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Abstract. We introduce a novel approach for symmetry breaking by dom-
inance detection (SBDD). The essence of SBDD is to perform ‘dominance
checks’ at each node in a search tree to ensure that no symmetrically
equivalent node has been visited before. While a highly effective tech-
nique for dealing with symmetry in constraint programs, SBDD forces a
major overhead on the programmer, of writing a dominance checker for
each new problem to be solved. Our novelty here is an entirely generic
dominance checker. This in itself is new, as are the algorithms to imple-
ment it. It can be used for any symmetry group arising in a constraint pro-
gram. A constraint programmer using our system merely has to define
a small number (typically 2–6) of generating symmetries, and our sys-
tem detects and breaks all resulting symmetries. Our dominance checker
also performs some propagation, again generically, so that values are re-
moved from variables if setting them would lead to a successful domi-
nance check. We have implemented this generic SBDD and report results
on its use. Our implementation easily handles problems involving 1036

symmetries, with only four permutations needed to direct the dominance
checks during search.

1 Introduction

Dealing with symmetries in constraint satisfaction problems has become a pop-
ular topic for research in recent years. Main areas of recent study include

1. the modification of backtracking search procedures so that they only return
unique solutions, and

2. the use of computational group theory (henceforth CGT) methods to effec-
tively utilise the algebraic structure of symmetries.

The modified search techniques currently broadly fall into two main cate-
gories. The first involves adding constraints whenever backtracking occurs, so
that symmetric versions of the failed part of the search tree will not be consid-
ered in future [1, 11]; these techniques are collectively known as SBDS (Symme-
try Breaking During Search). The second category involves performing checks
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at nodes in the search tree to see whether they are dominated by the symmet-
ric equivalent of some state already considered [5, 7]; we will collectively refer
to these techniques as SBDD (Symmetry Breaking by Dominance Detection). A
comparison of SBDS and SBDD, together with a dominance check for a highly
symmetric problem, is given in [12].

The SBDD approach as implemented to date (with one exception)3 involves
the coding of a dominance checker. This dominance checker is special purpose,
as it must be written for each new problem, or at best for a class of problems
such as instances of the “golfers’ problem”. This checker, as part of the con-
straint system, has to be written by the constraint programmer, who therefore
must use the structure of the problem under consideration to detect dominating
search nodes. Yet dominance detection is an algebraic operation, and in partic-
ular answers a question in group theory: is this node symmetrically equivalent
to a previously visited one? Inevitably, if unconsciously, constraint program-
mers are being required to act as CGT programmers in order to implement
SBDD. The contribution we make is to eliminate this necessity by providing all
the algebraic equipment to perform dominance checks automatically given the
minimum possible information about the symmetries of the particular prob-
lem. These dominance checks either succeed (resulting in a backtrack), or fail
supplying a set of assignments, any of which, if added to the current partial
assignment of values to variables, would result in the dominance check suc-
ceeding – this set is used to reduce the size of domains, thus improving search
efficiency, as described in [5, 7].

The explicit use of CGT methods is motivated by the fact that the symme-
tries of a problem form a group: a tuple 〈S, ◦〉 where S is a set and ◦ is a closed
binary operation over S such that:

1. ◦ acts associatively: (a ◦ b) ◦ c = a ◦ (b ◦ c) for every a, b, c ∈ S;
2. there is a neutral element, e, such that a ◦ e = e ◦ a = a for every a ∈ S;
3. each element has an inverse: a ◦ a−1 = a−1 ◦ a = e.

Modern CGT systems are designed to exploit this algebraic structure, and are
very efficient: they allow rapid calculations to be done on large groups without
the need to iterate over or explicitly represent more than a tiny fraction of the
group elements. As well as offering a clear benefit in both time and space, using
a CGT approach can make the expression of the symmetries by the program-
mer much easier: typically only a handful of example symmetries are required
to generate the full symmetry group, even for very large groups; we provide
examples of this in Section 5.

The main contributions of this paper are twofold. First, we show how to
combine a constraint programming system with a CGT system to provide an
entirely generic implementation of SBDD. Second, we introduce a novel al-
gorithm for performing the dominance check in a generic manner using tech-
niques from CGT.

3 Although not set in constraint satisfaction terms, Backtrack Searching in the Presence of
Symmetry [2, 3] contains many SBDD ideas, incidentally predating SBDD itself by a
number of years. This work influenced our approach here.
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It is instructive to compare this paper with our first application to symme-
try breaking using the combination of a CGT system and a constraint program-
ming system, namely our implementation of SBDS reported at CP-02 [9]. The
implementation of SBDD using CGT methods raises very different problems
from that of SBDS. For SBDS, the task is to compute a set of symmetry break-
ing constraints. For SBDD, the task is to implement a search algorithm, i.e. the
dominance checker. Since the tasks are so different, the implementations them-
selves are very different. Indeed, a major contribution here is the algorithm for
a generic dominance checker, and the resulting CGT program shares no code
with the CGT program used for SBDS. Our work here is therefore very novel
compared to [9]. The advantage of the current work is that there is no significant
space requirement to store the set of constraints, as happens in SBDS. The limit-
ing factor for SBDD is the time taken to search for dominance rather than space.
We show that we can deal, in an entirely generic manner, with groups with as
many as 1036 elements, compared to only a few billion in our implementation
of SBDS.

We describe some necessary background on constraint systems and permu-
tation groups in Section 2. We outline SBDD in Section 3, and provide a detailed
exposition of the novel algorithm used in our generic implementation in Sec-
tion 4. Section 5 consists of some experimental results. We discuss our results
and highlight future avenues of research in Section 6.

2 Background

We first provide some background material. While we assume familiarity with
the basic concepts of constraint satisfaction, we first sketch the problems that
arise when a constraint problem contains symmetry. Then, we briefly describe
permutation groups and how they can be used in the CGT system GAP, and
finally the interface we previously constructed between GAP and ECLiPSe.

To provide a concrete implementation, we use the constraint logic program-
ming system ECLiPSe [20] to model the constraint satisfaction problem and to
search, while the dominance checks needed for SBDD are performed in a child
process, using the world-leading computational group theory system GAP [8].
There is nothing essential about this choice. Barring unforseen technical prob-
lems, we could equally well have used other CGT systems such as Magma, or
other constraint systems such as Ilog Solver. GAP and ECLiPSe are large, ma-
ture and widely-used systems. Both systems incorporate libraries and packages
for computation in specific areas, together with tools and resources for software
development. For our purposes, the GAP permutation group libraries and the
ECLiPSe finite domain libraries are of interest.

ECLiPSe uses standard finite domain constraints, and, during search, ap-
plies constraint propagation techniques developed by the AI community [14].
The standard search method is depth-first, and assigns values to variables at
choice points. A complete assignment that satisfies the constraints is a solution.
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If no symmetry breaking constraints have been posted before search, then
ECLiPSe will search for and return all solutions, irrespective of any symme-
tries involved. For example, consider the illustrative problem of finding a list
[A,B,C, D, E, F,G] of distinct numbers in 1 . . . 50 such that A3+B3+C3+D3 =
E3+F 3+G3. A solution is [1, 2, 3, 39, 18, 22, 35], but this is symmetrically equiv-
alent to those lists with 1, 2, 3, and 39 permuted in any way, and/or 18, 22
and 35 permuted. Our aim is to restrict search to choices which do not lead
to one of these other lists. Restricting search to avoid symmetrically equiva-
lent solutions has a larger benefit than avoiding duplicate solutions. Symmetry
breaking methods such as SBDD or SBDS also avoid duplicating search from
failed nodes. This can have a dramatic effect on time taken, as the same failed
search state can reoccur in many symmetric guises, only one of which need be
explored.

A permutation is a rearrangement of elements in an ordered list S into a
one-to-one correspondence with S itself. The number of permutations on a set
of n elements is n!. Two permutations can be composed by composing their re-
spective correspondences with S; since all such correspondences are bijective,
the composition has an inverse. For example, to construct the resulting compo-
sition, one can trace the action of successive permutations. If 1 corresponded to
8 in the first, and 8 corresponded to 3 in the second, then 1 would correspond
to 3 in the composition. If we take the identity mapping on S as the required
neutral element, composition of permutations forms a group. GAP contains li-
braries for defining, composing, and manipulating individual permutations,
and for computation within permutation groups.

Taking S to be a position indexing of the list [A,B,C, D, E, F,G] described
in the previous section, we have S = [1, 2, 3, 4, 5, 6, 7]. Permutations in GAP
are usually entered and displayed in cycle notation, such as (1, 2, 3)(5, 7) which
denotes the correspondence which has as image the list [2, 3, 1, 4, 7, 6, 5]. (A hu-
man might describe this permutation as ‘1 goes to 2, 2 goes to 3, 3 goes to 1, 5
and 7 are swapped, 4 and 6 are unchanged.’.)

Given that there are 7! possible permutations on S, which are the permuta-
tions which preserve solutions to the A3 + B3 + C3 + D3 = E3 + F 3 + G3 prob-
lem? This is straightforward in GAP – we simply supply some example per-
mutations, and let GAP compute the resulting permutation group. Swapping
A and D and cycling A, B, C and D are solution preserving symmetries, repre-
sented by the permutations (1, 4) and (1, 2, 3, 4) respectively. Similarly (5, 7) and
(5, 6, 7) denote the swapping of E and G and a cycling of E, F and G. Supply-
ing these 4 permutations to GAP results in permutation group containing 144
elements (3! permutations of E, F and G for each of the 4! permutations of A, B,
C and D). In group theoretic terminology this is known as the direct product of
the symmetric group on 4 points and the symmetric group on 3 points. In order
to use GAP–ECLiPSe with either the SBDS version given in [9] or the SBDD im-
plementation described in Section 3 of this paper, these 4 permutations are the
only information that the constraint logic programmer has to provide to GAP
for this problem. GAP can now answer questions such as
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– What is the composition of (1, 4) with (1, 3)(5, 7, 6), i.e. the permutation cor-
responding to performing first (1, 4) and then (1, 3)(5, 7, 6)?
• (1, 4, 3)(5, 7, 6)

– Which of our 144 permutations do not move A, C or E?
• (), (6, 7), (2, 4), (2, 4)(6, 7) – this is the point stabiliser of A, C and E.

– To which points is G mapped to by our group elements?
• 7, 6, 5 (i.e. G is mapped to E, F and itself) – this is the orbit of G.

Many of the questions passed to GAP by ECLiPSe during search are an-
swered by (rather more complicated) calculations similar to those given above.
It should be noted that, for computational purposes, a symmetry group consists
of a generating set of permutations. This set can usually consist of only two el-
ements, but, for our purposes, contains a few examples of known symmetries.
The problem of enabling CSP practitioners to express problem symmetries eas-
ily is addressed in [13, 15]. No sensible CGT system computes every element
of the group; algorithms construct new elements (or subgroups, or coset repre-
sentatives, etc.) as required.

In [9] we reported on a simple interface between GAP and ECLiPSe . In
GAP–ECLiPSe all constraint satisfaction modeling and constraint handling is
done in ECLiPSe, as is the choosing of value to variable assignments during
search, and any resulting elimination of values from domains by propagation.
GAP runs as a sub-process, and is called as and when symmetry breaking in-
formation is needed. In effect, ECLiPSe is the master, and GAP the slave. The
key concept that motivates the interface is that the symmetries of a constraint
satisfaction problem are permutations on a suitable initial segment of the natu-
ral numbers. Since sets of permutations have a well known algebraic structure,
and since GAP uses the algebraic structure to enhance and extend computa-
tional capability, we use GAP to provide symmetry information to ECLiPSe

during search. We report further details of the interface in [9].

3 Symmetry Breaking by Dominance Detection

In order to deal with symmetry-related questions arising at nodes in the search
tree, we define an M ×N array where N is the number of variables in our con-
straint satisfaction problem, and M is the number of values that the variables
can take. The i,j-th element in the array denotes assigning the value i to the
variable j, and each element is associated with a unique number (point) from 1
to MN . We then define symmetries in terms of permutations on these M × N
points. It should be noted that

– this allows us to define symmetries on both variables (as in the example
above) and values (as in, for example, a graph colouring problem where
values representing colours can be interchanged); and

– the algebraic structure is preserved: for the above example we have 144
permutations on 50 × 7 points, with each permutation corresponding to a
unique member of the original group acting on 7 points.
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This structure allows us to ask GAP questions regarding the image of (sets of)
variable–value assignments under permutations. We write this as pg , where p
is an assignment point and g is an element of a permutation group. We have,
for example, 17(2,5,17,9,8) = 9.

Suppose that we have identified a symmetry group, G, and that we maintain
a record in a list S of fail sets: sets corresponding to the roots of completed
subtrees. Each fail set contains the points from the M ×N array corresponding
to the positive decisions made during the search to reach the root of the subtree.
Note that we consider decisions, as opposed to domains, as suggested in [12,
18]. As long as we try a positive decision (Var = Val) before its negative (Var 6=
Val) we are free to ignore the negative decisions [7, 12, 18]. E.g. looking at the
Y = b subtree in Figure 1, Y = b has already been fully explored regardless of
whether or not X 6= a, since the X = a case was covered by the X = a subtree.

Suppose also that Pointset denotes the set of points corresponding to vari-
ables which have been set to a fixed value in the current search node (either
through direct assignment or through propagation). This situation is shown in-
formally in Figure 1, where the circle indicates the current search node and the
shaded triangles denote completed subtrees: S contains three single-element
sets containing the points corresponding to the assignments X = a, Y = b and
Z = c, and if any variables have been given fixed values as a result of propa-
gating the decisions X 6= a, Y 6= b and Z 6= c, the corresponding points will
appear in Pointset.

X = a

Y = b

Z = c

X 6= a

Y 6= b

Z 6= c

Fig. 1. A partial search tree

We say that our current node is dominated by a completed subtree if there
exists a g in G and an s in S such that

sg ⊆ Pointset .

If dominance is detected, then it is safe to backtrack, since the current search
state is symmetrically equivalent to one considered previously.

In practice, we pass to the dominance checker more information about the
current state than just the fixed variables, in order to facilitate domain reduction
when dominance is not detected (see Section 4).
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4 Generic SBDD

generic sbdd(Failset , depth) : −
choose(Var , Val)

assert(Var = Val)

depth := depth + 1

pt := Point(Var = Val)

NewFailset := [pt , Failset ]

Doms := [current domains]

if consistent(CSP) and askGAP(Doms) = [false, Q] then
reduce domains(Q)

solution check
generic sbdd(NewFailset , depth)

else
tellGAP(NewFailset , depth)

retract(Var = Val)

assert( not (Var = val))

Doms := [current domains]

if consistent(CSP) and askGap(Doms) = [false, Q] then
reduce domains(Q)

solution check
generic sbdd(Failset , depth)

else
backtrack(newdepth)

generic sbdd(Failset , newdepth)

end if
end if

Fig. 2. Pseudo-code for generic SBDD

Pseudo-code for our generic SBDD implementation is given in Figure 2. The
procedure assumes that the search state is at a node at a given depth in the
search tree, and that we have a record of the fail set accumulated on the current
branch of the search. We first choose a variable–value pair, try the assignment
Var = Val, and increment the depth counter. The Var = Val choice represents a
point, pt, of our value–variable array; we add this to our fail set, as it represents
the latest root node of a subtree. We next obtain Doms, a list of the domains
of all the variables at the current search node (after propagating the Var = Val
assignment). Note that Doms implicitly contains Pointset, as well as informa-
tion about which values cannot be assigned to particular variables (either from
propagation or from explicit Var 6= Val assertions made on the current branch).



8

Provided that the CSP is still consistent, we are now ready to ask GAP for
a dominance check, details of which are given in Section 4.1. If this check suc-
ceeds (i.e. a dominating state was found), we can backtrack in ECLiPSe as we
have already explored an equivalent state. If this check fails (i.e. if no domi-
nating state is found) then we can still benefit by domain reduction. Our dom-
inance checker supplies a set of points that, if any one of the corresponding
assignments is made, would result in a successful dominance check. Clearly
we should not allow a search which makes any of these assignments, so we re-
move them from the domains of the variables involved. This not only reduces
the sizes of the value domains, but also allows further propagation based on
the removals. This is a significant benefit over obtaining a mere yes/no answer
to the dominance check.

In this situation, since there was no dominance, we carry on searching by
choosing the next variable–value pair, using the updated fail set and depth
value. A small, but important, point arises in this situation. The domain re-
duction after a failed dominance check can lead through propagation to setting
all variables and obtaining a complete solution. This solution might turn out to
be equivalent to a previously obtained solution. Therefore in this situation we
perform a final dominance check to guarantee that all solutions returned are
distinct.

When the dominance check succeeds, we retract Var = Val and assert Var 6=
Val. We tell GAP that our current fail set is the most up to date, and remove
pt from it. Now that we are at a different node in the search tree, we can ob-
tain Doms again perform another dominance check. If this check fails, then, as
before, we reduce value domain sizes by removing from variable domains any
elements we know would have led to dominance if they had been assigned to
the variable, check that any solution is not dominated by a previous one, and
carry on searching below the Var 6= Val branch.

If, however, the Var 6= Val dominance check succeeds, then we backtrack to
the nearest ancestor node where we have yet to consider the negative branch.
This point becomes the root of a completed subtree, we update the fail set ac-
cordingly, and carry on searching.

4.1 Dominance Check using Computational Group Theory

We maintain in GAP a record of fail sets, and the depth of their roots. The sym-
metry group is computed from generators supplied from the ECLiPSe model of
the problem. In fact, the whole group is not usually computed explicitly – a per-
mutation group on n points can have n! elements, leading to a large space over-
head unless techniques are used for computing group elements as and when
required.

The dominance check is implemented using a tree-like data structure which
encodes all of the fail sets currently applicable, while taking maximum advan-
tage of their overlaps. Every possible Var = Val assignment is identified by a
point in a symmetry matrix; the symmetry group for a given problem permutes
these points, so that every symmetry is defined by a unique permutation.
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We can identify disjoint sets of points A1, . . . , Ak and B0, . . . , Bk such that
the fail sets are A1 ∪ · · · ∪Ai ∪Bi for each i. The right-pointing edges of the tree
are labelled with elements of an Ai, the left-pointing ones with elements of a
Bi. Each node of the tree can be associated with the sequence of labels on the
path to it from the root.

For example, if the current failsets are [52, 79, 72, 51, 64, 57, 50, 53] and [61,
88, 74, 60, 52, 79, 72, 51, 64, 57, 50, 76] and we are asked to check [98, 48, 90, 42,
35, 77, 27, 96, 82, 14, 70, 13, 69, 40, 26, 19, 61, 46, 88, 32, 74, 18, 60, 7, 6, 5, 4, 87, 94,
31, 24, 17, 10, 52, 37, 44, 79, 72, 16, 9, 51, 22, 29, 36, 43, 64, 57, 50], for dominance
(this situation arises in the BIBD(7,7,3,3,1) problem described in Section 5.3),
then we have A1 = {52, 79, 72, 51, 64, 57, 50}, B1 = {53}, A2 = {61, 88, 74, 60},
B2 = {76}.

We perform the dominance check using a recursive search, which descends
this tree, entering each node once for every way of mapping the associated
sequence of points into the current point list. If we reach a left-pointing leaf,
then we have discovered dominance. The implementation of the search uses
the standard group theoretic machinery of stabilizer chains, Schreier vectors
and transversals, described, for instance in [19].

We can detect relatively easily cases where all but the final element of a fail
set can be mapped into Pointset, and report them, eventually, back to ECLiPSe,
so that domain deletion can occur. A few other cases can also be detected quickly.
It is possible to enhance the search to detect all cases where all but one elements
of a fail set can be mapped, but the benefit of the extra propagation never seems
to outweigh the cost of the extra search.

Full details and the GAP code used will appear in a forthcoming Technical
Report.

Since fail sets and point lists are not, in general, the same size, the more
powerful machinery of partition backtrack searching also described in [19] does
not appear to be helpful.

A useful optimisation is possible in cases where the points fall into more
than one orbit under the action of the symmetry group. This arises, for instance,
if the symmetries permute the variables and not the values. In this case it may
happen that all the points appearing in failsets lie in a subset of the orbits. For
instance if all the variables are Boolean, then for some labelling strategies, we
will only ever see points corresponding to assignments V ar = true appearing
in the failsets. In this case, points in other orbits are irrelevant in the sense that
no symmetry can ever map any point of any failset to them. These points can
be ignored in the search, and, more importantly, if no new relevant points have
been added to the pointlist since a previous dominance check, the entire check
can be omitted.

This implementation produces good performance on moderate-sized exam-
ples (up to about 1036 symmetries), but the internal search can become bogged
down when a subset of some F has a large stabilizer, so that we can find el-
ements of G mapping f1, . . . , fk to p1, . . . , pk in any order, but none of these
allow us to map fk+1 to anything in Pointset. Actually computing the set sta-
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bilizers of initial segments of F , while possible, seems to be prohibitively ex-
pensive in many cases, but such situations usually arise when the group G
preserves a system of imprimitivity (for example the rows and columns of a
matrix-structured problem) and this condition can be recognized cheaply. Ex-
ploiting this information will be an important part of future work. Further im-
plementation details (including source code) are available in [10].

5 Examples

In this section we provide some results of computations using our impleme-
nentation of generic SBDD in GAP–ECLiPSe. All the examples were run on
a 2.6 GHz Pentium IV processor with 512 megabytes of memory, and times
are reported in seconds. Where possible we compare the performance of our
SBDD implementation with that of our GAP–ECLiPSe SBDS implementation
given in [9], which provided full symmetry breaking in a few seconds for prob-
lems having up to 109 symmetries. A major cost in dealing with larger sym-
metry groups in SBDS is the communication of information between GAP and
ECLiPSe – the constraints posted during search are based on large algebraic
structures which have to be returned to ECLiPSe from GAP. In SBDD, how-
ever, we expect to be able to deal with much larger groups, since inter-process
communication consists of the word true, the word false, or lists of points of
length at most M ×N .

5.1 Example: A3 + B3 + C3 + D3 = E3 + F 3 + G3

We first consider the illustrative problem given in Section 2. Clearly, breaking
symmetry in this problem is achievable by adding the constraints

A ≤ B ≤ C ≤ D and E ≤ F ≤ G .

We include this example to demonstrate that out implementation breaks all 144
symmetries, with performance comparable to that of SBDS in GAP–ECLiPSe.
The results for all solutions with domains 1 . . . 20 are given in Table 1.

SBDD SBDS ECLiPSe

Solutions 265 265 38,160
Backtracks [BT] 38,703 38,483 1.5 ×106

GAP cpu [Gcpu] 1,040 973 n/a
ECLiPSe cpu [Ecpu] 272 482 4,037
Σ cpu 1,312 1,455 4,037

Table 1. Seven cubes problem – comparative results

We see that SBDD and SBDS both eliminate all the symmetries in roughly the
same time, whereas a search which ignores symmetry returns 144×265 solu-
tions.
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5.2 Example: Colouring the vertices of a dodecahedron

We consider the problem of colouring the vertices of a dodecahedron, the reg-
ular polyhedron having 12 pentagonal faces and 20 vertices. This problem has
two useful illustrative features: it involves symmetries in both the variables
and values, and obtaining the correct symmetry group is easier than writing a
dominance detector for use in SBDD without computational group theory.

The variables x1, . . . , x20 represent the 20 vertices. The values c1, . . . , cm are
the m colours in question. It can be shown that the symmetry group of the
dodecahedron is isomorphic to the group of even permutations of five objects,
known to group theorists as A5, which has 60 elements. Since any permutation
of a colouring is allowed, the symmetry group of the values is Sm. The total
number of symmetries is then 60 × m!, acting on 20 × m points. We construct
this group in GAP from just four generators:

– the image of the vertices after one rotation of 72◦ about a face;
– the image of the vertices after one rotation of 120◦ about a vertex;
– the index of the colours with the first two swapped;
– the index of the colours cycled by one place mod m.

The constraints of the CSP are of the form xi 6= xj whenever vertex i is joined
by an edge to vertex j. We seek the number of colourings for a given m, such
that no colouring is a symmetric equivalent of another.

GAP–ECLiPSe (SBDD) Dominance checks
Colours Symms. Sols. BT Gcpu Ecpu Σcpu Success Fail Delete

3 360 31 50 0.44 0.07 0.51 71 19 31
4 1440 117902 109502 770.62 109.08 879.70 116396 351720 1176

Table 2. Colouring dodecahedrons – SBDD

From Table 2 we see that, for the 3 colour case, 121 dominance checks were
made. Of these, 71 stopped further search in a symmetric sub-branch, 19 failed
without providing any near misses, and 31 failed and supplied points which
could be deleted from current domains as not leading to any new solutions. All
360 symmetries were broken, with the 31 non-isomorphic colourings returned
in less than one second.

5.3 Example: Balanced Incomplete Block Designs

We now present results for examples with much larger symmetry groups. Con-
sider the problem of finding v × b binary matrices such that each row has ex-
actly r ones, each column has exactly k ones, and the scalar product of each
pair of distinct rows is λ. This is a computational version of the (v, b, r, k, λ)
BIBD problem [4]. We label the v × b matrix in column order, since v ≤ b for all
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suitable parameters. We assign zeros before ones whenever k ≥ b/2, otherwise
we assign ones before zeros; the heuristic is to use the minimum domain value
whenever there are more ones than zeros in each column.

Solutions do not exist for all parameters, and results are useful in areas
such as cryptography and coding theory. A solution has v! × b! symmetric
equivalents: one for each permutation of the rows and/or columns of the ma-
trix. Gent et al. [9] reported results with the largest symmetry group having
6! × 10! ≈ 3 × 109 elements. The results for our generic SBDD implementation
are given in Table 3.

Parameters GAP–ECLiPSe (SBDD) Dominance checks
v b r k λ Symms. Sols. BT Gcpu Ecpu Σcpu Success Fail Delete
7 7 3 3 1 107 1 2 0.18 0.04 0.22 6 15 10
6 10 5 3 2 109 1 2 0.43 0.13 0.56 20 40 31
7 14 6 3 2 1014 4 33 4.63 0.34 4.97 64 146 124
9 12 4 3 1 1014 1 3 1.79 0.10 1.89 9 29 26

11 11 5 5 2 1015 1 65 18.36 0.75 19.11 103 272 177
8 14 7 4 3 1015 4 327 63.04 3.20 66.24 720 1344 727

13 13 4 4 1 1019 1 2 41.92 0.26 42.18 11 38 29
6 20 10 3 4 1021 4 171 53.40 2.19 55.59 381 665 648
7 21 6 2 1 1023 1 2 10.42 0.15 10.57 12 36 31

16 20 5 4 1 1031 1 10 6077.19 0.43 6077.62 22 64 65
13 26 6 3 1 1036 2 425 59338.23 5.81 59344.04 576 1487 968

Table 3. Balanced incomplete block designs – SBDD

The first point to note is that, as expected, we can deal with much larger
groups than our GAP–ECLiPSe implementation of SBDS [9]. SBDS was able to
deal only with BIBDs in the first two lines of the table. It was up to about four
times slower, while an interesting difference was that most cpu time was in
ECLiPSe with GAP dominating time here.

We can see from these results that the absolute number of symmetries of a
problem is not necessarily a guide to the difficulty in eliminating them from
solutions. The (8, 14, 7, 3, 4) BIBD problem has “only” ≈ 3.5× 1015 symmetries,
but is harder to solve than ones with O(1021) and O(1023) symmetries. As well
as the inherent difficulty of the original constraint problem, much depends on
the size and nature of structures within the algebraic structure of each symme-
try group, which is another reason for utilising a specialised CGT system such
as GAP, which is designed to find and exploit these sub-structures. As a general
rule, though, it is harder to eliminate solution symmetries from a larger matrix
model.

It is also worth noting that the entire symmetry group for any BIBD can
be generated from just four permutations: cycling the rows and columns, and
swapping the first and last row and the first and last column. These permuta-
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tions are trivially implemented, and comprise the only information needed by
GAP–ECLiPSe to break all the symmetries of the problem.

The timings obtained are comparable with those presented for the same
problems in [6], where lexicographic ordering constraints were use to break the
row and column symmetries. The advantage of using SBDD is that all symme-
tries are broken, whereas a lexicographic solution for the (6, 20, 10, 3, 4) BIBD
problem returns 21 solutions. Moreover, while SBDD can work with any vari-
able or value ordering heuristics, a heuristic can interact badly with lexico-
graphic ordering constraints [9].

6 Conclusions

We have presented an implementation of SBDD which

– uses specialist CGT techniques to detect dominance.
– guarantees to return only symmetrically distinct solutions.
– does not require a new dominance checker to be implemented for each new

problem – the user only has to supply a small sample of symmetries.
– allows value domains to be reduced at search nodes where no dominance

occurs. We do this by removing values of variables which, if set, we know
would lead to a successful dominance check.

– eliminates all symmetries in large scale combinatoric problems.

We believe that the use of CGT techniques in SBDD solvers is an important
contribution. While there is scope for further optimisation of our techniques,
we already have significant advantages over related work. Compared to other
implementations of SBDD, we have the key advantage of avoiding the need for
a separate dominance check to be implemented, either directly [5] or as a sep-
arate constraint satisfaction problem [17]. This is an extremely important step
forward in the application of SBDD. Compared to the use of GAP for SBDS [9],
we avoid the large space overhead, meaning that – as we reported here – we
are able to solve completely problems with groups many orders of magnitude
larger. Some techniques, such as [6], do not guarantee to eliminate all symme-
tries, while we do.

Our implementation is robust: both the ECLiPSe and GAP searches are de-
terministic, and will break all the supplied symmetries, since a dominance check
is performed at each node visited during search. This robustness may have
a negative effect on efficiency. There is evidence that performance can be im-
proved by making full dominance checks at a subset of the visited nodes [5,
17], or by using a subset of the full symmetry group of the problem [16]. Both
of these approaches depend on the size and structure of the problem being ad-
dressed, and we will investigate their applicability to our implementation in
the future.

Our work raises a number of questions for further research. First, having
implemented both SBDS and SBDD using generic methods, we are in a posi-
tion to ask whether or not they can be combined in interesting ways to gain
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the advantages of both. In naı̈ve terms, one can see SBDS as best suited where
groups are small, with SBDD effective on larger groups. Yet the symmetries in
a constraint problem usually become small as search continues, and it may be
possible to implement combined techniques which act like SBDD in some parts
of the search tree and like SBDS in other parts. A second question is how far
we can integrate SBDS and SBDD with what is perhaps the most commonly
used symmetry breaking technique, the use of hand-written symmetry break-
ing constraints. As these can be very effective, it would be desirable to gain
their advantages in terms of simplicity and efficiency, while still having the cor-
rectness and uniqueness guarantees of SBDS and SBDD without users having
to be expert group theorists.
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