
Automatically Reformulating SAT-Encoded CSPs

Lyndon Drake1, Alan Frisch1, Ian Gent2, and Toby Walsh3

1 Artificial Intelligence Group, Department of Computer Science, University of York,
York YO10 5DD, United Kingdom
{lyndon,frisch}@cs.york.ac.uk

http://www.cs.york.ac.uk/∼{lyndon,frisch}
2 School of Computer Science, University of St Andrews, St Andrews,

Fife KY16 9SS, United Kingdom
ipg@dcs.st-and.ac.uk

http://www.dcs.st-and.ac.uk/∼ipg
3 Cork Constraint Computation Centre, University College Cork, Cork, Ireland

tw@4c.ucc.ie

http://www.4c.ucc.ie/∼tw

Abstract. We examine two encodings of binary constraint satisfaction problems
(CSPs) into propositional satisfiability (SAT). We show that hyper-resolution rules
can be used to infer, from the direct encoding, many of the clauses in the better-
performing support encoding. Our experimental results confirm that applying
hyper-resolution in this way reduces both the runtime and the number of search
nodes used by a SAT solver on the encoded CSPs.

1 Introduction

Propositional satisfiability (SAT) is the archetypal NP-complete problem [4]. It is pos-
sible to efficiently solve a wide range of problems, such as planning [10], quasigroup
completion [15], and model checking [3], by mapping them into SAT and solving the
SAT representation of the problem. Such SAT instances are called structured instances,
and a great deal of recent SAT research, particularly on the performance of SAT solvers,
has been driven by the the interest in solving such instances.

Constraint satisfaction problems (CSPs) can also be reformulated as SAT instances.
Below we consider two encodings of binary CSPs into SAT (the direct encoding [14],
and the support encoding [6]), and we show that it is possible to infer clauses from the
support encoding by applying hyper-resolution to the direct encoding. We also experi-
mentally compare the performance of a SAT solver when support clauses are inferred
before search or during search.

For convenience, in the examples below all n variables in the CSP have the same
domain size d, and the SAT variable xi,v is true if the CSP variable i takes value v.
Unless otherwise stated, the domain for all variables used in the examples is {1, 2, 3}.
Following [6] we only examine binary constraints.



xa,1 ∨ xa,2 ∨ xa,3

¬xa,1 ∨¬xb,1

¬xa,2 ∨¬xb,2

¬xa,2 ∨¬xb,1

¬xa,3 ∨¬xb,3

¬xa,3 ∨¬xb,2

¬xa,3 ∨¬xb,1

xb,1 ∨ xb,2 ∨ xb,3

¬xb,1 ∨¬xc,1

¬xb,2 ∨¬xc,2

¬xb,2 ∨¬xc,1

¬xb,3 ∨¬xc,3

¬xb,3 ∨¬xc,2

¬xb,3 ∨¬xc,1

xc,1 ∨ xc,2 ∨ xc,3

¬xc,1 ∨¬xa,1

¬xc,2 ∨¬xa,2

¬xc,2 ∨¬xa,1

¬xc,3 ∨¬xa,3

¬xc,3 ∨¬xa,2

¬xc,3 ∨¬xa,1

Fig. 1. Direct encoding example

1.1 The Direct Encoding

The direct encoding involves two kinds of clauses: at-least-one clauses to ensure that
each variable is assigned at least one value from its domain; and conflict clauses to
prevent constraint violations. These clauses take the following forms:

– At-least-one
xi,1 ∨ xi,2 . . . ∨ xi,d

one clause for each variable i, where {1, 2, . . .d} is the domain of i.
– Conflict

¬xi,v ∨ ¬x j,w

one clause for each conflict, where the assignments i = v and j = w violate a
constraint between i and j.

For example, say we have a CSP with three variables, a, b, and c, with the constraints
a < b, b < c, and c < a, where each variable has a domain size of 3. If we encode
this CSP as a SAT instance using the direct encoding, we will generate the clauses
shown in Figure 1 (at-most-one clauses, described below, are not required in order to test
satisfiability with the direct encoding, unless a one-to-one correspondence is required
between solutions in the SAT instance and the original CSP instance).

1.2 The Support Encoding

Instead of encoding constraint conflicts, it is possible to encode the support for a partic-
ular value. This idea was introduced by Kasif [9], and expanded on by Gent [6]. If two
variables i and j are connected by a constraint, then the support for i = v is the values
of j that do not violate that constraint. For example, consider the constraint a < b. The
single support clause for b = 2 is (xa,1 ∨ ¬xb,2). Figure 2 shows the clauses that encode
support for the example CSP described in the previous section.

A full support encoding of a CSP requires the at-least-one clauses, support clauses,
and at-most-one clauses (to ensure that no CSP variable is assigned more than one value
at once). The at-least-one clauses are identical to those in the direct encoding, while the
support and at-most-one clauses take the following forms:



¬xa,3

¬xa,2 ∨ xb,3

¬xa,1 ∨ xb,2 ∨ xb,3

¬xb,1

¬xb,2 ∨ xa,1

¬xb,3 ∨ xa,1 ∨ xa,2

¬xb,3

¬xb,2 ∨ xc,3

¬xb,1 ∨ xc,2 ∨ xc,3

¬xc,1

¬xc,2 ∨ xb,1

¬xc,3 ∨ xb,1 ∨ xb,2

¬xc,3

¬xc,2 ∨ xa,3

¬xc,1 ∨ xa,2 ∨ xa,3

¬xa,1

¬xa,2 ∨ xc,1

¬xa,3 ∨ xc,1 ∨ xc,2

Fig. 2. Example of support clauses

– Support
xi,v1 ∨ xi,v2 . . . ∨ xi,vk ∨ ¬x j,w

one clause for each value j = w if there is a constraint between j and i, where
v1, v2, . . . vk are the supporting values in variable i for j = w.

– At-most-one
¬xi,v ∨ ¬xi,w

one clause for every pair (v,w), where 1 ≤ v < w ≤ d and w = v + 1.

Gent points out [7] that it is possible to use a series of binary resolution steps to infer
the support clauses from the direct encoding. Below, we show that hyper-resolution can
be used to perform the conversion, taking only a single reasoning step to infer each
support clause.

1.3 Hyper-resolution

The most well-known form of resolution, binary resolution [12], infers a new clause
from two parent clauses. Hyper-resolution can be treated as a single inference step
that makes the same inference as several binary resolution steps4. One advantage of a
well-chosen hyper-resolution rule over repeated application of binary resolution is that
fewer extraneous clauses will be generated, as the intermediate clauses are ignored [13,
p. 218].

Bacchus has shown that one such rule, which he calls HypBinRes [1], can improve
the performance of a DPLL [5] search implementation. The SAT solver 2+ [2] is
an implementation that combines HypBinRes and DPLL search, and appears to be the
only publicly available solver that applies complex reasoning during search while re-
maining competitive with the fastest available solvers. The HypBinRes hyper-resolution
rule is defined as follows:

Definition 1 (HypBinRes). Assuming that literals in clauses can be reordered, given
a clause of the form (x1 ∨ x2 ∨ . . . ∨ xn), and n − 1 clauses of the form (¬xi ∨ h) where
1 ≤ i < n, we can infer the clause (xn ∨ h).

4 In fact, the definition of hyper-resolution given in [13] is much stricter than this, and in par-
ticular requires an ordering over the clauses and limits the signs of literals involved in the
hyper-resolution. For the sake of convenience we follow Bacchus’ terminology.



For example, if we apply HypBinRes to the clauses (x1 ∨ x2 ∨ x3 ∨ x4), (¬x1 ∨ h),
(¬x2 ∨ h), and (¬x4 ∨ h), the clause (x3 ∨ h) will be inferred.

2 Inferring Support Clauses from the Direct Encoding

Below we consider two methods for automatically inferring support clauses from the
direct encoding: the first infers some of the support clauses, while the second infers all
support clauses.

2.1 Inferring Some Support Clauses

Our first observation is that applying the HypBinRes rule given in Definition 1 to the
direct encoding of a CSP will infer a subset of the support clauses from the at-least-one
and conflict clauses. For example, on the constraint a < b with domain {1, 2, 3} the
at-least-one clause for a is (xa,1 ∨ xa,2 ∨ xa,3), and the conflict clauses for b = 2 are
(¬xa,2 ∨ ¬xb,2) and (¬xa,3 ∨ ¬xb,2). If we apply HypBinRes to these three clauses, we
derive (xa,1 ∨¬xb,2), which is the corresponding support clause. However, only some of
the support clauses can be inferred using HypBinRes.

Theorem 1. Given the at-least-one clause for i, and the conflict clauses for i where
j = w, then the HypBinRes rule will infer the corresponding support clause for j = w
iff that support clause is binary.

Proof. (←−) From the description of the direct encoding, we know that the at-least-one
clause for i will be of the form (xi,1 ∨ xi,2 ∨ . . .∨ xi,d), where d is the domain size. If the
support clause c is binary, then only one value va in the domain of i is allowed. So there
will be d − 1 conflict clauses of the form (¬xi,vk ∨ ¬x j,w) where 1 ≤ k ≤ d, k , a and
i, j,w are constant. By the HypBinRes rule, we can infer (xi,va ∨¬x j,w) from the conflict
clauses and the at-least-one clause, which is the appropriate support clause for j = w.

(−→) It is obvious that if a support clause is non-binary, then the conditions for
applying HypBinRes will not be met, and so only binary support clauses can be inferred
by HypBinRes. ut

Interestingly, if all the support clauses for a particular CSP variable are binary, then
the constraint is functional [8]. In other words, HypBinRes will infer all the support
clauses for a functional constraint.

2.2 Inferring All Support Clauses

HypBinRes requires n − 1 binary clauses before it can infer a support clause. If we
weaken the precondition of HypBinRes such that only m binary clauses, m < n, are
required, then all the support clauses can be inferred from the direct encoding by this
new hyper-resolution rule5.

5 It is worth noting that even this more general rule cannot infer non-support clauses, and in
particular, it will not infer the at-most-one clauses (as the at-most-one clauses are not implied
by the other clauses in the formula). As the parent clauses in these hyper-resolutions are not
deleted from the formula, the at-most-one clauses are not required for the encoding to be
correct.



For example, on the constraint a < b with domain size 3 the at-least-one clause for
a is (xa,1 ∨ xa,2 ∨ xa,3) and the only conflict clause for b = 1 is (¬xa,1 ∨ ¬xb,1). While
HypBinRes cannot be applied to these clauses, we can apply Generalised HypBinRes
to infer (xa,2 ∨ xa,3 ∨ ¬xb,1), which is the corresponding support clause for b = 1.
(This hyper-resolution is also a binary resolution, but the point is that the Generalised
HypBinRes rule can make this inference while the original HypBinRes rule cannot.)

Definition 2 (Generalised HypBinRes). Assuming that literals in clauses can be re-
ordered, given a clause of the form (x1∨x2∨. . .∨xn), and m clauses of the form (¬xi∨h)
where i < n and m ≤ n, we can infer the clause (xm+1 ∨ . . . ∨ xn ∨ h).

Theorem 2. Given the at-least-one clause for i, and the set of conflict clauses for j = w,
applying the hyper-resolution rule given in Definition 2 will infer the corresponding
support clause for j = w.

Proof. The at-least-one clause for i is (α1 ∨ α2 ∨ . . . ∨ αω), where (α1, α2, . . . , αω) is
an ordering over the literals (xi,1, xi,2, . . . , xi,n) which represent the domain of i. If m
is the number of values v of i that conflict with j = w, where m ≤ d and d is the
domain size then there will be m conflict clauses of the form (¬xi,v ∨ ¬x j,w). Applying
the hyper-resolution rule given in Definition 2 (substituting ¬x j,w for h) will infer the
clause (αm+1 ∨ . . . ∨ αω ∨ ¬x j,w). ut

It is not clear that the extra support clauses inferred by the Generalised HypBinRes
rule would actually improve the performance of a solver on an instance. One of the
motivations for inferring binary clauses is that they are particularly beneficial to a DPLL
search based solver, so inferring non-binary clauses may not be the most beneficial
choice.

2.3 Inferring Support Clauses During Search

The 2+ solver not only applies HypBinRes before search, but also whenever pos-
sible during search. Applying HypBinRes during search has the effect of inferring a
support clause whenever a particular value in the domain of i is supported by only
one value in the domain of j. In other words, 2+ only infers a support clause at
the point where the support clause is binary, but is likely to infer many more support
clauses than simply applying HypBinRes to the direct encoding before search.

3 Experimental Results

We compared the performance of 2+ on the direct encoding when HypBinRes
was applied only during preprocessing to its performance when HypBinRes was ap-
plied during search. The test instances used were the same hard CSP instances used
in Gent [6]. Applying HypBinRes during search massively reduced both runtimes (see
Figure 3) and the number of search nodes explored. Runtimes were reduced by a median
of 100 seconds (about 90% of the median preprocessing runtime), while the number
of search nodes was typically reduced from tens of thousands to less than a hundred.



Very few hyper-resolutions were found during preprocessing, indicating that the test
instances contained very few functional constraints, but many hyper-resolutions were
identified during search. What is more, the additional hyper-resolutions discovered dur-
ing search resulted in substantially improved performance.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

HypBinRes during search

H
yp

B
in

R
es

 b
ef

or
e 

se
ar

ch

Fig. 3. Comparison of 2+ runtimes (in seconds) with HypBinRes enabled during prepro-
cessing and during search.

We also looked at the performance of 2+ on the support encoding, where
enabling HypBinRes during search provided only a small improvement over restrict-
ing HypBinRes to preprocessing. Surprisingly, several thousand hyper-resolvents were
identified during preprocessing on most of the support encoding instances; presumably
these inferences involve the at-most-one clauses. Even more interesting is that fact that
2+ (with HypBinRes during search) on the direct encoding outperforms 2+
on the support encoding by a factor of two.



It is worth noting that Chaff [11] is still considerably faster than 2+ on both
encodings, and that Chaff performs much better on the support encoding than on the
direct encoding.

All the experiments were carried out on dual-processor Pentium III 750 PCs with
at least 512MB of RAM (none of the solvers exceeded the available memory during
search), running Linux 2.4.16.

4 Future Work

The Generalised HypBinRes rule we gave in Definition 2 to infer all the support clauses
may be useful on encodings of CSPs and other problems. At the very least, it would be
worthwhile to experimentally test the effect of applying this rule to the direct encoding,
to determine whether inferring non-binary support clauses improves the performance
of DPLL search on those instances.

One important difference between the clauses in the support encoding and the clauses
generated by 2+ is that 2+ adds support clauses without removing any of the
original clauses, while the support encoding omits the conflict clauses and adds at-most-
one clauses. It would be interesting to determine whether or not the conflict clauses and
the at-most-one clauses improve search performance – in other words, would a combi-
nation of clauses from both encodings be better?

A third area of interest is using HypBinRes as a preprocessing step. Chaff is much
faster than 2+ on these instances, despite applying less inference and as a result
having to explore many more search nodes. An efficient implementation of conflict
learning in a SAT solver requires the use of lazy data structures [11, 16]. The challenge
is to create a solver that combines complex reasoning during search with efficient con-
flict learning in order to outperform an efficient existing implementations of DPLL with
conflict learning. One way around this problem is to perform inference as a preprocess-
ing step, so we intend to study the use of HypBinRes as a preprocessor for conventional
SAT solvers such as Chaff.

Finally, this paper explains some of the effects of applying HypBinRes to the direct
encoding of CSPs into SAT. Published results show that HypBinRes appears to be ben-
eficial to DPLL search on mappings of other problems into SAT, so we hope to identify
similar explanations for other such problem encodings.

5 Conclusions

SAT solvers perform better on the support encoding of CSPs into SAT than on the direct
encoding. The HypBinRes rule can be used to automatically infer some of the clauses
provided by the support encoding, and experimental results show that these inferred
support clauses improve SAT solver performance.

The most interesting point to remember is that HypBinRes was devised in order to
improve the performance of a DPLL-based SAT solver, not to convert between com-
peting CSP encodings. The fact that HypBinRes carries out part of the conversion from
one CSP encoding to a newer, superior encoding is a validation of its usefulness, and
an encouragement for further research in the area.



6 Acknowledgements

We are grateful to Fahiem Bacchus for making available both his AAAI paper and
the 2+ solver. The first author is supported by EPSRC Grant GR/N16129 (see
http://www.cs.york.ac.uk/aig/projects/implied). The second author is supported by EP-
SRC Grants GR/R29666, GR/R55382, and GR/M90641.

References

1. Fahiem Bacchus. Exploring the computational tradeoff of more reasoning and less searching.
In Fifth International Symposium on Theory and Applications of Satisfiability Testing, pages
7–16, 2002.

2. Fahiem Bacchus. Extending Davis Putnam with extended binary clause reasoning. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-2002), 2002 (to appear).

3. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In W.R. Cleaveland, editor, Tools and Algorithms for the Con-
struction and Analysis of Systems. 5th International Conference, TACAS’99, volume 1579 of
Lecture Notes in Computer Science. Springer-Verlag Inc., July 1999.

4. S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
ACM Symposium on Theory of Computing, pages 151–158, 1971.

5. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

6. Ian P. Gent. Arc consistency in SAT. In ECAI 2002: the 15th European Conference on
Artificial Intelligence, 2002.

7. Ian P. Gent. Arc consistency in SAT. Technical Report APES-39A-2002, APES Research
Group, January 2002.

8. Pascal Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc consistency algorithm and
its specializations. Artificial Intelligence, 57(2–3):291–321, 1992.

9. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artificial Intelligence, 45:275–286, 1990.

10. Henry Kautz and Bart Selman. Planning as satisfiability. In J. LLoyd, editor, Proceedings of
the Tenth European Conference on Artificial Intelligence, pages 359–379, 1992.

11. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In 39th Design Automation Conference, Las Vegas, June 2001.

12. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
Association for Computing Machinery, 12(1):23–41, 1965.

13. J. A. Robinson. Logic: Form and Function. Artificial Intelligence Series. North-Holland,
1979.

14. Toby Walsh. SAT v CSP. In Proceedings of CP-2000, LNCS-1894, pages 441–456.
Springer-Verlag, 2000.

15. Hantao Zhang and Jieh Hsiang. Solving open quasigroup problems by propositional reason-
ing. In Proceedings of International Computer Symposium, 1994.

16. Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putman method. In Ian Gent,
Hans van Maaren, and Toby Walsh, editors, SAT2000: Highlights of Satisfiability Research
in the Year 2000, volume 63 of Frontiers in Artificial Intelligence and Applications, pages
309–326. IOS Press, 2000.


