
Common Subexpression Elimination in Automated
Constraint Modelling

Ian P. Gent and Ian Miguel and Andrea Rendl1

Abstract. Typically, there are many alternative models of a given
problem as a constraint satisfaction problem, and formulating an ef-
fective model requires a great deal of expertise. To reduce this bot-
tleneck, automated constraint modelling systems allow the abstract
specification of a problem, which can then be refined automatically
to a solver-independent modelling language. The final step is to tai-
lor the model to a particular constraint solver. We show that we can
eliminate common subexpressions in the tailoring step, as compilers
do when compiling source code. We show that common subexpres-
sion elimination has two key benefits. First, it can lead to a dramatic
reduction in the size of a constraint problem, to the extent that solving
time is reduced by an order of magnitude when the number of nodes
searched is the same. Second, it can lead to enhanced propagation
and reduced search. The effect of this can be even more dramatic,
leading to reductions in nodes searched and time taken by several or-
ders of magnitude. Where the technique does not lead to improved
search, we have not seen it cause a significant overhead. Therefore,
we propose that common subexpression elimination is an important
technique for constraint programming.

1 INTRODUCTION

Constraint solving of a combinatorial problem, such as timetabling
or planning, proceeds in two phases. First, the problem is modelled
as a set of decision variables and constraints that a solution must sat-
isfy. The second phase consists of using a constraint solver to search
for solutions to the model: assignments of values to decision vari-
ables satisfying all constraints. Modelling a large, complex problem
using constraints does, however, require expert knowledge. Such ex-
perts are few in number, preventing widespread access to constraint
solving. One important obstacle is the modelling bottleneck. Not only
are there many possible models for a given problem, but the model
chosen has a substantial effect on the efficiency of constraint solving,
and selecting an effective model is difficult.

Recent work has addressed this problem by allowing the user to
describe a problem at a high level in an abstract constraint spec-
ification language, such as ESRA [6], ESSENCE [7], or Zinc [3],
without being forced to make detailed modelling decisions. An au-
tomated system, such as CONJURE [8] or Cadmium [18], transforms
this specification into a concrete model. This step is similar to pro-
gram compilation. A compiler and a modelling system both refine a
high-level language to an intermediate representation that is flattened
to a target machine. The difference lies in the processed data: com-
pilers deal with a set of instructions, Constraint Modelling deals with
a set of relations.

1 University of St Andrews, UK, email: {ipg,ianm,andrea}@cs.st-and.ac.uk

Eliminating common subexpressions is a technique that has been
used successfully in Compiler Construction [5]. The idea is to en-
hance a program by detecting common pieces of code: if two pieces
are equivalent, one piece can be omitted. Hence a reduction in exe-
cution time and memory usage is achieved.

This paper shows that eliminating common subexpressions in the
context of constraint modelling conveys two key benefits. First, it can
produce a significant reduction in the size of a constraint model. Sec-
ond, it can lead to improved constraint propagation (inferences made
by the constraint solver), and therefore dramatically reduced search.
We show experimentally that the first benefit can lead to an order of
magnitude improvement in run time in a constraint solver, while the
second benefit can give several orders of magnitude improvement.

2 BACKGROUND

A constraint model is defined by a finite set of decision variables
and a finite set of constraints on those variables. A decision variable
represents a choice that must be made in order to solve the prob-
lem. The finite domain of potential values associated with each de-
cision variable corresponds to the various options for that choice. A
good model may be solved quickly while a bad model might not be
solvable in a practical amount of time. An efficient model exploits
both the modelling language’s features and the constraint solver’s
strengths. Hence choosing an efficient representation requires a lot
of expertise. Automated modelling seeks to ease this burden by au-
tomating as much as possible of the modelling process.

2.1 Automated Constraint Modelling

A number of approaches have been taken to automated constraint
modelling. For example, the CONACQ [4] system uses machine
learning to formulate a model from a set of solutions and non-
solutions provided by the user. The O’CASEY system [15] uses
case-based reasoning to store, retrieve and reuse constraint program-
ming experience. In this paper our focus is on automated modelling
through refinement of an abstract specification. In particular, we will
discuss our approach in the context of the ESSENCE / CONJURE sys-
tem, but it is equally applicable to similar systems such as Zinc / Cad-
mium. Indeed, common subexpression elimination could be used as
a post-processing step to improve an existing model.

The ESSENCE language allows the specification of a problem ab-
stractly, i.e. without making modelling decisions. ESSENCE, like
Zinc, provides decision variables whose domain elements are com-
binatorial objects, such as sets, functions, or relations. Furthermore,
these objects can be nested so that an individual variable may repre-
sent a set of sets, a set of sets of relations, and so on. This specifica-

Figure 1. Automated Constraint Modelling with ESSENCE and CONJURE.

tion is refined automatically by the CONJURE system to a solver-
independent constraint modelling language ESSENCE′. ESSENCE′

is a version of ESSENCE that has abstraction removed (principally,
domain values are atomic) and provides facilities common to exist-
ing constraint solvers and toolkits. An ESSENCE′ model is adapted,
or ‘tailored’ to a particular constraint solver using the TAILOR sys-
tem [12]. The tailoring task consists of mapping ESSENCE′ expres-
sions to the set of constraints provided by the target solver, as ex-
plained below. In this paper we will use MINION [11] as our target
solver. An overview of the automated modelling process is given in
Figure 1. At present, we are eliminating common subexpressions in
the tailoring stage. In future, we plan to lift this work to the refine-
ment stage.

3 TAILORING CONSTRAINT INSTANCES TO
SOLVERS

Our approach focusses on tailoring problem instances rather than
problem classes to a target solver. An instance is obtained from a
class by giving a value for each parameter in the model (e.g. by giv-
ing n = 8, we obtain the 8-queens instance). Hence, each occur-
rence of a parameter in the model is instantiated to its associated
value, which promotes tailoring steps such as evaluation and flatten-
ing. In our implementation, TAILOR adapts solver-independent con-
straint models to a particular solver by the following steps:

• Insert parameter values to obtain an individual instance
• Normalise the problem instance
• Flatten ESSENCE′ constraints (and variable datastructures) to con-

form those provided by the target solver
• Map flat, normalised instance to the target solver

Some constraint solvers, such as Minion, require individual in-
stances as input. For others, our conjecture is that tailoring instances

is worthwhile because of the extra information provided by instanti-
ating the parameters. In the following we discuss the tailoring steps
that are crucial for detecting common subexpressions efficiently.

3.1 Normalisation: A Prelude to Common
Subexpression Detection

Our normalisation of ESSENCE′ has two components: evaluation and
ordering. These are applied in an interleaved manner until a fixpoint
is reached (the normal form). They are described below. We nor-
malise expressions not only after parsing but also during flattening,
when we unroll more complex expressions, such as quantifications.
We do not apply any kind of factorisation of expressions.

3.1.1 Evaluation

Evaluation is particularly powerful when tailoring a problem instance
to a target solver. Care is necessary in deciding the extent of evalua-
tion: in some cases further evaluation might improve an instance but
increase tailoring time and hence impair the (combined) modelling
and solving process. Therefore, the expression evaluation included
in our normalisation is simple, and cheap to perform. We evaluate
constant expressions and apply several simple algebraic transforma-
tions, such as algebraic identity or algebraic inverses. We give some
examples below.

3 ∗ 4− 2 −→ 10 Constant Evaluation
exp + 0 −→ exp Algebraic Identity
exp− exp −→ 0 Algebraic Inverse
exp∧ false −→ false Logic

3.1.2 Ordering

We define a total order ≤o over the expressions of ESSENCE′. An
ESSENCE′ model is transformed into a minimal form with respect to
this order. The order represents a hierarchy of expressions, based on
their complexity: Expressions on the bottom of the hierachy are ex-
pensive ones, such as non-linear expressions. Constants are at the top
of this order, followed by variables and arrays. Further down the or-
der are constraint types such as equalities, disequalities, inequalities,
and special constraints like ‘all-different’. Linear expressions come
before non-linear expressions.

a + b + c + d ≤o a ∗ b

Expressions of different type are ordered based on their position in
the order. Expressions of the same type are ordered recursively; each
type has self-comparison rule. An equality constraint, for example, is
ordered by examining the left argument first, followed by the right.
The base case is where two constants or two variables are compared.
In the former case, the comparison is by value, with least first. In the
latter, the comparison is by name and domain. To illustrate, consider
the following normalisations:

x4 + x3 6= x2 + x1 −→ x1 + x2 6= x3 + x4

x5 ∗ x6 = x8 + x7 −→ x7 + x8 = x5 ∗ x6

3.2 Flattening
It is common for constraint languages to support complex constraint
expressions by re-writing, or flattening, them into a conjunction of

simple constraints. In general, this mechanism is straightforward: re-
place a complex subexpression by an auxiliary variable that repre-
sents the subexpression. For example, an arithmetic expression, such
as a ∗ (b + c), is flattened by replacing b + c by an integer auxiliary
variable auxi and introducing an additional constraint auxi = b+c.
A relational expression, such as a ⇒ (b ∧ c), is flattened by replac-
ing b ∧ c with a Boolean auxiliary variable auxb. The equivalence
between auxb and b ∧ c is expressed by a so-called reification con-
straint reify(b∧ c, auxb) that corresponds to auxb ⇔ b∧ c (auxb is
true if and only if the reified constraint b ∧ c is satisfied).

Unflattened Flattened
Arithmetic a ∗ (b + c) auxi = a + b
Expression a∗auxi

Relational a ⇒ (b ∧ c) reify(b ∧ c,auxb)
Expression a ⇒auxb

More complex expressions require several flattening steps to flat-
ten completely, each introducing another auxiliary variable and
equality constraint or reified constraint, respectively. As an example
of a more complex expression, consider the constraint describing the
‘legal moves’ in the action-based model of the Peg Solitaire problem
from [14] in Table 1.

4 COMMON SUBEXPRESSION ELIMINATION

This section discusses different sources of common subexpressions,
together with efficient ways of detecting and exploiting them.

We say that two expressions are common (or equivalent) if they
take the same value under all possible satisfying assignments. We
distinguish between two types of equivalent subexpressions: subex-
pressions that are syntactically equivalent and subexpressions that
are semantically equivalent. Syntactically equivalent expressions are
written in the same way, such as a pair of occurrences of a ∗ b. Se-
mantically equivalent expressions mean the same thing, which can
be deduced by their operational semantics, such as from the equiva-
lence relation a∗ b = c. Clearly, syntactically equivalent expressions
are also semantically equivalent.

Due to properties such as commutativity, many semantically
equivalent logical and arithmetic expressions can be written so as to
be syntactically distinct. A simple example is a + b versus b + a. By
normalising a constraint model (as we describe in Section 3.1) prior
to common subexpression detection, the test for semantic equiva-
lence is, in many cases, therefore reduced to the much cheaper test
for syntactic equivalence.

The process of common subexpression elimination is straight-
forward. We record every two expressions that we denote equiva-
lent. According to our expression ordering (see Section 3.1.2) the
smaller expression is stored in a hashmap as representative for the
greater expression. Whenever the greater expression re-occurrs in the
constraint model, it is replaced by the smaller expression. Since the
ordering captures the complexity of expressions, a subexpression is
always replaced by a more effective subexpression.

Most common subexpressions arise in quantified expressions that
are unrolled during flattening. Although a constraints expert can, of
course, recognise common subexpressions and perform elimination
manually, it is likely that a non-expert would not. Furthermore, even
for an expert, performing this step in a complex model can be labo-
rious and, without care, a source of error.

4.1 Explicit Common Subexpressions
A very simple example of common subexpressions is when the
model contains a constraint of the form X = Y . We shall refer to
constraints of this form as explicit equivalences, since they are given
directly in the model.

4.1.1 Equivalence between Atomic Expressions

The simplest case of explicit common subexpressions x = y is where
x and y are atomic expressions, i.e. variables or constant values. The
standard enhancement approach is to use x for every occurrence of
y and, if y is a variable, to remove y from the set of variables, thus
saving a variable. This approach has been extensively studied [1, 2,
16].

4.1.2 Equivalence between Compound Expressions

The general case of explicit common subexpressions X = Y oc-
curs when X and Y are arbitraily complex expressions. As example,
consider the expression x = y ∗ z. According to our ordering, x is
cheaper than y ∗ z and we can replace every further occurrence of
y ∗ z with x. Though exploiting equivalence between compound ex-
pressions can yield very effective results, this case mostly occurs in
models formulated by non-experts.

4.2 Common Subexpressions Introduced During
Flattening

The flattening process, which was explained in Section 3.2, natu-
rally introduces a large number of equalities and reification con-
straints, which are a rich source of common subexpressions. If a cer-
tain subexpression appears again, we can simply re-use the auxiliary
variable that already represents the subexpression, as the simple ex-
ample below demonstrates:

Unflattened Standard Flattening Enhanced Flattening
a + x ∗ y = 0 aux1 = x ∗ y aux1 = x ∗ y
x ∗ y + b = t a+aux1 = 0 a+aux1 = 0

aux2 = x ∗ y aux1 + b = t
aux2 + b = t

In our implementation, we flatten expressions bottom-up, i.e. ex-
pressions are flattened starting from the leaves of the expression tree.
We maintain a hashmap that maps all previously flattened subexpres-
sions to their corresponding auxiliary variables. Whenever we flat-
ten a new subexpression we look up the hashmap for an equivalent
expression: if we find an equivalent expression, we replace it with
the respective auxiliary variable. This approach reduces the time re-
quired to match subexpressions and the memory we spend to collect
previously flattened subexpressions. Note the importance of normal-
isation here: it is much easier to detect equivalence of normalised
subexpressions.

The benefits we gain are great. First, if an instance contains com-
mon subexpressions of this kind, we save a variable and a set of con-
straints (depending on the complexity of the common subexpression)
for every subexpression. Below, we report results to show that this
effect on its own can reduce solving time by an order of magnitude,
even without reducing the numbers of nodes searched.

We obtain a second large benefit, with even greater potential. This
is that we can get additional propagation through re-using auxiliary
variables. To see how this could happen, consider again the example

above. Suppose that the domains of x and y are both {1, 2}. The
domain of a is therefore {−4,−2,−1} because a + x ∗ y = 0.
During search, we might set b = 0, t = 2. From this we can deduce
x ∗ y = 2 and in the standard flattening we get aux2 = 2. However,
we can deduce nothing about x or y because either x = 1, y = 2 or
x = 2, y = 1 is possible, so nothing propagates through to aux1 or
a. When we use enhanced flattening, we share the same variable, so
we deduce aux1 = 2 and immediately propagate to set a = −2. Of
course this can propagate further, depending on the problem. Thus,
the simple detection of common subexpressions can lead to reduced
search. Not only can it do this in principle, we will see below that it
can reduce search by a factor of more than 2,000 in practice.

Some solvers flatten their input themselves, such as the Eclipse
Constraint Programming System [10] which does not eliminate com-
mon subexpressions [19]. However, most solvers, such as MINION or
Gecode [9] take a flattened model as input, hence flattening (in com-
bination with common subexpression elimination) has to be done by
the modeller - a tedious task, even for an expert (consider eliminat-
ing all common subexpressions of the ‘legal moves’-constraint of the
Peg Solitaire model in Table 1!). Therefore both Constraint novices
and experts benefit from automated common subexpression elimina-
tion: poor models are drastically improved and good models might be
improved if they contain common subexpressions without increasing
tailoring time significantly.

Peg Solitaire Action model description
We represent the board by bState, a list of squares for each
step of the game. Every possible peq-move is assigned to a number
between 1 and 76 and the array of variables moves holds the
corresponding move for each step.
0 given noSteps : int
1 letting transitionStep :
2 matrix indexed by [int(1..76),int(1..3)] of int(1..33) be ...
3 letting transitionNumber :
4 matrix indexed by [int(1..33),int(1..33)] of int(0..76) be ...
5 letting STEPS be domain int(0..noSteps)
6 letting FIELDS be domain int(1..33)
7
8 find bState : matrix indexed by [STEPS, FIELDS] of bool
9 find moves : matrix indexed by [int(0..noSteps-1)] of int(1..76)
10
11 such that
12 . . .
13 $ legal moves
14 forall step : int(0..noSteps-1) .
15 forall f1,f2 : FIELDS .
16
17 $ if there exists a legal move from f1 to f2
18 (transitionNumber[f1,f2] != 0)⇒
19
20 $ and we make that transition, the following holds..
21 ((moves[step] = transitionNumber[f1,f2])⇔
22
23 ((bState[step, f1] > bState[step+1,f1]) /\
24
25 (bState[step,transitionStep[transitionNumber[f1,f2],2]] >
26 bState[step+1, transitionStep[transitionNumber[f1,f2],2]]) /\
27
28 (bState[step, f2] < bState[step+1, f2]) /\
29
30 forall field : FIELDS .
31 ((field != f1) /\
32 (field != transitionStep[transitionNumber[f1,f2],2]) /\
33 (field != f2)
34)⇒
35 (bState[step,field] = bState[step+1,field])
36)
37)

Table 1. Segment of the Peg Solitaire Action model [14] formulated in
modelling language ESSENCE′. A summary of the model is given in Table 2

4.2.1 Example: Common Subexpressions in Peg Solitaire

As an example for common subexpressions, consider the partial
model of the Peg Solitaire Problem [14] in Table 1. Peg Solitaire

is a gamed played on a board with holes and pegs to arrange. The
aim in the standard version of the game is to perform checkers-like
moves to remove all pegs but one from the board.

We represent the 33 fields (holes) on the board by booleans: true
states that a peg is in the hole and false states that the hole is
empty. The board changes after every move, so we represent the
board states by the matrix bState, where the ith vector represents
the field-variables for the ith step in the game. There are 76 possi-
ble moves on the board and the 1-dimensional matrix moves holds
the variables for each move made in the game. The constant matrix
transitionNumber[f1,f2] gives the corresponding transition number
(ranging from 1 to 76) when making a move from field f1 to f2.
transitionStep [step, i] gives the field-variable that is involved when
performing the step with number step.

We constrain the move chosen to be legal using a universal quan-
tification in line 14. A summary of the ‘legal moves’-constraint is
given in Table 2. Recall that such quantified ‘loops’ must be unrolled
for constraint solvers such as Minion or Gecode. As we do so, com-
mon subexpressions arise between the expressions obtained for dif-
ferent values of the quantified variable. An example is the inequality
in line 23 that is nested in a conjunction,

bState[step, f1] > bState[step + 1, f1]

When the quantification is unrolled for step=0 and f1=2, it yields the
subexpression

bState[0, 2] > bState[1, 2]

that re-occurs every time field 2 is involved in another move at step
0. The same holds for the other inequalities from lines 25 and 28.

Summary of action-centric model of Peg Solitaire where move is
an array of variables representing the moves required to solve the puzzle,
bState is an array of variables representing the state of the board at
each step, t ranges over the steps in the sequence of moves, m is a move,
start(m), mid(m) and end(m) return the three positions affected by
move m, and unchanged(m) returns the set of positions not affected
by move m.
forall t in 1..31 .
forall m in 1..76 .

move[t] = m↔
bState[t− 1, start(m)] > bState[t, start(m)] ∧
bState[t− 1, mid(m)] > bState[t, mid(m)] ∧
bState[t− 1, end(m)] < bState[t, end(m)] ∧
forall u in unchanged(m) . bState[t− 1, u] = bState[t, u]

Table 2. Summary of action-centric model of Peg Solitaire

5 EXPERIMENTAL RESULTS
In this section we compare models that we tailor (as described in
Section 3) either with or without common subexpression elimination.
We present a selection of problems that we formulate in ESSENCE′

without applying symmetry breaking. Then we tailor the ESSENCE′

model to a MINION instance using the tool TAILOR, in which we
have implemented (optional) common subexpression elimination.
For each problem instance, we generate two different MINION input
files: one that is tailored by eliminating common subexpressions and
one that is not. Both models are solved on the same machine (Dual-
core Intel P4 at 3GHz with 1.5Gb RAM) using MINION v0.5. We
apply the same variable ordering heuristic (decision variables first,

n Tailoring (s) Solving Time (s) Search Nodes
♠ ♥ ♠ ♥ ♠ ♥

5 0.36 0.37 9.49 0.04 400,399 1870
6 0.41 0.42 1809.53 0.39 79,159,269 32,964
7 0.53 0.49 48,020.50 8.58 1,448,334,418 604,206

Common Aux Variables Constraints
Subexpr. ♠ ♥ ♠ ♥

1,230 1,440 200 1,486 256
2,248 2,535 287 2,614 366
3,710 4,101 391 4,206 496

Table 3. Solving performance and model features of Peaceable Army of Queens models with (♥) and without(♠) common subexpression elimination

then auxiliary variables) and same value ordering heuristic (ascend-
ing) in both cases. We compare the models in several ways. As well
as solving performance we report tailoring time. We also look at fea-
tures of the tailored instances, such as the number of constraints and
auxiliary variables.

5.1 Golomb Ruler
The Golomb Ruler problem is to find a ruler of minimal length with n
ticks such that the distance between every two ticks is different. Our
results with common subexpression elimination are very interesting:
we take the basic model from [13] which uses quarternary constraints
to express the distances between the ticks. Applying common subex-
pression elimination on the basic model automatically yields the en-
hanced distance model from [13]. Hence this example demonstrates
how weak models can automatically be enhanced to advanced, effec-
tive models from the literature. The results are given in Table 4: we
gain a great reduction in search time but also in search space.

Common Solving Time Search Nodes
n Subexpr. ♠ ♥ ♠ ♥
7 679 0.97 0.04 2,507 1,996
8 1260 26.80 0.35 22,508 17,427
9 2148 513.54 3.27 188,026 141,503

10 3435 >7,461.07 36.32 >1,406,328 1,114,964
Table 4. Solving performance of Golomb Ruler instances with(♥) and

without(♠) common subexpression elimination

5.2 Peg Solitaire
We formulated two different models of Peg Solitaire. The first is
taken from [14] and is state-centric: for each possible change to the
state of the board, a constraint is added specifying the moves that
might be responsible. We also experimented with a novel action-
centric model: a constraint is added for each possible action, spec-
ifying the changed and unchanged parts of the board. The constraints
are briefly summarised in Table 2.

In the action-centric model, we reduce the number of auxiliary
variables from 87,172 to 6,603, and the number of constraints from
89,625 to just over or under 9,000 depending on the starting po-
sition. In the state-centric model, we reduce the number of auxil-
iary variables from 313,720 to 12,989 and the number of constraints
from 316,886 to 16,155. We present solving results in the two mod-
els (from three different starting positions) in Table 5. In the action-
centric model, we get no reduction in search nodes, a small increase
in tailoring time, but an order of magnitude reduction in run time.
In the state-centric model, we do in fact get a reduction in search of
about a factor of 3, as well as a reduction in time taken per node.
Note that the elimination of common subexpressions reverses the
performance of models. That is, the action-centric model is best with-
out subexpression elimination, but when it is used the state-centric
model searches faster. When tailoring time is also taken into account,
the action-centric model is fastest overall on the easiest instance, but
state-centric remains best for the two harder instances.

start Tailoring (s) Solving (s) Search Nodes
field ♠ ♥ ♠ ♥ ♠ ♥
17 5.88 5.97 31.7 3.2 10,269 10,269
10 5.87 6.18 4376.2 456.7 1,486,641 1,486,641
5 5.97 6.04 >7200 3,920.4 11,398,210 11,398,210
17 47.06 44.37 42.4 2.7 10,269 3,944
10 46.55 44.24 6,383.2 247.4 1,486,641 539,374
5 46.64 44.70 >7200 2,151.8 >1,784,832 3,066,971

Table 5. Action-centric (top) and state-centric (bottom) Peg Solitaire
models with (♥) and without (♠) common subexpression elimination

.5.3 Peaceable Army of Queens

The peaceable army of n queens problem is to place two equally-
sized armies of white and black queens on an n×n chessboard such
that no queen can attack a queen of the other colour. We formulate
the ‘basic model’ of Smith et al [17] without symmetry breaking con-
straints in ESSENCE′. We compare performance (to find an optimal
solution and prove its optimality) and the models in Table 3. Com-
mon subexpression elimination has a more dramatic impact than in
the previous experiment. Here, we see the number of search nodes
reduced from 1.5 billion to less than a million at n = 7, a factor of
more than 2,000. Solving time is reduced even more, by more than
5,000 times at n = 7. These dramatic improvements occur through
improved propagation after we have eliminated common subexpres-
sions. They allow reasoning to occur over parts of the model which
are separated in the vanilla model. Comparison with results of [17] is
inconclusive. Our results without common subexpression detection
are much worse than reported there, while results with it are similar.
We do not know if this is because some feature of our model which
is different in detail to theirs, or Minion propagates the same model
worse, or whether Smith et al may have eliminated subexpressions
without detailing it. None of these explanations would invalidate our
main point, that common subexpression elimination can, on its own,
make a very bad model much better purely automatically.

5.4 Balanced Incomplete Block Design (BIBD)

BIBD is problem 28 in CSPLib [20]. We use the standard model from
the literature, consisting of 0/1 variables, sums and scalar products.
The model does not contain common subexpressions so we cannot
improve the model during flattening. Still, we generate two MINION

models from each instance: one where we try to eliminate common
subexpressions (in vain) and one without. We don’t give a model
comparison since the generated models are identical, but investigate
tailoring and solving time in Table 6. This comparison is very in-
teresting: we observe that we do not suffer significantly from the
attempt to eliminate common subexpressions, even though there are
none. Translation times are no more than 30% higher when failing
to find any common subexpressions. We generate an identical model
and get identical search results in terms of nodes searched, with very
similar search times. Fluctuations in search time are presumably just
the difference between separate runs. From this experiment we draw

the conclusion that the attempt to eliminate common subexpressions
- even in vain - does not significantly slow down the modelling and
solving process.

b, v, r, k, λ Tailoring (s) Solving Time (s) Search Nodes
♠ ♥ ♠ ♥ ♠ ♥

7,7,3,3,1 0.28 0.24 0.01 0.01 21 21
140,7,60,3,20 0.51 0.59 0.43 0.44 17,235 17,235
210,7,90,3,30 0.68 0.82 2.61 2.63 67,040 67,040
280, 7,120,3,40 0.90 1.15 9.92 9.51 182,970 182,970
315,7,135,3,45 1.04 1.26 16.05 17.05 278,310 278,310
385, 7,165,3,55 1.29 1.64 44.17 44.30 574,365 574,365

Table 6. Solving performance of BIBD models with (♥) and without(♠)
common subexpression elimination. No common subexpressions were

found.

6 RELATED WORK

Le Provost and Wallace discuss derivation and elimination of com-
mon subexpression during propagation in [2] but restrict their discus-
sion to explicit atomic subexpressions. Harvey and Stuckey eliminate
explicit atomic and linear subexpressions in their work on improving
linear constraint representations in [1]. Neither study addresses com-
mon subexpression elimination during flattening nor elimination of
non-linear constraints, as we do in our work.

In their work on interval analysis, Schichl et al [21, 22] discuss
common subexpression elimination in models of mathematical prob-
lems represented as directed acyclic graphs. These studies have much
in common with our work, and further examine the issue of propa-
gation over common subexpressions. However, they do not include
logical expressions, such as quantification, which we have identified
as one of the main sources of common subexpressions.

7 CONCLUSIONS

We have shown that common subexpression detection, common in
compilers, can be applied successfully to constraint modelling. We
have shown that this can be implemented effectively as part of the
TAILOR system, which translates models from a solver-independent
modelling language to a target constraint solver.

Our experimental results show three things. First, we can obtain
an order of magnitude improvement in run time simply by reducing
the number of variables and constraints, with no change in search
space. Second, we can obtain additional propagation, resulting in or-
ders of magnitude improvements in the search space and run time.
Third, although these improvements are not always possible, we do
not pay a significant penalty where we cannot find common subex-
pressions. Taken together, the huge benefits outweigh the low costs,
and common subexpression elimination should be considered wher-
ever possible.

It could be argued that tailoring a simple model without common
subexpression detection is a straw man, because other models per-
form better. There may be other models which are inherently bet-
ter, with or without common subexpression detection. It is also true
that any model reduction achieved automatically can also be achieved
manually. However, these potential criticisms do not address the true
point of our work. First, if we can improve a poor model by a fac-
tor of thousands in run time, we may avoid the need to spend time
thinking of a better model. The result may be much better in terms of

time required of an expert constraint modeller. Second, while com-
mon subexpression detection could be done by humans, it is not done
in practice. In fact, it would often be impractical. A modeller would
have to study a model looking for repeated expressions, and then re-
model manually while avoiding mistakes in doing so. It is preferable
to automate this process. Hence both modelling expert and novice
benefit from automated common subexpression elimination.

Acknowledgements Ian Miguel is supported by a UK Royal Academy of En-

gineering/EPSRC Research Fellowship. Andrea Rendl is supported by a DOC

fFORTE scholarship from the Austrian Academy of Science and UK EPSRC grant

EP/D030145/1. We thank Warwick Harvey and our anonymous reviewers for their

helpful comments.

REFERENCES
[1] W. Harvey, P. Stuckey. Improving Linear Constraint Propagation by

Changing Constraint Representation, Constraints, 7, pp172–203, 2003.
[2] T. Le Provost, M. Wallace Generalized Constraint Propagation over the

CLP Scheme. J. Logic Programming, 16(3), 1993.
[3] M. de la Banda, K. Marriott, R. Rafeh, M. Wallace. The modelling lan-

guage Zinc. CP, 700-705, 2006.
[4] C. Bessiere, R. Coletta, F. Koriche, B. O’Sullivan. Acquiring Constraint

Networks using a SAT-based Version Space Algorithm. In AAAI,, pp
1565-1568, 2006.

[5] J. Cocke, Global common subexpression elimination, SIGPLAN Not.,
5:20–24, 1970.

[6] P. Flener, J. Pearson, M. Agren. Introducing ESRA, a relational lan-
guage for modelling combinatorial problems. LOPSTR ’03: Revised
Selected Papers, LNCS 3018, 2004.

[7] A.M. Frisch, M. Grum, C. Jefferson, B. Martı́nez Hernández, and
I. Miguel. The design of Essence: A constraint language for specifying
combinatorial problems. IJCAI, pp80-87, 2007.

[8] A. Frisch, C. Jefferson, B. Martı́nez Hernández, and I. Miguel. The
rules of constraint modelling. IJCAI, pp 109–116, 2005.

[9] Gecode: a Generic Constraint Development Environment
http://www.gecode.org

[10] The ECLiPSe Constraint Programming System
http://eclipse.crosscoreop.com/

[11] I.P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint
solver. ECAI, pp 98–102, 2006.

[12] I.P. Gent, I. Miguel and A. Rendl. Tailoring Solver-independent Con-
straint Models: A Case Study with Essence′ and Minion In SARA, pp
184-199, 2007.

[13] B. M Smith, K. Stergiou and T. Walsh. Modelling the Golomb Ruler
Problem School of Computing Research Report 1999.12, University of
Leeds, June 1999.

[14] C. Jefferson, A. Miguel, I. Miguel, A. Tarim. Modelling and Solving
English Peg Solitaire. In Computers and Operations Research 33(10),
pages 2935-2959, 2006.

[15] J. Little, C. Gebruers, D. G. Bridge and E. C. Freuder, Using Case-
Based Reasoning to Write Constraint Programs. In CP, pp 983, 2003.

[16] B.A. Nadel. Representation Selection for Constraint Satisfaction: A
Case Study Using n Queens. IEEE Expert 5:16-23, 1990

[17] B.M. Smith, K.E. Petrie, and I.P. Gent. Models and symmetry breaking
for peaceable armies of queens. In Proceedings CPAIOR 04, pages
271–286, 2004.

[18] P. J. Stuckey, M. de la Banda, M. Maher, K. Marriott, J. Slaney, Z.
Somogyi, M. Wallace, T. Walsh. The G12 Project: Mapping Solver In-
dependent Models to Efficient Solutions. CP, 13-16, 2005.

[19] Warwick Harvey Personal Communication, May 2008
[20] CSPlib: A Library for Constraint Problems http://www.csplib.org/
[21] H. Schichl and A. Neumaier, Interval Analysis on Directed Acyclic

Graphs for Global Optimization Journal of Global Optimization 33/4
(2005), 541-562

[22] X.-H. Vu, H. Schichl and D. Sam-Haroud Using Directed Acyclic
Graphs to Coordinate Propagation and Search for Numerical Constraint
Satisfaction Problems In ICTAI 2004, 72-81

