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Abstract. Solvers for Quantified Boolean Formulae (QBF) use many analogues
of technique from SAT. A significant amount of work has gone into extending
conflict based techniques such as conflict learning to solution learning, which is
irrelevant in SAT but can play a large role in success in QBF. Unfortunately, so-
lution learning techniques have not been highly successful to date. We argue that
one reason for this is that solution learning techniques have been ‘incomplete’.
That is, not all the information implied in a solution is learnt. We introduce two
new techniques for learning as much as possible from solutions, and we call them
complete methods. The two methods contrast in how long they keep informa-
tion. One, Complete Local Solution Learning, discards solutions on backtracking
past a previous existential variable. The other, Complete Global Solution Learn-
ing, keeps solutions indefinitely. Our detailed experimental analysis suggests that
both can improve search over standard solution learning, while the local method
seems to offer a more suitable tradeoff than global learning.

1 Introduction

Quantified Boolean Formulae (QBFs) can be seen as an extension of Satisfiability (SAT)
with the addition of a prefix in which every variable is universally or existentially quan-
tified. This increase in expressivity comes at a price; the decision problem for QBF is
PSPACE-complete. This allows QBF to be used to solve many other PSPACE problems
such as games, conditional planning problems and hardware verification.

There have been many advances in QBF solver technology. Many of the more recent
algorithms are based on an extension to the DPLL [3] procedure for SAT. The first such
example is presented in [2]. Many other SAT techniques have been extended and added
to this procedure, starting with conflict and solution directed backjumping [6], in which
pruning of the search tree is achieved through look-back techniques. This provided a
great improvement in both run-time and branching rate. Learning was then introduced
[5, 7, 10]. This had much less impact than occurred in SAT. While improvements were
seen on some problems, the algorithms actually performed worse on others.

Recently, it has been shown that solution learning for quantified Boolean formulae
is not very good in practice. In two separate papers [5, 10], the experimental analysis
of solution and conflict learning show that their combination does not perform well in
practice. Two other papers [7, 9] show that conflict learning for QBF used independently



performs quite well. This implies that the detrimental effect of the combination learning
solver was likely to be due to the solution learning part of the solver. This effect is bad
enough to make the combination of conflict and solution learning perform poorly.

There are at least two reasons why solution learning might not perform well in prac-
tice. Firstly, the level of solution learning performed was unrestricted learning. This
means that when a solution is learned, it is kept for the remainder of the search. An
alternative approach would be to perform some sort of bounded learning. This was sug-
gested in [5] but was never implemented. A second reason is that the solutions learned
may not be the most useful in practice. As was stated in [10], there are many possi-
ble sets which can be learned on discovery of a solution. There may be an exponential
number of such solutions which would result in an exponential space requirement if all
solutions are learned using this technique.

We introduce a method of solution learning which addresses both of the aforemen-
tioned issues. This technique will allow the learning of all solutions without the expo-
nential space requirement. Furthermore, this technique will automatically throw away
learned information when it is no longer of any use. This will be a requirement of the
information as it will become invalid under certain conditions. A second technique will
also be introduced which, in extension to the first technique, will allow the storage of
the learned information for the duration of the search. This will allow other bounding
algorithms to be applied to the learning.

First, a proper introduction to solution learning in QBF will be given. This will be
followed by a description of the first new technique. The extension to this technique
will then be described. Finally, an experimental evaluation of the techniques will be
given. This will show that the new technique performs better than the standard solution
learning technique on many instances.

2 Background

We provide some basic details of QBF, but refer the reader elsewhere for a more de-
tailed introduction [2]. A QBF is of the form
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�
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�

 ��� � � , where each

���
quantifies ( � or � ) a variable � � and each variable occurs

exactly once in the sequence
�

.
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is a Boolean formula in conjunctive normal form
(CNF), a conjunction of clauses where each clause is a disjunction of literals. Each lit-
eral is a variable and a sign. The literal is said to be negative if negated and positive
otherwise. Universals and existentials are those variables quantified by a universal or
existential quantifier respectively. A QBF of the form � � � � � � � 


 � � � � � is true if ei-
ther
� � � � 


 � � � � ��� � ��������� or

� � � � 

�
 � � � � ��� � ��������� is true, where � represents
true and � represents false. Similarly, a QBF of the form � � � � � � � 
�

 � � � � � is true if
both
� � � � 


 � � � � ��� � ��������� and

� � � � 


 � � � � ��� � ����� ��� are true.
A QBF is trivially false if it contains an all-universal clause or an empty clause.

An all-universal clause is a clause in which all the literals are universal. Such a clause
is false since we must be able to satisfy the formula for all valuations of universals,
including the combination which makes all literals false in the all universal clause. This
is true so long as the clause is not a tautology, which we remove with preprocessing. A
QBF is trivially true if it consists of an empty set of clauses.



The basic procedure for solving QBF’s, [2], is similar to the DPLL procedure for
SAT [3]. The order of variables is now determined by the order in which the variables
occur in the prefix. Secondly, when the formula is found true, the procedure backtracks
to the most recently assigned universal that has not had both true and false values ex-
plored. Further propagation is possible using unit or single existential clauses. A unit or
single-existential clause is defined to be a clause in which only one existential variable
is left to be assigned and all universal variables are quantified after the existential in
the quantifier prefix. In this clause, the existential must be assigned true to avoid an
all-universal clause.

Conflict Directed Backjumping [8] is not covered in this paper. For a detailed de-
scription of Conflict Directed Backjumping for QBF see [6]. Solution Directed Back-
jumping can be performed during QBF search when assignments result in an empty set
of clauses. The first stage is to find a small set of universal literals from the current as-
signment which leaves the formula satisfied. This is known as a reason for the solution
or the solution set. To find the solution set, each clause is examined in turn. Where a
clause is satisfied by at least one existential, nothing is added to the solution set. Where
a clause is only satisfied by a universal assignment, we choose one of the universals in
the clause to be added to the set. We only backtrack on a universal variable when it oc-
curs in the solution set. When both true and false assignments to a universal result in the
QBF formula being true, we can combine the solution sets from both these assignments
and pass the new solution set back to be used for universals assigned earlier. For more
details see [6].

The idea behind solution learning is simple. The solution sets which are gener-
ated by solution directed backjumping are stored at certain points in the search. These
then guide search away from previously visited solutions and thus reduce the amount of
search performed. The solution set cannot be learned as it is. Solution sets were intro-
duced as only containing universals. These universals come from the clauses that are not
satisfied by any existentials. For solution learning, the solution set must be augmented
with a subset of the existentials that satisfy the remaining clauses. This is because the
solution is not caused only by the universals. Only universals are added to the solution
set in solution directed backjumping because solution backtracking is only performed
on universals.

In [5], solution learning was first introduced. It was realised here that not all solution
sets could be learned as they were. The criterion for learning a solution set is that the
solution set must be prefix closed. This means that for any variable � that occurs in the
solution set, every variable quantified before � in the prefix must also occur. This will
not always be the case in the solution set and so not all solution sets are learnable.

In [10], solution learning is performed using consensus for DNF cubes (the dual of
resolution of CNF clauses). The QBF CNF formula

�
is extended to initially contain

a DNF formula ! such that
� "$# �&% ! . Initially ! is empty and is thus false.

When a new solution is learned, it is added to ! as a DNF cube. In conflict learning by
resolution for SAT, resolution is performed on the clause that became empty, ' , to cause
the conflict and the clause that was a unit clause immediately before the last variable
was assigned, ( . The result of this is then resolved with the clause that became unit
before ( . This continues until an assignment is encountered that was not performed by



propagation. At this point, the resolvent is added as a clause. Solution learning proceeds
in the same way, except that the initial cube does not exist. This is instead created from
a solution set. Where solution learning is referred to in the remainder of this paper, it is
this method that will be considered.

We contrast ‘local solution learning’ with existing QBF solution learning tech-
niques, which we call global solution learning. In global solution learning [5, 10], the
solution set is augmented with existentials. Otherwise, the solution set would only be
valid under certain conditions. Hence a DNF cube generated from the solution set would
have to be removed if these conditions change. In local solution learning, the learned
cube must be removed when one of the existential variables is changed that is quantified
outside one of the universal variables in the cube. This ensures that local learning only
holds valid learned cubes. This is the ‘local’ part of the learning; the learned informa-
tion is only valid in a local sub-tree in the search tree. Unless a learned cube removal
system (such as relevance or size learning) is used, global learning will keep all learned
cubes until the end of the search. This can result in an exponential increase in the size of
the formula. Local solution learning can be considered a learned cube removal system.
The size of the learned cubes will also be smaller in local solution learning, since they
do not contain any existentials.

3 Complete Local Solution Learning

We call existing solution learning techniques ‘incomplete’. This indicates the fact that
they do not learn all the information possible from each solution found. The methods
we introduce are ‘complete’, in that any solution is reused directly whenever possible,
avoiding as much search as possible within the scope that solutions are preserved. The
two methods differ in the scope within which found solutions are preserved, one being
local and the other global. We introduce the local method first as the global method is
based on it but is more complicated.3

QBFs of the form )+*-, . For simplicity, we first discuss the complete local solution
learning for formulae which have a prefix of the form �.� .

We use an example to show what incomplete learning misses. Consider the formula�/( � �/( �0
1
2
 �/( � �3' �4
1
2
 �3'65 ��7 ( � % ( � % ' �18:9 7 (<; % (>= % ' �28:9?
2
1
 � . Say the formula is satis-
fied by the assignments where ' � � ' � �@� , so that the two clauses are only satisfied by
universals. Let the assignments to all the existentials in the current assignment be calledA � . Say now that the universal variables are all assigned true in the order ( ��B ( �CB (/; B (/= .
So there are four possible solution sets that can be built. These are DE( � B ( ;�F , D2( � B ( =GF ,D2( � B ( ;�F and DE( � B ( =CF . Incomplete solution learning will only learn one of these sets.
Yet, if we ever find ourselves assigning the universals true from any of the four sets,

A �
can still be used to satisfy the remaining clauses. Incomplete learning methods cannot
exploit this fact, leading to unnecessary backtracks. Redundant search could be avoided
in solution learning if all of the possible solution sets were learned at this stage, but this
has the potential for causing an exponential increase in the size of the formula. Suppose

3 Complete Local Solution Learning is the same algorithm as GR-Learning reported in our tech-
nical report [4], but we hope with a more descriptive name. It has been reimplemented, how-
ever, so results in this paper are new.



instead that the assignments to the universals were ( ���H� B ( �I�H� B ( ; �J� B ( = �H� .
There are now two solution sets available: D2( � B ( ;�F and D2( � B ( ;CF . Now when backjump-
ing assigns ( ; �H� , the algorithm will be free to choose ( = �J� to satisfy the second
clause. Again the original existential assignment

A � can be used to satisfy the remain-
ing clauses. Even if existing solution learning methods were to learn all the solution
sets, this situation would not be covered. This is because solution learning is restricted
to the set of universals that have been assigned.

In general, let the set of clauses not satisfied by an existential be
��K

. As long as all
the clauses in

�+K
are satisfied by some universal assignment, the remaining clauses can

be satisfied by the existential assignment
A � . The only cases to be considered are those

in which one or more of the clauses in
��K

are not satisfied by any universal assignment.
The new contribution of complete solution learning methods is to learn that the formula
is satisfied so long as every clause in

�LK
is satisfied by a universal variable. We now

describe how we can achieve this in one combined learning operation which does not
increase the formula size exponentially.

Let M � be the N th clause with the existentials removed. Let
� K � D6OQP B O1R B2
1
1
 F . We

are to learn that so long as S � � M P 9 M R 9$
2
1
 is true, the original formula is true. S � is
not in DNF, making it hard to use standard learning methods. Note that in QBF learning,
the original formula is true iff the DNF formula is true. Therefore, the QBF solver tries
to make the DNF false to ensure that only new parts of the tree are explored. To put S �
in DNF, we replace each M � by an ‘indicator’ variable T � , using a simple encoding trick.
We encode that a variable T � is assigned true if and only if one of the universal variables
in clause N satisfies the clause. This is encoded as several DNF cubes which can be added
to the original formula before search begins. If M � � 7 ( � % ( � % 
2
1
 % ( � 8 , the cubes
added will be

7 ( ��9 ( �	9U
2
1
�9 ( � 9 T � 8 %�7 ( ��9 T � 8 %?7 ( �C9 T � 8 % 
1
2
 %�7 ( � 9 T � 8 . This formula
shall be known as the indicator formula. So S � � TQP 9 T1R 9V
2
1
 can be added as a DNF
cube when learning is performed. DNF unit propagation attempts to make the DNF
formula false, and so the correct assignments are made. The indicator variables must be
quantified after the variables in M � , so that it is not possible to assign them before the
variables which they indicate. The indicator variables must be universally quantified, as
otherwise the cubes in the indicator formula would all be single-universal cubes. This
would mean that the universals in the cubes would be assigned by propagation. The
assignments of the correct value to the indicator variables is done by unit propagation
in the DNF formula [10].

In solution learning, it is guaranteed that the addition of the DNF cubes does not
affect the satisfiability of the formula i.e.

� "$# �W% ! where
�

is the original
CNF formula and ! is the additional DNF formula. If all the universal literals in M �
are assigned false, this removes all the binary cubes in the indicator formula and forces
the indicator to be false by DNF unit propagation. If one of the universal literals inM � is true, the indicator is assigned true by DNF unit propagation. This removes the
remaining cubes. Thus the indicator formula can never make the formula true by itself.
When a learned cube has been added, the formula can be made true by satisfying the
learned cube. This will only occur if the universal variables are assigned so as to force
the indicators to the values required to satisfy the learned cube. This will mean that the



assignments to the universals are such that the current state has been visited previously
and so no further search is required.

Solution backjumping must be slightly modified in order to support a solution set
built from indicator variables. In building a solution set, where a clause is not satisfied
by an existential, the indicator is added to the solution set instead of choosing one of
the universals. Thus the final solution set will represent all the equivalent solution sets
for the current assignment of variables. The resulting technique for backjumping is very
similar to that of conflict-directed backjumping, and is shown in the context of our local
complete learning algorithm in figure 4.

Unlike standard solution learning, complete solution learning does not guarantee to
use the learned cube to invert the assignment to the universal. When the universal is
assigned it may cause more than one indicator to be assigned through DNF unit prop-
agation. This means that there is a possibility that more than one unassigned indicators
occur in the learned cube when it is added. So the learned cube will not necessarily be
a unit or single universal cube when it is added. Therefore, the algorithm must not rely
on DNF unit propagation to reassign the universal after backtracking.

Take the example �<( � �<( � 
2
1
 �<( � �3' � 
2
1
 �X' 5 �7 ( � % ( � % ' � 8Y9 7 ( ; % ( = % ' � 8Y97 ( = % ' � 8<
2
1
 � . Before search begins, the formula is augmented with the indicator formula7 ( � 9 ( � 9 T � 8 %Z7 ( � 9 T � 8 %Z7 ( � 9 T � 8 %Z7 ( ; 9 ( = 9 T � 8 %[7 ( ; 9 T � 8 %Z7 ( = 9 T � 8 %Z7 ( = 9T ; 8 %\7 ( = 9 T ; 8 . The indicators are quantified in a universal quantifier at the end of the
formula. Now the assignments are made as follows: ( �]�W� B 7 T �]�H� 8^B ( ���H� B ( ; �� B 7 T �_�`� 8:B ( = �a� B 7 T ; �b� 8:B A � , where

A � is an assignment to the existentials
such that ' � �b� B ' � �a�dc A � . The assignments in brackets are those which are
performed by unit propagation following the previous assignment. The solution set is
built to contain DET ��B T � F . Backjumping is performed to return to T � . T � is removed and
replaced with (.; . Backjumping then returns and unassigns (e; . The solution set now
consists of DET � F . Now the cube

7 T �L9 T �E8 is learned, adding the indicators relevant to( ; that were removed from the solution set during backtracking. As ( � and ( � are still
assigned true, T � is true. T � must be assigned false by unit propagation. So ( ; and ( = are
assigned false by unit propagation.

A � is no longer sufficient to satisfy the remaining
formula so a new existential assignment must be found if the formula is to be proved
true. So a new assignment

A � is deduced such that ' ����� B ' �����Jc A � . This results in
the creation of the solution set DET � B T ;CF . Backjumping replaces T ; with ( = and returns to( = . As both assignments have been made to ( = , the solution sets are combined to makeDET � F . Backjumping returns to the assignment of T � replacing it with ( � . The cube

7 T � 8
is learned. This is a unit cube and thus T � is assigned false. This in turn assigns ( � and( � false. This also removes the previously learned cube

7 T �.9 T �E8 . The algorithm is now
free to choose values for (.; and (>= .
General QBFs The complete learning method described above only works when the
formula prefix is of the form �.� . If there is an existential quantified outside the univer-
sal, the learned cubes can become invalid. Our first solution to this is local: a learned
cube can remain so long as no assignment to an existential quantified outside the uni-
versals indicated in the cube is changed. If such an existential assignment is changed,
the learned cube is simply discarded.



If there is more than one level of universal quantification, the situation becomes fur-
ther complicated. It becomes important to distinguish between the quantification levels
of the universals. Take the quantifier sequence �-M � � A � �eM ; � A = where M � , A � , M ; andA = are sets of variables. The assignments to the variables in M � do not depend on any
existential assignments. The assignments to the variables in M+; , however, depend on the
assignments to the variables in

A � . Therefore, any locally learned cube that depends on
a variable in Mf; must be deleted if a variable in

A � is changed. A locally learned cube
that only depends on variables from M � does not need to be deleted if

A � is changed.
Therefore we distinguish between the level of quantification of the information learned,
by splitting the indicator variables for each clause. There is now one indicator variable
for each level of universal quantification for each clause. The indicator variable T �hg i is
the indicator variable for the N th clause and the universals quantified in the j th quantifier.
The rest of the procedure continues as before. Now, only universals that are quantified
at the same level in a clause are considered to be equivalent. For example, take a QBF
with a prefix �<( � B ( � �X' ; �/( = B (<k and a clause

7 ( � % ( � % ' ; % ( = % (<k 8 . The indicator
clauses added would be

7 ( � 9 ( � 9 T � g � 8 %l7 ( � 9 T � g � 8 %[7 ( � 9 T � g � 8 %[7 ( = 9 (<k 9 T � g � 8 %7 (/= 9 T � g �28 %_7 ( k 9 T � g �28 . So two indicators exist for the one clause.
When building a solution set, the algorithm may now be faced with two or more

levels of universals to choose from. It makes sense to choose the outermost level of
quantification when such a choice arises, since choosing the innermost level would
mean that the variables in the outermost level would still satisfy the clause.

The main points of complete local solution learning are as follows:

1. For each clause, a disjunction of the universal literals with the same level of quan-
tification are made equivalent to an indicator variable.

2. The indicator variables are all quantified in a universal quantifier at the end of the
prefix.

3. All the indicator equivalences are encoded in a DNF formula and DNF unit propa-
gation is used to enforce the equivalences.

4. When a solution is found, one indicator is put in the solution set for each clause not
satisfied by an existential. This is the indicator for the outermost universal variable
that satisfies the clause.

5. When backjumping is performed, and an indicator is unassigned, the indicator is
replaced by one of the universals it indicates. This indicator is remembered.

6. When backjumping concludes with the reassignment of a universal, this universal is
removed from the solution set and replaced by the indicators that are relevant to the
universal and that were removed during backjumping. The solution set (consisting
now only of indicators) is then added as a DNF cube.

7. When backjumping merges the solution sets for both assignments to a universal
variable, all the indicators of the universal variable are removed from the resultant
solution set.

Figures 1 - 4 show the important details of the algorithm. Figure 1 shows the top
level of the algorithm. The main differences between this and the basic QBF algorithm
are as follows. Firstly, the indicator formula must be generated. Secondly, as this is a
local learning algorithm, any invalid cubes must be removed after backtracking. This



is automatically handled by CompleteLocalLearn on a true backtrack but must be
done explicitly after a false backtrack.

CompleteLocalSolutionLearn( mfn )
1. m+opn[q?r�s := GenerateIndicatorFormula( mfn );
2. do
3. result := propagate( m+opntq?r�s );
4. if (result = UNDEF)
5. (variable, value) := nextvariable( m+opnuq�r�s );
6. else if (result = TRUE)
7. (variable, value) := CompleteLocalLearn( m+opnuqUr�s );
8. else if (result = FALSE)
9. (variable, value) := falselearn( m+opntq?r�s );
10. v�w x the set of learned cubes in D that contain indicators

that indicate variables quantified inside variable;
11. ryw xzr|{$v ;
12. if (variable }x -1)
13. m+opnZqUr�s := m+opnlq�r�s [variable := value];
14. while (variable }x -1)
15. return result;

Fig. 1. The Algorithm for Complete Local Solution Learning. ~ is a prefix of quanti-
fiers, � is a Boolean formula in CNF and ! is a Boolean formula in DNF.

Figure 2 shows the details of the CompleteLocalLearn function. This calcu-
lates an indicator set, performs backjumping, then learns a new cube at the backtracking
point. The learned cubes that are no longer valid after this backtrack are removed. Fig-
ure 3 shows the function for calculating the initial indicator set for backjumping. This
is similar to calculating a solution set except that a universal variable chosen for the set
is replaced by its indicator variable. Figure 4 shows how the indicator set is used by
the solution directed backjumping procedure. For any variable assigned by unit propa-
gation, the variable is replaced by the variables in the cube that caused the variable to
be assigned. Otherwise, if the variable has been backtracked to before, the indicator set
obtained on the previous backtrack is joined with the new indicator set and the variable
is removed. If the variable has not been backtracked on, it is now used as the backtrack
point.

CompleteLocalLearn( m+o�nuqUr�s )
1. v := getIndicatorSet( m+o�nuqUr�s );
2. (variable, value, � ) := clsbackjump( m+opnuq�r�s , v );
3. �e��w xV���6� � is an indicator of variable and �+���0� ;
4. v$w xzv?�?� ;
5. � := set of learned cubes in r that contain indicators

that indicate variables quantified inside variable;
6. r�w xzr_{$� ;
7. r�w xzrV�zo��������6�Y���hs ;
8. return (variable, value);

Fig. 2. The algorithm for learning the solutions.

4 Complete Global Solution Learning

Local solution learning requires that learned information is thrown away when it is
no longer valid. The use of only the universals in the solution sets means that the



getIndicatorSet( m+o�nuq?r�s )
1. if r is true
2. return the set of indicators in the cube that satisfies r ;
3. else
4. v$w x��^� ;
5. for each clause � in n
6. if � is not satisfied by an existential
7. �Uw x the outermost universal that satisfies the clause;
8. �Xw x the level of quantification of � ;
9. �Lw x the indicator for clause � , level � ;

10. vuw xZv?���Q�E� ;
11. return v ;

Fig. 3. The algorithm for calculating the indicator sets.
clsbackjump( m+o�nuq?r�s , v )

1. �Vw x��^� ;
2. while there is backtracking to be done
3. variable := the last assigned variable;
4. m+opn[q?r�s.w xZm+opnlq�r�s�� variable unassigned];
5. if variable �]v and variable �U�
6. if � was assigned by single universal propagation
7. �4w x the cube that caused the assignment of � ;
8. Add to every literal in � to v ;
9. Remove variable from v ;

10. if variable is an indicator variable
11. Add variable to � ;
12. else if both values of variable have been assigned
13. vX�3w x the indicator set from the last assignment of variable;
14. v$w xzv?�?v � ;
15. else
16. value := value assigned to variable;
17. return ( � , value, � );
18. return (-1, false, �^� );

Fig. 4. Algorithm for backjumping using indicator sets. � is an indicator solution set.

learned information can become invalid when some existentials are changed. The sim-
plest way to overcome this problem is to add some existentials to the solution set. This
is done in the same way as is done with solution learning. This way, the solutions
can be kept beyond the reassignment of an existential. This means that the same so-
lution will be avoided if it occurs later in the search. Take, for example, the formula�3' � �/( ��B (/;E�3'E=^�/( k B (/ 1�X'E¡ ��7 'E= % ( k % (<  % '6¡ 809 7 '2= % ( k 809\
2
1
 � and that there is an
indicator T � g = for the first clause shown such that T � g = "�# (<k % (   . Say that ' � , ( � , ( ; ,(/k and (   are assigned true and that ' = and ' ¡ are assigned false and that the remaining
clauses are satisfied by the existentials. So now the solution set is built and T � g = is added
to the set. Additionally, ' = is added to the solution set as it satisfies the second clause.
If ' � does not satisfy any clause on its own then it does not need to be added to the
solution set. So the cube learned is

7 T � g = 9 ' = 8 . Now if later, ' = is assigned true, this
cube will be removed and so it cannot cause the DNF formula to become true. If later
still, ' = is unassigned, this cube will become active again. If ' = is again assigned false,
DNF unit propagation will assign T � g = false, resulting in ( k and (<  being assigned false.
Hence, the same solution will not be explored again.

There is a second choice to make when considering the existentials that satisfy the
clause. Only one existential is needed from each clause that is satisfied by an existen-
tial. In both normal solution learning and complete global solution learning, it makes
sense to choose the innermost existential that satisfies a clause for the solution set when
presented with a choice. Universals in a clause that are quantified inside all existentials



in that clause can be removed [1]. Similarly, existentials in a cube that are quantified
inside all universals in that cube can be removed [10]. By choosing the innermost exis-
tential that satisfies a clause at the same time as choosing the outermost universal where
no existential satisfies a clause, there is more chance that the existential will be quan-
tified inside the universals in the solution set. Therefore, the innermost existentials can
be removed and so the added cube will be smaller and easier to manage.

There are reasons why local learning might be better than global learning. First, the
learned information is dynamically deleted in local learning. Therefore, the size of the
formula is less likely to grow exponentially in size. In global learning, learned informa-
tion is kept for the duration of the search. However, two methods have been described
[5] which dynamically delete the learned information. These are size bounded and rel-
evance bounded learning. Local learning does not need these methods as it contains
its own dynamic deletion system. If size and relevance bounding prove to be the best
methods for controlling size growth of the formula then global learning will prove to
be more useful. It may prove, however, that solutions do not reoccur outside the local
branch being explored. Solutions depend on more information than conflicts in general;
a conflict only requires one clause to become empty whereas a solution requires all
clauses to be removed. Therefore, it is less likely that solutions will reoccur in different
parts of the search tree, and local learning might prove to be the better learning method.

For space reasons we omit pseudocode for the global learning functions, as they are
very similar to those for local learning. For global learning the algorithm is almost iden-
tical to that in figure 1. The main change is to call the global learning function Com-
pleteGlobalLearn instead of CompleteLocalLearn on line 7. Also, the learned cubes
are not discarded after an existential is reassigned, i.e. lines 10 & 11 are omitted. The
global learning function CompleteGlobalLearn is also almost identical to Complete-
LocalLearn shown in figure 2. As with the main function, the learned cubes are not
removed: in this case we omit lines 5 & 6 of the previous function. Finally, the indica-
tor set is built in the same way as for local learning, except now, if a clause is satisfied by
an existential, the innermost existential that satisfies the clause is added to the solution
set. That is, we omit lines 11, 12 & 13.

5 Experimental Evaluation

In the experiments presented here, the hypothesis will be clearly stated so that the ex-
perimental analysis is given more direction. On occasion, our original hypothesis will
be wrong and corrected in discussion.

In all the implementations of algorithms presented, the same QBF solving library
was used. The solving library performs all the basic tasks of the QBF solver. This in-
cludes reading the QBF instance from a file and initialising the data structures, as-
signing and unassigning variables and performing propagation steps. This avoids any
differences between algorithms other than the intended differences. The library and all
the solvers were written in C++ and compiled using GNU gcc 3.2. The compiler was
passed the -O3 flag for optimisation of the code and the -static flag to statically link
the libraries used. When a choice of variables is available the solvers all use the same
heuristic, choosing the unassigned variable from the outermost quantifier which has the
smallest variable index. The solvers were run on a cluster of Intel Pentium II 450 Mhz



computers with 386 MB RAM running Redhat Linux 7.1. Each algorithm was given
a timeout of 1200 seconds on each problem. The instances used were the benchmark
instances available from QBFLib (www.qbflib.org) as of 15th March 2004.

Two types of graphs are presented, comparing the the number of backtracks of two
algorithms, and comparing the run time. In a backtrack comparison, the number of
backtracks performed by the base algorithm is plotted on the x-axis. The y-axis shows
the improvement factor gained from using the second algorithm. This is calculated by
dividing the number of backtracks performed by the algorithm without the new idea by
the number performed by the algorithm with the new idea. A line is drawn at a value
of 1 on the y-axis. This is called the equality line. Points which lie on this line are
where both algorithms performed the same number of backtracks. A point which lies
above the equality line is where the second algorithm performs less backtracks than the
base algorithm on an instance. The distance of the point from the equality line indicates
how much better or worse the algorithm with the new idea performed compared to the
algorithm without the new idea. No points are plotted where either algorithm did not
complete before the time-out. In a run time comparison, the graph is similar. This graph
shows points where one algorithm timed out on an instance. Additionally, a diagonal
line is drawn on the graph starting below the equality line and meeting the equality line
at a value of 1200 seconds. This is known as the time-out line. A point which lies on
this line is where the comparison algorithm timed-out but the base algorithm did not.
Points which lie at 1200 seconds on the x-axis above the equality lines are ones where
the base algorithm timed out but the comparison algorithm did not.

In order to evaluate the performance of the new solution learning techniques, each
is compared to an algorithm that uses solution directed backjumping. Four QBF algo-
rithms were implemented. These were CLearn, CSLearn, CLSLearn and CGSLearn.
CLearn implements conflict learning and solution backjumping. CSLearn implements
conflict and incomplete solution learning. CLSLearn implements conflict learning and
complete local solution learning. CGSLearn implements conflict learning and complete
global solution learning. We used CLearn and CSLearn as reference implementations,
as they have all the same data structures, heuristics, etc, so run time and backtrack
counts can be compared directly. In all comparisons, the number of solution backtracks
is used. This is because the solution learning algorithms should directly affect the num-
ber of solution backtracks. The run time is also used in the comparisons. As new cubes
are added to the QBF, more work must be done in assigning each variable. This work
will directly affect the run time. It may not be worth doing the additional work in re-
ducing the number of backtracks if more time is taken overall. In the complete learning
techniques, some cubes are added during preprocessing. There may be a better way
of setting up the indicators. An example of this is the use of an implicit assignment
of the indicator variables. Therefore, the run time measure of these algorithms, whilst
presented, does not necessarily reflect the best obtainable performance of the algorithm.

Our first experiments compared the existing and our new solution learning tech-
niques with solution backjumping. All algorithms implement conflict learning.

Hypothesis

1. Solution learning performs the same or less solution backtracks than solution di-
rected backjumping on a QBF benchmark instance.



2. Complete local solution learning performs the same or less solution backtracks than
solution directed backjumping on a QBF benchmark instance.

3. Complete global solution learning performs the same or less solution backtracks
than solution directed backjumping on a QBF benchmark instance.

Unfortunately, space precludes us from presenting our results in detail, but we sum-
marise them as they inform the next set of experiments. Standard solution learning can
perform less universal backtracks than solution backjumping. Unfortunately, there are
very few points for which the difference between the algorithms is significant. As so-
lution learning is just an overhead in most cases, using solution learning can result in
the algorithm timing out where it would have completed if solution learning was not
used. It is very rare when solution learning does complete faster than solution back-
jumping. Complete local solution learning performs better that solution backjumping
on many problems. There are still many points for which complete local solution learn-
ing (CLSLearn) is an overhead overall. CLSLearn can sometimes solve problems that
solution backjumping cannot within the timeout. Complete global solution learning per-
forms better than solution backjumping on many problems. However, there are no points
where complete global solution learning can solve problems that solution backjumping
cannot but there are points that solution backjumping can solve that complete global
solution learning cannot. It is unlikely that complete global solution learning is much
better than incomplete solution learning when the run time is compared.

We are now more positive about complete local solution learning than in our previ-
ous report [4]. We ascribe this to more efficient implementation. This also suggests that
performance of solution backjumping and learning techniques is critically dependent
on small features of implementation, such as choice of solution sets in backjumping.
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Fig. 5. A comparison of the number of universal backtracks (left) and run time (right)
performed by solution learning and CLSLearn. For a description of the presentation of
the graphs, see the main text.

We next compare our new complete solution learning techniques, i.e. CLSLearn and
CGSLearn, with the incomplete solution learning technique, i.e. CSLearn.

Hypothesis



1. Complete local solution learning performs the same or less universal backtracks
than solution learning on a QBF benchmark instance.

2. Complete global solution learning performs the same or less universal backtracks
than solution learning on a QBF benchmark instance.

Figure 5(left) shows that the improvement factor is often better than 1, though never
reaching 10. Most points lie on or close to the equality line, with just 2 showing a
significant deterioration. Figure 5(right) shows many points with an improvement factor
better than one, and many that this enables CLSLearn to solve that CSLearn cannot. The
best shows an improvement factor of over three orders of magnitude. There are three
points that lie on the time-out line of CLSLearn.

Figure 6(left) is very similar to figure 5(left). Figure 6(right) shows a much smaller
improvement in run time and many more cases where run time increases through the
use of CGSLearn, compared to CLSLearn.
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Fig. 6. A comparison of the number of universal backtracks (left) and run time (right)
performed by solution learning and complete global solution learning.

The results show that CLSLearn almost always performs the same or less universal
backtracks than the incomplete solution learning technique. However, there are some
points where this is not the case. This means that the first part of the hypothesis must
be rejected. These points are likely to be caused by the CLSLearn technique missing
out on finding a particularly good solution set and therefore performing more solution
backtracks. As both the incomplete solution learning technique and CLSLearn both
cause some overheads, the run time graph is much different to the comparison with
solution backjumping. CLSLearn does cause some additional overheads compared to
the incomplete solution learning technique. Therefore there are some instances that are
not solved by CLSLearn but are solved by incomplete solution learning. There are many
more points that can now be solved by CLSLearn that incomplete solution learning
could not solve before the time-out. This shows the importance of learning more of the
solutions in a solution learning technique.

The results for complete global solution learning (CGSLearn) are similar. Again, the
second part of the hypothesis must be rejected. CGSLearn has even more overheads, as
reflected in the run time comparison. There are more points where solution learning



solves the instances but CGSLearn does not, and fewer points where CGSLearn solves
the instance but incomplete solution learning does not. These points show that the com-
plete learning technique is still worth doing. What is less obvious is whether it is worth
performing global learning compared to performing local learning. This is explored in
the next experiment.

Hypothesis

1. Complete global solution learning performs the same or less universal backtracks
than complete local solution learning on a QBF benchmark instance.

Figure 7(left) shows some points with an improvement, but none with an improve-
ment factor greater than 2.5. Figure 7(right) shows that the overheads cause most in-
stances to deteriorate in run time, suggesting that CLSLearn is more effective than
CGSLearn.
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Fig. 7. A comparison of the number of universal backtracks (left) and run time (right)
performed by CLSLearn and CGSLearn.

The results show that the hypothesis is correct as CGSLearn never performs more
universal backtracks than CLSLearn. However, only small improvements are obtained.
As CGSLearn keeps the solutions for the remainder of the search, more overheads are
caused than with CLSLearn. This is reflected in the run time where CGSLearn can-
not solve many instances that CLSLearn can. There are no instances where CGSLearn
solves the instance but CLSLearn does not. Therefore, it appears that it is not worth
performing the global learning compared to local learning.

6 Conclusions

We presented two new techniques for solution learning. The first learns more informa-
tion than would be learned by the incomplete solution learning technique. This is done
without an exponential increase in formula size per solution despite the learning of an
exponential number of solutions. This is achieved by using a simple but effective en-
coding trick. The second technique extends the first technique by allowing the learned
solutions to be stored for the duration of the search.



Our experimental analysis shows that complete local solution learning performs
better than the existing solution learning technique in most cases. Our second learning
technique, complete global solution learning, does not perform as well, but still does
better than the incomplete solution learning technique on many instances.

The implementations of the complete solution learning algorithms presented are
not likely to be optimal. The encoding trick used in the solution learning adds to the
original formula. This could be avoided by holding this information implicitly in the
data structures of the QBF, or by only adding the indicator formula when it is needed.
This may result in better operation of the complete solution learning techniques. It is
worth first testing the hypothesis that the time taken to solve a QBF benchmark problem
with indicator cubes is more than that taken to solve the QBF benchmark problem alone.
This is likely to be the case since the indicator formula must be handled in addition to
the original formula. This would also show how much more work must be done by the
solver to deal with the indicator formula. It would also be interesting to try size and
relevance bounding with the complete global solution learning technique.
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