
Artificial Intelligence 123 (2000) 133–156

Decomposable constraints✩

Ian Genta, Kostas Stergioub,∗, Toby Walshc

a APES Research Group, School of Computer Science, University of St Andrews, Scotland, UK
b APES Research Group, Department of Computer Science, University of Strathclyde,

Glasgow, Scotland G1 1HX, UK
c APES Research Group, Department of Computer Science, University of York, York, England, UK

Received 1 December 1999

Abstract

Many constraint satisfaction problems can be naturally and efficiently modelled using non-binary
constraints like the “all-different” and “global cardinality” constraints. Certain classes of these non-
binary constraints are “network decomposable” as they can be represented by binary constraints on
the same set of variables. We compare theoretically the levels of consistency which are achieved
on non-binary constraints to those achieved on their binary decomposition. We present many
results about the level of consistency achieved by the forward checking algorithm and its various
generalizations to non-binary constraints. We also compare the level of consistency achieved by arc-
consistency and its generalization to non-binary constraints, and identify special cases of non-binary
decomposable constraints where weaker or stronger conditions, than in the general case, hold. We
also analyze the cost, in consistency checks, required to achieve certain levels of consistency, and we
present experimental results on benchmark domains that demonstrate the practical usefulness of our
theoretical analysis. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Constraint satisfaction; Search; Decomposable constraints; Generalized arc consistency; Maintaining
arc consistency

1. Introduction

Constraint satisfaction problems occur in many real-life applications such as resource
allocation, time tabling, vehicle routing, frequency allocation, etc. Many constraint satis-

✩ Supported by EPSRC award GR/L/24014. The authors wish to thank other members of the APES research
group.

* Corresponding author.
E-mail addresses:ipg@dcs.st-andrews.ac.uk (I. Gent), ks@cs.strath.ac.uk (K. Stergiou), tw@cs.york.ac.uk

(T. Walsh).

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00051-5

134 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

faction problems can be naturally and efficiently modelled using non-binary constraints
like the “all-different” and “global cardinality” constraints [21,22,24]. Certain classes of
these non-binary constraints are “network decomposable” [6,19] as they can be represented
by binary constraints on the same set of variables. Throughout this paper, we will abbre-
viate this todecomposable. For example, an all-different constraint is decomposable into
a clique of binary not-equals constraints. As a second example, a monotonicity constraint
is decomposable into a sequence of ordering constraints on pairs of variables. Although
many non-binary constraints fail to decompose into binary constraints on the same set of
variables (for example, the parity constraint even(x1+ x2+ x3) cannot be represented as
a binary constraint satisfaction problem without the introduction of additional variables),
decomposable constraints like the all-different constraint are very common and important
in a large number of problems. For example, all-different constraints occur frequently in
scheduling problems like exam and sports timetabling, in frequency assignment problems,
and in many combinatorial problems like Golomb rulers, all interval series and Langford’s
number problems. CSPLib at www.csplib.org provides many examples of such problems.

In this paper, we compare theoretically the levels of consistency which are achieved
on non-binary constraints to those achieved on their binary decomposition. This paper
includes material first appearing in [24]. However it both extends this material and
includes other material that covers several new topics. To be precise, we present many new
results about the level of consistency achieved by the forward checking algorithm and its
various generalizations to non-binary constraints. We also compare the level of consistency
achieved by arc-consistency and its generalization to non-binary constraints, and identify
special cases of non-binary decomposable constraints where weaker or stronger conditions,
than in the general case, hold. We correct an error in [24] that suggested that neighborhood
inverse consistency on the binary decomposition is an upper bound on the level
of consistency achieved by generalized arc-consistency on decomposable non-binary
constraints. We also analyze the cost, in terms of consistency checks, required to achieve
certain levels of consistency. In addition, we present experimental results on benchmark
domains that demonstrate the practical usefulness of our theoretical analysis.

The remainder of this paper is organized as follows. In Section 2, we give formal
background on constraint satisfaction problems and define various levels of consistency. In
Section 3, we compare the level of consistency achieved by the forward checking algorithm
and its generalizations on decomposable non-binary constraints. In Section 4, we repeat
this analysis for arc-consistency and its generalization. In Section 5, we make an analysis
of the number of consistency checks required to achieve certain levels of consistency. In
Section 6, we present experimental results that demonstrate the practical relevance of the
theoretical results. In Section 7, we discuss related work, and finally, in Section 8, we
conclude and discuss future work.

2. Formal background

A constraint satisfaction problem (CSP) is a triple (X,D,C). X is a set of variables.
For eachxi ∈ X, Di is the domain of the variable. In this paper, a valuea ∈ Di is noted
(i, a). Eachk-ary constraintCi...k ∈ C is defined over a set of variables(xi, . . . , xk) by the

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 135

subset of the cartesian productDi × · · · ×Dk which are consistent values. For a binary
constraintCij , Cij (a, b) denotes that((i, a), (j, b)) ∈ Cij , or in words, that(j, b) is a
supportfor (i, a) onCij and vice verca. A CSP can be represented by a constraint graph
where the nodes correspond to variables and the (hyper)edges correspond to constraints. In
the remainder of this paper when we refer to the constraint graph of a decomposable CSP

we will mean the constraint graph that corresponds to the binary decomposition, unless
otherwise stated. Thus, by edges (or arcs) we will mean binary constraints. Aprojection
of a k-ary constraintC over a subset{x1, . . . , xi} of its variables, wherei < k, is a
new constraint over thosei variables. This constraint is defined by the subtuples of the
consistent tuples in the originalk-ary constraint that only contain values for thei projected
variables. A solution to a CSPis an assignment of values to variables that is consistent with
all constraints.

Many lesser levels of consistency have been defined for binary constraint satisfaction
problems (see [5] for full references). A problem isnode-consistentiff for every variable
xi and every value(i, a) in the domain ofxi , value(i, a) satisfies all unary constraints
on xi . A problem is (i, j)-consistentiff it has non-empty domains and any consistent
instantiation ofi variables can be extended to a consistent instantiation involving any
j additional variables [9]. A problem isarc-consistent(AC) iff it is (1,1)-consistent.
A problem ispath-consistent(PC) iff it is (2,1)-consistent. A problem isstrong path-
consistentiff it is node-consistent, arc-consistent, and path-consistent. A problem ispath
inverse consistent(PIC) iff it is (1,2)-consistent. A problem isneighbourhood inverse
consistent(NIC) iff any value for a variable can be extended to a consistent instantiation
for its immediate neighbourhood [10]. A problem isrestricted path-consistent(RPC) iff it
is arc-consistent and if a value assigned to a variable is consistent with just a single value for
an adjoining variable then for any other variable there exists a value compatible with these
instantiations. A problem issingleton arc-consistent(SAC) iff it has non-empty domains
and for any instantiation of a variable, the problem can be made arc-consistent. Many of
these definitions can be extended to non-binary constraints. For example, a (non-binary)
constraint satisfaction problem isgeneralized arc-consistent(GAC) iff for any variable in
a constraint and value that it is assigned, there exist compatible values for all the other
variables in the constraint [18]. Fig. 1 gives formal definitions of the above properties.

Following [5], we call a consistency propertyA stronger thanB (A > B) iff in any
problem in whichA holds thenB holds, andstrictly stronger(A>B) iff it is stronger and
there is at least one problem in whichB holds butA does not. We call a local consistency
propertyA incomparablewith B (A ∼ B) iff A is not stronger thanB nor vice versa.
Finally, we call a local consistency propertyA equivalentto B iff A> B andB > A. The
following identities summarize results from [5] and [10]: strong PC> SAC> PIC> RPC
> AC, NIC> PIC, NIC∼ SAC, and NIC∼ strong PC.

Many algorithms enforce a certain level of consistency at every node in a search tree.
For example, theforward checkingalgorithm (FC) maintains a restricted form of AC that
ensures that the most recently instantiated variable and those that are uninstantiated are arc-
consistent. If all remaining values for a variable are removed, adomain wipe-outoccurs
and the algorithm backtracks. Forward checking can be generalized to an algorithm for
non-binary constraints (called nFC0 in [2]) which makes everyk-ary constraint withk− 1
variables instantiated arc-consistent. No pruning is performed onk-ary constraints with

136 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

• A binary CSP is (i, j)-consistent iff ∀i ∈ X, Di 6= ∅ and any consistent
instantiation ofi variables can be extended to a consistent instantiation involving
anyj additional variables.
• A binary CSP is arc-consistentiff ∀Di ∈ D, Di 6= ∅ andDi is arc-consistent.

A domainDi is arc-consistent iff∀a ∈ Di , ∀j ∈ X, with Cij ∈ C, there exists
b ∈Dj so thatCij (a, b).
• A binary CSPis path-consistentiff ∀i, j ∈X,(i, j) is path-consistent. A pair of

variables(i, j) is path-consistentiff ∀(a, b) ∈ Cij ,∀k ∈ X, there existsc ∈ Dk
so thatCik(a, c) andCjk(b, c).
• A binary CSPis strong path-consistentiff it is (j,1)-consistent forj 6 2.
• A binary CSPis path inverse consistentiff ∀(i, a) ∈D,∀j, k ∈X so thatj 6= i 6=
k 6= j , ∃(j, b) ∈D and(k, c) ∈D so thatCij (a, b) andCik(a, c) andCjk(b, c).
• A binary CSP is neighbourhood inverse consistentiff ∀(i, a) ∈D, (i, a) can be

extended to a consistent instantiation in the immediate neighbourhood ofi.
• A binary CSP is restricted path-consistentiff ∀i ∈ X, Di 6= ∅ andDi is arc-

consistent and,∀(i, a) ∈D,∀j ∈ X so that(i, a) has a unique supportb in Dj ,
∀k ∈X so thatCik,Cjk ∈C, ∃c ∈Dk so thatCik(a, c) andCjk(b, c).
• A binary CSP is singleton arc-consistent iff∀i ∈ X, Di 6= ∅ and ∀(i, a) ∈
D,P |Di={a} has an arc-consistent sub-domain. ByP |Di={a} we denote the CSP

obtained by restrictingDi to {a} in a CSPP , wherei ∈X.
• A non-binary CSP is generalized arc-consistentiff ∀Di ∈ D,Di 6= ∅ andDi is

generalized arc-consistent. A domainDi is generalized arc-consistent iff∀a ∈
Di , ∀j, . . . , k ∈X, with Cj,...,i,...,k ∈ C, there exists tuplet = {b, . . . , a, . . . , c}
allowed byCj,...,i,...,k so thatt is a support for(i, a) onCj,...,i,...,k .

Fig. 1. Formal definitions of various consistencies.

less thank − 1 variables instantiated. As required, this reduces to the forward checking
algorithm FC, when applied to purely binary constraints.

Alternative and stronger generalizations of forward checking to non-binary constraints
are studied in [2]. nFC1 applies (one pass of) AC on each constraint or constraint projection
involving the current variable and exactly one future variable (by comparison, nFC0 does
not use the constraint projections). nFC2 applies (one pass of) GAC on each constraint
involving the current variable and at least one future variable. nFC3 makes the set of
constraints involving the current variable and at least one future variable GAC. nFC4
applies (one pass of) GAC on each constraint involving at least one past variable and at
least one future variable. nFC5 makes the set of constraints involving at least one past
variable and at least one future variable GAC. As required, all these generalizations reduce
to FC when applied to binary constraints.

Even higher levels of consistency can be maintained at each node in the search tree.
For example, themaintaining arc-consistencyalgorithm (MAC) enforces AC at each node
in the search tree [12]. If enforcing AC removes all remaining values for a variable, a
domain wipe-outoccurs and the algorithm backtracks. For non-binary constraints, the
algorithm thatmaintains generalized arc-consistency(MGAC) on a (non-binary) constraint
satisfaction problem enforces GAC at each node in the search tree. When comparing the
amount of search performed by different backtracking algorithms, we assume that we are

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 137

looking for all solutions and there is a static variable ordering. Many of these results will
extend to a number of different dynamic variable and value ordering heuristics, again
provided we compute all solutions. However, the proofs are significantly more complex
and add very little to our understanding of the impact of decomposition on search and
constraint propagation. We say that algorithmA dominatesalgorithmB (A> B) if whenA
visits a node thenB also visits the equivalent node in its search tree, andstrictly dominates
(A > B) if it dominates and there is one problem on which it visits strictly fewer nodes.
AlgorithmA andB areincomparableif neitherA dominatesB or vice versa (A∼ B). The
following identities summarize results from [2]: nFC2> nFC1> nFC0, nFC5> nFC3>
nFC2, nFC5> nFC4> nFC2, nFC3∼ nFC4.

3. Forward checking on decomposable constraints

We will compare the level of consistency achieved by FC (and its generalizations)
on decomposable non-binary constraints. We repeat this analysis for AC in the next
section. We first identify a lower bound on the performance of FC applied to the binary
decomposition.

Theorem 1. For a decomposable non-binary constraint satisfaction problem, the forward
checking algorithmFC on the binary decomposition strictly dominates the generalized
forward checking algorithmnFC0.

Proof. Consider a node in the search tree explored by the nFC0 algorithm. Assume that
forward checking removes the valuea for some variablex. Thenx occurs in ank-ary
constraint in which allk − 1 other variables have been assigned values. In the binary
decomposition, not all arcs betweenx and thesek−1 variables can support assigningx the
value ofa otherwise this would be a consistent extension in the non-binary representation.
Hence forward checking on at least one of these binary arcs will remove the valuea.

To show strictness, consider a ternary constraintx < y < z with x, y andz all having the
domains{1,2}. Assume a lexicographic variable ordering and a numerical value ordering
(similar results are obtained with other variable and value orderings). FC first assigns 1 to
x. Forward checking then reduces the domain ofy to 2. After assigning this unit, forward
checking discovers a domain wipeout forz. We therefore backtrack to the root of the search
tree and assign 2 tox. Forward checking then discovers a domain wipeout fory. The
problem is therefore insoluble, and FC shows this in 2 branches. The nFC0 algorithm takes
longer to solve this problem as it must assign 2 values before the ternary constraint is
checked. It therefore takes 4 branches to show insolubility.2

We can generalize the example in the last proof to show that nFC0 applied to non-binary
constraints can explore exponentially more branches than FC on the binary decomposition.
This proof holds for a wide variety of variable orderings. A variable ordering which
instantiates variables with unit domains before those without is called anunit preference
ordering.

138 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

Lemma 1. There exists a decomposable non-binary constraint satisfaction problem inn

variables on which the forward checking algorithmFCapplied to the binary decomposition
explores2 branches, but the generalized forward checking algorithmnFC0explores2n−1

branches using any value ordering and any unit preference variable ordering.

Proof. Consider then-ary constraintx1< x2< · · ·< xn with each variablexi having the
domain{1,2}. The variable and value ordering heuristics in the forward checking algorithm
FC first assign a value, 1 or 2 to some variablexi . The proof divides into four cases.
If 1 < i 6 n and the value assigned toi is 1 then forward checking discovers a domain
wipeout for xi−1. If 1 6 i < n and the value assigned toi is 2 then forward checking
discovers a domain wipeout forxi+1. If i = 1 and the value assigned toi is 1 then forward
checking reducesx2 to an unit domain, the unit preference variable ordering assigns this
variable next and discovers a domain wipeout forx3. In the final case,i = n and the
value assigned toi is 2. Forward checking then reducesxn−1 to an unit domain, the unit
preference variable ordering assigns this variable next and discovers a domain wipeout for
xn−2. After each case, we backtrack, assign the alternative value toi and discover a domain
wipeout. FC thus shows that the problem is insoluble in 2 branches. On the other hand, the
nFC0 algorithm takes longer to solve this problem as it must assignn−1 values before the
n-ary constraint is checked. It therefore takes 2n−1 branches to show insolubility whatever
the variable and value ordering.2

We can also give a simple upper bound on the performance of FC on the binary
decomposition.

Theorem 2. For a decomposable non-binary constraint satisfaction problem,nFC1
strictly dominates the forward checking algorithmFC on the binary decomposition.

Proof. Since the problem is decomposable, the constraint projections that involve the
current and one future variable are a superset of the arcs that FC applied to the binary
decomposition makes arc-consistent. Hence, if FC on the binary decomposition prunes a
value, so will the nFC1 algorithm.

To show strictness, consider a problem with four variables{x1, x2, x3, x4}, with domains
{1}, {1,2,3}, {3,4,5} and{5} respectively. There is a “not-equals” constraint betweenx1
andx2 and a ternary constraint on{x2, x3, x4} specifying that each pair of variables in the
constraint has a difference of more than 1. The only allowed tuple for this constraint is
{1,3,5}. Assuming a lexicographic variable ordering and a numerical value ordering, FC
on the binary decomposition will forward check the assignment ofx1 and remove 1 from
the domain ofx2. Then, FC will assign 2 tox2, remove 3 from the domain ofx3, assign
4 to x3 and discover a dead-end. FC will then assign 5 tox3, and fail again. It will then
backtrack, assign 3 tox2 and 5 tox3, and will finally discover that there is no solution after
3 branches have been explored. nFC1 will only explore 2 branches because after value 1 is
removed from the domain ofx2 the projections involvingx2 and future variables become
empty. Therefore, as soon as one of the two remaining values ofx2 is tried, nFC1 closes
the branch. 2

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 139

Fig. 2. The performance of the forward checking algorithm, FC on the binary decomposition of a set of
decomposable non-binary constraints compared to the various generalizations of forward checking, nFC0 to
nFC5 applied to the non-binary constraints.

We can also prove that FC on the binary decomposition and nFC0 may explore
exponentially more branches than algorithms nFC1–nFC5. This proof holds for any
variable and value ordering heuristics.

Lemma 2. There exists a decomposable non-binary constraint satisfaction problem inn

variables on which thenFC1–nFC5algorithms explore justn− 1 branches, but on which
the forward checking algorithmFC applied to the binary decomposition takes(n − 1)!
branches, and thenFC0algorithm explores(n− 1)n−1 branches.

Proof. Consider ann-ary all-different constraint on the variablesx1, x2, . . . , xn, each with
the domain{1,2, . . . , n− 1}. FC explores(n− 1)! branches to show that the problem is
insoluble. The nFC0 algorithm assignsn− 1 values to thexi (16 i 6 n) before then-ary
all-different constraint is checked. It therefore takes(n− 1)n−1 branches to prove that the
problem is insoluble. By comparison, algorithms nFC1–nFC5 show that the problem is
insoluble inn− 1 branches since as soon as the first variable is instantiated with any one
of its n−1 values, we enforce GAC (AC in the projections for nFC1) and discover that the
current subproblem (the constraint projections) admit no satisfying tuples.2

These results, as well as those from [2], are summarized in Fig. 2.

4. Arc-consistency on decomposable constraints

Algorithms that enforce even higher levels of consistency than forward checking have
been shown to be highly effective at solving binary and non-binary constraint satisfaction
problems (see, for example, [3,24]). In this section, we characterize the level of consistency
achieved by (generalized) AC on decomposable constraints. The following theorem puts
a lower bound on the level of consistency achieved by GAC on decomposable constraints
with respect to the binary decomposition.

Theorem 3. Generalized arc-consistency on decomposable constraints is strictly stronger
than arc-consistency on the binary decomposition.

Proof. Consider any variable and value assignment. GAC ensures that each value in each
variable of ak-ary constraint can be extended to a consistentk-tuple of values for the other

140 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

variables in the constraint. Hence, each generalized arc-consistent value in each variable
can be extended to a consistent 2-tuple. Hence, the binary decomposition is arc-consistent.

To prove strictness, consider an all-different constraint on 3 variables, each with domain
{0,1}. The binary decomposition of this constraint is arc-consistent but enforcing GAC
shows that it is insoluble.2

As we show later on in this section, this lower bound is exact since we can exhibit a
large class of problems on which GAC is equivalent to AC on the binary decomposition.
We can also prove that an algorithm that maintains AC on the binary decomposition may
explore exponentially more branches than an algorithm that maintains GAC.

Lemma 3. There exists a decomposable non-binary constraint satisfaction problem in
n variables(n > 2) that an algorithm that maintains generalized arc-consistency solves
without search, but on which an algorithm that maintains arc-consistency on the binary
decomposition explores(n− 1)! branches whatever the variable ordering.

Proof. Consider an all-different constraint onn variables, each with the samen−1 values.
Enforcing generalized arc-consistency shows that the problem is insoluble without search.
Consider an algorithm that maintains arc-consistency on the binary decomposition. This is
arc-consistent so we choose one of then− 1 values for one of the variables to instantiate.
Forn > 3, enforcing arc-consistency will prune this value from the other variables, leaving
an arc-consistent subproblem inn − 1 variables, each with the samen − 2 values. Our
argument therefore recurses. Forn = 3, we are left with just 2 uninstantiated variables.
Enforcing arc-consistency now causes a domain wipe-out and backtracking. The algorithm
therefore explores(n− 1)! branches. 2

The following theorem shows that NIC on the binary decomposition, as well as all
the levels of consistency between strong PC and RPC, are incomparable to GAC. (See
Theorem 6 for one condition under which NIC becomes strictly stronger than GAC.)

Theorem 4. Generalized arc-consistency on decomposable constraints is incomparable
to neighbourhood inverse consistency, to strong path-consistency, to singleton arc-
consistency, to path inverse consistency, and to restricted path-consistency on the binary
decomposition.

Proof. Consider a problem with three all-different constraints on{x1, x2, x3}, on {x1, x3,

x4}, and on{x1, x4, x2}, in which x1 has the unitary domain{1} and every other variable
has the domain{2,3}. This problem is GAC, but enforcing RPC, and all properties stronger
than RPC, shows that it is insoluble.

Consider the following 2-colouring problem. We have 5 variables,x1 to x4 which are
arranged in a ring. Each variable has the same domain of size 2. Between each pair of
neighbouring variables in the binary decomposition, there is a not-equals constraint. In the
non-binary representation, we post a single constraint on all 5 variables. Note, that this is
not an all-different constraint but a non-binary constraint that states that all neighbouring
variables must have different values. This problem is NIC, but enforcing GAC on the

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 141

non-binary representation shows that the problem is insoluble. Consider an all-different
constraint on 4 variables, each with the same domain of size 3. The binary representation
of the problem is strong PC, SAC, PIC and RPC, but enforcing GAC shows that it is
insoluble. 2

The upper bounds we can give for GAC tend to be rather weak. This is perhaps not
surprising as we can post very large arity non-binary constraints. GAC may therefore
achieve very high levels of consistency. The first upper bound we give is rather trivial. If the
largest (non-binary) constraints involvek or fewer variables, then(1, k− 1)-consistency is
strictly stronger than GAC. This can be clearly understood if we consider that when trying
to enforce GAC we take into account only explicit constraints, while(1, k−1)-consistency
takes into account all implicit constraints between every set ofk variables.

Theorem 5. For decomposable non-binary constraints of arityk or less, (1, k − 1)-
consistency on the binary decomposition is strictly stronger than generalized arc-
consistency on the non-binary constraints.

Proof. Consider any variable and value assignment.(1, k − 1)-consistency ensures that
we can assign consistent values to the (at most)k − 1 variables that appear with this
variable in any given (non-binary) constraint. Hence, this constraint is generalized arc-
consistent. Thus,(1, k − 1)-consistency of the binary decomposition implies GAC of the
original problem.

To prove strictness, consider a non-binary problem in 4 variables:x1, x2 andx3 each with
domains{1,2}, andx4 with domain{2,3}. We post a ternary all-different constraint onx2,
x3 andx4, and not-equals constraints betweenx1 andx2, andx1 andx3. Now each of these
constraints is generalized arc-consistent, so no values are removed. However enforcing
(1,2)-consistency shows that the problem is insoluble because of the constraints onx1, x2
andx3. (In this example,x4 is only there to guarantee that there is a ternary constraint in
the problem.) 2

A much stronger upper bound for GAC can be given if all the non-binary constraints
in a problem decompose into cliques of binary constraints. For example, an all-different
constraint decomposes into a clique of binary not-equals constraints. Under such a
restriction, NIC on the binary decomposition is strictly stronger than GAC on the original
(non-binary) problem.

Theorem 6. If each non-binary constraint decomposes into a clique of binary constraints
then neighbourhood inverse consistency on the binary decomposition is strictly stronger
than generalized arc-consistency on decomposable constraints.

Proof. Consider any variable and value assignment. NIC ensures that we can assign
consistent values to the variable’s neighbours. However, as the decomposition is into
a clique, any (non-binary) constraint including this variable has all its variables in the
neighbourhood. Hence, the (non-binary) constraint is generalized arc-consistent.

142 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

Fig. 3. The consistency of GAC on a set of decomposable non-binary constraints compared to various consistency
techniques stronger than or equal to AC on the binary decomposition.

To prove strictness, consider again the problem with three all-different constraints
from the proof of Theorem 4. This problem is generalized arc-consistent, but enforcing
neighbourhood inverse consistency shows that it is insoluble.2

We had hoped to give weaker conditions under which NIC is strictly stronger than GAC.
For example, we considered adding the binary constraints implied by path consistency
to the binary decomposition. However, this is not enough to ensure that NIC implies
GAC. In general, you may needany of the implied binary constraints. This may lead to
prohibitively large neighbourhoods in the binary decomposition, with any variable that has
a value removable by GAC connected to every other variable. On a minor note, this last
upper bound is exact since we can exhibit a class of problems in which the non-binary
constraints decompose into cliques of binary constraints and on which GAC is equivalent
to NIC on the binary decomposition.

These results are summarized in Fig. 3.
Not surprisingly an algorithm that maintains GAC on decomposable constraints also

strictly dominates the strongest generalized forward checking algorithm nFC5. Naturally,
this means that it also dominates algorithms nFC0–nFC4 and also the forward checking
algorithm FC applied to the binary decomposition.

Lemma 4. For a decomposable non-binary constraint satisfaction problem, an algorithm
that maintains generalized arc-consistency strictly dominates any of the generalized
forward checking algorithmsnFC0 to nFC5, as well as strictly dominating the forward
checking algorithmFC on the binary decomposition.

Proof. Algorithms nFC2–nFC5 enforce GAC in subsets of the problem and are therefore
dominated by an algorithm that maintains GAC in the whole problem. From Theorems 1
and 3 it trivially follows that such an algorithm also dominates FC on the binary
decomposition, nFC0 and nFC1.

To show strictness we only need to give an example where maintaining GAC explores
less branches than nFC5. Consider an all-different constraint on the variablesx, y andz,
each with the domain{1,2}. Assume a lexicographic variable ordering and a numerical
value ordering (similar results are obtained with other variable and value orderings). nFC5
first assigns 1 tox, and then discovers there are no satisfying tuples for the all-different
constraint. We therefore backtrack to the root of the search tree and assign 2 tox. This

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 143

branch ends in failure by a similar argument. The problem is thus insoluble and FC5 shows
this in 2 branches. All the other forward checking algorithms also explore 2 branches.
By comparison, enforcing GAC immediately shows the problem is insoluble without any
search. 2

We can generalize the example in the last proof to show that FC on the binary
decomposition can explore exponentially more branches than an algorithm that maintains
GAC. This proof holds for any variable and value ordering heuristics.

Lemma 5. There exists a decomposable non-binary constraint satisfaction problem inn

variables on which the forward checking algorithmFCapplied to the binary decomposition
explores(n− 1)! branches, whilstGAC shows that it is insoluble without search.

Proof. Consider ann-ary all-different constraint on the variablesx1, x2, . . . , xn, each with
the domain{1,2, . . . , n − 1}. At each level in the search tree of the forward checking
algorithm, one more value is removed from the domain of the remaining uninstantiated
variables. The branching rate therefore decreases fromn − 1 to 1. When the(n − 1)th
variable is instantiated, the remaining variable suffers a domain wipeout and backtracking
occurs. Forward checking therefore visits(n − 1)! branches before the problem is
shown insoluble. By comparison, enforcing GAC immediately shows that the problem is
insoluble. 2
4.1. Tree decomposable constraints

We next identify a class of decomposable non-binary constraints on which GAC meets
its lower bound (viz. AC on the binary decomposition). A special case of decomposable
constraints are “tree decomposable” constraints in which the constraint graph of the binary
decomposition forms a tree (or forest of independent trees). For example, the non-binary
constraint that a list of variables is monotonically increasing is tree decomposable into a set
of binary inequality constraints. Such monotonicity constraints are frequently used when
we model real problems as they can be made to break unwanted symmetries. As the next
two theorems demonstrate, tree decomposability topologically characterizes when GAC
may be of benefit. If the constraint graph is a tree then GAC performs no more pruning
than AC on the binary decomposition. On the other hand, if the constraint graph is not a
tree, then GAC can be more pruningful. We first prove that GAC on tree decomposable
constraints is no more effective than AC on the binary decomposition.

Theorem 7. Generalized arc-consistency on tree decomposable constraints is equivalent
to arc-consistency on the binary decomposition.

Proof. (⇒) Consider a tree decomposable problem that is generalized arc-consistent.
Consider two variables,xi andxj , and a value forxi . The proof divides into two cases.
Either xi and xj are directly connected to each other in some tree, or they are not. If
they are connected, since the problem is generalized arc-consistent, there is a consistent
value forxj . If they are not connected then any value forxj is consistent. Thus, the tree
decomposition is arc-consistent.

144 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

(⇐) Consider the tree decomposition of a problem that is arc-consistent. Consider a
variable,xi and a value from its arc-consistent domain. We now show how to find consistent
values for all the other variables. We take the parent and each of the children ofxi . As the
tree decomposition of the problem is arc-consistent, we can find consistent values for these
variables. We repeat this process until we reach the root and the leaves. We now consider
any uninstantiated children of the root. Again, as the tree decomposition of the problem
is arc-consistent, we can find consistent values for these variables. We then consider the
children of these variables and repeat until all variables are instantiated. Hence, there exists
a consistent extension for the value assigned toxi , and the problem is generalized arc-
consistent. 2

This result is perhaps rather unsurprising. Freuder has shown that when the constraint
graph of a binary constraint satisfaction problem is a tree, we can solve problems by
enforcing AC and then instantiating the variables in a suitable order [8]. Hence, as AC
essentially determines global consistency, GAC is unable to achieve anything higher. In
fact, even AC is too much since a restricted form of AC called “directional arc-consistency”
is enough to ensure backtrack free solutions in constraint trees [7]. What is perhaps more
surprising is that tree decomposition precisely characterizes when GAC can do more
pruning than AC on the binary decomposition. To be more precise, as soon as the constraint
graph of the binary decomposition is no longer a tree (or forest of trees) but contains one
or more cycles, there are problems on which GAC performs more pruning than AC on the
binary decomposition.

Lemma 6. Given a binary constraint graph which has one or more cycles, then there
exists a non-binary problem with this decomposition on which generalized arc-consistency
is strictly stronger than arc-consistency on the binary decomposition.

Proof. By Theorem 3, GAC is stronger than AC on the binary decomposition. To show
strictness, given a binary constraint graph containing one or more cycles, we construct a
non-binary problem with this decomposition on which GAC performs more pruning than
AC on the binary decomposition. We first find a cycle in the binary decomposition. We
then construct a non-binary constraint on the variables in this cycle. Each variable is given
a domain with the same two values. If the cycle found is of odd length, then we construct
a non-binary constraint that ensures that neighbouring variables in the chain take different
values. If the cycle found is of even length, then we construct a non-binary constraint that
ensures that neighbouring variables in the chain take different values except for one pair
of variables which must take equal values. Enforcing GAC on this non-binary constraint
will show that the problem is insoluble. By comparison, the binary decomposition is arc-
consistent. 2

In the next section, we characterize a large class of problems which are not tree
decomposable and on which GAC is guaranteed to achieve levels of consistency much
higher than AC on the binary decomposition.

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 145

4.2. Triangle preserving constraints

By imposing some slightly stronger conditions on the type of non-binary constraints,
we can prove that generalized AC is significantly stronger than AC on the binary
decomposition. One such condition (first studied in [24]) is when the non-binary
constraints contain all length 3 cycles (triangles). The intuition is that the constraints then
capture an inherent non-binary aspect of the problem. We say that a set of decomposable
constraints istriangle preservingif for every triangle of variables in the constraint graph of
the binary decomposition those 3 variables are involved together in a non-binary constraint.

For example, an all-different constraint is triangle preserving as it decomposes into a
clique of binary not-equals constraints. Therefore, all variables occuring in a triangle of
not-equals constraints in the binary decomposition are involved together in the all-different
constraint. However, a set of all-different constraints may not be triangle preserving as
the binary decomposition may contain 3-cliques that are not explicitly involved in an all-
different constraint in then-ary representation. For example, the first problem in the proof
of Theorem 4 is not triangle preserving because there is a clique of not-equals constraints in
the binary encoding between variablesx2, x3, x4 and these variables do not occur together
in a constraint in then-ary representation. Binary constraints can still occur in a triangle
preserving set of non-binary constraints, but only if they do not form part of a triangle.
A triangle preserving set of non-binary constraints is trivially not tree decomposable. Under
the restriction to triangle preserving constraints, GAC is strictly stronger than path inverse
consistency, which itself is strictly stronger than AC.

Theorem 8. On a triangle preserving set of constraints, generalized arc-consistency is
strictly stronger than path inverse consistency on the binary decomposition.

Proof. Consider a triple of variables,xi , xj , xk and any value forxi from its generalized
arc-consistent domain. The proof divides into four cases. In the first,xi andxj appear in
one constraint, andxi andxk in another. As each of these constraints is arc-consistent, we
can find a value forxj consistent withxi , and forxk consistent withxi . As the (non-binary)
constraints are triangle preserving, there is no direct constraint betweenxj andxk so the
values forxj andxk are consistent with each other. Hence, the binary representation of
the problem is PIC. Up to symmetry, there are three other cases:xi , xj , andxk can have
no direct constraints between each other;xj andxk can have a constraint between then
but neither has a direct constraint withxi ; andxi , xj , andxk all have direct constraints
between each other. Each case follows a similar argument. To show that GAC is strictly
stronger, consider an all-different constraint on 4 variables each with domains of size 3.
This problem is PIC but not GAC.2

We can also prove that for a triangle preserving set of constraints an algorithm that
maintains path inverse consistency on the binary decomposition may explore exponentially
more branches that an algorithm that maintains GAC.

Lemma 7. There exists a triangle preserving set of constraints inn variables(n > 2)
that an algorithm that maintains generalized arc-consistency solves without search, but on

146 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

which an algorithm that maintains path inverse consistency on the binary decomposition
explores(n− 1)! branches whatever the variable ordering.

Proof. We can use the example in the proof of Theorem 3, observing that, on the binary
decomposition, path inverse consistency does no more pruning than arc-consistency.2

A corollary of Theorem 8 is that GAC on a triangle preserving set of constraints is
strictly stronger than restricted path-consistency or AC on the binary decomposition. Even
when restricted to triangle preserving sets of constraints, GAC remains incomparable to
strong path-consistency, singleton AC, and neighbourhood inverse consistency.

Theorem 9. On a triangle preserving set of constraints, generalized arc-consistency is in-
comparable to strong path-consistency, to singleton arc-consistency and to neighbourhood
inverse consistency on the binary decomposition.

Proof. Consider an all-different constraint on 4 variables, each with the same domain of
size 3. The binary representation of the problem is strong PC and SAC, but enforcing GAC
shows that it is insoluble. Consider the second problem in the proof of Theorem 4 with
the addition of an all-different constraint on variablesx1, x5, x6, with x5 andx6 having the
domain{0,1,2}. This problem is NIC but enforcing GAC on the non-binary representation
shows that the problem is insoluble. Note, that since there is no clique of 3 variables in the
binary encoding of this problem, it is triangle preserving.

Consider a problem with five all-different constraints on{x1, x2, x3}, on {x1, x3, x4}, on
{x1, x4, x5}, on {x1, x5, x6}, and on{x1, x6, x2}. in which x1 has the unitary domain{1}
and every other variable has the domain{2,3}. Note, that this set of constraints is triangle
preserving since all triangles of variables in the binary decomposition are involved in an
all-different constraint in then-ary representation. The problem is GAC, but enforcing
NIC, or strong PC, or SAC shows that it is insoluble.2

These results are summarized in Fig. 4.

Fig. 4. The consistency of GAC on a triangle preserving set of non-binary constraints compared to various
consistency techniques stronger than or equal to AC on the binary decomposition.

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 147

5. Consistency checks

In the previous two sections we compared the levels of consistency achieved by
generalized algorithms on decomposable constraints to the levels achieved by FC and AC
on the binary decomposition. We now analyze the relative numbers of consistency checks
required to achieve these consistencies.

5.1. Forward checking

FC performs O(d) consistency checks between the currently assigned variable and
each future variable, whered is the maximum domain size. IfCc,f is the number of
constraints between the current variable and future variables then FC performs O(Cc,f d)

consistency checks at each node. Bessière et al. [2] give upper bounds in the number of
consistency checks that algorithms nFC0–nFC5 perform at each node of the search tree.
nFC0 forward checks ann-ary constraint whenn−2 variables have been assigned and the
(n− 1)th variable is the current one. IfCc,1 is the number of constraints that involve the
current variable and only one future variable then nFC0 performs at maximum O(Cc,1d)

consistency checks at each node. The complexities of algorithms nFC1–nFC5 depend on
the levels of consistency that they enforce, and also on the complexity of the AC algorithm
they use. We should note that nFC1 has the requirement that all then-consistent tuples
of then-ary constraint have been precomputed. This, in general, increases the number of
consistency checks by factor that is exponential in the constraint arity. There are cases, like
the all-different constraint, where computing the allowed tuples can be done in polynomial
time. However, since the number of tuples is exponential, there can be space restrictions if
we want to store explicitly all the tuples of all-different constraints with high arity.

The main observation regarding the complexities of the forward checking algorithms
is that there can only be a polynomial difference in the number of consistency checks
performed by any two algorithms at any node. This means that the results of Sections 3 and
4 regarding exponential differences between algorithms in terms of visited nodes are also
true in terms of consistency checks. However, the dominance results do not carry through to
consistency checks. Examples 1 and 2 show that for a decomposable non-binary constraint
satisfaction problem, FC on the binary decomposition is incomparable to algorithms nFC0
and nFC1 in terms of consistency checks.

As in [1], we countk primitive consistency checks to check if ank-tuple of ak-ary
constraint is consistent. As [1] explains, this is true both in the case where the constraint
is represented intensionally and the case where it is represented extensionally. If ak-ary
constraint is represented intensionally as a predicate then checking if a tuple is consistent
takesk operations since the predicate must consider allk values for the variables involved
in the constraint. In case ak-ary constraint is represented extensionally as a boolean array
then checking for the consistency of a tuple again requiresk operations since we must
index into an array ofk dimensions. Since we countk checks for ak-ary constraint, for
consistency, we count 2 checks for a binary constraint.

Example 1. Consider a ternary constraintx < y < z with x having the domain{0,1,2},
y having the domain{1,2,3} andz having the domain{2,3,4}. Assume a lexicographic

148 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

variable ordering and a numerical value ordering. FC on the binary decomposition first
assigns 0 tox and forward checks it againsty. This takes 6 consistency checks (2 for each
value ofy). Then, 1 is assigned toy and the assignment is forward checked againstz taking
6 more consistency checks. nFC0 assignsx to 0,y to 1, and then forward checks taking 9
consistency checks (3 for each value ofz), which is 3 checks less than FC.

Now consider the same constraint with the variables having domains{0,1}. FC will
show insolubility in two branches, performing 12 consistency checks. nFC0 will explore 4
branches and perform 24 consistency checks in total.

Example 2. To prove that FC and nFC1 are incomparable in terms of consistency checks,
consider a ternary constraintx1< x2< x3, with x1 having the domain{0,1,2}, x2 having
the domain{3,4,5} andx3 having the domain{6,7,8}. FC will take 12 consistency checks
to solve the problem while nFC1 will take 18 consistency checks.

Now consider the example in the proof of Theorem 3. FC on the binary decomposition
takes 28 consistency checks to prove insolubility while nFC1 takes only 18.

We can also show that algorithms nFC2–nFC5 are incomparable in consistency checks
to FC on the binary decomposition and also incomparable with one another using more
complicated examples.

5.2. Arc-consistency

For any non-binary constraint, specified by a predicate, GAC can be established by
the best known algorithm, GAC-schema[4], with O(dk) worst-case complexity, where
d is the maximum domain size of the variables andk is the arity of the constraint. AC
can be enforced on the binary decomposition of a decomposable constraint with O(ed2)

optimal worst-case complexity, wheree is the number of binary constraints that the initial
constraint decomposes into. We can identify a cross-over point in the size,e, of the binary
decomposition. That is, ife > dk−2 then GAC is asymptotically cheaper than AC on
the binary decomposition. In practice,e is O(k2), and therefore, GAC is cheaper than
AC, in the worst case, only when the arity of the constraints and the domain size of
the variables are small. However, for certain types of non-binary constraints, like the
all-different constraint, there exist algorithms that achieve GAC with much lower cost
than O(dk).

An all-different constraint onk variables can be decomposed into a clique of O(k2)

binary constraints. AC can be achieved on the decomposition of an all-different constraint
in O(k2d2) checks, when a generic AC algorithm is used. However, since we are dealing
with “not equals” constraints, AC can be achieved with O(k2) worst-case complexity.
This is a correction on the bound for such constraints given in [25] and it is based on
the following observations: First, for a network of “not equals” constraints, an AC-3 like
algorithm will revise each edge at most once. And second, for a “not equals” constraint,
AC may remove a value from the domain of one of the variables if and only if the other
variable has a unary domain. As a result, AC has O(e) worst-case complexity, which
is O(k2) for the decomposition of all-different constraints. This is better than Régin’s
specialized filtering algorithm which achieves GAC on the non-binary representation with

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 149

O(k2d2) worst-case complexity. However, as we demonstrated in Section 4, GAC on the
non-binary representation is stronger than AC on the decomposition. Also, experimental
results presented in the following section strongly suggest that Régin’s algorithm is much
more efficient than an AC algorithm. Finally, If we use GAC-schema to achieve GAC then
the complexity depends on the number of allowed tuples which is O(d!/(d − k)!) for one
constraint. If we compare that with the complexity of Régin’s algorithm it is obvious that
GAC-schema is inferior. Even for ternary constraints the difference is substantial as GAC-
schema would perform O(d3) consistency checks on one constraint, compared to the O(d2)

checks of Régin’s algorithm.

6. Experimental results

To demonstrate the practical relevance of these theoretical results, we ran experiments
in two benchmark domains. We compare the impact of enforcing GAC on the non-binary
representation with enforcing AC on the binary decomposition.

6.1. Quasigroup completion

Gomes and Selman have proposed random quasigroup completion problems as a
benchmark that combines some of the best features of random and structured problems
[13]. A quasigroup is an ordered pair(Q, ·), whereQ is a set and(·) is a binary operation
onQ such that the equationsa · x = b andy · a = b are uniquely solvable for every pair of
elementsa, b in Q. The constraints on a quasigroup are such that its multiplication table
forms a Latin square. That is, each element occurs exactly once in every row or column
of its n by n multiplication table. The ordern of the quasigroup is the cardinality of the
setQ.

Quasigroup completion problem is the NP-complete problem of determining whether
the remaining entries of a partially filledn by n table can be filled in such a way that
a full quasigroup multiplication table is obtained. A quasigroup completion problem can
be represented as a CSP withn2 variables, each with a domain of sizen. The constraints
can be represented by 2n all-differentn-ary constraints (one for each row and column).
Alternatively, we can use binary “not equal to” constraints, giving a constraint graph with
2n cliques of sizen. For quasigroup completion problems, there is a phase transition from
a region where almost all problems are soluble to a region where almost all problems
are insoluble as we vary the percentage of variables preassigned. The solution cost peaks
around the transition, with approximately 42% of variables preassigned [13].

The constraints in a quasigroup completion problem are triangle preserving and
decompose into cliques. This means that GAC can achieve very high levels of consistency.
In fact, as shown in [24], GAC on quasigroup problems is equivalent to NIC on their
binary decomposition. The following example demonstrates that enforcing GAC on the all-
different constraints of a quasigroup completion problem is strictly stronger than enforcing
AC on the not-equals constraints of the binary decomposition. We have a 3×3 quasigroup
where each variable/square has the domain{r, g, b} and there are two squares preassigned
to r.

150 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

{r} {r, g, b} {r, g, b}
{r, g, b} {r} {r, g, b}
{r, g, b} {r, g, b} {r, g, b}

Enforcing AC on the binary decomposition gives,

{r} {g,b} {g,b}
{g,b} {r} {g,b}
{g,b} {g,b} {r, g, b}

However, enforcing GAC on the all-different constraints of then-ary representation filters
out two more values in the bottom right square,

{r} {g,b} {g,b}
{g,b} {r} {g,b}
{g,b} {g,b} {r}

Table 1
Percentiles in branches searched to complete a quasigroup of order 10 using
algorithms that maintain either arc-consistency on the binary decomposition
(MAC) or generalized arc-consistency on the non-binary representation
(MGAC). ∗ means that the instance was abandoned after 10,000 branches.
100 problems were solved at each data point

p MAC MGAC

100th 90th 100th 90th

10 163 1 1 1

20 * 1 1 1

30 * 15 2 1

35 * 124 2 1

40 * 1726 2 1

42 * * 2 1

45 * * 2 1

48 * 2771 2 1

50 5692 1263 2 1

55 324 71 2 1

60 47 7 1 1

70 2 2 1 1

80 2 2 1 1

90 2 2 1 1

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 151

For our experiments we encoded the problem in ILOG Solver, a C++ constraint toolkit
which includes Régin’s algorithm for maintaining GAC on all-different constraints [20].
We used the Brelaz heuristic for variable selection (an in [13]) and Geelen’s promise
heuristic for value ordering (as in [17]). Although this value ordering is expensive to
compute in general, the structure of quasigroup problems reduces the cost significantly.
Gomes et al. observed that search costs to solve random quasigroup completion problems
can be modeled by a “heavy-tailed” distribution [14]. We therefore focus on the higher
percentiles. Table 1 gives branches explored to complete an order 10 quasigroup withp%
of entries preassigned, maintaining either AC on the binary representation or GAC on
the all-different constraints. We see a very significant advantage in enforcing GAC. With
a random value ordering, the worst case for MGAC was also 2 branches. This advantage
was also reflected on the CPU times used to process the instances. For the harder instances,
MGAC took a couple of seconds to find a solution or prove insolubility while MAC was
cut off after more than twenty times that time.

Table 2 shows that, as we increase problem size, almost all the problems remain trivial
to solve. The only exception was a single order 25 problem with 42% of its variables
preassigned. Search was abandoned at the cuttoff limit of 10,000 branches. Apart from
this, all instances were solved in less than 5 branches. This is a significant improvement
over the results of [14] where, despite the use of random restarts to enhance performance,
problems of order 25 were too expensive to solve, especially at the phase transition. We
should note that as the size of the problems increased there was an exponential growth in
the difference between the CPU times used by MGAC and MAC. For many instances of
more than order 10 size, MAC took hours to find a solution or prove that none exists, when
no cutoff limit was imposed.

Table 2
Percentiles in branches explored to complete quasigroups of order 10, 15, 20 and 25 using MGAC

p Order 10 Order 15 Order 20 Order 25

100th 90th 100th 90th 100th 90th 100th 90th

10 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1

30 2 1 1 1 2 1 2 1

40 2 1 2 1 2 1 2 1

42 2 1 2 1 2 1 * 1

45 2 1 3 1 3 1 3 1

48 2 1 2 1 2 1 2 1

50 2 1 2 1 2 1 3 1

60 1 1 1 1 4 1 1 1

70 1 1 1 1 1 1 1 1

80 1 1 1 1 1 1 1 1

90 1 1 1 1 1 1 1 1

152 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

6.2. Quasigroup existence

A variety of automated reasoning programs have been used to answer open questions
in finite mathematics about the existence of quasigroups with particular properties [11]. Is
GAC useful on these problems? We follow [11] and look at the so-called QG3, QG4,
QG5, QG6 and QG7 class of problems. For example, the QG5 problems concern the
existence of idempotent quasigroups (those in whicha ·a = a for each elementa) in which
(ba · b)b = a. For the definition of the other problems, see [11]. In these problems, the
structure of the constraint graph is disturbed by additional non-binary constraints. These
reduce the level of consistency achieved compared to quasigroup completion problems.
Nevertheless, GAC significantly prunes the search space and reduces run times.

To solve these problems, we again use the Solver toolkit, maintaining either GAC on the
all-different constraints, or AC on their binary representation, and the fail-first heuristic for
variable ordering. The additional non-binary constraints were handled using ILOG Solver’s

Table 3
Branches explored to solve a variety of quasigroup existence problems using either an algorithm that maintains
AC on the binary representation (MAC) or an algorithm that maintains GAC on the all-different constraints
(MGAC)

Order QG3 QG4 QG5

MAC MGAC MAC MGAC MAC MGAC

6 7 4 6 4 0 0

7 64 48 59 42 5 3

8 1,511 821 1,227 707 15 10

9 65,001 31,274 88,460 40,582 30 19

10 – – – – 268 74

11 – – – – 1,107 292

12 – – – – 6,832 910

13 – – – – >1,000,000 27,265

Order QG6 QG7

MAC MGAC MAC MGAC

6 0 0 6 4

7 5 2 67 39

8 9 3 415 314

9 36 26 4,837 4,211

10 199 167 94,433 80,677

11 2,221 1,876 – –

12 42,248 34,741 – –

13 – 4,730,320 – –

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 153

Table 4
Number of models found and branches explored on QG5 problems by a variety of different programs

Order Models Branches

MGTP FINDER MACE SATO SEM MGAC

7 3 9 3 4 5 6 3

8 1 34 13 8 8 11 10

9 0 239 46 14 11 29 19

10 0 7,026 341 37 21 250 74

11 5 51,904 1,728 112 43 1,231 292

12 0 2,749,676 11,047 369 277 8,636 1,156

standard bound consistency propagation. To eliminate some of the symmetric models, as in
[11], we added the constraint thata · n> a − 1 for every elementa. Table 3 demonstrates
the benefits of an algorithm that maintains GAC over one that maintains AC. In QG3 and
QG4, an algorithm that maintains AC explores twice as many branches as an algorithm
that maintains GAC, in QG5 the difference is orders of magnitude, whilst there is only a
slight difference in QG6 and QG7. An algorithm that maintains GAC dominates in terms
of CPU time as well as in terms of explored branches, although the difference in CPU
times is not as large since enforcing GAC is a more expensive operation than enforcing
AC. It would be interesting to identify the features of QG5 that gives an algorithm that
maintains GAC such an advantage over MAC, and those of QG6 and QG7 that lessen this
advantage.

We now compare our results with those of FINDER [23], MACE [16], MGTP [11],
SATO [26], and SEM [27]. Table 4 shows that our simple Solver code, by maintaining
GAC, outperforms MGTP and FINDER by orders of magnitude, and explores less branches
than SEM. SEM, MACE, and SATO have very sophisticated branching heuristics and
complex rules for the elimination of symmetric models that are far more powerful than
the symmetry breaking constraint we use [27]. It is therefore impressive that our simple
Solver program is competitive with well-developed systems like SEM and SATO.

To conclude, despite the addition of non-binary constraints that disturb the structure
of the constraint graph, maintaining GAC significantly reduces search and run times on
quasigroup existence problems. We conjecture that the performance of SEM and SATO
could be improved by the addition of a specialized procedure to maintain GAC on the
all-different constraints.

7. Related work

Montanari looked at the approximation of non-binary constraints by binary constraints
on the same set of variables [19]. He constructs a “minimal network” of binary constraints
by projecting each non-binary constraint onto the pairs of variables it contains. The
minimal network has a set of solutions that is a superset of the set of solutions of the

154 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

original non-binary constraints. It is the best upper bound to the set of solutions of the
non-binary constraints as no other binary approximation has fewer solutions. The minimal
network of a decomposable non-binary constraint is simply the binary decomposition.

Dechter has studied the representation of non-binary constraints by binary constraints
with additional (hidden) variables [6]. She identifies a trade-off between the number of
additional variables required and the size of their domains. In particular, any non-binary
constraint can be expressed by binary constraints with the addition of hidden variables
with three or more values. By comparison, with domains of size 2, additional variables do
not improve the expressive power. Bacchus and van Beek compared the forward checking
algorithm, nFC0 on non-binary constraints with the forward checking algorithm FC
applied to binary encodings that introduce extra (hidden) variables [1]. They showed that
FC and nFC0 are incomparable on such constraints both in visited nodes and consistency
checks.

8. Conclusions

We have performed a detailed theoretical comparison of the effects of binary and
non-binary constraint propagation on decomposable non-binary constraints. We proved
that the number of nodes visited by the forward checking algorithm, FC applied to
the binary decomposition lies between the number visited by the generalized forward
checking algorithms, nFC1 and nFC0 when applied to the non-binary constraints
(assuming equivalent variable and value ordering). We also proved that generalized arc-
consistency on decomposable constraints is strictly stronger than arc-consistency on the
binary decomposition. Indeed, under a simple restriction, it is strictly stronger than path
inverse consistency on the binary decomposition. By generalizing the arguments of [15],
these results show that a search algorithm that maintains generalized arc-consistency
on decomposable constraints strictly dominates a search algorithm that maintains arc-
consistency on the binary decomposition, which itself strictly dominates the forward
checking algorithm, FC and any of its generalizations, nFC0 to nFC5.

We corrected a result of [24] that claims that neighbourhood inverse consistency
on the binary decomposition is strictly stronger than generalized arc-consistency. In
general, neighbourhood inverse consistency on the binary decomposition is incomparable
to generalized arc-consistency. However, we identify a simple condition under which
neighbourhood inverse consistency on the binary decomposition is guaranteed to be
strictly stronger than generalized arc-consistency. We also defined a class of decomposable
non-binary constraints on which generalized arc-consistency collapses down onto AC
on the binary decomposition. We also made an asymptotic analysis on the number of
consistency checks required to achieve certain levels of consistency. The high levels of
consistency achieved by GAC on decomposable constraints compared to AC on the binary
decomposition result in less search for an algorithm that maintains GAC compared to an
algorithm that maintains AC. We demonstrated the practical importance of this result by
running experiments on benchmark domains. We showed that the dominance of GAC over
AC has a significant effect on problems with decomposable constraints such as quasigroup
completion and quasigroup existence.

I. Gent et al. / Artificial Intelligence 123 (2000) 133–156 155

What general lessons can be learnt from this study? First, the representation of problems
can have a very large impact on the efficiency of search. Our results show the comparison
of different representations is very complex, even when restricted to a limited set of
consistency properties and algorithms. The study of different representations thus deserves
further work, both theoretical and practical. Second, a non-binary representation can offer
considerable advantages over a binary representation. Decomposing non-binary constraints
into binary constraints can significantly reduce the level of consistency achieved by our
constraint propagation techniques.

References

[1] F. Bacchus, P. van Beek, On the conversion between non-binary and binary constraint satisfaction problems,
in: Proc. AAAI-98, Madison, WI, 1998.

[2] C. Bessière, P. Meseguer, E. Freuder, J. Larrosa, On forward checking for non-binary constraint satisfaction,
in: Proc. 5th International Conference on Principles and Practice of Constraint Programming (CP-99),
Alexandria, VA, 1999, pp. 88–102.

[3] C. Bessière, J.C. Régin, Mac and combined heuristics: Two reasons to forsake fc (and cbj?), in: Proc. CP-96,
Cambridge, MA, 1996, pp. 61–75.

[4] C. Bessière, J.C. Régin, Arc consistency for general constraint networks: Preliminary results, in: Proc.
IJCAI-97, Nagoya, Japan, 1997, pp. 398–404.

[5] R. Debruyne, C. Bessière, Some practicable filtering techniques for the constraint satisfaction problem, in:
Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 412–417.

[6] R. Dechter, On the expressiveness of networks with hidden variables, in: Proc. AAAI-90, Boston, MA,
1990, pp. 555–562.

[7] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989) 353–366.
[8] E. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24–32.
[9] E. Freuder, A sufficient condition for backtrack-bounded search, J. ACM 32 (4) (1985) 755–761.

[10] E. Freuder, C.D. Elfe, Neighborhood inverse consistency preprocessing, in: Proc. AAAI-96, Portland, OR,
1996, pp. 202–208.

[11] M. Fujita, J. Slaney, F. Bennett, Automatic generation of some results in finite algebra, in: Proc. IJCAI-93,
Chambéry, France, 1993, pp. 52–57.

[12] J. Gaschnig, Performance measurement and analysis of certain search algorithms, Technical Report CMU-
CS-79-124, Carnegie-Mellon University, Pittsburgh, PA, 1979.

[13] C.P. Gomes, B. Selman, Problem structure in the presence of perturbations, in: Proc. AAAI-97, Providence,
RI, 1997, pp. 221–226.

[14] C.P. Gomes, B. Selman, N. Crato, Heavy-tailed probability distributions in combinatorial search, in: Proc.
CP-97, Vienna, Austria, 1997, pp. 121–135.

[15] G. Kondrak, P. van Beek, A theoretical evaluation of selected backtracking algorithms, Artificial
Intelligence 89 (1997) 365–387.

[16] W. McCune, A Davis–Putnam program and its application to finite first-order model search: Quasigroup
existence problems, Technical Report ANL/MCS-TM-194, Argonne National Laboratory, 1994. Available
from http://www-unix.mcs.anl.gov/AR/mace/.

[17] P. Meseguer, T. Walsh, Interleaved and discrepancy based search, in: Proc. ECAI-98, Brighton, UK, 1998,
pp. 239–243.

[18] R. Mohr, G. Masini, Good old discrete relaxation, in: Proc. ECAI-88, Munich, Germany, 1988, pp. 651–656.
[19] U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing,

Inform. Sci. 7 (1974) 95–132.
[20] J.F. Puget, A C++ implementation of CLP, Technical Report 94-01, ILOG S.A., Gentilly, France, 1994.
[21] J.C. Régin, A filtering algorithm for constraints of difference in csps, in: Proc. AAAI-94, Seattle, WA, 1994,

pp. 362–367.

156 I. Gent et al. / Artificial Intelligence 123 (2000) 133–156

[22] J.C. Régin, Generalized arc consistency for global cardinality constraint, in: Proc. AAAI-96, Portland, OR,
1996, pp. 209–215.

[23] J. Slaney, FINDER, Finite domain enumerator: Notes and guide, Technical Report TR-ARP-1/92,
Automated Reasoning Program, Australian National University, 1992.

[24] K. Stergiou, T. Walsh, The difference all-difference makes, in: Proc. IJCAI-99, Stockholm, Sweden, 1999,
pp. 414–419.

[25] P. Van Hentenryck, Y. Deville, C. Teng, A generic arc consistency algorithm and its specializations, Artificial
Intelligence 57 (1992) 291–321.

[26] H. Zhang, M. Stickel, Implementing the Davis–Putnam algorithm by tries, Technical Report, University of
Iowa, 1994.

[27] J. Zhang, H. Zhang, SEM: A system for enumerating models, in: Proc. IJCAI-95, Montreal, Quebec, Vol. 1,
1995, pp. 298–303.

