
Minion: A Fast, Scalable, Constraint Solver1

Ian P. Gent2 and Chris Jefferson3 and Ian Miguel2

Abstract. We present Minion, a new constraint solver. Em-
pirical results on standard benchmarks show orders of magni-
tude performance gains over state-of-the-art constraint toolk-
its. These gains increase with problem size – Minion delivers
scalable constraint solving. Minion is a general-purpose con-
straint solver, with an expressive input language based on
the common constraint modelling device of matrix models.
Focussing on matrix models supports a highly-optimised im-
plementation, exploiting the properties of modern processors.
This contrasts with current constraint toolkits, which, in or-
der to provide ever more modelling and solving options, have
become progressively more complex at the cost of both per-
formance and usability. Minion is a black box from the user
point of view, deliberately providing few options. This, com-
bined with its raw speed, makes Minion a substantial step to-
wards Puget’s ‘Model and Run’ constraint solving paradigm.

1 Introduction

Constraint programming supports the solution of combinato-
rial problems in two stages. First, by characterising or mod-
elling them by a set of constraints on decision variables that
their solutions must satisfy. Second, by searching for solutions
with a constraint solver: assignments to the decision vari-
ables that satisfy all constraints. The success of constraint
programming is based upon its flexibility and expressivity;
constraints provide a rich language allowing most problems
to be expressed straightforwardly once the model is selected.

Modern constraint solving techniques are typically provided
to users in the form of constraint toolkits. These are libraries
for programming languages such as C++ (e.g. ILOG Solver,
GeCode), Java (e.g. Choco, Koalog) or Prolog (e.g. Eclipse,
Sicstus). This approach supports a high degree of customi-
sation. For example, it is usually possible for users to add
propagation rules for an as-yet undefined constraint to the li-
brary. When such additions prove to be generally useful, they
are often included in future versions of the popular constraint
toolkits. Hence, as Puget pointed out [19], constraint toolkits
have become increasingly complex in an effort to provide ever
more functionality. The result is that constraint programming
for large, realistic problems requires a great deal of exper-
tise and fine tuning. Furthermore, to provide this flexibility,

1 We thank Angela Miguel, Karen Petrie, Judith Underwood and
ECAI’s referees. Supported by EPSRC Grant GR/S30580 and a
Royal Academy of Engineering/EPSRC Research Fellowship.

2 School of Computer Science, University of St Andrews, St An-
drews, Fife, KY16 9SS, UK. {ipg,ianm}@dcs.st-and.ac.uk

3 Oxford University Computing Laboratory, University of Oxford,
Oxford, UK. chris.jefferson@comlab.ox.ac.uk. Research un-
dertaken while at St Andrews University.

toolkits have a necessarily complex internal architecture. This
results in large overheads in many parts of the solver, with a
detrimental effect on efficiency and scalability.

Puget suggests that today’s constraint toolkits are far too
complex to achieve widespread acceptance and use [19]. He
advocates a ‘model and run’ paradigm for constraints simi-
lar to that achieved by propositional satisfiability (SAT) and
mathematical programming (MP). Our hypothesis is that we
can achieve this by taking two important steps. The first step
is to supply constraint solvers (instead of toolkits) that ac-
cept models rather than programs. These solvers should be
black boxes that reduce the bewildering array of options pro-
vided by constraint toolkits to a select few. Furthermore, the
reliance of constraint programming on heavy fine tuning to
achieve an acceptable level of performance is in conflict with
‘model and run’. The second step is therefore to create fast
constraint solvers that promote implementation efficiency. Ef-
ficiency in turn will reduce the sensitivity of performance to
minute parameter changes. Fast solvers will also be more scal-
able to large constraint problems. This methodology follows
the closely-related fields of propositional SAT and MP where
solvers scale to very large problems, and where ‘model and
run’ is absolutely standard.

To test our hypothesis, we have built a fast and scalable
constraint solver, named Minion. Throughout, Minion has
been optimised for solving large and hard problems. Experi-
mental results show that Minion typically runs between 10
and 100 times faster than state-of-the-art constraint toolkits
such as ILOG Solver and GeCode on large, hard problems.
On smaller problems or instances where solutions are found
with little search, gains are less impressive. Minion takes an
expressive input language for matrix models over integer do-
mains, allowing a variety of fundamental constraints such as
all-different, sum, reification, and others. A number of our
design decisions are modelled on those of zChaff, which rev-
olutionised modern SAT solving [22]. In particular, we paid
special attention to using very small data structures, mak-
ing memory usage very small and greatly increasing speed on
modern computer architectures.

2 Background

A constraint satisfaction problem (CSP [3]) is a set of decision
variables, each with an associated domain of potential values,
and a set of constraints. An assignment maps a variable to a
value from its domain. Each constraint specifies allowed com-
binations of assignments of values to a subset of the variables.
A solution is an assignment to all the variables that satisfies
all the constraints. A constrained optimisation problem is a

CSP with an objective function, which must be optimised.
We focus on systematic search for solutions in a space of as-

signments to subsets of the variables. We use constraint prop-
agation algorithms that make inferences, recorded as domain
reductions, based on the domains of the variables constrained
and the assignments that satisfy the constraint.

Minion uses a language based upon matrix models, i.e. CSP
formulations employing one or more matrices of decision vari-
ables, with constraints typically imposed on the rows, columns
and planes of the matrices. To illustrate, consider the Bal-
anced Incomplete Block Design (BIBD, CSPLib problem 28),
which is defined as follows: Given a 5-tuple of positive inte-
gers, 〈v, b, r, k, λ〉, assign each of v objects to b blocks such
that each block contains k distinct objects, each object occurs
in exactly r different blocks and every two distinct objects oc-
cur together in exactly λ blocks. The matrix model for BIBD
has b columns and v rows of 0/1 decision variables. A ‘1’ entry
in row i, column j represents the decision to assign the ith
object to the jth block. Each row is constrained to sum to r,
each column is constrained to sum to k and the scalar product
of each pair of rows is constrained to equal λ. Matrix models
have been identified as a very common pattern in constraint
modelling [5] and support, for example, the straightforward
modelling of problems that involve finding a function or rela-
tion — indeed, one can view the BIBD as finding a relation
between objects and blocks.

3 Modelling in Minion

Minion’s input language is simple yet expressive enough to
model the majority of problems without resorting to com-
plex and expensive modelling devices. Critically, we include a
range of the most important non-binary constraints as primi-
tives. We do not go so far as restricting the input language to
(for example) binary constraints in extensional form, which is
sufficient to express any CSP. Reformulation into binary con-
straints can lead to weaker propagation and far more search.

Minion has four variable types. These are: 0/1 variables,
which are used very commonly for logical expressions, and for
the characteristic functions of sets; Bounds variables, where
only the upper and lower bounds of the domain are main-
tained; Sparse Bounds variables, where the domain is com-
posed of discrete values, e.g. {1, 5, 36, 92}, but only the upper
and lower bounds of the domain are updated during search;
and Discrete variables, where the domain ranges from the
lower to upper bounds specified, but the deletion of any do-
main element in this range is permitted. (A fifth type, of Dis-
crete Sparse variables, is not yet implemented.) Sub-dividing
the variable types in this manner affords the greatest opportu-
nity for optimisation, as we will see. Minion’s input language
supports the definition of one, two, and three-dimensional ma-
trices of decision variables (higher dimensions can be created
by using multiple matrices of smaller dimension). Further-
more, it provides direct access to matrix rows and columns
since most matrix models impose constraints on them.

The input language for Minion is detailed in in Figure 1.
The set of primitive constraints provided by Minion is small
but expressive. It includes necessities such as equality, dise-
quality, inequality, sum, product, and table (extensional form)
but also global constraints that have proven particularly use-
ful as reported in the literature over several years, such as

<MinionInput> ::=
<noOf01Vars>
<noOfBoundsVars> {<lb> <ub> <number>}
<noOfSparseBoundsVars> {’{’ <elem>{,<elem>}’}’<number>}
<noOfDiscreteVars> {<lb> <ub> <number>}
<variableOrder>
<valueOrder>
<noOf1dMatrices> {<literalVar1dMatrix>}
<noOf2dMatrices> {<literalVar2dMatrix>}
<noOf3dMatrices> {<literalVar3dMatrix>}
objective <objectiveExpression>
{<constraint>}

<objectiveExpression> ::=
’none’ | ’minimising’ <var> | ’maximising’ <var>

<constraint> ::=
<reifiableConstraint> |
reify(<reifiableConstraint>, <var>) |
table(<varVectorExpression>, <tuples>)

<reifiableConstraint> ::=
allDiff(<varVectorExpression>) |
<eqOrDiseqConstraint> (<var>, <varOrConst>) |
element(<varVectorExpression>, <var>, <varOrConst>) |
ineq(<var>, <var>, <const>) |
<lexConstraint> (<varVectorExpression>, <varVectorExpression>) |
<MinOrMaxConstraint> (<varVectorExpression>, <varOrConst>) |
occurrence(<varVectorExpression>, <const>, <var>) |
product(<varVectorExpression>, <varOrConst>) |
product(<varVectorExpression>, <literalConstVector>, <varOrConst>) |
sum(<varVectorExpression>, <varOrConst>)

<varVectorExpression> ::=
<literalVarVector> | <1dMatrixId> | <2dMatrixId> |
<3dMatrixId> | <rowOrCol>(<2dMatrixId>, <index>) |
<colOrRowXOrRowY>(<3dMatrixId>, <index>, <index>)

Figure 1. Syntax of Minion input. Although some
non-terminals are unexpanded, their meanings should be clear.

all-different [20] and occurrence. We include the crucial ele-
ment constraint, which allows one to specify an element of
a vector using the assignment to a decision variable. This is
often useful when channelling between matrix models [2]. Log-
ical expressions are supported by using 0/1 variables with the
min (conjunction), max, sum (both disjunction) and inequal-
ity (implication) constraints. Reification is to assign the satis-
faction (1) or unsatisfaction (0) of a given constraint to a 0/1
decision variable. Since this decision variable can participate
as normal in other constraints this adds significant expressive
power to the language. We include the lexicographic ordering
constraint, which has been shown to be a cheap and effec-
tive way to exclude much of the symmetry in a matrix model
[7]. The current version of Minion uses ‘watched literals’ to
implement the element, table, and 0/1 sum constraints. We
believe this to be an important innovation, but we describe
it in detail elsewhere [11]. Minion allows only static variable
and value ordering heuristics. Dynamic heuristics could be
implemented, but are currently omitted to avoid unnecessary
overheads when not being used. The only design decisions
taken for reasons of time were the omission of the global car-
dinality constraint, and that Minion’s all-different performs
the same propagation that a clique of not-equals constraints
would (though far faster). The implementation of some prop-
agators in Minion is simplified by the use of views [21], which
allow complex propagation algorithms to be built from sim-
pler ones by applying simple transformations to the variables
of the constraint.

Minion deliberately does not allow arbitrary operator nest-
ing. Most toolkits support this feature by adding hidden deci-
sion variables to ‘flatten’ the input. For example, x1∗x2+x3 =
x4 might become h1 = x1 ∗x2, h2 = h1 +x3 and h2 = x4. The
flattening scheme is often inaccessible to the user, and may not
be optimal. Expecting pre-flattened input has two important
consequences. First, it simplifies the input language. Second,

the user is not forced to use a flattening scheme chosen by
us, but can choose one most appropriate to the model. Re-
moving this layer of hidden variables is especially important
with the advent of automated constraint modelling systems
such as Conjure [8] that, in order to choose among candidate
models, need maximum control over the final model.

4 Architecture and Design of Minion

Our principal challenge was to develop a constraint solver that
is optimised to the same degree as those found in SAT (e.g.
zChaff [22]) and mathematical programming (e.g CPLEX
[13]). A main design principle is compactness. This lets us
take advantage of modern cache-based hardware architec-
tures, which has paid substantial dividends in the SAT com-
munity [24]. Further, modern processors attempt to execute
many instructions in parallel, and so branching, indirection
and the use of offsets should be avoided where possible, as
they can stall this parallel execution. Many design decisions
were made after extensive code profiling. For example, profil-
ing shows that there are many more calls to access variable do-
mains than there are to change them. We thus optimise data
structures for variables to make access fast at the expense of
slower domain updates, even where this conflicts with keeping
data structures small.

This section includes ideas we believe to be novel. It also
includes description of numerous implementation techniques,
not contributions to knowledge in themselves, which are im-
portant in obtaining our fast running times. Minion is the
experimental apparatus with which we are testing our overall
hypothesis, that fast constraint solvers can be built. It is thus
essential that Minion is described in detail, so that our work
can be scientifically judged and also reproduced and built on.
In this spirit, we have made Minion open source, and it is
available at http://minion.sourceforge.net.

Variable representation: Variables’ values have to be re-
stored on backtracking, so the smaller the space they occupy,
the less work has to be done. Also, a smaller block of mem-
ory is more likely to fit into L2 cache on a modern CPU,
greatly increasing access speed. In each of the four types of
variable, storage is split into two: a backtrackable and a non-
backtrackable part. This reduces backtrackable memory usage,
and thus the amount of work on backtracking. To the best of
our knowledge, these representations are novel.4

We use two bits to store the state of a 0/1 variable’s domain.
However, it is unnecessary to restore both bits on backtrack-
ing. Bit 1 indicates whether the variable is assigned. Bit 2
gives the value if it is assigned. Before search, bit 1 is 0 and
bit 2 is arbitrary. When the variable is assigned, bit 1 is set to
1, while bit 2 is given the correct value. When backtracking
past this point, we reset bit 1 to 0, but do not restore bit
2. Bit 2’s value is irrelevant until the variable is reassigned,
when it will be set to 0 or 1 irrespective of its current value.
Hence, we maintain k 0/1 variables by saving and restoring a
block of just k bits at each choice point. In non-backtrackable
memory, we store the second block of k bits.

Next, consider bounds variables. Suppose a variable is de-
clared with non-sparse bounds [lb, ub]. We store the initial

4 It remains possible that some have escaped our notice in publi-
cations or simply used in solvers not described in publications.

lower bound lb in non-backtrackable memory. In backtrack-
able memory we store the current bounds relative to lb, ini-
tialised to [0, ub − lb]. The amount of backtrackable memory
required is therefore twice the smallest C++ type which will
store the initial domain size ub − lb. For sparse bounds vari-
ables, the storage in backtrackable memory is identical. In
non-backtrackable memory, we store an array containing the
initial domain. When, say, a request is made to increase the
lower bound, we undertake a binary search for the smallest al-
lowed value which is greater than or equal to the new bound,
and the backtrackable lower bound is set to this value.

For discrete variables, we store in backtrackable memory
(as is conventional) one bit per value, indicating whether or
not the value is still in the domain. We also store the current
lower and upper bounds of the domain similarly to bounds
variables. This redundant storage conflicts with our key prin-
ciple of minimising backtrackable memory, but is justified be-
cause many constraints check only the bounds of domains.
For example, by profiling we found that Choco can spend
33% of its time finding the bounds of domains. Our technique
also lets us optimise updating the bounds of discrete domains:
we do not take the linear time required to zero the relevant
parts of the bitarray. Instead, we adapt the check for domain
membership. The bitarray is only checked if the domain value
is between the upper and lower bounds, so bits outside that
range are irrelevant. This slightly improves the speed of do-
main checks when the value proves to be outside the current
range, but slows down those where it is in range. Bitarrays
are stored in blocks of 8, 16, 32, or 64 bits as these can be
efficiently stored and accessed while reducing wasted space.

Finally, Minion implements a special constant variable
type, which is assigned a single value and uses no backtrack-
able memory. For most constraints in Minion, the compiler
is able to optimise code using this variable type as efficiently
as an implementation of the constraint designed to take ad-
vantage of the fact the variable is known to be constant.

Memory Management: Variables of each type are stored
together in backtrackable memory. For example, all Boolean
variables are stored in a single bitarray. Thus, 1088 Boolean
variables would need 136 bytes of backtrackable memory.
Boolean variables are accessed during search with three values
computed at initialisation: two pointers to the words contain-
ing the bit in backtrackable and non-backtrackable memory,
and a mask which contains a 1 at the relevant bit position in
those words and is otherwise 0. This lets us access the relevant
bits in a small number of machine instructions. Other vari-
able types are compressed similarly. For example, on CPUs
with 64 bit words, each word stores the domains of four dis-
crete domain variables with 16 values, with lower and up-
per bounds stored elsewhere in backtrackable memory. After
backtrackable variables, we allocate storage for backtrackable
data needed by constraint propagators. We have blocks of
space for binary flags, integers up to 255, up to 65535, and
unstructured space for backtrackable data not in one of these
forms. By design, we have minimised the fragmentation in this
memory map, although this leads to an initialisation over-
head. We allocate space in two passes: first we place variables
arbitrarily, but when all variables and constraints have been
constructed, we then rearrange memory as described above.

State restoration on backtracking is simple. At a choice
point, we copy the entire block of backtrackable memory.

When we return to that point, we copy the entire archived
copy over the active backtrackable memory. Block copying is
sped up considerably because all backtrackable memory is al-
located together and because we have minimised the size of
backtrackable memory so much. In our preliminary investiga-
tions memory copy did not rise above 7% of runtime. In BIBD
experiments we report below, as much as 750 MB of back-
trackable memory was copied per second. This shows both
the capabilities of modern processors, and also the impor-
tance of keeping memory sizes small. We could save 50% of
memory copies by redirecting all pointers to the stored copy
on backtracking, saving the memory copy on backtracking.
However, this would not let us use fixed pointers for each vari-
able. We trade extra copying against reduced pointer arith-
metic. Many techniques can reduce the amount of memory
changed on backtracking, e.g. dancing links [16], but we have
not found one that repays even low time overheads.

Low-level Optimisations: Most Minion constraints ac-
cept any variable type. Traditionally such functions are im-
plemented via virtual function calls, which select the correct
function at run-time based on the variable type. Instead, we
generate a copy of the constraint at compile-time for each
variable type using C++ templates. The compiler can then
optimise each constraint for each variable type, inlining small
domain access methods and avoiding run-time branches de-
pending on variable type. On the 〈7, 315, 135, 3, 45〉 BIBD for
example, compiling each constraint for the Boolean type pro-
vides a fourfold speed-up. This method limits the number of
variable types per constraint. For example, the lexicographic
ordering constraint allows only one variable type per input
vector to avoid exponential explosion in the copies of the con-
straint that must be compiled. This limitation is not serious.
In most CSPs each constraint contains only one or two vari-
able types but we do provide a fallback implementation of
each constraint for arbitrary combination of types via virtual
function calls. While the compiler optimises each constraint
for different variable types, it may not be able to perform all
possible optimisations. For example when the lower bound of
a Boolean variable changes, the variable must now be assigned
1, but the compiler does not identify this. We have identified
and implemented optimisations for some such special cases.

Minion constraints contain pointers to the locations of
their variables in memory. This uses more memory than stor-
ing this information once globally for each variable, and ini-
tialisation requires storing the locations of all references to
variables as the problem is constructed. This accounts for the
higher initialisation cost of Minion than ILOG Solver, but
allows extremely fast variable access during search.

5 Empirical Analysis

We show that Minion outperforms state-of-the-art constraint
solvers (ILOG Solver, Eclipse and GeCode), and scales to
much larger instances. We consider a portfolio of instances
from diverse, challenging problem classes: a satisfaction prob-
lem (BIBD), two optimisation problems (Steel Mill Slab De-
sign [10] and Golomb Rulers) and a fixed-length planning
problem (English Peg Solitaire [15]). Our goal was to com-
pare raw search speed on identical models.

We compared implementations in each system of the same
model: that of the BIBD described earlier, for Steel Mill and
Peg Solitaire the basic models from the cited papers, and for

 100

 30

 10

 3

 1
 100 1000 10000 100000

BIBD
Peg Solitaire

Steel Mill
Golomb Ruler

Figure 2. Minion Backtracks/Sec. (x axis) vs Speedup against
ILOG Solver (y axis) on four problem classes

Golomb a basic model using simple all different propagation.
We used straightforward implementations in each solver of
the chosen model, with the same static variable and value
orderings in each case.5 Our generators for Minion instances
are part of the source distribution. We used revision r170
of Minion, ILOG Solver 5.3, and GeCode 1.1.0. Experiments
ran under Windows XP SP2, on a Pentium 4 3GHz with 2GB
RAM, compilation being done using g++ 3.4.4 under cygwin
(and Visual C++ for Solver.) We omit detailed results for
Eclipse, as it was slower than ILOG Solver in each case.

Figure 2 and Table 1 summarise our results. These show
that Minion is faster and much more scalable than other
state-of-the-art solvers. Our results show particularly dra-
matic improvements on large constraint problems requiring
a lot of search. Minion ran faster than ILOG Solver on every
instance except the smallest Golomb Ruler instance (n = 7),
which both solved in less than 0.02sec. Our least impressive
gains are on the Golomb Ruler, which are small problems,
where we were 1.8 times as fast on the largest instance we
tested (n = 11). Speedups were also relatively low on the sim-
plest Solitaire instances. These result from Minion’s greater
initialisation time, a part of its design which has not been op-
timised highly but which is important for instances requiring
more search. On Solitaire instances where Minion needs at
least 2sec. to solve, it is at least 10 times faster than Solver.
For very large instances where much search is required, Min-
ion’s speedup reaches 128 for the largest BIBD instance and
49 for the largest Steel Mill instance. Where we compared
against GeCode, results were similar except that GeCode was
usually faster than ILOG Solver. Again we were faster on
each Golomb instance but n = 7, but gains were even more
marginal here, e.g. a negligible 2.9% on n = 11. However, Ta-
ble 1 shows that we got increasing speedups with problem size
on BIBD instances, up to 51 times on the largest we tested.

It is possible that greatly improved runtimes might be ob-
tained in GeCode or Eclipse using the flexibility that each
toolkit provides. Non-optimal behaviour on some instances
goes hand-in-hand with using the ‘model and run’ methodol-
ogy, so we should point out some of its advantages. First, im-
provements in modelling can be duplicated in Minion. Other
improvements might require significant expertise in the rele-
vant toolkit, such as implementing specialised constraints or
heuristics. Second, a 10-fold speedup obviates the need for
much optimisation. For example, finding five independent op-

5 We did not implement GeCode models of the Steel Mill because
it does not allow reification of the lex ordering constraint, and of
Solitaire because of our lack of expertise in GeCode.

Balanced Incomplete Block Design
v b r k λ Minion ILOG Solver GeCode

sec. BT/s sec. BT/s sec. BT/s
7 140 60 3 20 1.1 15 000 12 1 500 12 1 400
7 210 90 3 30 3.3 20 000 92 730 75 890
7 280 120 3 40 9.0 20 000 410 450 280 650
7 315 135 3 45 14 20 000 770 360 500 560
7 350 150 3 50 22 18 000 1 400 300 920 440
7 385 165 3 55 33 17 000 2 300 250 1 400 420
7 420 180 3 60 49 16 000 3 600 210 2 200 350
7 455 195 3 65 71 15 000 3 600 180 3 300 320
7 490 210 3 70 100 14 000 3 600 150 4 700 300
7 525 225 3 75 140 13 000 3 600 120 6 200 290
7 560 240 3 80 190 12 000 3 600 96 9 500 240

Steel Mill
orders Minion Solver

BT/s BT/s
40 65 000 5 800
50 66 000 2 800
60 56 000 2 300
70 46 000 1 800
80 37 000 1 300
90 32 000 920

100 32 000 650

Peg Solitaire
Minion ILOG Solver

sec. BT/s sec. BT/s
1.3 510 2.5 260
1.4 1 000 3.3 420
1.4 1 200 5.5 290
2.4 3 800 50 180
5.7 8 200 92 510
33 8 000 430 610
57 8 100 680 680

130 8 800 2 400 470

Table 1. Times and Backtracks per Second on 3 Problem Classes. Results given to 2 significant figures. Times in italics indicate
timeouts of ILOG Solver. For steel mill instances both solvers timed out after 600s on every instance.

timisations to reduce run time by a third is less effective than
a 10-fold speedup since 2

3

5
> 1

8
. Finally, by making Minion

open source, we are helping other researchers either to im-
plement key techniques in Minion, or to use our insights to
improve their own solvers or toolkits.

6 Minion and Modelling Languages

Although Minion’s input language is expressive, by design
it is free from syntactic sugar to aid human modellers. The
intention is that it will be used with constraint modelling lan-
guages that prioritise expressing models naturally. One popu-
lar example is the Optimization Programming Language (OPL
[23]). We believe that building an OPL to Minion translator
will be straightforward. In cases such as set variables, which
OPL has but Minion does not, encodings into more primitive
variables are well known [14]. By a similar process, translators
to Minion could also be written for other constraint mod-
elling languages, such as Constraint Lingo [4] and EaCL [17].
The abstract constraint modelling languages ESRA [6] and
F [12], which support relation and function variables respec-
tively, have translators to OPL. This supports a two-stage
translation to Minion, given an OPL to Minion translator.
NP-Spec [1] also supports abstract decision variables, such as
sets, permutations, partitions and functions. Currently NP-
Spec specifications are translated into SAT. This translator
could be modified to produce Minion models instead.

Minion should combine very well with the Conjure auto-
mated modelling system. Given an abstract specification of a
constraint problem in the Essence language [9], a set of rules
can formalise the generation of alternative models [8]. These
rules are embedded in Conjure, which refines an Essence
specification into an Essence′ model. Essence′ is a generic
constraint language, straightforwardly translated into the in-
put for ILOG Solver, Eclipse, or Minion. Although alterna-
tive models can be produced automatically, there is as yet no
mechanism for model selection in Conjure. Model selection
must consider both model and solver. Given the transparent
nature of Minion – without hidden modelling as discussed in
Section 3 – model selection should be significantly simpler.

7 Conclusion and Future Work

Minion is a strong platform for future constraints research in
modelling and solving. Once constraint modelling languages
interface to it, researchers should be able to get a much bet-
ter idea of how well a particular model performs, without
fear of failing to exploit a given toolkit optimally. We have

described a methodology for building fast and scalable con-
straint solvers. While we chose a particular feature set and
optimised accordingly, similar design principles should help
to build very different solvers: for example, fast and scalable
solvers using backjumping [18] and learning.

REFERENCES
[1] M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, D. Vasile. NP-Spec:

An Executable Specification Language for Solving all Problems
in NP. Computer Languages 26, 165-195, 2000.

[2] B. M. W. Cheng, K. M. F. Choi, J. H-M. Lee, J. C. K. Wu.
Increasing Constraint Propagation by Redundant Modeling: an
Experience Report. Constraints 4(2), 167-192, 1999

[3] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[4] R. A. Finkel, V. W. Marek, M. Truszczynski. Constraint Lingo:

towards high-level constraint programming. Software - Practice
and Experience, 34 (15), 1481-1504, 2004

[5] P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh.
Matrix modelling: Exploiting common patterns in constraint pro-
gramming. Int. Wshop on Reformulating CSPs, 227-41, 2002.

[6] P. Flener, J. Pearson, M. Agren. Introducing ESRA, a relational
language for modelling combinatorial problems. LOPSTR, 214-
232, 2004.

[7] A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Global
Constraints for Lexicographic Orderings. CP, 93-108, 2002.

[8] A.M. Frisch, C. Jefferson, B. Martinez-Hernandez, I. Miguel. The
Rules of Constraint Modelling. IJCAI, 109-116, 2005.

[9] A.M. Frisch, M. Grum, C. Jefferson, B. Martinez-Hernandez,
I. Miguel. The Essence of Essence. 4th Int. Wshop. on Mod-
elling and Reformulating CSPs, 73-88, 2005.

[10] A.M. Frisch, I. Miguel, T. Walsh. Symmetry and Implied Con-
straints in the Steel Mill Slab Design Problem. Int. Wshop. on
Modelling and Problem Formulation, 8-15, 2001.

[11] I.P. Gent, C. Jefferson, I. Miguel. Watched Literals for Constraint
Propagation in Minion. CP-Pod Report 17-2006, 2006.

[12] B. Hnich. Function Variables for Constraint Programming. PhD
Thesis, Uppsala University, 2003.

[13] ILOG. ILOG CPLEX 9.0 Reference Manual, ILOG, 2005.
[14] C. Jefferson, A.M. Frisch. Representations of Sets and Multisets

in Constraint Programming. 4th Int. Wshop. on Modelling and
Reformulating CSPs, 102–116, 2005.

[15] C. Jefferson, A. Miguel, I. Miguel, S. A. Tarim. Modelling and
Solving English Peg Solitaire. Computers and Operations Re-
search, 33(10), 2935-2959, 2006.

[16] D.E. Knuth. Dancing Links. Millenial Perspectives in Computer
Science, Palgrave, 187–214, 2000.

[17] P. Mills, E. Tsang, R. Williams, J. Ford, J. Borrett. EaCL 1.5:
An Easy Abstract Constraint Programming Language. Technical
Report, University of Essex, 1999.

[18] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction
Problem. Computational Intelligence 9, 268-299, 1993.

[19] J-F. Puget. Constraint Programming Next Challenge: Simplicity
of Use. CP, 5-8, 2004.

[20] J-C. Regin. A Filtering Algorithm for Constraints of Difference
in CSPs. AAAI, 362-367, 1994.

[21] C. Schulte, G. Tack. Views and Iterators for Generic Constraint
Implementations. CICLOPS, 37-48, 2005.

[22] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik.
Chaff: engineering an efficient SAT solver. DAC, 530-535, 2001.

[23] P. van Hentenryck. The OPL Optimization Programming Lan-
guage. MIT Press, Cambridge, Massachusetts, USA, 1999.

[24] L. Zhang, S. Malik. Cache Performance of SAT Solvers: A Case
Study for Efficient Implementation of Algorithms. SAT, 287-298,
2003.

