A 0/1 encoding of the GACLex constraint for pairs of vectors*

Ian P. Gent¹, Patrick Prosser², and Barbara M. Smith³

- ¹ School of Computer Science, University of St Andrews, Scotland. ipg@dcs.st-and.ac.uk
- Department of Computing Science, University of Glasgow, Scotland. pat@dcs.gla.ac.uk
- School of Computing Science and Mathematics, University of Huddersfield, England. b.m.smith@hud.ac.uk

1 Introduction

Vectors A and B are in lexicographic order (\leq_{lex}) if $\sum_{i=1}^{n} A[i]^{n-i+1} \leq \sum_{i=1}^{n} B[i]^{n-i+1}$. That is, we consider vectors A and B as n digit numbers, where A[1] and B[1] are the most significant digits. In many problems we have 0/1 vectors where we wish to maintain lexicographic order, and we might do this in an attempt to break symmetries [7, 8, 3]. Therefore an efficient \leq_{lex} constraint could prove useful.

Consider the following naive implementation of a \leq_{lex} constraint. Assume that we have the two vectors A and B, both of length 4. We might post a constraint as follows:

$$A[1] < B[1] \lor (A[1] = B[1] \land (A[2] < B[2] \lor (A[2] = B[2] \land (A[3] < B[3] \lor (A[3] = B[3] \land (A[4] < B[4] \lor A[4] = B[4]))))))$$

If A[1] and B[1] are instantiated and equal, A[2] and B[2] are instantiated and equal, and all values in the domain of A[4] are greater than B[4] the constraint would force A[3] to be less than B[3]. Note that if we wished to enforce $<_{lex}$ we would have removed the constraint A[4] = B[4]. The complexity of arcconsistency is $O(ed^r)$ where e is the number of constraints, d is the domain size, and r is the arity of the constraint [6]. Consequently the complexity for the above encoding of \leq_{lex} is $O(d^n)$. We now present an encoding that is O(n) when A and B are both 0/1 vectors of length n. We show how this encoding propagates, and we then prove that the encoding is correct.

2 The Encoding

We assume that we have two arrays of finite domained variables A and B, such that we want $A \leq_{lex} B$. We assume these are indexed from 1, most significant first. We introduce a new array of 0/1 variables α . We index α from 0 to n. The intended meaning of α is that

 $^{^{\}star}$ This work was supported by EPSRC research grants GR/M90641, GR/R29666, and GR/R29673.

```
- if \alpha[i] = 1, then A[j] = B[j] for all 1 \le j \le i,

- if \alpha[i+1] = 0 but \alpha[i] = 1, then then A[i+1] < B[i+1]. (From the above case, we still have A[j] = B[j] for j \le i.)
```

The constraints in the problem are the following. The first is trivial but is included for pedagogical convenience.

$$\alpha[0] = 1 \tag{1}$$

$$(0 \le i \le n-1) \quad \alpha[i] = 0 \implies \alpha[i+1] = 0 \tag{2}$$

$$(1 \le i \le n) \quad \alpha[i] = 1 \implies A[i] = B[i] \tag{3}$$

$$(0 \le i \le n-1) \ \alpha[i] = 1 \& \alpha[i+1] = 0 \implies A[i+1] < B[i+1]$$
 (4)

$$(0 < i < n-1) \ \alpha[i] = 1 \implies A[i+1] < B[i+1]$$

Note that the last constraint is implied by constraints (3) and (4), and the observation that either $\alpha[i+1] = 0$ or $\alpha[i+1] = 1$ and in either case $A[i+1] \le B[i+1]$. However, because of the case analysis, arc consistency is not strong enough to make the deduction, hence the addition of constraint (5).

There are 4n+1 constraints, involving at most one domain of size size d (since α contains 0/1 variables) and arity no more than 4. To establish arc consistency in this problem therefore takes time $O(nd^4)$. That is, assuming domains of size d are totally ordered, arc-consistency can be achieved for monotonic constraints in time O(nd) [4]. However, we suspect this can be improved by the use of bounds consistency on A and B to O(n). However, when A and B are both 0/1 vectors the complexity falls to O(n).

If we want strict inequality between A and B, i.e. $A <_{lex} B$, we need only add the following constraint:

$$\alpha[n] = 0 \tag{6}$$

3 An Example of Propagation

Before presenting the proof, we provide an example of how propagation proceeds. Consider the following example of domains of A and B, where the underscore indicates that both 0 and 1 are in the domain.

A: 0 1 _ 0 1 ... B: 0 1 _ 0 0 ...

We now show what happens to α in microscopic detail. Understanding this example should help considerably in understanding the proof to follow.

```
\alpha: 1 _ _ _ _ ... (contrapositive of (4), because A[1]=B[1], but \alpha[0]=1) \alpha: 1 1 _ _ _ ... (contrapositive of (4), because A[2]=B[2], but \alpha[1]=1)
```

```
\alpha: 1 1 1 _ _ 0 ... (contrapositive of (3), because A[5] \neq B[5]) \alpha: 1 1 1 _ 0 0 ... (contrapositive of (4), because A[5] \geq B[5], but \alpha[5]=0) \alpha: 1 1 1 0 0 0 ... (contrapositive of (4), because A[4] \geq B[4], but \alpha[4]=0)
```

Finally, we get propagation back into A and B.

```
A: 0 1 0 0 1 ... (direct application of (4), \alpha[2]=1, \alpha[3]=0)
B: 0 1 1 0 0 ... (direct application of (4), \alpha[2]=1, \alpha[3]=0)
```

A particular point to note is that the propagation which sets values of α is usually by the contrapositive of the constraints given above. Note that we must assume that constraints propagate in all directions, although this will normally be satisfied by a standard AC algorithm.

4 Correctness

We wish to prove that arc consistency is strong enough to establish GAC on the \leq_{lex} constraint. To do this, we require certain properties of the treatment of numeric < and \leq . Specifically, when the minimum of the domain of x is greater than (respectively \geq) than the maximum of the domain of y, we require that the falsity of $x \leq y$ (respectively x < y) is recognised and propagated accordingly. Further any values in the domain of x greater than (\geq) the maximum value in the domain of y should be removed if $x \leq y$ (x < y), and any values in the domain of y less than (\leq) the minimum value in the domain of x. This is a weak requirement, and certainly seems to be the case in ILOG Solver and in Choco [5], the two languages we have experimented with to date.

Theorem 1. In an arc consistent state of this encoding in a system which respects the condition described above, the constraint $A \leq_{lex} B$ is generalised arc consistent (GAC). That is, any value in any of the domains of the variables of A or B occurs in tuples of values which satisfies the constraint $A \leq_{lex} B$.

Proof. We first give a sketch of the proof. We are to prove that the constraints (1) to (5) are arc-consistent if and only if the vectors A and B are GAC with respect to the lex ordering constraint \leq_{lex} . Since we are to prove the biconditional, the proof is two parts. In the first part we prove the implication: if the constraints (1) to (5) are arc consistent then A and B are GAC with respect to \leq_{lex} . In the second part we prove that if A and B are GAC with respect to \leq_{lex} then constraints (1) to (5) are arc consistent.

- Part 1: If constraints (1) to (5) are arc consistent then vectors A and B are GAC with respect to \leq_{lex}

We first consider the possible patterns in the values of the vector α when it is arc-consistent with respect to the constraints (1) to (5), and we then prove that for each one of those patterns A and B are GAC with respect to \leq_{lex} .

Consider the 0/1 vector α . An element $\alpha[i]$ can be instantiated, and have a value of 0 or 1, or uninstantiated and have a domain $\{0,1\}$. Consider the following cases

- 1. $\alpha[i] = 0$ Consequently $\alpha[i+1] = 0$, for all i, as a result of constraint (2). Therefore constraints (3), (4), and (5) are satisfied, and A[j] is unconstrained with respect to B[j] for j > i.
- 2. $\alpha[i] = 1$ Consequently $\alpha[i-1] = 1$, i.e. all elements to the left of $\alpha[i]$ are also set to 1. This is due to the contrapositive of (2). Therefore due to (3) A[j] is constrained to be equal to B[j] for $1 \le j \le i$.
- 3. $\alpha[i] \in 0, 1$ Assume i is the smallest i with this property. Everything to the left of $\alpha[i]$ must be set to one, i.e. they cannot possibly be set to 0 otherwise $\alpha[i]$ would also have been set to 0 due to constraint (2). Therefore A[j] is constrained to be equal to B[j] for $1 \le j < i$.

We use \diamond to indicate an uninstantiated variable, i.e. $\alpha[i] \in \{0,1\}$. We can only have patterns in α of the form $1^+ \diamond^* 0^*$, where X^+ means 1 or more occurrences of X and X^* means 0 or many occurrences. Of these sequences, all must be either 1^+0^* or $1^+ \diamond^+ 0^*$. In both cases we can show that all values of A and B are GAC with respect to $<_{lex}$.

 $\alpha=1^+0^+$ This is the simpler case as no values of α are uninstantiated. We can distinguish three sub-cases of the pattern: (a) 10^+ , (b) 111^* , and (c) (e) 11^+0^+ . In pattern (a) constraint (4) enforces A[1] < B[1], and this guarantees $A<_{lex}B$. In pattern (b) constraint (3) enforces A[i] = B[i] for all i, guaranteeing $A=_{lex}B$. In pattern (c) constraint (2) enforces equality between the first elements of A and B, and at the transition point where $\alpha[i]=1$ and $\alpha[i+1]=0$ constraint (4) forces A[i+1] < B[i+1], guaranteeing $A<_{lex}B$.

 $\alpha = 1^+ \diamond^+ 0^*$ In this case some values of α are uninstantiated between the initial 1's and final 0's. Let i be the first index such that $\alpha[i]$ is uninstantiated. We first show that all values of A[i], B[i] are GAC-consistent, and then of all later values A[j], B[j]. For j < i, we must have that A[j] = B[j] from constraint (3). Note that $\alpha[i-1]=1$, guaranteeing $A[i]\leq B[i]$ from constraint (5). Except possibly for the maximum remaining value, all values of A[i]are thus GAC-consistent, because we simply set B[i] to its maximum value, ensuring $A <_{lex} B$. Similarly all values of B[i] are GAC-consistent except possibly the minimum value. So we now consider the case that v is the largest remaining value in the arc consistent domains of A[i], B[i], but A[i] = v is hypothetically inconsistent with $A <_{lex} B$. It would be consistent if we could set A[i+1] < B[i+1]. Similarly, we can get consistency through any number of values $A[i+1] = B[i+1], A[i+2] = B[i+2], \ldots$ either extending to the end of the tuples or followed immediately by a value A[i+k] < B[i+k]. The only way, therefore, to get inconsistency is to have some sequence of forced equalities followed by an index i + k such that A[i + k] > B[i + k]. But the contrapositive of constraint (5) would give $\alpha[i+k]=0$. The contrapositive of constraint (4) then gives $\alpha[i+k-1]=0$. Constraint (4) will act in this way repeatedly, through the sequence of equalities following i. Eventually, we will have A[i+1] = B[i+1] and $\alpha[i+1] = 0$. But this will give $\alpha[i] = 0$, contradicting the fact that $\alpha[i]$ is uninstantiated. So we have shown that the

hypothesis that A[i] = v is inconsistent leads to a contradiction. A similar argument establishes that the minimum remaining value of B[i] is GAC-consistent. Finally, note that A[i] < B[i] must remain possible, as otherwise the converse of constraint (4) would set $\alpha[i] = 1$. Whatever values allow this make $A <_{lex} B$, ensuring the GAC-consistency of all values of A[j], B[j] for j > i.

- Part 2: If vectors A and B are GAC with respect to \leq_{lex} then the α variables are arc consistent with respect to the constraints (1) to (5)

We now show that there will be values of the array α which make it arc consistent when A and B are GAC with respect to \leq_{lex} .

Set $\alpha[i]=1$ for i=0 and any initial consecutive sequence of values i such that A[i]=B[i]. Set $\alpha[j]=0$ for the lowest number j such that $A[i]\neq B[j]$, and set $\alpha[k]=0$ for all k>j. Set $\alpha[k]=0$ for any value of k such that $A[k+1]\geq B[k+1]$ and $\alpha[k+1]=0$ (and repeat this step if necessary.) Finally, leave any remaining variables in α uninstantiated. Under this definition none of the constraints (1)-(5) are unsatisfied or will set any uninstantiated variable to a value.

QED

5 Conclusion

We have presented an efficient encoding of the \leq_{lex} constraint for 0/1 vectors. However, when domains are larger we expect that the complexity of the encoding will be dependent on the efficiency of the < constraint. The encoding presented here was inspired by an unpublished algorithm proposed by Ian Miguel. His algorithm has a flavour of the Gale Shapley algorithm [1]. Consequently the encoding presented here has much in common with that in [2].

Acknowledgements

We would like to thank Warwick Harvey, Ian Miguel, and Toby Walsh.

References

- 1. D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, pages 9–15, 1962.
- Ian P. Gent, Robert W. Irving, David Manlove, Patrick Prosser, and Barbara M. Smith. Constraint programming approach to the stable marriage problem. In Proceedings of CP '01: the 7th International Conference on Principles and Practice of Constraint Programming. LNCS 2239, pages 225-240, 2001.
- 3. Ian P. Gent and Barbara M. Smith. Symmetry breaking during search in constraint programming. In *Proceedings ECAI 2000*, pages 599–603, 2000.
- 4. P. Van Hentenryck, Y Deville, and C-M Teng. A generic arc-consistency algorithm and its applications. *Artificial Intelligence*, 57(2-3):291-322, 1992.

- 5. Francoise Laburthe. Choco: a constraint programming kernel for solving combinatori al optimization problems. http://www.choco-constraints.net/.
- A.K. Mackworth and E.C. Freuder. The complexity of some polynomial consistency algorithms for constraint satisfaction problems. Artificial Intelligence, 25:65–74, 1985.
- 7. P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction search. *Artificial Intelligence*, 129:133–163, 2001.
- 8. Barbara M. Smith. Reducing symmetry in a combinatorial design problem. In Proceedings of CP-AI-OR'01, 3rd International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 351-359, 2001.