A 0/1 encoding of the GACLex constraint for
pairs of vectors*

Ian P. Gent!, Patrick Prosser?, and Barbara M. Smith3

1 School of Computer Science, University of St Andrews, Scotland.
ipg@dcs.st-and.ac.uk
2 Department of Computing Science, University of Glasgow, Scotland.
pat@dcs.gla.ac.uk
3 School of Computing Science and Mathematics, University of Huddersfield,
England. b.m.smith@hud.ac.uk

1 Introduction

Vectors A and B are in lexicographic order (<) if Y, A"~ <
>-r , Bli]"~**1. That is, we consider vectors A and B as n digit numbers, where
A[1] and BJ1] are the most significant digits. In many problems we have 0/1
vectors where we wish to maintain lexicographic order, and we might do this in
an attempt to break symmetries [7, 8, 3]. Therefore an efficient <;e, constraint
could prove useful.

Consider the following naive implementation of a <, constraint. Assume
that we have the two vectors A and B, both of length 4. We might post a
constraint as follows:

A[1] < B[1] v (A[1] = B[1] A (A[2] < B[2] V (A[2] = B[2] A (A[3] <
B3] v (A[3] = B[3] A (A[4] < B[4] v A[4] = B[4]))))))

If A[1] and BJ[1] are instantiated and equal, A[2] and B[2] are instantiated and
equal, and all values in the domain of A[4] are greater than B[[4] the constraint
would force A[3] to be less than B[3]. Note that if we wished to enforce <,
we would have removed the constraint A[4] = B[4]. The complexity of arc-
consistency is O(ed") where e is the number of constraints, d is the domain size,
and r is the arity of the constraint [6]. Consequently the complexity for the above
encoding of <, is O(d™). We now present an encoding that is O(n) when A
and B are both 0/1 vectors of length n. We show how this encoding propagates,
and we then prove that the encoding is correct.

2 The Encoding

We assume that we have two arrays of finite domained variables A and B, such
that we want A <., B. We assume these are indexed from 1, most significant
first. We introduce a new array of 0/1 variables a. We index a from 0 to n. The
intended meaning of « is that

* This work was supported by EPSRC research grants GR/M90641, GR/R29666, and
GR/R29673.

— if afi] = 1, then A[j] = B[j] for all 1 < j < 4,
— if a[i + 1] = 0 but afi] = 1, then then A[i + 1] < B[i + 1]. (From the above
case, we still have A[j] = BJ[j] for j <1i.)

The constraints in the problem are the following. The first is trivial but is
included for pedagogical convenience.

af0] =1 (1)
0<i<n-1) ofi]=0 = afi+1]=0 (2)
(1<i<n) ali]=1 = A[i] = B[{] 3)
0<i<n—1) ofi]=1&afi+1]=0 = A[i+1]<Bli+1] (4
(0<i<n—1) ofil]=1 = Afi+1] < B[i +1] (5)

Note that the last constraint is implied by constraints (3) and (4), and the
observation that either afi + 1] = 0 or afi + 1] = 1 and in either case A[i + 1] <
BJi + 1]. However, because of the case analysis, arc consistency is not strong
enough to make the deduction, hence the addition of constraint (5).

There are 4n+1 constraints, involving at most one domain of size size d (since
o contains 0/1 variables) and arity no more than 4. To establish arc consistency
in this problem therefore takes time O(nd*). That is, assuming domains of size d
are totally ordered, arc-consistency can be achieved for monotonic constraints in
time O(nd) [4]. However, we suspect this can be improved by the use of bounds
consistency on A and B to O(n). However, when A and B are both 0/1 vectors
the complexity falls to O(n).

If we want strict inequality between A and B, i.e. A <je; B, we need only
add the following constraint:

aln] =0 (6)

3 An Example of Propagation

Before presenting the proof, we provide an example of how propagation proceeds.
Consider the following example of domains of A and B, where the underscore
indicates that both 0 and 1 are in the domain.

A:01_01...
B:01_.00...

We now show what happens to a in microscopic detail. Understanding this
example should help considerably in understanding the proof to follow.

a1 _____ ..
a: 11 ____ .. (contrapositive of (4), because A[1]=B[1], but a[0]=1)
a: 111 ___.. (contrapositive of (4), because A[2]=B[2], but a[1]=1)

a: 111 __0 ... (contrapositive of (3), because A[5] # BI[5])
a: 111 _00 ... (contrapositive of (4), because A[5] > B[5], but a[5]=0)
a: 111000 ... (contrapositive of (4), because A[4] > B[4], but a[4]=0)

Finally, we get propagation back into A and B.

A: 01001 ... (direct application of (4), a[2]=1, a[3]=0)
B: 01100 ... (direct application of (4), a[2]=1, a[3]=0)

A particular point to note is that the propagation which sets values of a is
usually by the contrapositive of the constraints given above. Note that we must
assume that constraints propagate in all directions, although this will normally
be satisfied by a standard AC algorithm.

4 Correctness

We wish to prove that arc consistency is strong enough to establish GAC on
the <j¢, constraint. To do this, we require certain properties of the treatment of
numeric < and <. Specifically, when the minimum of the domain of z is greater
than (respectively >) than the maximum of the domain of y, we require that the
falsity of z < y (respectively z < y) is recognised and propagated accordingly.
Further any values in the domain of x greater than (>) the maximum value in
the domain of y should be removed if z < y (z < y), and any values in the
domain of y less than (<) the minimum value in the domain of . This is a weak
requirement, and certainly seems to be the case in ILOG Solver and in Choco
[5], the two languages we have experimented with to date.

Theorem 1. In an arc consistent state of this encoding in a system which re-
spects the condition described above, the constraint A<;..B is generalised arc
consistent (GAC). That is, any value in any of the domains of the variables of
A or B occurs in tuples of values which satisfies the constraint A<ie. B.

Proof. We first give a sketch of the proof. We are to prove that the constraints (1)
to (5) are arc-consistent if and only if the vectors A and B are GAC with respect
to the lex ordering constraint <;.,. Since we are to prove the biconditional, the
proof is two parts. In the first part we prove the implication: if the constraints
(1) to (5) are arc consistent then A and B are GAC with respect to <je;. In
the second part we prove that if A and B are GAC with respect to <j.; then
constraints (1) to (5) are arc consistent.

— Part 1: If constraints (1) to (5) are arc consistent then vectors A
and B are GAC with respect to <;.,
We first consider the possible patterns in the values of the vector o when
it is arc-consistent with respect to the constraints (1) to (5), and we then
prove that for each one of those patterns A and B are GAC with respect to
<lez-
Consider the 0/1 vector a. An element «fi] can be instantiated, and have
a value of 0 or 1, or uninstantiated and have a domain {0,1}. Consider the
following cases

1. afi] = 0 Consequently afi + 1] = 0, for all i, as a result of constraint (2).
Therefore constraints (3), (4), and (5) are satisfied, and A[j] is uncon-
strained with respect to BJ[j] for j > i.

2. afi] =1 Consequently a[i — 1] = 1, i.e. all elements to the left of a[i] are
also set to 1. This is due to the contrapositive of (2). Therefore due to
(3) Alj] is constrained to be equal to B[j] for 1 < j <.

3. afi] € 0,1 Assume i is the smallest i with this property. Everything to
the left of afi] must be set to one, i.e. they cannot possibly be set to
0 otherwise a[i] would also have been set to 0 due to constraint (2).
Therefore Alj] is constrained to be equal to B[j] for 1 < j < i.

We use ¢ to indicate an uninstantiated variable, i.e. a[i] € {0,1}. We can
only have patterns in a of the form 11 o* 0*, where X means 1 or more
occurrences of X and X* means 0 or many occurrences. Of these sequences,
all must be either 110* or 1T o*0*. In both cases we can show that all values
of A and B are GAC with respect to <j.

a = 110T This is the simpler case as no values of a are uninstantiated.
We can distinguish three sub-cases of the pattern: (a) 10%, (b) 111*, and
(c) (e) 1170T. In pattern (a) constraint (4) enforces A[1] < BJ[1], and this
guarantees A<, B. In pattern (b) constraint (3) enforces A[i] = BJ[i] for
all 4, guaranteeing A=, B. In pattern (c) constraint (2) enforces equality
between the first elements of A and B, and at the transition point where
afi] = 1 and afi+ 1] = 0 constraint (4) forces A[i+1] < B[i+1], guaranteeing
A<yes B.

a = 1To10* In this case some values of a are uninstantiated between the ini-
tial 1’s and final 0’s. Let ¢ be the first index such that «[i] is uninstantiated.
We first show that all values of A[i], B[i] are GAC-consistent, and then of all
later values A[j], B[j]. For j < i, we must have that A[j] = B[j] from con-
straint (3). Note that a[i — 1] = 1, guaranteeing A[i] < B[i] from constraint
(5). Except possibly for the maximum remaining value, all values of A[i]
are thus GAC-consistent, because we simply set B[i] to its maximum value,
ensuring A<, B. Similarly all values of B[i] are GAC-consistent except pos-
sibly the minimum value. So we now consider the case that v is the largest
remaining value in the arc consistent domains of A[i], B[i], but A[i] = v is
hypothetically inconsistent with A<;.,B. It would be consistent if we could
set A[i+1] < B[i+1]. Similarly, we can get consistency through any number
of values Afi +1] = B[i + 1], Ali + 2] = B[i + 2], ... either extending to the
end of the tuples or followed immediately by a value A[i + k] < B[i + k]. The
only way, therefore, to get inconsistency is to have some sequence of forced
equalities followed by an index i + k such that A[i + k] > B[i + k. But the
contrapositive of constraint (5) would give afi + k] = 0. The contrapositive
of constraint (4) then gives afi + k¥ — 1] = 0. Constraint (4) will act in this
way repeatedly, through the sequence of equalities following i. Eventually,
we will have A[i 4+ 1] = B[i + 1] and a[i + 1] = 0. But this will give a[i] =0,
contradicting the fact that a[é] is uninstantiated. So we have shown that the

hypothesis that A[{] = v is inconsistent leads to a contradiction. A similar
argument establishes that the minimum remaining value of B[i] is GAC-
consistent. Finally, note that A[{] < B[] must remain possible, as otherwise
the converse of constraint (4) would set afi] = 1. Whatever values allow this
make A<, B, ensuring the GAC-consistency of all values of A[j], B[j] for
j>i.

— Part 2: If vectors A and B are GAC with respect to <;.; then the
o variables are arc consistent with respect to the constraints (1)
to (5)

We now show that there will be values of the array a which make it arc
consistent when A and B are GAC with respect to <;e.

Set afi] = 1 for 4 = 0 and any initial consecutive sequence of values i
such that A[i] = BJi]. Set a[j] = 0 for the lowest number j such that
Ali] # Bl[j], and set a[k] = 0 for all £k > j. Set a[k] = 0 for any value of
k such that A[k + 1] > B[k + 1] and a[k + 1] = 0 (and repeat this step if
necessary.) Finally, leave any remaining variables in « uninstantiated. Under
this definition none of the constraints (1)-(5) are unsatisfied or will set any
uninstantiated variable to a value.

QED

5 Conclusion

We have presented an efficient encoding of the <j¢; constraint for 0/1 vectors.
However, when domains are larger we expect that the complexity of the encoding
will be dependent on the efficiency of the < constraint. The encoding presented
here was inspired by an unpublished algorithm proposed by Ian Miguel. His
algorithm has a flavour of the Gale Shapley algorithm [1]. Consequently the
encoding presented here has much in common with that in [2].

Acknowledgements
We would like to thank Warwick Harvey, Ian Miguel, and Toby Walsh.

References

1. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, pages 9-15, 1962.

2. Tan P. Gent, Robert W. Irving, David Manlove, Patrick Prosser, and Barbara M.
Smith. Constraint programming approach to the stable marriage problem. In Pro-
ceedings of CP ’01: the Tth International Conference on Principles and Practice of
Constraint Programming. LNCS 2239, pages 225-240, 2001.

3. Ian P. Gent and Barbara M. Smith. Symmetry breaking during search in constraint
programming. In Proceedings ECAI 2000, pages 599-603, 2000.

4. P. Van Hentenryck, Y Deville, and C-M Teng. A generic arc-consistency algorithm
and its applications. Artificial Intelligence, 57(2-3):291-322, 1992.

. Francoise Laburthe. Choco: a constraint programming kernel for solving combinatori
al optimization problems. http://www.choco-constraints.net/.

. A.K. Mackworth and E.C. Freuder. The complexity of some polynomial consistency
algorithms for constraint satisfaction problems. Artificial Intelligence, 25:65-74,
1985.

. P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence, 129:133-163, 2001.

. Barbara M. Smith. Reducing symmetry in a combinatorial design problem. In Pro-
ceedings of CP-AI-OR’01, 3rd International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
pages 351-359, 2001.

