) be the smallest i such that ig �= i, and let t(g) be equal to (s(g))g .

Lemma 10.23. [101]
Given a CSP where the variables V are subject to an all-different constraint, and a variable
symmetry group G for this CSP, then all variable symmetries can be broken by adding the
following constraints:

∀σ ∈ G, vs(σ) < vt(σ)

Note that if two permutations g and h are such that s(g) = s(h) and t(g) = t(h), then
the corresponding symmetry breaking constraints are identical. Therefore, it is sufficient
to state only one symmetry breaking constraints for each pair i, j such that there exists a
permutation g with i = s(g) and j = t(h). The set of these pairs can be computed using
the Schreier Sims algorithm [108]. In our example, these constraints are :

A < B, A < C, A < D, A < E, A < F, B < C

Note that these constraints are redundant. The constraint A < C is entailed by the first
and the last constraints. This remark can be used to reduce the number of constraints further
by taking into account the transitivity of the < constraints. The Schreier Sims algorithm
gives us a stabiliser chain and sets of coset representatives Ui, as defined in Section 10.1.2.
Puget uses this to prove:

Theorem 10.24. [101]
Given a CSP with n variables V , such that there exists an all-different constraint on these
variables, then all variable symmetries can be broken by at most n− 1 binary constraints.

For our example, we get exactly 5 constraints: notice this is n − 1 in this case.

A < B, A < D, A < E, A < F, B < C
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While this is only a reduction of a single constraint, that is simply because of the small size
of the example. In general, Puget has reduced the number of symmetries required from a
possibly n! to as little as n−1, for the commonly occurring case of variable symmetries in
the presence of an all-different constraint. As well as its value in its own right, this shows
the power of combining symmetry breaking constraints with constraints from a problem,
and this remains an area ripe for exploitation.

10.4.4 Subsets of Lex Leader

The previous section showed how, in the right circumstances, a polynomial number of
constraints can lead to equivalent reasoning to the full set of lex-leader constraints. Un-
fortunately, such a subset is not always available. Several researchers have proposed ways
to state only a polynomial number of constraints without preserving complete symmetry
breaking. Since the full set of lex-leader constraints leaves exactly one solution in each
equivalence class, using a subset must leave at least one in each class, but may leave more
than one. Thus, the symmetry breaking constraints do not guarantee to break all symme-
tries. In general the goal is to reach an acceptable tradeoff, with the greatly reduced number
of constraints leading to more efficient search. In some cases, sets of symmetry breaking
constraints have been proposed, and only later has it been realised that they represent a
subset of the lex-leader constraints. This is a testament to the generality and naturalness of
lex-leader.

Aloul et al have shown, in SAT, that very successful results can be obtained from very
small subsets of lex-leader constraints, on examples such as FPGA routing problems [1].
Unlike the constraint-based work described so far, the symmetry group of the SAT problem
was found using a graph-automorphism procedure on the instance. Surprisingly, the subset
of symmetry breaking predicates used was simply the generators of the group found by
the graph-automorphism check. It is remarkable that this gave good performance since,
for example, a set of 21 generators was used in a group with 1016 elements. Only very
special sets of generators are as effective as this, and it is not well understood what makes
the generators found by graph-automorphism programs so good. While this is in a SAT
context, similar results should apply to constraint programming.

Shlyakhter showed that good (though generally incomplete) subsets of lex-leader con-
straints could be found for acyclic digraphs, permutations, relations, and functions [109].
Apart from the individual contributions, this establishes the methodology of using the lex-
leader constraints as a means of finding incomplete sets of symmetry breaking constraints,
but subsets which are effective in practice. A particular case where this has proven to be of
great interest is that of matrix models, to which we turn next.

10.4.5 Specialised Ordering Constraints for Matrix Models

A number of authors have taken a rather different approach to choosing appropriate con-
straints to break symmetry. This is based on the kind of symmetries that seem to arise very
often in constraint programming. Given some class of symmetries we decide are impor-
tant, we can analyse in general a subset of the lex-leader constraints which typically break
a substantial number of symmetries and which can be reasoned with efficiently. The ad-
vantage of such a focus is that one can build special purpose methods for dealing with the
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symmetry breaking constraints, for example specialised algorithms for propagating Gen-
eralised Arc Consistency for the given set of constraints. Most work has concentrated on
symmetry-breaking constraints for matrix models; where ‘a matrix model is a constraint
program that contains one or more matrices of decision variables’ [36]. Matrix models are
indeed very commonly occurring. For example the golfers problem can be modelled as a
3-d boolean matrix whose dimensions correspond to weeks, players and groups. A vari-
able xijk = 1 iff in week i, player j plays in group k [113]. Other problems one could use
as illustration are balanced incomplete block designs, steel meel slab design, progressive
party problem, rack configuration, template design, and the warehouse location problem
[35].

The prime example of this body of work is that on lexicographically ordering rows
and columns in matrix models [36]. We deal with matrices where rows and columns are
independently fully permutable. By this we mean that we can swap, at the same time,
all the variables in any two rows, preserving the order of the variables within each row.
Alternatively, we can swap any two columns, preserving the order of the variables within
a column. This kind of symmetry occurs very commonly because we often introduce
symmetry through modelling. For example, in the 3-d model of the golfers problem, the
order of players, groups and weeks are arbitrary and each can be permuted freely. An
n × m matrix with row and column symmetry is acted on by a group of order n!m!.
These symmetries change the orders of rows and columns, but important relationships are
preserved: specifically two elements in the same row are always in the same row, while
two elements in the same column remain in the same column.

The rows in a 2-d matrix are lexicographically ordered if each row is lexicographically
smaller (denoted �lex) than the next (if any). Adding lexicographic ordering on the rows
breaks all row symmetries. Similarly, we can break all column symmetry by ordering the
columns. But the interesting case is where we insist that both rows and columns should be
simultaneously lexicographically ordered [36]. It is not at all obvious that this is consistent,
i.e. that there is always a symmetry which will permute the rows and columns so that
both sets are lexicographically ordered. In fact, we can remove solutions if we insist on
the rows being in increasing order and the columns in decreasing order. However, it is
always possible if we insist that all dimensions are in increasing order, and the best way
to understand this is that the set of constraints are equivalent to a subset of the lex-leader
constraints [109]. In general a lexicographic ordering on both the rows and the columns
does not break all the compositions of the row and column symmetries. Nevertheless, in
practice it often breaks a useful amount of symmetry. This is important, because in general
it is NP-hard to find the lexicographical least representative of a matrix under row and
column symmetry [22, 10].

Because of the usefulness of lex-ordering rows and columns, and the simplicity of
the constraints, Frisch et al introduced an optimal algorithm to establish generalised arc-
consistency for the �lex constraint [40] between two vectors. Time complexity is O(nb),
where n is the length of the vectors and b is the time taken to adjust the bounds of an
integer variable (dependent on the implementation of variables being used). This therefore
gives an extremely attractive point on the tradeoff: a linear time to establish a high level
of consistency on constraints which often break a lot of the symmetry in matrix models.
The algorithm can be used to establish consistency in any use of �lex, so in particular is
useful for any use of lex-leader constraints. Carlsson and Beldiceanu [18] showed that
the propagation algorithm can be extended to generalised arc-consistency for a chain of
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vectors V1�lexV2�lex . . .�lexVm. This can deduce information not available if vectors are
compared pairwise, and is done in linear time O(nbm) if there are m vectors.

Provided care is taken, lex ordering matrices can be combined with additional con-
straints to break more symmetry while still taking advantage of the efficient algorithms for
the lex constraints. Normally, this is done by choosing an appropriate subset of lex-leader
constraints. This is an easy way to guarantee correctness provided that the same ordering
of variables in the matrix is used as for the lex constraints: this means starting at the top
left and going either in row order or column order. A very common technique is to insist
that the top left hand corner is occupied by the (possibly equal) smallest element in the
matrix: this is not guaranteed by the lex constraints themselves. If all values in the entire
matrix are different, this additional constraint guarantees that all symmetry is broken [36].
There are other special cases where all symmetries are broken [36].

Other constraints have been developed in a similar way to the double-lex constraint, and
applied to breaking symmetries in matrices. Kiziltan and Smith investigated the multiset
ordering [70] following a suggestion of Frisch. The ordering is lexicographic ordering of
the multiset of elements of vectors written in increasing order. More formally, we have
V1 �ms V2 if either the smallest element of V1 is less than the smallest element of V2, or if
the smallest elements are the same, and V −

1 �ms V −
2 , where the new vectors result from

the deletion of a single occurrence of the smallest element. An advantage of the multiset
ordering is that it can be placed on (say) the rows without affecting the column symmetries
of a matrix. So it can for example be used even if the column symmetries do not form
the group Sn. Frisch et al proposed a linear propagation algorithm for it, giving it similar
efficiency to their algorithm for double-lex [43].

Another example of work in the same style was the introduction of the “allperm” con-
straint by Frisch, Jefferson and Miguel [42]. We have V1 �perm V2 if array V1 is lexico-
graphically less than any permutation of V2. Frisch et al study the ways in which this may
(and may not) be combined with other constraints such as double-lex and multiset. For ex-
ample, it is consistent to insist that rows and columns are lex ordered, and simultaneously
that the first row is �perm all others, but we may not demand that the second row is �perm

later rows. Again, a specialised propagation algorithm was given for allperm.
We can construct 2-dimensional 2n × 2n matrix model in which we insist that rows

and columns are lex ordered, yet still contains full matrix symmetry in an n×n submatrix.
An example for n = 3 is shown in Figure 10.9. The values of variables A to I are uncon-
strained, but if we insist that they form a latin square, the example is valid where rows are
columns are ordered by the multiset ordering. If we also insist that all of A to I are ≥ 0,
the example works if we insist that the first row is �perm all other rows.

10.5 Dynamic Symmetry Breaking Methods

Dynamic symmetry breaking methods are those that operate to break symmetry during the
search process. SBDD and SBDS are two such methods described in this section. In both
these methods symmetry acts on variable/value pairs. Symmetry breaking by heuristic is
included in this category, as although these variable and value ordering heuristics are fully
defined before search commences, they are used during search. These methods are outlined
in the subsequent sections.
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0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

0 0 1 A B C
0 1 0 D E F
1 0 0 G H I

⇒

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

1 0 0 G H I
0 1 0 D E F
0 0 1 A B C

⇓
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

0 0 1 G H I
0 1 0 D E F
1 0 0 A B C

Figure 10.9: An example to show that full matrix symmetry in a bottom right submatrix
can remain even when all rows and columns are lex ordered. The initial matrix (divided
into quarters for clarity) is first transformed by swapping the fourth and sixth rows, and
then by swapping the first and third columns. The result is still double-lex ordered but
we have swapped the first and third rows of the submatrix. We can swap two columns
similarly.

10.5.1 Symmetry Breaking During Search (SBDS)

Symmetry-excluding search trees were introduced by Backofen and Will [4, 5]. Gent and
Smith [51] described in more detail the implementation of this technique, using the name
“Symmetry Breaking During Search”, but it is this latter name and its acronym “SBDS”
which seems to have stuck as the general name for this method. This is perhaps slightly un-
fortunate since there are many other ways to break symmetry during search, most notably
SBDD to be discussed in Section 10.5.2.

The basic idea of SBDS is to add constraints to a problem so that, after backtracking
from a search decision, the SBDS constraints ensure that no symmetric equivalent of that
decision is ever allowed. This is a dynamic technique, since we cannot add the constraints
until we know what search decision is being made. In general terms, SBDS can work on
any kind of search decision. However, for simplicity of discussion we will assume that all
search decisions are of the form var = val, and a number of implementations of SBDS
make the same assumption.

We will first illustrate with an example the kind of constraints added by SBDS. A
search tree for the 8-Queens problem where the symmetry constraints added by SBDS are
indicated by ♦ can be found in Figure 10.10. It is easiest to explain SBDS by going over
the tree breadth-first, instead of the depth-first search the actual search algorithm would
explore.

• Starting from the root, the first search decision in the search tree in Figure 10.10 is
Q[1] = 2, i.e. the queen in row 1 goes in position 2. SBDS adds no constraints to
the positive decision Q[1] = 2. If we backtrack at the root, we can assert Q[1] �= 2.
From that point on, we never want to try any state which contains any symmetric
equivalent to Q[1] = 2. We can achieve this by adding symmetric versions of Q[1] �=
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Q[1] = 2

♦ (Q[1] �= 2)r90 ≡ Q[2] �= 8

♦ (Q[1] �= 2)r180 ≡ Q[8] �= 7

♦ (Q[1] �= 2)r270 ≡ Q[7] �= 1

♦ (Q[1] �= 2)d2 ≡ Q[7] �= 7

Q[1] �= 2

Q[2] = 4 Q[2] �= 4
♦ (Q[1] �= 2)x ≡ Q[1] �= 7♦ Q[1] = 2 → (Q[2] �= 4)r90 ≡ Q[4] �= 7

♦ (Q[1] �= 2)d1 ≡ Q[2] �= 1

♦ (Q[1] �= 2)y ≡ Q[8] �= 2♦ Q[1] = 2 → (Q[2] �= 4)r180 ≡ Q[7] �= 5

♦ Q[1] = 2 → (Q[2] �= 4)r270 ≡ Q[5] �= 2

Figure 10.10: Example of SBDS on a search tree with the 8-queens problem.

2, i.e. by adding (Q[1] �= 2)g for each g in the group, although we can omit id if
the search algorithm itself asserts Q[1] �= 2. The result of this in the case of the
chessboard symmetries is given on the right hand branch of Figure 10.10.

• At the next level of search, on the left hand side, the next search decision is Q[2] = 4.
Again we add no constraints to this positive decision. But if we backtrack from
this, we assert Q[2] = 4. It would no longer be correct to ban each symmetric
version of this decision, because the initial search decision Q[1] = 2 may have
broken some of the symmetry already. In this example, Q[1] = 2 rules out Q[1] =
7, Q[7] = 7, Q[2] = 1 and Q[8] = 2 since those squares are on the same row,
column, diagonal, and diagonal respectively. This means that no solution containing
Q[1] = 2 can possibly have the symmetries x, y, d1 or d2. There is no need to assert
any constraints for these symmetries below Q[1] = 2, and they are omitted from
Figure 10.10.

• Still considering the same node, the more complicated case is that of the symmetries
r90, r180 and r270. At this point in search we do not know whether or not these
symmetries apply. They may hold in some future states and not in others. We cannot
rule out, for example, (Q[2] = 4)r90 for all future states, as we might lose solutions
in states where r90 does not hold, but equally we will do redundant search if we do
not rule it out in states where r90 does hold. SBDS solves this dilemma by adding
constraints which rule out (Q[2] = 4)r90 conditionally. This conditional constraint
states that if the r90 is not broken (i.e. Q[2] �= 8) then we have (Q[2] �= 4)r90, i.e.
Q[4] �= 7.

We can now state in general the constraints that SBDS adds, consider a node in search
where the partial assignment A is to be extended by the decision var = val. For any
problem symmetry g, we can add the constraint:

A & Ag & var �= val ⇒ (var �= val)g (10.2)

To understand this constraint’s soundness, note that it is equivalent to

(A ⇒ var �= val) ⇒ (A ⇒ var �= val)g

which is almost a triviality. More significantly this equation is true before search begins,
since it holds for any A, var, val and g. From this point of view we can view SBDS



I. P. Gent, K. E. Petrie, J.-F. Puget 353

as making heuristic choices as to which of the (in practical terms) infinite variety of such
constraints to add. Practical implementations of SBDS do not normally add the full form of
(10.2). If we add the constraint at the point in search where we backtrack from the choice
of var = val, then we know A is true and we also know that var �= val, leading to the
much simpler, but in context equivalent, form:

Ag ⇒ (var �= val)g (10.3)

We can explain this simpler form by pointing out that it must be ensured that only unbroken
symmetries are dealt with, so it is checked that Ag still holds. Then to ensure that the
symmetrically equivalent subtree to the current subtree will not be explored, the (var �=
val)g is placed.

Backofen and Will proved that this method is sound in that the full non-symmetric
search space will be explored [5], i.e. no solutions can be completely missed. Backofen
and Will also showed that as long as all symmetries are correctly supplied, all the symmetry
will be eliminated, i.e. no two solutions returned by SBDS can be equivalent.

A number of implementations of SBDS have been provided. The most publicly avail-
able to date is that in ECLiPSe [88]. These implementations always demand from the
constraint programmer a separate function to implement the action of each symmetry g, in
the programming language the system uses. If a problem has a large number of symmetries
there may be too many for the user to identify and implement by hand. SBDS has been
used successfully, despite this difficulty, with problems containing a few thousand symme-
tries [49]. We will see in Section 10.5.4 how computational group theory can be used to
ease the burden on the programmer.

There are some important implementation issues for SBDS. A feature of SBDS is that
it only breaks symmetries which are not already broken in the current partial assignment:
this avoids placing unnecessary constraints. A symmetry is broken when the symmetric
equivalent of the current partial assignment is not consistent with the problem constraints.
Since Ag involves all values set so far, it is potentially large, so checking that a symmetry
is unbroken could be expensive. However, it can be noted that if A is extended to the
next partial assignment A1 then A1 = A + (var = val) (where var = val is the next
decision on the search tree). Then Ag

1 = Ag + (var = val)g. So a Boolean variable can
be constructed for each symmetry g representing whether Ag is satisfied or not: its value
for Ag

1 is the conjunction of its values for Ag and var = valg. Hence, it can be decided
incrementally whether Ag holds. Further, when the value of one of these Boolean variables
becomes false, it is known that the corresponding symmetry is permanently broken, and
need no longer be considered on this branch.

One problem with SBDS is that when the number of symmetries is large, than a large
number of symmetry functions has to be described. In the worst case, there could be
too many to be successfully compiled. This difficulty can be addressed by choosing a
subset of the symmetry functions to use with SBDS. McDonald and Smith [82] explore
this idea of ‘partial symmetry breaking’ with random subsets of symmetries, and also give
an algorithm for choosing a subset of symmetry functions which should, heuristically,
break a large amount of the symmetry. Unfortunately, it is infeasible to use the method in
its entirety with all but the smallest problems with small symmetry groups.

SBDS has some major advantages over adding symmetry breaking constraints before
search. First, the symmetries do not need to be variable symmetries, in contrast to the lex-
leader method. Second, the solution found in each class of equivalent solutions is always
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the leftmost one in the search tree being traversed. Again in contrast to lex-leader, this
means that arbitrary variable and value ordering heuristics may be used without changing
either SBDS or the set of symmetry functions supplied. We say that SBDS “respects” the
variable and value ordering heuristics used by the search.

10.5.2 Symmetry Breaking via Dominance Detection (SBDD)

The method of Symmetry Breaking via Dominance Detection (SBDD) was developed in-
dependently by Focacci & Milano [34], and by Fahle, Schamberger & Sellmann [33]. The
title of SBDD comes from the latter of these papers, and has been adopted by the CP com-
munity as the standard name for the method. A similar algorithm was proposed by Brown,
Finkelstein and Purdom in 1988 [16]. In fact, this paper describes a computational group
theoretic version of this algorithm which is now familiar to the CP community as GAP-
SBDD (described below in Section 10.5.5). Unfortunately, the paper by Brown et. al.,
while reasonably well known, seemed to have little influence on the constraints commu-
nity, perhaps being too far ahead of its time.

0:root
/

1:v1=1
/ \

2:v2=2 5:v2!=2
/ \ /

3:v3=3 4:v3!=3 6:v2=3
/ \

7:v3=2 8:v3!=2

node decisions v1 v2 v3 solution
0 - 1,2,3,4 1,2,3,4 1,2,3,4
1 v1 = 1 1 2,3,4 2,3,4
2 v1 = 1, v2 = 2 1 2 3,4
3 v1 = 1, v2 = 2, v3 = 3 1 2 3 yes
4 v1 = 1, v2 = 2, v3 �= 3 1 2 4 yes
5 v1 = 1, v2 �= 2 1 3,4 2,3,4
6 v1 = 1, v2 �= 2, v2 = 3 1 3 2,4
7 v1 = 1, v2 �= 2, v2 = 3, v3 = 2 1 3 2 yes
8 v1 = 1, v2 �= 2, v2 = 3, v3 �= 2 1 3 4 yes

Figure 10.11: A partial search tree to illustrate SBDD, and a table listing the search states
corresponding to each node.

SBDD operates by performing a check at every node in the search tree to see if the
node about to be explored is symmetrically equivalent to one already explored, and if so
prunes this branch. While a simple idea, this has the apparent problem that we will need to
store the whole, exponentially sized, tree already explored. A single key idea transforms
SBDD into a space-efficient method. This is that we need only store nodes at the roots of
fully explored subtrees. We do not check if a node is equivalent in full to one of our stored
nodes. Instead, we determine if a node is equivalent to any node which is an extension
of one of the stored nodes, i.e. a node which is in a fully explored subtree. Since search
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has backtracked, we must have either visited the equivalent node before, or deduced for
some other reason that there was no need to visit it: in either case there is no need to visit
a symmetric equivalent.

Like SBDS, SBDD is based on binary branching between setting a variable and re-
moving the value from a variable’s domain. An example of how SBDD works in practice,
based on the example outlined in [34], here follows. Consider a problem with three vari-
ables v1, v2 and v3 subject to an ‘all different’ constraint. The domain of all the variables
is {1, 2, 3, 4}, and all the values can be permuted. There are 24 solutions of the problem.
Figure 10.11 shows a part of the tree search that will be explored by a depth first search
procedure to enumerate all solutions, assuming only a basic all-different propagation pro-
cedure. Decisions are selected in a lexicographic ordering. Nodes are represented by n : δ
where n means the node is the nth node to be expanded by the search procedure, and δ
is the decision or the negation of a decision for the arc between a node n and its parent.
The Figure also gives for each node n the set of decisions taken on the path from the root
node to n, as well as the domains of the variables corresponding to its state. Four solutions
have been obtained in the illustrated search. However the solution found at node 7 is sym-
metrical with the one found at node 3. Those solutions are {v1 = 1, v2 = 3, v3 = 2},
{v1 = 1, v2 = 2, v3 = 3} The first solution can be mapped into the second one by the
symmetry swapping variables v2 and v3. More generally, any variable permutation is a
symmetry of the problem.

SBDD is based on the notion of no-goods. No-goods are the roots of maximal sub
trees that are completely traversed by a depth first search before n. Those no-goods can be
found by traversing the path from the root node to n as follows. Each time the path goes
from a node to its right child, then the left child of that node is a no-good: before traversing
the right child of a given node a depth first search completely traverses the left sub tree of
that node. Note that we use the name “no-good” although where we are searching for all
solutions, fully explored trees may contain solutions. In such a case, we still wish to avoid
searching any symmetric equivalent to any node in the subtree, including the solutions. In
Figure 10.11, node 3 is a no-good w.r.t. node 4, node 2 is a no-good for node 5 and all the
nodes in its sub tree. The no-goods w.r.t. node 8 are nodes 2 and 7.

Definition 10.25. No-good.
Node ν is a no-good w.r.t. n if there exists an ancestor na of n s.t. ν is the left hand child
of na and ν is not an ancestor of n.

For each no-good, SBDD stores information to be compared against the current state.
We use the set of decisions labeling the path from the root of the tree to the no-good [99].
We write δ(n) for this. The column labeled “decisions” in the table in Figure 10.11 gives
the decision information corresponding to each node. We also use the state information
at the node being searched. Specifically, we write Δ(S) for set of pairs vi = ai for all
variables vi whose domains are reduced to a singleton. In node 8 in our example, the
decisions made from the root node are δ(8) = {v1 = 1, v2 = 3}, while Δ(8) = {v1 =
1, v2 = 3, v3 = 4}.

Definition 10.26. Dominance
We say that a node n is dominated if there exists a no-good ν w.r.t. n and a symmetry g s.t.
(δ(ν))g ⊆ Δ(n). We say that ν dominates n.



356 10. Symmetry in Constraint Programming

SBDD is then quite simple, conceptually: it never generates the children of dominated
nodes, and it excludes dominated solutions. Therefore, a node n is a leaf iff it is either
a solution, a failure, or a dominated node. In our example, no-good 2 dominates node 7.
We have δ(2) = {v1 = 1, v2 = 2}. Using the symmetry g which swaps variables v2 and
v3, we obtain (δ(2))g = {v1 = 1, v3 = 2} which is a subset of Δ(7) = {v1 = 1, v3 =
2, v2 = 3}.

Other definitions of dominance are possible: Definition 10.26 is from [99]. However,
if we know that search always chooses (var = val) before its negative (var �= val) we
are free to ignore the negative decisions in δ(n) in Definition 10.26 [34, 59, 102]. For
example, consider the negative decision v2 �= 2 ∈ δ(7) in Figure 10.11, and now suppose
that some future node is dominated by δ(7) with v2 �= 2 removed. We can still terminate
search, because every leaf node in the future subtree either has the symmetric image of
v2 �= 2 or v2 = 2. If the former, the node is dominated by δ(7). But if the latter, the node
is dominated by δ(2) since the corresponding subtree fully explored v2 = 2 and we have
δ7\{v2 �= 2}∪{v2 = 2} ⊃ δ(2) = {v1 = 1, v2 = 2}. The structure of search trees makes
this observation general, so if positive differences are explored first, we can omit negative
decisions from dominance checks.

The original definition of dominance from [33] is rather more different and based on
state inclusion. A node n is dominated if there exists a no-good ν for n and a symmetry g
such that the domains of the variables in νg contains the domains of the variables in n. This
has the disadvantage that more space is required to store no-goods. Also, it goes against
the following intuition. Since we wish to establish that a set at this node is a superset of
a past no-good, we would like the set at this node to be big, and the set at the no-good
small: this should make it as easy as possible to pass the dominance test. On the other
hand, we also want the dominance check to be as easy as possible to implement and as fast
as possible to run. We might therefore be best to use a definition of dominance which fails
as quickly as possible, which may be an argument in favour of state inclusion dominance.
No definitive study of this issue has ever been performed, and perhaps is not possible any
more than deciding what the single best heuristic is for backtrack search.

The critical issue we have glossed over so far is just how the dominance check is per-
formed. The algorithm for SBDD requires a problem specific function Φ : (ν, n) →
{false, true} that yields true if the previous no-good ν dominates the current partial as-
signment n. For problems with small symmetry groups, provision of Φ can be a greater
load on the programmer than of the few symmetry functions required by SBDS. For larger
groups, SBDD has the enormous advantage that it has very limited space needs. However,
this does not solve the time complexity problems. For each pair ν and n, the search for g
amounts to solving a sub graph isomorphism problem, which is known to be NP-complete.
Although SBDD requires the solution of several NP-complete problems at each node, good
results have been obtained using the technique.

There seem to be three broad techniques for implementing dominance checks. First,
a programmer can implement a dominance checker for a particular class of problems, for
example instances of the social golfers’ problem [33]. The need for this is a major prob-
lem with SBDD. Encoding a function that will recognise when a node in the search tree
is symmetrically dominated by another one can be difficult, and it does not generalise be-
tween different problems with different types of symmetry. However, if such a function
can be found than SBDD is a very efficient method at breaking large amounts of symmetry.
Sellmann and Van Hentenryck have created a more general dominance detection function
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[107]. This can lead to very efficient solutions tuned to a particular application, but this
approach relies on the skill and insight of the programmer and imposes a considerable bur-
den on them. Second, since it is an NP-complete problem, one can construct a constraint
encoding of the dominance problem [99]. This is particularly interesting since it amounts
to using constraint programming for computational group theory. However, it is still nec-
essary to construct a special purpose constraint problem for each new class of problems to
be solved. The third approach is to use computational group theory directly [16, 53], and
we describe this further in Section 10.5.5.

An important refinement of SBDD is to notice that sometimes failed dominance checks
can result in propagation [34, 33]. Suppose our dominance check can report that a certain
variable-value pair would, if set in the current node, lead to the current node being dom-
inated. Then we can remove that value from the domain of the variable and propagate
on the result. This can perform extremely useful propagation. As usual, we have to take
care that the benefits do not outweigh the costs of performing the necessary calculations.
Another point to note is that the dominance check does not need to be done at every node
of the search tree. As long as a check is undertaken at every leaf node then only the non-
isomorphic solutions will be returned. Deciding where to apply the check is a tradeoff
between the cost of checks and the search savings that result: unfortunately little is known
about the best place on this tradeoff.

Like SBDS, SBDD can be shown to be a sound and complete symmetry breaking
method provided that the dominance check is implemented correctly. That is, exactly one
solution from each equivalence class is returned. Like SBDS, the solution found is the
leftmost one in the search tree with respect to the variable and value ordering heuristics.
SBDD therefore respects the variable ordering heuristic, and dynamic variable ordering
may be used without any change to SBDD [33]. SBDD has also been applied to soft CSP’s
[11].

Harvey [59] discusses how SBDS and SBDD are related. The difference between the
two algorithms is where symmetry breaking takes place. SBDS places constraints to stop
nodes symmetrically equivalent nodes, to those previously explored in search, from ever
being reached. On the other hand, SBDD prunes nodes having reached them and found
them to be symmetrical to a previously explored part of search. In fact, it is entirely
reasonable to see the difference between it and SBDS as merely one of implementation.
As the set of acceptable solutions is the same in each case, an implementation of SBDS
is, in a sense, an implementation of SBDD, and vice versa. This view can be a useful way
of understanding the techniques in principle, but there are enormous practical differences.
SBDD can outperform SBDS on many problems, as it does not post constraints, so does
not have the overhead of waiting for large numbers of symmetry breaking constraints to
propagate. It can successfully be used with problems which have too much symmetry for
SBDS to be an appropriate technique.

10.5.3 Symmetry Excluding Heuristics

Meseguer and Torras [84] studied how symmetry can be used to guide search. Specifically,
they direct search towards subspaces with a high degree of non-symmetric assignments, by
breaking as many symmetries as possible with each variable assignment. The symmetry
breaking heuristic proposed breaks as many symmetries as possible. Meseguer and Torras
go on to propose the ‘variety-maximization’ heuristic which combines the smallest do-
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main first heuristic, which can perform better than the symmetry breaking heuristic under
certain conditions, with the symmetry breaking heuristic. On a simple problem the variety-
maximization heuristic builds a slightly smaller search tree, than the smallest domain first
heuristic, to find all solutions. Variety-maximization does notably better to find the first
solution. Meseguer and Torras go on to combine the variety-maximization heuristic with
symmetric value pruning by no-good recording. The size of the set of no-goods is poten-
tially exponential, so only a subset is stored and used. The results of this combination are
rather disappointing; the inclusion of symmetric value pruning does not provide a major
advantage over variety-maximization alone, in any of the problems undertaken.

Using variable ordering heuristics (and indeed value ordering heuristics) to break sym-
metry is an attractive proposition, as it does not have the computational cost associated with
the other dynamic symmetry breaking methods. Despite the work of Meseguer and Torras,
there seems to be much more scope for using symmetry in heuristics than the community
has exploited to date. There is also considerable scope for other ways to use symmetry
heuristically. For example, if we are solving a problem with a large amount of symmetry,
we might look only for solutions with some symmetry. This excludes enormous parts of
the search space. On the one hand, this means that search will be incomplete, in that a
negative answer does not mean there are no solutions with less symmetry. On the other
hand, we might get lucky, and there may be such solutions: if there are we have all the
advantage of the reduced search. While this may seem incredibly optimistic, it has been
successful in practice [119].

10.5.4 SBDS with Computational Group Theory

To allow SBDS to be used in situations where there are too many symmetries to allow
a function to be created for each, Gent et al. [52] linked SBDS in ECLiPSe with GAP
(Groups, Algorithms and Programming) [46]. GAP is a system for computational algebra
and in particular Computational Group Theory (CGT). There is nothing fundamental about
the use of GAP or ECLiPSe, the point being that this is a co-operation between subsystems
to provide constraint algorithms and to provide computational group theory algorithms. A
library for GAP-SBDS is distributed with ECLiPSe.

GAP-SBDS allows the symmetry group, rather than its individual elements, to be de-
scribed. GAP-SBDS operates over a set of points, where each point corresponds to a
variable-value pair. One way to think of a point is in terms of a member of a n × m array,
where n is the number of variables, and m is the size of the domain of each variable. The
i, j-th element in the array denotes variable i and value j. The symmetry group, G, acts on
these n×m points, each point being represented by a single integer. The group generators
are given in ECLiPSe and passed to GAP in terms of points. This means that functions
are required in ECLiPSe which convert from variable/value pairs to integers representing
points and vice-versa. This is a possible source of error when using the GAP-SBDS sys-
tem. Even without error, to effectively use the system, the user must have some knowledge
of CGT. While it is enough to write down a set of generators, even this makes the system
inaccessible for many users. However, some progress has been made in this area, as we
describe in Section 10.8.

The GAP-SBDS algorithm can be described in terms of Equation 10.2 from Sec-
tion 10.5.1: A & Ag & var �= val ⇒ (var �= val)g, In GAP-SBDS, the only part
of this process that is controlled by GAP is g(A), the other components are controlled
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by ECLiPSe as in the standard SBDS algorithm. g(A) is calculated with the use of
a right-transversal chain, a set calculated iteratively at every node in the search-tree, as
the Cartesian product of every right-transversal obtained so far. More formally RTchain
= RTk × RTk−1 × . . . × RT1 is defined as pk ◦ pk−1 ◦ . . . ◦ p1 where pi ∈ RTi. Each
member of RTchain is a representative of the set of symmetries which agree on what to
map each of the variable/value pairs in A ∧ var �= val to. This means the symmetry
breaking constraint can be placed on backtracking, by transforming var �= val according
to the elements in RTchain. However, doing this by iterating over every symmetry would
be infeasible for all but relatively small groups. To counter this difficulty Gent et al. use
lazy evaluation. The constraint g(var �= val) is only imposed when g(A) is known to be
true, rather than placing conditional constraints as in the original SBDS. This means that
although GAP-SBDS is guaranteed to break all the symmetry, it may not break the sym-
metry as early in search as SBDS. This can lead to GAP-SBDS having a larger backtrack
count than SBDS.

In GAP-SBDS Gent et al. have created an efficient implementation of SBDS, which
can handle relatively large amounts of symmetry effectively. This moves the order of
groups that SBDS can be be used with from the thousands to the billions. The number of
symmetries is limited to this kind of scale because the number of constraints being added
during search can cause space problems. Even billions is a small number when groups can
grow exponentially.

10.5.5 SBDD and Computational Group Theory

We mentioned, in Section 10.5.2, that in practice SBDD can be difficult to implement. The
design of the dominance detection function may be complicated, and there are no general
rules for designing the function for problems with similar types of symmetry. In reality
two ‘similar’ problems may have completely different dominance functions; there may be
more than one dominance function for a problem, some of which prune more effectively
than others. Gent et al. [53], developed GAP-SBDD to address this problem by providing
a generic dominance checker, which is now available as an ECLiPSe library.

GAP-SBDD is a generic version of SBDD that uses the symmetric group of the prob-
lem, rather than an individual dominance detection function. Like GAP-SBDS, GAP-
SBDD works by way of an interface between GAP and ECLiPSe and performs calcula-
tions over points, with the symmetry groups defined by a generating set of permutations.
GAP-SBDD operates by maintaining both a failSet and a pointSet. The failSet corresponds
to the set of points attributed to the positive decisions made during search to reach the root
of completed subtrees. The pointSet denotes the set of points corresponding to variables
which have been set to a fixed value on the current branch of search (both through assign-
ments and propagation). The current node on the search tree is dominated by a complete
subtree if there exists a g in the symmetry group G and a s in the failSet S such that sg ⊆
pointSet.

The dominance check is implemented using a tree data structure which encodes all the
failSets currently applicable. Disjoint sets of points A1, . . . , Ak and B0, . . . , Bk can be
identified, the failSets associated with these points are A1 ∪ . . . ∪ Ai ∪ Bi for each i. The
right branching elements of the tree are labelled with elements of A, the left ones elements
of B. Each node of the tree is associated with the sequence of labels on the path to it from
the root. The dominance check is performed using a recursive search, which traverses
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the tree, entering each node once for every way of mapping the associated sequence of
points into the current point. This is implemented in GAP with the use of stabiliser chains.
While inherently just a backtracking search for an appropriate group element, the search in
GAP contains a number of optimisations which cause several orders of magnitude speedup
from a naive implementation [53]. As in regular SBDD, it is possible to identify cases
where all but the final element of a failSet can be mapped into a pointSet, and report them
back to ECLiPSe, so the value can be removed from the associated variables domain.
However, like GAP-SBDS, not all possible values are identified, as this would cause too
much increase in runtime.

GAP-SBDD is an efficient method for dealing with problems with large symmetry
groups. In principle, the size of groups that can be used is unlimited, and certainly it has
been used in practice on groups with 1036 elements. However, it provides no magic bullet
to the inherent hardness of the dominance check. This hardness can manifest itself with
individual dominance checks that take inordinate amounts of time to run. Also, it has been
found that subtle differences can make enormous differences to run time. For example,
while GAP-SBDD does respect the variable ordering heuristic, different heuristics on the
same instance can lead to dramatic changes in the time dominance checks take. This means
that the method can suffer from a lack of robustness. Nevertheless, from a very small input
with no algorithmic content, GAP-SBDD constructs a complete symmetry breaking tool
automatically.

10.5.6 GE-Trees

The idea of constructing GE-trees is the most recent idea to join the suite of dynamic sym-
metry breaking methods [103]. (GE stands for “Group Equivalence” but the abbreviation is
used universally.) It differs from the others in this class, as it is more a way of considering
symmetry breaking methods, than a symmetry breaking method in its own right. A GE-
tree is defined as a tree in which no two nodes are symmetrically equivalent, and in which,
for every solution to the problem, a symmetrically equivalent node is in the tree.4 GE-trees
are defined analogously to search trees in general: in particular, algorithms are free to stop
before they construct a complete tree, for example after finding a first solution. GE-trees
are intended in part to be viewed as a conceptual paradigm, to classify and compare sym-
metry breaking techniques. Any method of GE-tree construction will (by definition) break
all problem symmetries as the search for solutions proceed. SBDS and SBDS can both
be viewed as methods for constructing GE-trees, but so can lex-leader provided that all
constraints it requires are used. Careful analysis of properties of GE-trees (constructed by
different methods such as SBDS and SBDD, applied to the same instances) may allow the
refinement and extension of existing techniques and even the development of new ones.

In some cases GE-trees are almost in the folklore. For example, consider graph colour-
ing where each colour is indistinguishable. Many programmers have realised that the first
node can be coloured arbitrarily. For the second node, we only have to consider giving it
the same colour or an arbitrary different one. The third node need only be given the colours
given to the first two nodes, and an arbitrary different one. The process continues until we
have used all colours. This intuition can be generalised and formalised. Roney-Dougal et
al. used the GE-tree paradigm to create a polynomial time algorithm for breaking arbitrary

4The latter condition is easy to forget but otherwise legal GE-trees could exclude some or even all solutions.
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value symmetries. This can be viewed as a computational group theory-based general-
isation of an algorithm presented in [64]. It is a special purpose algorithm which only
creates new nodes which are guaranteed to be unique in the tree. In general this is hard, but
Roney-Dougal et al. showed that the special nature of groups of value symmetries can be
used to construct GE-trees very efficiently [103]. They report on an experimental compar-
ison between this method and GAP-SBDD for problems which only have value symmetry.
GE-trees are found to be the best method in all cases. This is not surprising: GAP-SBDD
performs a potentially exponential search, at each node in the search tree, in order to break
symmetry, compared to the low-order polynomial algorithm to break all value symmetry.

10.5.7 The STAB Method

Symmetry Breaking Using Stabilizers (STAB), like SBDS, adds symmetry breaking con-
straints during search [98]. Unlike SBDS, which places constraints to break all the symme-
try of the problem, STAB places symmetry breaking constraints only for symmetries that
leave the partial assignment A at the current node unchanged. That is, instead of breaking
symmetry in the whole group, STAB breaks symmetry in the stabiliser GA. These con-
straints take the form of lexicographic ordering constraints. Stabilisers were introduced in
Section 10.1. In practice the size of stabilisers is often much smaller than the size of G.
The STAB method, amounts to adding the following set of constraints at each node A.

V �lex V g, for all g ∈ GA

These constraints remove all the solutions that are not lexicographically minimum with
respect to the stabiliser GA in the sub tree rooted at A.

Example 10.27. Consider a 4× 5 matrix model. For simplicity we will refer to the matrix
of variable by V , i.e. we identify the vector of variables with its matrix representation:

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

x16 x17 x18 x19 x20

Consider a partial assignment A where the first 10 variables are assigned as follows:

0 0 0 1 1
0 1 1 0 0

Every symmetry for A is defined by a row permutation and a column permutation.We
can state constraints for each of these symmetries, except for the identity permutation. For
instance, let us state the constraint for the symmetry σ made up of the permutation (1 2) of
rows and (2 4 3 5) on columns. The matrix W = V σ is

x6 x9 x10 x8 x7

x1 x4 x5 x3 x2

x11 x14 x15 x13 x12

x16 x19 x20 x18 x17
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The symmetry breaking constraint is then, allowing for the assignment A, is then

[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
�lex [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

As the two vectors have the same first 10 elements, the constraint can be simplified into:

[x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
�lex [x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

Going back to the general case, the simplification based on identical prefixes is valid in
general. Given the n-vector V , let tail(V,n-d) be the vector obtained by removing the first
d elements of V . If A is a d-vector then constraints can be simplified into

tail(V, n− d) �lex (tail(V, n − d))g , for all g ∈ GA

It should be noted that STAB is an incomplete method with regard to symmetry break-
ing, meaning that it does not return only the non-isomorphic solutions.

10.6 Combinations of Symmetry Breaking Methods

We have described a variety of symmetry breaking methods, each with advantages and
disadvantages. It would naturally seem a good idea to combine two or more methods in
order to reap all of the advantages. Unfortunately, correctly combining symmetry breaking
methods has proven to be very difficult. Symmetry breaking methods try to preserve one
solution from each equivalence class. How this solution is chosen depends on the method
of symmetry breaking. Combining any two methods arbitrarily may mean that different
solutions are ruled out by each symmetry breaking method, and so solutions are lost.

For a while it was thought by many that if the same variable and value ordering are
used, then it was valid to apply several symmetry breaking methods at the same time, since
none of these methods remove canonical solutions. Therefore, any combination will keep
canonical solutions. For instance, one could state the Lex2 constraints and use SBDD
at the same time for matrix models. However, Smith [112] has shown this not to be the
case. Harvey [60] later documented an example of this result, then showed how SBDS and
SBDD can be modified so that they can be correctly combined with lexicographic ordering
constraints. Unfortunately, the empirical results for this combination were disappointing.
Another area which has received some study is combining a method to break variable
symmetry, with a method to break value symmetry. As both of these methods are acting on
different symmetry groups, this combination is intrinsically safe. Puget [101], showed how
all the variable symmetry can be broken by simple ordering constraints, when there is an
all-different constraint across all of the variables. He successfully combined this method
with GE-trees to also break the value symmetry. Another combination which includes GE-
trees has been tried [69]. This successfully combined GE-tree to break value symmetry and
GAP-SBDD to break variable symmetry. This method is provably complete and sound
with regard to breaking all symmetry, but is less efficient than GAP-SBDD alone on all
problems tried.

In Section 10.5.7 it was noted that STAB is an incomplete method with regard to sym-
metry breaking, meaning that it does not return only the non-isomorphic solutions. In order
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to counter this drawback, Puget combined SBDD with STAB. This combined method pro-
duces good results, outperforming SBDD alone.

Another successful combination of symmetry breaking methods was completed by
Petrie [90]. Petrie showed that neither of GAP-SBDS or GAP-SBDD is universally bet-
ter, so combined the two methods. This was done by having one operate at the top of the
search tree, than switching to the other method at a lower level. The empirical analysis
of this method showed it to sometime outperform either of the methods alone. However,
perhaps more importantly it was shown to be a more robust method, in that the combined
method was never less efficient, than the least efficient of the two contributing systems.

10.7 Successful Applications

Many of the symmetry breaking methods outlined in the previous sections have been ap-
plied successfully to a variety of problems. We have already mentioned two successful
applications: the chess puzzle at the start of the chapter, and graceful graphs. In both
cases new results were obtained using symmetry breaking in constraint programming. We
briefly outline some more applications, and indicate which symmetry breaking methods
have been successfully applied to them. CSPLib (www.csplib.org), is an online directory
of constraint problems: whenever a problem is contained within this resource, the number
of the problem is given in this text to help the interested party find a detailed problem spec-
ification. The references provided are the papers which discuss symmetry breaking within
the applications.

Balanced Incomplete Block Design (BIBD) generation is a standard combinatorial
problem from design theory, originally used in the design of statistical experiments but
since finding other applications such as cryptography. It is a special case of Block De-
sign, which also includes Latin Square problems. BIBD’s are problem 28 in CSPLib,
Lam’s problem, which is problem number 25 in CSPLib is that of finding a specific BIBD
instance. BIBD’s can be easily modelled with the use of matrices, and so many of the
methods that place symmetry breaking constraints on matrices have been applied to them
[44]. This problem was also used as a test bed for STAB [98] and GAP-SBDD [53].

Steel Mill Slab Design is a simplification of a real industry problem, which is to sched-
ule the production of steel in a factory. It is problem number 38 in CSPLib. Gent et al.
have considered conditional symmetry breaking in this problem [54]

Maximum Density Still Life problem arises from the Game of Life, invented by John
Horton Conway in the 1960s and popularized by Martin Gardner in his Scientific American
columns. A stable pattern, or still-life, is not changed by the rules which cause the Game
of Life to iterate. The problem is to find the densest possible still-life pattern, i.e. the
pattern with the largest number of live cells, that can be fitted into an n × n section of
the board, with all the rest of the board dead. Maximum density still life is problem 38
in CSPLib. Smith [114] and both Bosch and Trick [12] have considered modelling and
symmetry breaking in Still Life. Petrie et al. have studied dynamic symmetry breaking in
a CP-LP hybrid, then applied this idea to this problem [90].

Social Golfers Problem is where the coordinator of a local golf club has the following
problem. In her club, there are 32 social golfers, each of whom play golf once a week, and
always in groups of 4. She would like you to come up with a schedule of play for these
golfers, to last as many weeks as possible, such that no golfer plays in the same group as
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any other golfer on more than one occasion. The problem can easily be generalized to that
of scheduling m groups of n golfers over p weeks, such that no golfer plays in the same
group as any other golfer twice (i.e. maximum socialisation is achieved). Social Golfers is
problem number 10 in CSPLib. Harvey and Winterer at the time of writing have the most
efficient algorithm for this problem, which includes symmetry breaking [62].

Peaceable Coexisting Armies of Queens was introduced by Robert Bosch in his col-
umn in Optima in 1999 [13]. It is a variant of a class of problems requiring pieces to
be placed on a chessboard, with requirements on the number of squares that they attack:
Martin Gardner [47] discusses more examples of this class. In the “Armies of Queens”
problem, we are required to place two equal-sized armies of black and white queens on a
chessboard so that the white queens do not attack the black queens (and necessarily v.v.)
and to find the maximum size of two such armies. Bosch asked for an integer programming
formulation of the problem and how many optimal solutions there would be for a standard
8 × 8 chessboard. However, this problem can obviously be generalised to a n × n chess-
board. Various models for this problem in conjunction with dynamic symmetry breaking,
are considered by Smith et al., the puzzle at the start of this chapter being a spinoff of this
research [115].

Fixed Length Error Correcting Codes are defined as follows: A fixed length error
correcting code C of length n over an alphabet F is a set of strings from Fn. Given
two strings from Fn we can define the distance between them. The most commonly used
distance is the Hamming distance, defined as the number of positions where the strings
differ. Using this we define the minimum distance of C as the minimum of the distances
between distinct pairs of strings from C. Fixed Length Error Correcting codes are problem
36 in CSPLib. This problem is studied in conjunction with symmetry breaking constraints
by Frisch et al. [42].

Peg Solitare (also known as Hi-Q) is played on a board with a number of holes. In the
English version of the game, the board is in the shape of a cross with 33 holes. Pegs are
arranged on the board so that at least one hole remains. A number of different problems
arise from Solitaire, e.g. finding a path from the initial to a goal state, or finding the shortest
number of moves to a state where no more moves are possible. Peg solitare is problem 37
in CSPLib. Jefferson et al. have studied on how to solve this problem using various AI
paradigms, including a discussion of symmetry breaking [42].

Alien Tiles is available for play over the internet at www.alientiles.com. Alien Tiles
is problem 27 in CSPLib. Gent, Smith and Linton have studied how dynamic symmetry
breaking can be successfully applied to the problem of finding the hardest instance. [49].

We can see that symmetry methods are flexible enough to be applied to a great vari-
ety of problems, and we have by no means mentioned all the successful applications to
date. The most successful seem to be on combinatorial puzzles such as graceful graphs. It
therefore remains to be proved by the community that symmetry breaking has significant
applications on industrial scale problems.

10.8 Symmetry Expression and Detection

Most research on symmetry constraints has assumed that the symmetries of a problem can
be provided, in some form, by the programmer. For example, SBDS relies on program-
mers providing a list of functions to implement the actions of symmetries; SBDD needs
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a dominance check to be written; and methods such as lex-leader and GAP-SBDS need
a group to be provided. Even for methods where this is not necessary, such as the use of
double-lex constraints in a matrix model, a programmer has to recognise that the matrix
symmetries occur and that the double-lex constraints are an appropriate technique to break
them with. In recent years, increasing amounts of work have been based on the premise
that this is an untenable position. Two ways of overcoming this flaw have been consid-
ered. First, it could be made easier for the programmers to write down the symmetries.
Second, the symmetries could be detected automatically so there is no work at all for the
programmer. This first method has been independently studied by both McDonald [48]
and Harvey et al. [63], with a view to creating a system which produces the group needed
for methods using computational group theory, without the user having to understand ex-
actly how groups are generated. There are three main aims to these systems. The first is
to get rid of the need for functions which map variable/value pairs to points (this concept
is outlined in Section 10.1.1). The second is to allow the expression of the symmetry in a
simple yet powerful way. The third is to create a system which requires the user to have
no prior knowledge of group theory. These objectives are achieved, by providing a set of
functions, which map expressions of the symmetry with regard to the variables and values
(e.g. all the rows of a matrix can be interchanged) to group generators. These techniques
to date are limited to the most commonly occurring kinds of symmetry, and do not allow
users to express arbitrary groups.

The automatic identification of the symmetry group of some CSPs is possible through
determining the automorphism group of the graph associated with the constraint problem.
Puget [100] showed that this could be done in connection with the microstructure graph,
which closely relates to the existential representation of the constraints. The concern with
this approach is that it may not scale well (it is in the complexity class of graph isomor-
phism in most cases). When the problem is large, so is the graph, and the automorphism
cannot be calculated in a reasonable time. Small problems can also have big graphs due
to non-binary constraints, which again would mean the automorphism could not be calcu-
lated in reasonable time. To counter this potential problem Puget also introduced a method
where he considered a graph related to intensional representation of each constraint. Puget
found that the symmetry could be detected very efficiently, using both methods, on a va-
riety of problems. Ramani and Markov have also has recently had some success [23],
with a method closely linked to Puget’s. This method undertakes graph isomorphism of
the parser trees associated with the intensional representation of the constraints. Although
this method is not guaranteed complete, in that it does not guarantee to find the full sym-
metry group, it has had some successful results in practice. It should be mentioned that
in the SAT community outstanding results have been obtained using automatic symmetry
detection, even on large problems [1]. This is particularly encouraging because natural
structures, such as the microstructure of constraint problems, correspond to encodings into
SAT. In order to know when this attractively simple method is feasible with regard to CP
empirical analysis is required.

Many symmetries are also added in the modelling process, as pointed out by Frisch et
al. [45]. If we can understand when this symmetry is added, it should be easy to pass those
symmetries to symmetry-breaking methods.
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10.9 Further Research Themes

We now discuss a diverse range of research using symmetry, which is unified only by
not fitting easily elsewhere in this chapter. We do not to suggest that the work in this
section is less important than in the rest of this chapter. Indeed, the same reasons that
make this research hard to categorise makes some of it particularly innovative, and so it
has significant potential for future exploration.

Symmetry and inference: Almost all research on symmetry in constraints has focussed
on breaking symmetries to reduce search. When symmetry is present in a search problem,
its presence is information that we can exploit in other ways. A particular example is to en-
hance representation and inference of constraint problems. First, we can greatly compress
the size of the representation and thus enhance the representational power. Second, we can
exploit knowledge of the group structure to change our algorithms for inference and prop-
agation. This is necessary if we use a compressed representation based on the group, but
also offers advantages. If we perform some work to deduce that a value can be removed,
we need perform no more work to remove all symmetric equivalents of it. Similarly, if we
know that a given value cannot be removed, then we need perform no more work on trying
to propagate symmetric equivalents. A simple example of this idea was used to exploit the
bidirectionality of constraints in arc consistency to improve AC-6 [9]. More generally, we
may have arbitrary groups acting on the set of constraints. Dealing with groups correctly
and efficiently raises many difficult problems. These difficulties are now being seriously
attacked. By far the most significant body of work has been applied in the context of SAT,
by Dixon et al., in a three part journal paper spreading over almost 200 pages [27, 26, 28].
They have produced ZAP, a powerful SAT solver designed to allow concise expression
of problems using group theory, while exploiting the great efficiency advances made in
modern SAT solvers. At a much smaller scale, new propagation algorithms have been
introduced into Constraint Programming. Gent et al. introduced symmetric variants of
(i,j)-consistency and singleton consistency, together with algorithms for their enforcement.
While implementations have been provided, it has not yet been proved that symmetry-
based inference techniques will be powerful in practice. Nevertheless, the research area is
of high promise, as suggested by Dixon et al.’s conclusion to their mammoth effort: “it is
important to realize that our results only scratch the surface of what ZAP’s representational
shift allows” [28].

Symmetry and implied constraints: When constraints are added before search, it is
possible to use them to derive ‘implied’ constraints. These implied (or ‘redundant’) con-
straints may greatly reduce search, in ways which are not possible using the original prob-
lem constraints [44]. We saw, in Section 10.4.3, another example where symmetry break-
ing and problem constraints can interact very fruitfully. Dynamic symmetry breaking tech-
niques do not allow implied constraints to be added – at least not in the simple way that
static symmetry breaking methods do. Adding implied constraints suffers from similar
problems to reformulation. It can give very dramatic search reductions, but no automatic
technique for adding effective implied constraints is known.
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Symmetry and local search: When we know about symmetry in a constraint problem,
there is no moral imperative to remove it: we can exploit the symmetry in any way we
choose. Where local search is used instead of backtracking search, Prestwich pointed out
that it is disadvantageous to add symmetry breaking constraints [94, 91]. While more so-
lutions are good for any search method, local search suffers particularly when solutions
are excluded. Since stochastic methods are designed to explore search spaces randomly,
it is hard to guide them away from parts of the search space where solutions have been
excluded, while each excluded solution becomes a new local optimum. In a detailed anal-
ysis, Prestwich and Roli identified two pathologies that symmetry breaking constraints
caused for local search methods: global solutions have relatively smaller basins of attrac-
tions while local optima become relatively larger [95]. Since excluding symmetries seems
bad for local search, can we improve it by introducing symmetries? Prestwich proposed
this lovely idea with some success [92, 91]. Exploiting symmetry within local search algo-
rithms remains an interesting but underdeveloped research area: Petcu and Faltings used
interchangeability to guide local search away from conflicts [87], but otherwise little has
been done in this direction.

Dominance and almost symmetries: Researchers have investigated cases where stan-
dard symmetry breaking methods are not applicable. For example, Beck and Prestwich
studied ‘dominances’ in constraint problems [7]. A dominance is a transition between as-
signments which is guaranteed to improve (or at least make no worse) some notion of a cost
function. We can see symmetries as special cases of dominances, where the cost is kept the
same, and hence the transitions are invertible. Beck and Prestwich argue that dominance
“should rank alongside symmetry breaking as a generic CP technique, and that it can be
profitable to treat both in a uniform way.” Another issue receiving recent attention is that
of “almost symmetries” [37], the subject of a recent workshop [29]. The general idea is
that these are symmetries which are almost, but not quite, there in the original problem.
They can arise by either adding or removing constraints on the problem [58]. Examples of
the former case would be symmetries which arise during search: dealing with these can be
difficult, because they cause significant problems for techniques such as SBDS or SBDD
[54]. The idea underlying relaxing constraints on a problem to give new symmetries is
as follows [61, 81]. If the relaxed problem is highly symmetric, its reduced search space
should help search. If the relaxed problem has no solutions, then neither does the original.
If we do find solutions to the relaxed problem, we need additional steps to ensure that they
correspond to solutions of the original.

Symmetry in other problems: Given the focus of this handbook to constraints, we have
naturally restricted our discussion to constraints and SAT. However, researchers interested
in symmetry in constraints should also be interested in how symmetry is tackled in other
domains. For example, can we apply ideas from symmetry in constraints to other prob-
lems? Can ideas developed in other domains be applied to constraints? While we now
point to some key literature in other areas, we do not even claim to provide an exhaus-
tive list of other search problems with symmetry, much less an exhaustive or analytical
study of relevant literature in those areas. In Integer Programming, Margot has shown
how algorithms can be adapted to exploit large symmetry groups [79, 80]. New cuts are
generated based on the symmetries, and large groups are handled using Schreier-Sims to
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represent them. In Planning, Fox and Long have integrated symmetry reasoning into a
state-of-the-art planner, SymmetricStan [38, 37]. Fox and Long point out that symmetry
detection during search, and the presence of almost-symmetry, is very important due to the
nature of planning problems. It is perhaps surprising that there does not seem to be a more
significant body of work in these two research areas. This is less the case in Automated
Theorem Proving, where there is a substantial literature in adapting proof systems to deal
with symmetry, e.g. [3, 71, 86, 24, 117]. There have also been substantial efforts in Model
Checking over some years, e.g. [15, 20, 66, 110]. As in constraints, this work has tended
to assume that users recognise the symmetry, and they have also been limited to simple
cases of symmetry rather than using the power of computational algebra. Recently, Don-
aldson et al. have shown that more general symmetries in model checking using GAP and
graph isomorphism software [30, 31, 32]. Finally, we touch only in the slightest way on
the extensive mathematical literature on search with symmetry. We particularly mention
McKay’s nauty software for Graph Isomorphism [83] and Soicher’s GRAPE package for
dealing with graphs relating to groups [116]. The key algorithm is “partition backtrack”
[83, 76], a very subtle intermingling of backtrack search and group-theoretic computations.
The mathematical applications of such techniques are numerous: one is Design Theory,
which deals with combinatorial designs such as balanced incomplete block designs, and
for which an online repository is available at www.designtheory.org [6].

10.10 Conclusions

We have presented an overview of symmetry in constraint programming. We have been
unashamed in emphasising the links with group theory. The study of symmetry is group
theory, so anyone who has ever considered symmetry in constraints has been thinking
about group theory – though perhaps without realising it. We have also emphasised the
ability of computational group theory to contribute methods to the efficient exploitation
of symmetry in constraints. Researchers and users of constraint programming can access
these techniques either through linking to the existing computational algebra packages, or
by implementing their own algorithms. Again, anyone who has written code for exploit-
ing symmetry in constraints has been, whether unconsciously or not, doing computational
algebra.

The main part of this chapter is taken up by a study of symmetry breaking methods,
since this is by far the largest body of research that has been undertaken on symmetry
in constraints. We considered methods in three broad categories: reformulation of prob-
lems, adding symmetry breaking constraints before search, and dynamic symmetry break-
ing methods that operate during the search procedure. It is worth summarising in one place
the very broad advantages and disadvantages of each method. It will be seen that there is
no ‘one-size-fits-all’ method to recommend, but it should be noted that researchers have
proposed solutions which at least ameliorate many of the disadvantages we mention:

• Reformulation is when the problem is remodelled to eliminate some or all sym-
metry. It can be an astonishingly efficient method of breaking symmetry, but un-
fortunately there is no known systematic procedure for performing the remodelling
process in general. Where reformulation is possible, it can be combined easily with
other methods.
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• Symmetry breaking constraints are perhaps the most natural technique and the
easiest to understand. Ideally, the new constraints should be satisfied by only one
assignment in any equivalence class, but it can be difficult to find simple constraints
that eliminate all the symmetry. A systematic method called ‘lex-leader’ is known
for generating symmetry breaking constraints, when the problem only contains vari-
able symmetry. The efficiency with which some kinds of symmetry breaking con-
straints can be propagated, for example in matrix models, means that adding sym-
metry breaking constraints can be very cost-effective even where they do not break
all the symmetry. Symmetry breaking constraints do have a disadvantage in that they
can interact badly with the search heuristics being used.

• Dynamic symmetry breaking includes many methods which adapt the search pro-
cess in some way. This includes SBDS, SBDD (and the computational group theo-
retic versions of these methods), and STAB. Both SBDD and SBDS are complete,
in that only one solution will be returned from each symmetric equivalence class.
Group-theoretic versions add the advantage that only a small number of symmetries
in a problem need be specified, but this is related to a disadvantage, that they often
require symmetries to be expressed in a mathematical language that is unnatural for
constraint programmers. A significant advantage of these methods is that they do
not conflict with search heuristics. As relatively new methods, a final drawback is
that they can only be used if a library package is available, or the user spends the
time to adapt the search program themselves.

Quite apart from its inherent importance, we conclude by commending the study of
symmetry in constraints as an enjoyable and rewarding research topic.
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