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Abstract

We encode a new problem into SAT, namely the Stable Marriage problem
with Ties and Incomplete lists (SMTI). This is a matching problem of con-
siderable theoretical interest, but also one with real applications: for example
the problem of matching medical interns to hospital residencies in Scotland.
We show that the problem can be encoded into SAT. We report computa-
tional results showing that Chaff can solve reasonably large random instances
of SMTI.

Note to SAT 2002 Committee: This paper is linked to a paper submitted to
ECAT 2002, on solving the SMTI problem using constraint programming [3]. Our
current plan for a long paper to the special issue of AMALI is to combine these two
papers and thereby compare the techniques.

1 The SMTI Problem

In the stable marriage problem [4] we have n men and n women. Each man ranks
the n women, giving himself a preference list. Similarly each woman ranks the men,
giving herself a preference list. The problem is then to marry men and women such
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Men’s lists Women’s lists
1: 21 1: 14

2: 356 2: 135
3:23 3:6(243)
4: (63)(14)|4:654

5: (25)64 5: 52

6: 643 6: (256)4

Figure 1: An SMTI instance with 6 men and 6 women. The instance has a largest
weakly stable matching of size 6 namely (2,6,3,1,5,4), and a smallest weakly stable
matching of size 4, namely (2,-,-,3,5,6). However, it has no strongly or super stable
matching.

that they are stable. By stable we mean that there is no incentive for individuals
to divorce and elope. This problem has a long history, and an optimal algorithm
was proposed by Gale and Shapely 40 years ago [1]. The algorithm’s complexity is
O(n?), and is linear in the size of the problem.

If men or women find some members of the opposite sex unacceptable, preference
lists become incomplete. These problems are classified as stable marriage problems
with incomplete lists (SMI) and are again solvable in polynomial time. We might also
have ties in the preference lists. That is, a man (or a woman) might be indifferent
between a number of his (or her) choices. For example man m, might have a
preference such that he prefers woman wy to w7, but woman w; ties with woman
wy. In the extreme when all potential partners tie with one another, we are asking
only for a matching and stability is not an issue. However, when we combine ties
with incompleteness, we get the stable marriage problem with ties and incomplete
lists (SMTTI) and this is NP-Complete [5]. Figure 1 gives an example SMTT instance.

There are three definitions of stability used when there are ties, giving rise to
the three versions of the SMTI problem. They define the conditions under which a
couple will elope with each other.

e Weak stability: A couple will leave their partners only if each considers the
other better than their current partner.

e Strong stability: A couple will elope if one of them (say the man) strictly
prefers the other to their current partner, while the other finds him at least
as good as her husband. (The intuition is that he might bribe her to leave.)



e Super stability: A couple will elope if each finds the other as good as their
current partner. (The intuition here is the application of the principle that
the ‘grass is greener on the other side.’)

We make two simplifying assumptions throughout: first, that there are the same
number n of men as of women; and second, that if a woman is acceptable to a given
man (i.e. she appears in his preference list), then he is also acceptable to her.

2 A Boolean encoding of SMTI

In this section we give an encoding of the Stable Marriage problem with Ties
and Incomplete lists (SMTI). Suppose that I is an SMTI instance involving men
mi, Mo, ..., M, and women wi, wa, . .., Wy.

For each i (1 < 4 < n) let I denote the length of man m;’s preference list,
and define [} similarly. We assume that each preference list is ordered in order of
preference, most preferred first, with some arbitrary order for potential partners
who are tied.

To define an encoding of I as a SAT instance J, we introduce O(n?) Boolean
variables and O(n?) constraints.! For each 4,5 (1 < 7,7 < n), the variables are
labelled z;, for 1 <p <" +1 and y;, for 1 < ¢ <1¥+1, and take only two values,
namely T and F'. The interpretation of these variables is:

e 7,, = T iff man m; is unmatched or matched to the woman in p™ or later
position in his preference list, for 1 < p <[™;

e z;, =T iff man m,; is unmatched, for p = ;" + 1;

e y;, = T iff woman w; is unmatched or matched to the man in ¢ or later
position in her preference list, for 1 < ¢ </[¥;

e y;, = 1 iff woman w; is unmatched, for ¢ = [[" + 1;

The constraints are listed in Table 1. For each i and j (1 < i,5 < n), the
constraints marked (*) are present if and only if m; finds w; acceptable; in this case
p is the rank of w; in m,’s list and ¢ is the rank of m; in w;’s list.

We need some extra notation to express the stability constraints. The woman
who is ¢'* in m;’s preference list may be one of a number of equally desirable in

'We use the language of constraints rather than clauses for consistency with our planned long
version comparing SAT and CSP encodings.



his eyes. We will need to know who is the next woman who is definitely worse. To
achieve this we write ¢ for the position in m;’s list of the first woman who is worse
than the woman in position g. Where there is no such woman, ¢* = [ + 1. In
similar vein, we write ¢~ for the first position in m;’s list representing a woman tied
with ¢ in m;’s preference. For example, suppose m;’s list was (3)(762)(41). Then
3T = 5, since the third woman in the list is 6, and the first woman strictly worse
than her is woman 4 in position 5 in the list. We have 37 = 2, as woman 7 is the
first woman of the same quality as 6. Similarly, we have 1T =2, 17 =1, 57 = 7,
and 5~ = 5. A general point worth noting is that if a woman is tied with no other
person in m;’s list, then we have ¢* = ¢+ 1, and ¢~ = q.

Constraints 1 and 2 are trivial, since each man and woman is either matched
with some partner or is unmatched. Constraints 3 and 4 enforce monotonicity: if a
man gets his p — 1'* or better choice, he certainly gets his p"* or better choice. For
constraints 5-8, let 7 and j be arbitrary (1 <4,j < n), and suppose that m; finds w;
acceptable, where p is the rank of w; in m;’s list and ¢ is the rank of m; in w;’s list.
Constraints 5 and 6 are chanelling constraints between the men and women. If m;
has a partner no better than w;, his p'* choice, but better than his p + 1% choice,
he must be married to w; and she married to him. We express that w; is married
to m; by saying that she is married to somebody no better than him (5a), but no
worse either (5b). The remaining constraints are chosen according to the kind of
stability being employed.

e Constraint (7we): If m; does strictly worse than w;, she must be married to
someone at least as good as m;.

e Constraint (7st): If m; does no better than w;, she must be married to someone
at least as good as m,;.

e Constraint (7su): If m; does no better than w;, she must be married to someone
strictly better than m;, or alternatively m; and w; are married to each other.
If m; is not married to w; then he is married to someone either higher up
or lower down his preference list. Constraint (7su(a)) covers the former and
constraint (7su(b)) the latter case.

It is interesting to compare our boolean encoding of SMTI with Gent et al’s
boolean encoding of the SMI problem [2],2 which formed the starting point for this
work. Since ties are not allowed in SMTI, an SMI instance is an SMTI instance

2 Available from http://www.dcs.st-and.ac.uk/~apes/2001.html



Monotonicity
L. i =T (1<i<n)
2. Y =T (1<j<n)
3. Tip=F = Zipy =F (1<i<n,1<p<I?)
4. Yiag=F = yjq1=F (1<j<n1<qg<Iy)
Chanelling
5. (a) Zip=T&xipp1=F —y;,=T (*),1<4,5<n
(b) zip=T&xipy1=F = Yje1=F (*),1<i,57<n
6. (a) yg=T&yjgr1=F—>mzip=T ("), 1<4,j<n
() Yig=T & yjg1 =F > zip1 = F (*),1<4,j<n
Weak Stability
Twe. Tipt =T = yYjqr =1 (*),1<4,j<n
e Vigr =T > zige = F () 1<ij<n
Strong Stability
Tst. Tip- =T = yjp+=F (*),1<i,j<n
st Ygw =T = ige = F (*),1<ij<n
Super Stability
Tsu. (a) zip-=T&zip,=F —=y;,-=F (*),1<4,57<n
(b) ipn =T =y = (*),1<4,j<n
8su. (a) Yj-=T&Yyjq=F —=z,,-=F (*),1<4,5<n
() Yjgr1=T = x;p- = (*),1<4,j<n

Constraints (1) to (6) are used together with the appropriate versions of (7) & (8).
See the main text for explanations of the constraints marked (*) and the symbols

P, ¢, pt,p,q", and ¢ .

Table 1: The constraints in a Boolean encoding of an SMTI instance.



in which, as we noted earlier, p~ = p and p* = p+ 1. We can use these facts to
study the constraints that our SMTI encoding gives rise to when there are no ties.?
In the case of strong and super stability, we obtain excellent results. It is not even
necessary to notice that a particular SMTT instance has no ties to gain the benefit
of the theoretical results which apply to the SMI encoding, in particular that search
which does unit propagation will never fail [2]. Unfortunately, the results of Gent
et al. no longer apply in the case of weak stability, because not all the deductions
necessary can be performed by the process of unit propagation.

3 Experimental Results

We have implemented our encoding. We did this in the Constraint Logic Program-
ming language Eclipse, translating SMTI instances according to our encoding and
writing to a file in Dimacs format for input to Chaff. We ran experiments on a
Pentium 300MHz machine. Our test instances were a class of randomly generated
instance of SMTI is represented by a triple (n, p1, p2) where n is the number of men
and women in the problem, p; is the probability of incompleteness and ps is the
probability of ties. We describe the generation procedure in detail in [3]. Figure 1
in fact showed a randomly generated SMTI with parameters (6,0.5,0.25).

One set of results are shown in Figure 2.* These show performance as we vary n
and p, but fix p; = 0.5, for the decision question of whether there is a complete stable
matching of size n.> The results for strong and super stability are entirely novel.
These experiments represent the first time, to our knowledge, that any complete
algorithm has been reported for the SMTT problem with these forms of stability.

For weak stability, the only precursor is our own encoding using constraint pro-
gramming [3]. We can thus compare run times with the SAT encoding. In our
constraint program (in the language Choco) we compared results with n = 60, p; =
0.5,po = 0.4. The constraint solution took an average of 0.8s on a Pentium 733,
compared with 0.5s in Chaff on a Pentium 300. This is apparently in favour of
SAT, but is less so when we include the time taken by the translation program in
Eclipse, of about 0.9s. However, there are theoretical reasons for preferring the SAT
encoding. The establishment of arc consistency takes worst case time O(n?) in the
constraint encoding, compared to only O(n?) for unit propagation in our encoding

3We omit details in this extended abstract.

4Our long paper will contain much more extensive experimental results.

5To implement this we simply added unit clauses that each variable z;m  =F.
At
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Figure 2: The decision problem: is there a stable matching of size n? Instances with
p1 = 0.5 and varying n, ps. Results are for weak stability (top), strong stability
(centre) and super stability (bottom). Left: Chaff’s mean cpu time in seconds on a
Pentium 300 to solve instances. Right: Chaff’s mean number of decisions.
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here. This should be seen in improved relative performance of the SAT encoding as
we increase n, although this could be offset if more search was necessary.

We conclude that translation into SAT and the use of Chaff represent an effective
means of solving SMTT instances, in only a few seconds on instances up to n = 100.

4 Further Work

The main item for future work is to allow for the optimisation problem in SMTI:
that is, what is the largest (or smallest) stable matching available in a given in-
stance? This is the problem of interest in the Scottish Hospital Residents problem.
Unfortunately, unlike constraint solvers, most SAT solvers, and Chaff in particular,
are not well suited to this. One possibility would be to use a SAT solver for MAX-
SAT, maximising the number of clauses satisfied where certain unit clauses represent
that individuals are married.® Currently this represents the chief advantage of the
constraint encoding, as it is trivial to encode the optimisation problem.
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