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Abstract

We make a number of contributions to the study of the Quantified Constraint
Satisfaction Problem (QCSP). The QCSP is an extension of the consatiéfis-
tion problem that can be used to model combinatorial problems contaioirime
gency or uncertainty. It allows for universally quantified variables ¢aat model
uncertain actions and events, such as the unknown weather for agartyeor an
opponent’s next move in a game. In this paper we report significartibations
to two very different methods for solving QCSPs. The first approath iisiple-
ment special purpose algorithms for QCSPs; and the second is toeeQ@EPs
as Quantified Boolean Formulas and then use specialized QBF solversdiskFh
covery of particularly effective encodings influenced the design akeneffective
algorithms: by analyzing the properties of these encodings, we identifiethe
tures in QBF solvers responsible for their efficiency. This enables us\izel
analogues of these features in QCSPs, and implement them in spepias@a-
gorithms, yielding an effective special purpose solver, QCSP-Sé&lxperiments
show that this solver and a highly optimized QBF encoding are severatod
magnitude more efficient than the initially developed algorithms. A final, igdt s
nificant, contribution is the identification of flaws in simple methods of geneyatin
random QCSP instances, and a means of generating instances whichlarewn
to be flawed.

Keywords: Quantified Constraint Satisfaction Problems, Quantified Boolean For-
mulas, Arc Consistency, Search Algorithms, Random Problems
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1 Introduction

Quantified Constraint Satisfaction Problems (QCSPs) canskd to model various
PSPACE-complete combinatorial problems from domains pileenning under uncer-
tainty, design, adversary game playing, and model checkitay example, in game
playing we may want to determine if a consistent strateggtexor all possible moves
of the opponent. In a design problem it may be required thandiguration must be
possible for all possible sequences of user choices. As leefiample, when planning
in a safety critical environment, such as a nuclear stati@nay require that an action
is possible for every eventuality. QCSPs extend traditiamajuantified, CSPs to deal
with the kind of contingency found in the above examples.

The QCSP naturally generalizes the standard CSP formalysatidwing for uni-
versally quantified variables. Universal variables aradusemodel actions or events
which are contingent, for which we are uncertain, or jussthwhich are not in our
control. Examples would be contingencies such as user ehdica configuration
problem, uncertainties such as the weather in a plan to hglrden party, or oppo-
nent moves in an adversary game. In a conventional CSPrables are existentially
quantified, since all are within our control. The values ia ttomain of a universal
variable capture all the possible outcomes of the eventt@ramodelled by this vari-
able. In this way, QCSPs modbbundeduncertainty. In a QCSP we try to find a
strategy defining the values of the existential variables for allgibole sequences of
instantiations for the universal variables, so that all¢dbestraints in the problem are
satisfied. Such a strategy guarantees that there is a solliatever values the uni-
versal variables take, i.e. whatever the outcome of thertaineactions and events.
The generalization of CSPs to QCSPs increases the expmresiv of the framework,
but at the same time the complexity of the decision task ffisea NP-complete to
PSPACE-complete [8, 26, 38].

There is already considerable interest in quantified caimétreasoning in the case
of Quantified Boolean Formulag)BF), which is the generalization of SAT that al-
lows universal quantification (for example, [13,23, 30,88). Also, there is a signifi-
cant body of work on quantified problems with continuous deahains (e.qg. [5, 41]).
Ratschan gives numerous references to papers on this s[#i)ecAs far as QCSPs
with discrete finite non-Boolean domains are concernedgtigerecent research on
theory defining the complexity of various reasoning taskbalao specifying tractable
subclasses (e.g. [8, 11, 15-18]). Also, various useful eptscfrom CSPs, such as
global and local consistency, substitutability and intamgeability, have been defined
for QCSPs [11, 12]. However, little has been done as far asritthgns for solving
QCSPs are concerned. In the few existing works, BordeauxMiordroy introduced
a framework for implementing arc consistency and descriiiteting operators for
certain classes of constraints [9, 12]. Also, very recentbrger and Bessiere pro-
posed a bottom-up solver for QCSPs called BlockSolve [44iilesBenedetti, Lal-
louet and Vautard implemented QeCode, a QCSP solver buitippof the CSP solver
Gecode [4].

In this paper we report the first comprehensive attempt t leffective QCSP
solvers, although we limit ourselves to the case where caingt are binary. We make
contributions to two very different approaches to solvir@®pPs. These are special pur-



pose solvers for QCSPs; and encoding QCSPs as QBF instanttest gxisting QBF

solvers can be used. In each approach we introduce noveffasthe techniques. We
also show how experience with the encodings directly infteenthe design of better
techniques for the specialized solvers.

We first approach QCSPs directly by extending well-knowrogtms from the
standard to the quantified case. This is analogous to the@agptaken at the early
stages of research in QBF. We show that some of the most widslyg techniques
for CSPs can be adapted to deal with quantification. We firstrilee a generic arc
consistency algorithm that can be used to enforce AC in angirpiQCSP. We then
extend the chronological backtracking (BT), forward cheg(FC), and maintaining
arc consistency (MAC) algorithms so that they can handlengfisation. We also
propose modifications of FC and MAC that take advantage gbtbperties of QCSPs.

Then we follow an orthogonal approach, based on encodingFR3@S QBFs. A
particular advantage of encoding one search problem abemmtcurs when, as here,
search techniques for the target problem are more highlgldped than the original.
In contrast to QCSP, numerous advanced solvers are aeaftablQBF. We describe a
finely-tuned encoding which can be several orders of madegumore efficient than
the direct methods described so far. The tuning of encodimbe effective for search
is considerably more involved than in the case of SAT, whammdings often have an
elegant simplicity. A simple way of lifting CSP encodingsQE&SP is very ineffective,
so we explore and implement new ideas, without analogueé\i tBat make search
very effective.

Apart from obtaining efficient tools for QCSP solving, we bénfrom the study
and development of encodings to learn valuable lessonsdhdie transferred to direct
algorithms. So in the third, and final, stage in the develaproé algorithms for QC-
SPs we analyze the advantages offered by our QBF encodindgmtfy the features
responsible for its efficiency. We identify three sophistéxdl techniques; conflict-based
backjumping [39], solution-directed backjumping [33]danost importantly, the pure
literal rule [14], as important reasons for the success df @&vers in solving encoded
QCSP instances. We devise analogues of these features IRQ &R implement them
on top of direct algorithms, to yield a specialized diredteg called QCSP-Solve.

A final issue we address in this paper is that of benchmarkiimge there is natu-
rally a distinct lack of benchmarks to compare algorithmsThis is a familiar problem
that has appeared in the early stages of experimental obsigavarious other areas.
As was the case with CSP, SAT, and QBF, we address this prdijgmnoposing and
using methods to generate random instances. We show thatpdesjeneralization
of random generation models from CSPs or QBF to QCSPs is pgoofiaws, which
quickly affect all generated instances. We then introducandom generator that is
free from these flaws, although it remains possible thatlitsuiffer from a currently
unknown flaw. Experiments run on problems created usinginerator reveal a pro-
gressive, and dramatic, improvement in the efficiency ofroethods; starting with the
initial direct algorithms and culminating in QCSP-Solvalanhighly optimized QBF
encoding.

This paper is structured as follows. In Section 2 we give theessary definitions
and background. We then present progressively more effioiethods of handling
QCSPs. In Section 3 we follow the direct approach by extenpdtandard algorithms



from CSPs to QCSPs. In Section 4 we describe some of therexistirk on encod-
ings, and develop a finely-tuned encoding which is remagkatdre efficient than the
direct approaches. In Section 5 we show how lessons learnadthe encoding of
QCSP into QBF can be utilized to enhance the direct algosthmesulting in QCSP-
Solve; an advanced solver for QCSPs. Section 6 describesvanttiéch can arise
in random QCSPs, introduces a random generator for QCSHsgiaes indicative
experimental results which demonstrate the building ofjpssively more efficient
techniques. Finally, in Section 7 we conclude.

2 Preliminaries

A Constraint Satisfaction ProblefCSP) consists of a set of variables, each associated
with a domain of possible values, and a set of constraintsctisg the combinations

of values that the variables can simultaneously take. InsdC#iRariables are existen-
tially quantified. QCSPs are more expressive in that themallniversally quantified
variables. In this way they enable the formulation of pratdevhere all contingencies
must be allowed for. We now give a formal definition of a QCS&ance. As is usual
practice in CSPs, we use the name QCSP to denote both partinstances and the
decision problem of determining whether an instance is(ireesoluble) or not.

Definition 1 A Quantified Constraint Satisfaction Proble(@CSP) F' is a tuple
(V,Q, D, C) where:

e Vis alinearly ordered set of n variables. In the following widl denote bywv;
thei-th element ofl” with respect to this linear order.

e (is a mapping froni” to the set of quantifier§3, v}. For each variable; € V,
Q(v;) is a quantifier § or V) associated with; .

e D is amapping fronl’ to a set of domain® = {D(v;),...,D(v,)}. Foreach
variablev; € V, D(v;) is the finite domain of its possible values.

e C ={c1,...,cn} Is @ set ofm constraints. Each constraint € C is defined
as a paivars(c;), rel(c;)), where: 1yars(c;) = (v, ..., v;,) is an ordered
subset ofl” called the constrairdcope The size ofvars(c;) is called thearity
of ¢;. 2) rel(c;) is a subset of th€artesianproductD(v;,) x ... x D(v;,) and
it specifies the allowed combinations of values for the \deainvars(c;).

The above definition of a QCSP reduces to that of a standardifGB&re are no
universally quantified variables in the problem.

A blockof variables in a QCSF' is a maximal subsequence of variabled/ithat
have the same quantification. The assignment (also cali¢alntiation) of value:; €
D(v;) to variablev; € V will be denoted by, — a;. Accordingly, the tuple assigning
valuesay, ..., a; to variablesvy, ..., v; will be denoted by(v; — ay,...,v; — a;).
The set of variables over which a tuptds defined will be denoted byars(r). For
any subsetvars’ of vars(r), T[vars’] denotes the sub-tuple efthat includes only



assignments to the variablesdnrs’. A tuple 7 is consistentiff for all ¢; € C, s.t.
vars(c;) C wvars(t), Tlvars(c;)] € rel(c;). For any constraint; € C, variable
v; € V and valuex € D(v;), we denote by:;[v; — a] the subset ofel(c;) that only
includes tuples where; takes value. If v; ¢ vars(c;) thenc;[v; — a] = rel(c;).
We write C'lv; — a] as a shorthand far [v; — a] A ... A cp[v; — al.

In what follows we will often refer to universally and exist&lly quantified vari-
ables asiniversalsandexistentialgespectively.

Definition 2 QCSP semantics.

A QCSPF = (V,Q, D, C) represents the logical formula = Q(v1)v1 € D(v1)
... Q(vp)vy € D(vy,) (C). The semantics of a QCSP can be defined recursively as
follows.

The base case is a QCSP instance with an empty quantifier @efig. all vari-
ables assigned. This QCSP instance is true iff, for eachti@nt; € C, the tuple of
values of assigned variables in its scoes(c;) belongs to its relatiomel(c;). Note
that an empty QCSP is vacuously true. ¢lfis of the form3v, € D(vy) Q(v2)vs €
D(v2)...Q(vy)vn€D(vy,) (C) thenF is true iff there exists some valuec D(v;)
such thatQ(ve)ve € D(v2) ... Q(vy)vy, € D(v,)(Clvy +— al) is true. Or in words,
if under the assignment; — «a the rest of the problem is true. # is of the form
Vv1€D(v1) Q(v2)v2€D(v2) . .. Q(vy)vn€D(vy,) (C) thenF is true iff for each value
a € D(v1), Q(v2)va€D(v2) . .. Q(vy ) v €D (vy,)(Clvy +— al) is true.

To better understand the semantics of a QCSP, we first neegfitedhe notion
of a strategy. Astrategyis a tree with each level of the tree corresponding to a vari-
able. Level 1 corresponds to the first variablein V', and levels thereafter follow
the order ofV. A node in thei-th level of the tree corresponds to a tuple of vari-
able assignment&n — aq,...,v; — a;), wherea; € D(vy),...,a; € D(v;). The
root of the tree corresponds to the empty tuple, the firstl lewdes correspond to a
1-tuple assigning a value to the first variablelinthe second level nodes correspond
to 2-tuples assigning the first two variableslingenerated by extending the first level
assignment, etc. A node in the tree corresponding to tuple- a4, ..., v; — a;) has
as many children as the valuesinv;;1), if v;41 is universally quantified, whereas
it has a single child ify; 1 is existentially quantified. A node corresponding to tuple
T ={(v1 — ai,...,v; — a;) istrueiff 7 is consistent. Otherwise, the noddasse A
tuple of assignments to all variables in a QCSP (i.e-taple) constitutes acenario
Within a scenario, the value of each existential variablgetiels on the values of the
universal variables that precede it¥h A scenario isconsistentff all the variable
assignments in the scenario satisfy all constraints in tbelem.

We can now give an alternative definition of the semantics QIGSP: A QCSP
with n variables istrue (or satisfiabl@ iff there exists a strategy where all the leaf
nodes (i.e. the nodes of leve) are trué. Or in other words, iff there exists a strategy
such that all the scenarios of the strategy are consistamnth § strategy is called a
consistent strategyr simply asolution to the QCSP. As we will show, backtracking-
based algorithms can solve a QCSP by traversing the spadeatégies until they
discover a consistent one or prove that none exists.

1This definition can easily be extended to the case where nodgde pruned by propagation.



Example 1 Consider the problefv; JvoVusJvg (v1 # vo A vy # vy A vg # vg).
This is a QCSP wher& consists of four variables, and is a conjunction of three
constraints. The problem reads “for all valuesvgfthere exist values af, such that
for all values ofvs there exist values of,, such that all constraints are satisfied”.
Assuming that all variables have domdii 1, 2} then the problem is true. A solution

to this problem is depicted in Figure 1. Each path to a leaénsd consistent scenario.

Figure 1: A solution to the problem of Example 1.

Note that, in contrast to standard CSPs, the variables in @R@Ze ordered. This
means that changing their order gives rise to a differenblpro. For example, the
problemVv;3v; (v; = v;), with D(v;) = D(v;) = {0, 1}, is true as for any value of
v; we can find a value fov; to satisfy the constraint. However, the problém; Vo,
(vj = v;), with D(v;) = D(v;) = {0,1}, is false as no value of; satisfies the
constraint for both possible assignments{o

In this paper we restrict our attention to binary QCSPs. A®ismon, we assume
that at most one constraint is defined on any pair of variathtea binary QCSP, each
constraint, denoted hy;, involves two variablesy; andv;) which may be universally
or existentially quantified. We assume that for any constigj, variablev; precedes
vj in V, unless explicitly specified otherwise. Some of the techesodescribed below
can be easily extended to constraints of any arity, but foerstthis extension is much
more involved. We briefly elaborate on this in Section 3.1.

3 Extending CSP Algorithms to handle QCSPs

In this section we begin the presentation of techniquesdbvireg QCSPs. We first
approach the problem directly by extending standard alyos from CSPs to deal with
guantification. Namely, we describe an arc consistencyriditgno for binary QCSPs,
and adapt widely used backtracking search algorithms tdleg@CSPs. We also show
how the notion of value interchangeability can be exploite@CSPs to break some
symmetries.



3.1 Arc Consistency

An important concept in CSPs is the concept of local conststeLocal consistencies
are properties that can be achieved in a CSP, using (typicatjorithms with poly-
nomial time complexity, to remove some inconsistent vakidser prior to or during
search. Arc consistency is the most commonly used localistensy property in the
existing constraint programming engines.

A constraintc;; in a CSP isarc consisten{AC) iff for each valuea € D(v;) there
exists avalué € D(v;) so that the assignmenis— a andv; — barecompatiblei.e.
satisfyc;;). In this case we say théatis asupportfor a on constraint;;. Accordingly,

a is a support foh on the same constraint. A binary CSP is arc consistent iftsll
constraints are arc consistent. The operation performe@termine whether a value
a € D(v;) is supported by a value e D(v;) with respect to constraini; is called a
constraint check

Bordeaux and Monfroy extended the definition of AC to QCSPs described
the schema of a generic AC3-based algorithm for QCSPs [1#k dlgorithm can be
instantiated to achieve AC on specific constraints (not seamdy binary) once filtering
operators have been defined for these constraints. A fiffenierator for a constraint
cis a function that specifies which values in the domains of/lir@bles involved in:
are arc inconsistent with respectdotaking in consideration the quantification of the
variables [12]. Consider the following example:

Example 2 Bordeaux and Monfroy defined filtering operators for constrav; =

v;, wherev; andv; have Boolean domains [12]. These operators specify theesalu
in D(v;) and D(v;) that are arc inconsistent according to the quantificatiothef
two variables. The application of an AC algorithm will prutieese values from the
domains. For instance, if; is existentially quantified and; is universally quantified
(i.e. the formula isdv;Yv;(—v; = v;)) then the following applies: 1D (v;) = {0}
then value O is pruned frol(v;). If D(v;) = {1} then value 1 is pruned fro (v;).

The definition of AC and the AC algorithm of [12] are based oraieposing
complex constraints (e.g. constraints of high arity), tmaty be present in a QCSP,
into “primitive” constraints for which AC filtering operate have been defined. As
noted in [12], this definition is somewhat different from standard definition of AC
in CSPs, and is actually closer to the definitiorralational consistencj21]. In [12],
and later in [9], filtering operators for constraints on Bza variables and also for
linear numerical constraints were defined. The aim of ourkwor AC for QCSPs
is to define filtering operators for arbitrary binary consits, as opposed to specific
constraints with known semantics, and embed these intdfiareat algorithm.

We first give an alternative definition of AC for binary QCSRattclosely follows
the standard CSP definition. Based on this definition, we dedine filtering operators
for arbitrary binary constraints in a straightforward wainally, we describe QAC-
2001, a generic AC algorithm that utilizes these filtering@mgpors to achieve AC in
arbitrary binary QCSPs. In contrast to the algorithm of [&jich is based on ACS3,
QAC-2001 is based on AC2001/3.1, the AC algorithm of [6] forasy CSPS.

2Note that other AC algorithms, like AC-6, can be used as ba¥eschose to use AC2001/3.1 because
of its simplicity and optimal time complexity.




Definition 3 A binary QCSPF = (V, @, D, C) is arc consisteniff all the constraints
¢i; € C are arc consistent. Consider a constrainte C, wherev; is beforev; in
V. There are four possible combinations of quantificationsfandv;. For each case,
constraint;; is arc consistent iff:

Jwv; Jv; : Eachvaluer € D(v;) is supported by at least one valueliiv; ), and each
valueb € D(v;) is supported by at least one valuelXv;).

Vv; Yo, : Each values € D(v;) is supported by all values iP(v,), and each value
b € D(v;) is supported by all values i (v;).

Vv, Jv; : Eachvaluer € D(v;) is supported by at least one valuelitfv; ), and each
valueb € D(v;) is supported by at least one valuelitfv;).

Jv; Vv; : Each valuex € D(v;) is supported by all values if’(v;), and each value
b € D(v;) is supported by at least one valuelitfv;).

Matching the four cases of the definition above, we can defiteifig operators
for an arbitrary binary constraint; as follows. These filtering operators specify the
values that are arc inconsistent, and thus must be remowedtfre domains of the
variables involved in the constraint.

Jv; Jv; (¢i;) : Ifavaluea € D(v;) has no support itb(v;) thena is removed from
D(v;). Similarly, if a valueb € D(v;) has no support i) (v;) thend is removed
from D(v;). If any of the two domains becomes empty then the problemnide fa

Vv; Vuj (¢;;) @ If any valuea € D(v;) is not supported by all values iR (v;) (in
which case at least one valties D(v;) will also not be supported by all values
in D(v;)) then the problem is false. Note that it suffices to check trestraint
only in one direction. If all values of; are supported by all values of then,
obviously, the opposite also holds.

Vv, Jvj (¢;5) : If avaluea € D(v;) has no support iD(v;) then the problem is
false. If a valueb € D(v;) has no support irD(v;) thenb is removed from
D(vj;). If D(v;) becomes empty then the problem is false.

Jwv; Yuj (¢;) : Ifavaluea € D(v;) is not supported by all values iR(v;) thena
is removed fromD(v;). If D(v;) becomes empty then the problem is false. If a
valueb € D(v;) has no support itD(v;) then the problem is false. Note that it
suffices to check the constraint only in one direction. If¢hs at least one value
in D(v;) that is supported by all values iD(v;) then, obviously, all values in
D(v;) have at least one supportIn(v;).

In Figure 2 we sketch algorithm QAC-2001. The algorithm taés input a QCSP
F =(V,Q, D, C) and removes unsupported values from the domains of theblesia
using the filtering operators described above. If the doro&em existential becomes
empty or a value is removed from the domain of a universal theralgorithm returns
FALSE.



BooleanQAC-2001(F' = (V,Q, D, C))
input: A QCSPF
output: TRUE if AC is successfully applied o and FALSE if there a domain wipeout
of an existential or a value is removed from the domain of a universal
put all constraints of” in S
S — 0
for eache;; € C ' whereQ(v;) = VandQ(v;) =V
for eacha € D(v;)
if a is not supported by all values iD(v;) return FALSE
addcij to S/
for eache;; € C ' whereQ(v;) = 3 andQ(v;)
for eacha € D(v;)
if a is not supported by all values iR (v;)
removea from D(v;)
if D(v;) = 0 return FALSE
elseaddc;; to S
S — S\S
return Propagatior{F’ S)

v

function Propagation{ F, S : stack)
input: A QCSPF and a stack of variable$
output: TRUE if AC is successfully applied oA and FALSE if there a domain wipeout
of an existential or a value is removed from the domain of a universal
for each constrained pair of variablesv; € V'
for eacha € D(v;)
currentSupportvi,a,vj «— NIL
while S # ()
pop a constraint;; from .S
if Revisév;, v;, currentSupport)
if Q(v;) =VorD(v;) = 0return FALSE
put each constraint; in .S
return TRUE

function Revisév;, v;, currentSupport)
input: A pair of variablesv;,v; and the data structukgirrentSupport
output: TRUE if a value is removed from a domain and FALSE otherwise
DELETION « FALSE
for eacha € D(v;)
if currentSupports, ,q,»; 18 NIL oris no longer inD(v;)
if existsb(€ D(v;)) > currentSupports, a,»; andb supportsz
currentSupportvi,a,vj —b
elseremovea from D(v;)
if Q(v;) =V return TRUE
DELETION «— TRUE
return DELETION

Figure 2: QAC-2001: An arc consistency algorithm for bin@@SPs.



The algorithm performs constraint-based propagation.t Ehat uses a stack of
constraints that are propagated instead of a stack of VasiabApart from this, it
is similar to AC2001/3.1 augmented with the handling of ensal variables. As in
AC2001/3.1, we use a structure, called-rentSupport (corresponding to structure
Last in [6]), to keep track of the most recently discovered suppfor the values of
the variables. To be precise,df; € C thencurrentSupport,, q.., is the value in
D(v;) that currently supports value € D(v;). For eachw; € V, a € D(v;), and
v; € V (s.t. v; is constrained withy;) currentSupport,, q.., is initialized to NI L.
As in [6], value NIL is defined as a dummy value which precedes any value in any
domain. We assume that there exists an order of the valubs ithamains.

Initially, all constraints are added to the stagk Constraints of the forrd v;V v;
(¢ij) and¥ v;¥ v; (c;;) are dealt with by a preprocessing step in functi@hC-2001
For the former, each value dp(v;) that is not supported by all values 6f(v;) is
removed fromD(v;). For the latter, if there is a value @¥(v;) that is not supported by
all values ofD(v;) then we can determine that the problem is false. Such camistra
are thereafter removed froand are not considered during the propagation phase.

In the propagation phase, functiéteviseis called for each constraimt; in the
stack. This function looks for a support ii(v;) for each valuex of D(v;). This
is done by first looking at valueurrent Support,, 4..,. If thisis NIL or it has been
removed fromD(v;) because of propagation then the values;afre examined starting
with the one immediately afterrrentSupport.,, 4., If no support is found fou, it
is removed fromD(v;). In this case, ifv; is universally quantified oD(v;) becomes
empty then we can determine that the problem is false. Oikerwach constrairi;;
involving v; and some other variabtg, is added to the stack so that it can be revised.
The algorithm terminates successfully if the stack becosnagty.

We now show that, despite the presence of universal quastifiee worst-case
time complexity ofQAC-2001is the same as that of AC-2001/3.1. We assumerthat
is the number of binary constraints in a problem, drislthe maximum domain size.

Proposition 1 The worst-case time complexity of algorith@AC-2001is O(md?).

Proof: The worst-case time complexity of the algorithm can be deiteed by ex-
amining the constraint checks executed in the fovdoops in functionQAC-2001and
also in functionPropagation

In the firstfor loop we iterate through all constraintg that involve two universal
variablesy; andv;. For each value € D(v;), we check ifa is supported by all values
in D(v;) or not. Therefore, each iteration costéd®) constraint checks. Hence, the
first for loop costs @md?) checks. In the seconfbr loop we iterate through all
constraintsc;; that involve an existential variablg and a universab;. As with the
first loop, it is easy to see that the cost of the second loogama(md?).

FunctionRevisds called at most times for each constraint; € C; once for every
deletion of a value fronD(v;). In each call taRevisethe algorithm performs at most
d checks (one for each valuec D(x;)) to see ifcurrentSupport,, 4., is stillin the
domain ofD(v,). Ifitis not (or itis NIL), the algorithms tries to find a new support for
ain D(v;) starting from the value immediately aft@rrrentSupport,, q..,. Since we
use structureurrentSupport, each timeRevise is called forc;;, and for each value
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a € D(x;), we only check values that have not been checked before hér atords,
we can check each of thévalues inD(v;) at most once for each value of. So
overall, in the worst case, we hadechecks plus thel checks to test the validity of
the current support. For thévalues ofv; the upper bound in checks performed to
make one variable AC is therefof®d?). Form constraints the worst-case complexity
bound ofPropagationis O(md?). Hence, the worst-case time complexity @QAC-
2001is O(md? + md? + md?)=0(md?). QED

The generalization of AC to non-binary constraints is usuaferred to asGen-
eralized Arc ConsistencGAC). Processing a non-binary constraint to achieve GAC
according to the definition by Bordeaux et. al. [9, 11, 12] igcim more challenging
than the binary case for several reasons. Firstly, sinceléiel of consistency is a
generalization of GAC for CSP, enforcing it takes exporadititne in general, whereas
binary quantified arc consistency can be enforced im@¥). Secondly, an algorithm
that achieves GAC on non-binary QCSPs would be considerablg complex than a
similar algorithm for GAC in CSP, because (for a constraiithwarity &) it should be
able to handle up ta* different quantifier sequences. Thirdly, a support for aigal
in a non-binary constraintis no longer simply a tuple that includes that value and is
allowed byc, as in the CSP case. Here, we need a more complex definitiosud-a
port that takes into account the quantified variables in tmestraint’'s scope. Hence we
restrict our attention to binary QCSPs in this paper anddeansistency algorithms
for non-binary QCSPs as future work.

Finally, compared to the work of [12] on AC, we can note théoiwing differences:
We only deal with binary constraints whereas the definitibril@] is generic (i.e.
it covers GAC). We have defined filtering operators for adpjtrbinary constraints,
whereas [12] defined filtering operators for specific binamyd(ternary) Boolean and
numerical constraints. The AC algorithm of [12] is based @BAwhile ours is based
on AC2001/3.1.

3.2 Search Algorithms

Numerous search algorithms have been developed for CSPs.oftbem are based on
backtracking search. In this section we adapt chronolbgaektracking (BT), forward
checking (FC) [36] and maintaining arc consistency (MAQ)][tb deal with binary
QCSPs. Also, we show that by slightly modifying FC and MAC ve glgorithms that
can discover inconsistencies earlier, and therefore candre efficient.

For any algorithm, we assume that before commencing sehecinput QCSP
has been made AC using algorithm QAC-2001. Under this assompve do not
have to consider constraints of the fomw;V v; (c;;) or V v;V v; (cy5) in the algo-
rithms. All values of variabley;, in such constraints, are definitely consistent with
all values of variabley;. If some value was not consistent then it would have been
removed by the application of QAC-2001. This implies thatrinlg search, we can
safely ignore the last variables In if they are universally quantified. For instance, if
a problem3v;Vv;3viVu; (¢i5 A ¢ji A cr) is AC, then we can remove constrainy
and ignore variabley;. Hence it suffices to apply search on the simplified problem
vV, vy (cij A cjr)-
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3.2.1 Chronological Backtracking

BT is a straightforward extension of the corresponding @l for standard CSPs.

It takes as input a QCSP and traverses the space of strategies until the truth of the
problem is proved or disproved. To simplify the descriptadrihe algorithm (and the
ones that follow), we assume that variables are assignedv#&bllowing their order in

V. However, consecutive variables with the same quantifinatan be instantiated in
any order. The variable that is currently instantiated lkedathecurrent variableand

is denoted by..,.. The variables ifi/ afterv,.,- are calleduture variables, while the
ones before.,, are callecpastvariables. A situation where all values of the current
variable are deemed inconsistent is calledtad-end We make use of the following
functions:

next For any variabley;, functionnex{v;) returns the variable immediately after
inV.

last_u For any variabley;, functionlast_u(v;) returns the variable; € V such that
v; is universally quantified, it precedesin V/, and there is no universal variable
afterv; and beforey; in V. If vy, is the first universal irV thenlast_uvy,,) is
NIL.

last_e For any variable;, functionlast_gv;) returns the variable; € V such thav;
is existentially quantified, it precedesin V, and there is no existential variable
afterv; and beforey; in V. If vy, is the first existential i’ thenlast_guvy.) is
NIL.

BT terminates successfully if all the values of the first @ndal variable are found
to be part of a consistent scenario (line 15). In case thexenaruniversals in the
problem, the algorithm terminates successfully once thedzistential has been con-
sistently instantiated (line 10), as the problem is a stah@&P.

If the current variable is existential and a dead-end ocitias the algorithm back-
tracks to the previously instantiated existential vagalpossibly jumping over some
universal variables (lines 4-5). Detecting a dead-end m#aat the algorithm deter-
mines that the currently explored strategy cannot be extétma solution. Therefore,
it backtracks to the previous existential to assign it a neluesand explore an alterna-
tive strategy. If there is no dead-end, the next availableevaf the current variable is
checked against the previous assignments (line 8). If thevia compatible with all
assignments to past variables and BT has reached a truedeéafthen it backtracks
to the previous universal variable (line 11). If BT is not deaf node, it proceeds by
moving to the next variable (line 12). In case some condtrdiack fails, BT tries the
next value of the current variable in the next iteration @hnile loop.

If the current variable is universal then there are two caéedl of its values have
been proved to be part of a consistent scenario, BT bacltadke previous universal
variable (lines 14,16) to assign it its next value. If notdithe current variable’s values
have been tried, BT assigns it with its next value and proseéth the next variable
(lines 17,18). Note that when BT assigns a value to a unileeséble it does not
check this value against the previously made assignmefhis.rdason is that, due to
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BooleanBT (F' = (V,Q, D, C))

input: A QCSPF

output: TRUE if a solution toF" exists and FALSE otherwise
1: Veur — 01

2: while veyr # NIL

3 if Qewr) =3

4: if all values inD(v..r) have been tried

5: Veur — laSt_gveyr)

6: else

7 assignve.» with the next valuer € D(veyr)

8: if veur — a is compatible with the assignments to all past variables
9: if Veur = vpn

10: if there are no universals i return TRUE

11: elseveyr «— last_Uveur)

12: elsevey,r «— nex{veur)

13: elsellQ(veur) = VI

14: if all values inD(v..,) have been tried

15: if veur is the first universal i’ return TRUE
16:  elseveyr < last_Uveur)

17: elseassignuc,. with the next valuer € D (vcur)
18: Veur — NEX{Veur)

19:if veurr = NIL return FALSE

Figure 3: Chronological Backtracking for binary QCSPs.

AC preprocessing, all values of a universal variallare definitely consistent with all
values of the variables beforgin V.

Correctness of BT We now demonstrate, informally, the correctness of BT. Tawsh
soundness, we need to demonstrate that whenever BT retumatfter traversing a
strategy, this strategy is indeed consistent. Or, in ottadg; that all the scenarios in
the strategy are consistent. Take any scenario in the gyrated consider any tuple of
assignments = (v, — aq,...,v; — a;) along this scenario. BT extends this tuple to
variablev; ;1 by assigning it a value; ; only if a;, ; is consistent with all assignments
in 7. Therefore, when a tuple; — aq,...,v; — a,—1) is extended to an—tuple,

all assignments in the tuple will be consistent with eactepttThis means that the
tuple is a consistent scenario.

To show completeness, we need to demonstrate that if a temisirategy ex-
ists, BT will correctly verify it by returning true once it baraversed it. It suffices
to show that BT traverses the entire search space apart foome sub-spaces that
are not part of any consistent strategy. BT systematicalploeges the search space
trying to verify that for any sequence of assignments to thigaisals we can find a
consistent scenario that includes these assignmentsctSaar-spaces are skipped 1)
when a value of the current variable fails a constraint cheitk an assignment of a
past variable, and 2) when there is a backtrack to an exiatet the first case, let
7= (v — ay,...,v;_1 — a;—1) be the current tuple of assignments and assume that
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valueaq; of the current variable; fails a constraint check with an assignmentinTu-
ple T cannot be extended to a consistent scenario and hegrfaed the sub-tree below
the corresponding node) is correctly pruned. A backtracktexistentiab; assigned
valuea; means that the currently explored strategy cannot be estetoda consistent
strategy and thereforg (and the sub-tree below the corresponding node) is coyrectl
pruned.

3.2.2 Forward Checking and MAC

Many ways to improve the performance of BT have been propostte CSP litera-
ture. Most of them are classified as eitt@mok-aheador look-backmethods. The for-
mer try to detect inconsistencies early by performing someumt of local reasoning
after each variable instantiation. The latter try to deahvei dead-end in an intelli-
gent way by identifying the variables that are responsibtetfe dead-and and directly
backtracking to one of these variables. We now show how th&t kmmmonly used
look-ahead algorithms, FC and MAC, can be adapted to QCS&sk-back methods
for QCSPs are discussed in Section 5.

The algorithm FCO, shown in Figure 4, is an extension of stethéC to QCSPs.
It operates in a way similar to BT with the difference thatjrastandard CSPs, con-
straint checks are made against future instead of pastol@siaTo be precise, once a
variable assignment to an existential or universal is madechecked against values
of future existentials using functidforward_Check(lines 9 and 25). In this function
any value that is not compatible with the current assignneetemporarily removed
from the domain of the corresponding variable. As mentigpredstraints of the form
J vV v; (¢i5) or VvV v; (¢;;) have already been handled by preprocessing. There-
fore, no checks against universals are performed. If aNdhges are removed from the
domain of a variable (domain wipe-out) then the currentgasaent is rejected. In this
case, ifv.,, is an existential, procedutRestoreis called to undo any changes made
in the domains of the variables (line 16). Then the algorithithtry the next value of
veur IN the next iteration of thavhile loop. If v.,, is a universal, the algorithm will
backtrack to the previous existentlabt_&v.,-) in V' (line 29). Before backtracking,
all values that were temporarily removed because of thgiassnts to variables be-
tweenlast_gv.,,-) andv,,, are restored in their domains using procedrestorgline
28).

Note thatRestoremust be called whenever a backtrack occurs. That is, aant fr
the case described above, restoration of values to donwiaquired when a dead-end
is encountered (line 5), when a true leaf node is reached {8), and when all the
assignments to a universal have been proved to be part ofsistamt scenario (line
21).

By slightly modifying the forward checking function of FCOevget an algorithm,
which we call FC1, that can discover inconsistencies eahen FC0. Algorithm FC1
has exactly the same behavior as FCO when the current vaigbkistentially quan-
tified. If the current variable,,. is universally quantified then we first check every
value ofv,,,, against all future variables before assigning a specifiosevéd it. This
is done using FunctioRorward_Checkldepicted in Figure 5. If one af,,,.’s values
causes a domain wipe-out then we backtrack to the last asigteariable. Other-
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BooleanFCO(F' = (V,Q, D, C))

input: A QCSPF

output: TRUE if a solution toF" exists and FALSE otherwise
1: Vewr — 01

2: while veyr # NIL

3 if Qewr) =3

4: if all values inD(v..r) have been tried

5: RestoréF, veyr last_gveyr))

6: Veur — last_gveur)

7. else

8: assignue,» with the next valuer € D(veur)
9: if Forward_CheckQF, vcur, a)

10: if Veur = Un

11: if there are no universals i return TRUE
12: else

13: RestoréF, veyr last_Uveur))

14: Veur — laSt_Uveur)

15: elseveyr «— next(veur)

16: elseRestoréF, veur, Veur)
17: elsellQ(veur) = VIl
18: if all values inD(v..r) have been tried

19: if vewr IS the first universal i/ return TRUE
20: else

21: Restor¢F, veur,last_Uveur))

22: Veur — 1aSt_Uveyr)

23: else

24: assignue, with the next valuer € D(vewr)
25: if Forward_CheckQF, vcy,, a)

26: Veur — NEX{Veur)

27: else

28: RestoréF, veyr,last_gveyr))
29: Veur — laSt_gveur)

30: if vewr = NIL return FALSE

function Forward_CheckQF, vcyr, a)
input: A QCSPF, the current variable...- and its assigned value
output: TRUE if no domain is wiped out and FALSE otherwise
1: for each existentiab; afterve,, in V-
for eachb € D(v;)
3 if v; — bis incompatible withve,» — a
4 temporarily remové from D(v;)
5: if D(v;) is wiped outreturn FALSE
6: return TRUE

procedure RestoréF, veur, Vback)

input: A QCSPF, the current variable..,, and the variable where the algorithm will backtragk.
output: -

1: for Vi = Upback 10 Veur

2: for each existentia); afterv, in V

3:  restore taD(v;) any value that was removed becausef instantiation

Figure 4: FCO: Forwardlghecking for binary QCSPs.



wise, we proceed in the usual way by instantiating. with its next available value
and removing all values of future variables that are incdibfgawith the assignment
veur > a. INthis way we can discover dead-ends earlier and avoitdssi exploration
of search tree branches.

Note that the look-ahead of FC1 need only be applied once helgorithm
reaches a universal at some branch of the search tree. Tinatriediately before trying
the first available assignment of the universal. Assumimrg tlone of the universal’s
possible assignments causes a domain wipe-out, then agphe FC1 type of look-
ahead again after a backtrack to the universal occurs isideoht. This is obvious since
the restoration of values guarantees that the result wihbesame as before, i.e. none
of the remaining possible assignments for the universaloaiise a domain wipe-out.

It is easy to see that FC1 will always visit at most the samelrarof search tree
nodes as FCO as it may discover an inconsistency earlielRG8rbut never later. The
two algorithms are incomparable in the number of constidiatks they perform. That
is, depending on the problem, FCO may perform less checksR4 and vice versa.

function Forward_CheckLF, vcyr)

input: A QCSPF and the current variable.,,

output: FALSE if some value of...,- is incompatible with all values of an existential, and
TRUE otherwise

1: for eacha € D(veur)

2: for each existentiab; afterve,, in V-

3:  if veur — ais incompatible with all values i (v;) return FALSE

4: return TRUE

Figure 5: Forward checking function of algorithm FC1.

Correctness of FC The correctness of FC can be informally demonstrated fatigw
similar arguments as in the case of BT. In addition, we neeshtov that the forward
checking functions of FCO and FC1 are correct. That is, tmapg@ parts of the search
space that do not belong to a consistent strategy. FunEtiomard_CheckQs called
after assigning an existential or universal variallevith a valuea;. Assume that the
current tuple of assignmentsis= (v — ay,...,v; — a;). Forward_CheckOwill
prune any value from the domain of a future existential thésfa constraint check
with assignment; — a;. This means that any such value is not consistent wiind
thereforer cannot be extended to a consistent scenario that inclugegtiie. Hence,

it is correctly prunedForward_Checkis called before assigning a universal variable
v; and for each value; € D(v;) it temporarily prunes any value from the domain
of a future existential that fails a constraint check with If the domain of a future
existentialv; is wiped out then the algorithm backtracks. Assume that ssggament
v; — a; causes the wipeout dP(v;). This means that no value of can participate
in a consistent scenario of the currently explored strategyincludes the assignment
v; — a;. Therefore, no consistent scenario that includes- a; exists in the current
strategy and, hence, the algorithm correctly backtrackgytan alternative strategy.
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Maintaining Arc Consistency Based on the above description of FC, we can easily
adapt the MAC algorithm to QCSPs. MAC is the most widely usechglete search
algorithm for CSPs. It reduces the domains of future vaeglaluring search by ap-
plying an AC algorithm on the problem after each variablédansation. In this way
inconsistencies are discovered early and search effaat/eds

To implement MAC for QCSPs we need a simple modification ingbeudo-code
of FCO. We need to replace the callsfarward_Check0n lines 9 and 25 of Figure 4
with calls to functionPropagationof QAC-2001. In this case the stack of constraints
would have to be initialized by adding to it only constraithtat involve the current vari-
able. MAC can also be modified in the same way as FC to yield MA@lalgorithm
analogous to FC1. That is, when the current variablg is universally quantified we
can (temporarily) enforce AC for each instantiatian,. — a, wherea € D(vey.),
before committing to a particular instantiation. If one bétinstantiations causes a
domain wipe-out then we backtrack. Otherwise, we commitrte of the values and
proceed with the next variable.

3.3 Symmetry Breaking

Many CSPs contain symmetries which means that for a giverisnolthere are equiv-
alent solutions. This can have a profound effect on the beawst when looking for
one or (even more) all solutions to a CSP. Various methods/fmmetry breaking have
been proposed. Most of these methods add symmetry breadisgyaints to the prob-
lem either statically, before search, or dynamically dysearch. A survey of work on
symmetry in standard CSPs has recently been publishedggixitensive references to
the large body of work in that area [31].

QCSPs, in particular, can greatly benefit from symmetrylirggtechniques, since
we have to check if there exists a consistent scenario foradilles of all universally
guantified variables. We propose the exploitation of vaterchangeability as a static
and dynamic symmetry breaking technique in QCSPs. Howexegonsider only a
simple type of symmetry in this paper, leaving until futureriw extension of more
powerful techniques devised for constraint satisfact®omme advanced concepts, like
value substitutability, that can be used for symmetry hirepkn QCSPs have been
defined (though not implemented) in [11].

The notion of interchangeable values in CSPs was defined dydEer in [24]. A
valueq of a variablev; is fully interchangeableavith a valueb of v, iff every solution
which contains the assignmesit— a remains a solution if we substitubefor a, and
vice versa. Since determining full interchangeabilitg@dNP-complete [10], Freuder
also defined various local interchangeabilities that ahgrmonially computable.

Definition 4 Given avariable; € V, avaluex € D(v;) isneighborhood interchange-
able (NI) with a valueb € D(v;), iff for eachwv; € V, such thaw, is constrained with
v;, a andb are supported by exactly the same value®{w,).

Neighborhood interchangeability is a sufficient (but notessary) condition for
full interchangeability [24]. A set of NI values can be reggd by a single representa-
tive of the set without losing any solutions. Experimentsgid that this can reduce the
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search effort in standard CSPs when applied as a preprogestsp or during search,
and especially when looking for all solutions to a problen8[Z. In what follows we
will often refer to NI values simply as interchangeable.

In the context of QCSPs we can exploit interchangeabilifyreak symmetries by
pruning the domains of universal variables. That is, forheset (sometimes called
bundle) of NI values we can keep one representative and rert®/ others, either
permanently before search, or temporarily during searfdhelalgorithm finds a con-
sistent scenario for the representative value then sunehgtexists one for the rest of
the NI values as well. Therefore, branching on these vakiessdiundant. Consider the
following example.

Example 3 We have the QCSPFv; JvsJus (v1 # va A vy # v3), where the domains
of the variables ar®(v;) = {0,1,2,3,4}, D(vy) = {0,1}, D(v3) = {0,2}. Values
3 and 4 ofv; are NI since they are supported by the same values indo#ndvs.
Therefore, they can be replaced by a single value or, to mlifférently, one of them
can be pruned out of the domain.

The cost of computing all neighborhood interchangeableesin a CSP, using the al-
gorithm of [24], is Qd?n?). In QCSPs we can detect NI values as a preprocessing step
and thus remove values from the domains of universal vasabind we can also detect
them dynamically during search to avoid repeated explomadf similar subtrees.

Example 4 Assume that variablesv; Jv;3v,Jv; are part of a QCSP and their domains
areD(’Ui) = {(11,(12}, D(’Uj) = D(”Uk) = D(Ul) = {ag,a4,a5,a6}. Also, the QCSP
includes constraints;;, c;, c;;. Assume that value, is supported by values, ay, as

in each ofv;, v, andv;, andas is supported by:s, a4, ag. If the current variable at
some stage of searchis and values:; andag have been previously removed from
the domains ob;, v;, andv; then at that stage; anda, are NI. We can proceed to
search for a consistent scenario that includes assignimenta; . If one is found then
when we backtrack to universal variaklewe do not need to perform a similar search
for assignment; — ao. If we backtrack further back and undo the deletions of \&lue
as, ag from the domains ob;, v, andwv; then the next time we reach variahlgthe
valuesa; andas may not be NI.

Naturally, we can also use NI to reduce the domains of exislarariables as proposed
by Freuder. However, our experiments showed that this ivarhead that slows down
the algorithms. The (small) reduction in the number of dedree node visits is out-
weighed by the cost of computing the NI values of existestial

NI-based symmetry breaking can be embedded in the searatithigs described
previously using two simple procedures. The first one detaandles of NI values as a
preprocessing step, keeps one representative of eachetamtiremoves the rest from
the domains of universals. To check if two valug$ of a universal variable; are NI,
this procedure iterates through the domain of any existewnéiriablev; € V that is
constrained withy; and is after; in V. If a value is found that is a support farbut
not forb, or vice versa, then andb are not NI. Otherwise, they are NI, so one of them
is removed. This is repeated for all pairs of values0fin a similar way, the second
procedure dynamically detects bundles of NI values each tima algorithm reaches a
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universal variable;. In this case, one representative of each bundle is kepthanest

of the values are temporarily removed frdi{v;). The values are restored when the
algorithm backtracks to a variable befargin V. The worst-case time complexity of
these symmetry detecting procedures, as they are curierglgmented, is Qi*n?).

4 Encoding QCSP as QBF

In this section we first give some general background on QBRen we briefly elab-
orate on the difficulties in encoding QCSP into QBF and desctie features of the
QBF solver we used in our experiments. In the main part of datien we present
the previous best encoding of QCSP into QBF (the adapted nogding), and we
introduce a new encoding which improves on it, both in sigigliand performance.

4.1 Quantified Boolean Formulae

A special case of a QCSP is a Quantified Boolean Formula (BE)BF is of the
form (V,Q, D, C) whereV and(@ are defined as in Definition 1, but each domain in
D has only two element§F, T} (or {0,1}). C is a Boolean formula in conjunctive
normal form (CNF), a conjunction of clauses where each elass disjunction of
literals. Each literal is a variable and a sign. A literal asdsto be negative if negated
and positive otherwise. Aniversal literalis a literal whose variable is universally
guantified and aexistential literalis a literal whose variable is existentially quantified.
The semantic definition is the same as for QCSPs. Note th&R{(e. QBF problems
with at most two literals per clause) is solvable in polynaihtime. However, binary
QCSPs are PSPACE-complete [8].

A QBF is vacuously true if it consists of an empty set of clausé is vacuously
false if the set of clauses contains either an empty clauseg(iclause with no literals)
or an all universal clause (i.e. a clause with only univelitalals).

4.2 The difficulty in encoding QCSP to QBF

Gent, Nightingale and Rowley introduced a number of diffiérerays to encode a
QCSP instance into QBF [28]. To encode an existential QCS3Rhla to a set of

QBF variables, some assignments to the QBF variables emreslues of the original
variable, and other assignments are ruled out by addingetato the formula. For ex-
ample, if an assignment to the QBF variables indicates kimaptiginal QCSP variable
has no values in its domain, the assignment is invalid andlélrout with a clause.
However this approach is not possible for a universal QCSiahia.

To see why, consider the following example. In QBF instapceve have two
universal variables; andx;. ¢ represents an adversarial game, and the assignment
z; = T, z; = T represents a cheating move in the game. Naively we might use a
clause(—z; vV —z;) to rule out this assignment. Unfortunately, such a clauswvially
false, and therefore would rendgfalse.

The encodings introduced in [28] were able to overcome tiffiswalty. However,
the global acceptability encodingnd thelocal acceptability encodingvere very in-
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efficient compared to direct QCSP algorithms. In contrétadapted log encoding
which we describe below, turned out to be very efficient.

4.3 QBF Solver

Many advanced solvers for QBF have been proposed in thatliter[3,7,22,27,33,35].
We concentrate on search-based solvers, which interleavets(by instantiating vari-
ables individually, in quantifier order) with reasoning e formula (local reasoning).
They are based on the Davis-Putnam-Logemann-Lovelanditigo[19, 20], adapted
to QBF [14]. Local reasoning cuts down the search space., Alstertain situations,
backjumping is applied which allows the solver to jump saliévels up the search
tree (undoing several search operations at once), by fgientithe cause of a success
or failure.

We give a brief overview of some of the literature to set theoelings in context.
We use the solver CSBJ [27], which implements the followiwg local reasoning
techniques. We only sketch each technigue in the broadestna refer the reader
elsewhere for full details.

Unit propagation A literal [ of variablez is unit if it appears alone in a clause, or if
the other literals in the clause are universal, and thenesponding variables are
qguantified after: [14]. Whenl is unit, it is instantiated/(= T") and the formula
is simplified. Ifz is universal, the formula simplifies to false. Otherwisausles
containingl are removed, and all literats! are removed. This may cause other
literals to become unit.

The pure literal rule A literal [ is calledpure (or monotong if its complementary
literal does not appear in any clause [14]. Such literalsimportant because
they can immediately be assigned a value without any neeor&mrching. This
is what thepure literal ruledoes. If an existential pure literais found, it is set to
true. If a false leaf node is then reached, assighitagfalse will be unnecessary
since it is certain that this will again lead to a false lead@olf a universal pure
literal [ is found, it is set to false. If a true leaf node is then reaclasdigning
[ to true will be unnecessary since it is certain that this aghin lead to a true
leaf node.

As we mentioned, local reasoning and search is commonly aogrd with back-
jumping. CSBJ implements conflict and solution backjumphvg informally describe
these two techniques. This is only intended to give a flavéhetechniques.

Conflict-based backjumping Conflict-based backjumping (CBJ) is a look-back tech-
nigue, originally proposed for CSPs, that tries to redueentimber of backtracks
performed by a search algorithm [39]. CBJ tries to deal wighdiends in an
intelligent way by recording and exploitirgpnflict sets A conflict set is a set of
existential literals whose assignments are responsibla tmntradiction in the
formula, i.e. an empty or all universal clause. When a coittieh is encoun-
tered, CBJ backjumps to one of the existential literals & ¢bnflict set of the
current variable, instead of blindly backtracking to thstlassigned existential.
In this way, search effort can be saved.
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Solution-directed backjumping Solution-directed backjumping (SBJ) is a special-
ized technique for QBF that tries to avoid redundant sediteh atrue leaf node
is reached in the search tree [33]. This is accomplisheddording and exploit-
ing solution sets A solution set is a set of universals such that all claus¢s no
satisfied by the current assignment of the existentialsatigfied by at least one
of the universals. After a true leaf node is reached, a smiwet is calculated
and SBJ backjumps to one of the variables in the set, pogsiflying over some
universals.

Efficient implementation is crucial in the SAT domain, and®as techniques have
been carried across into the solver we used. For exampleheadtiterals give us
efficient lazy unit propagation, and watched clauses do déimeesfor the pure literal
rule [27].

4.4 Adapted Log Encoding

This section describes a previous contribution, the adajotge encoding (by Gent,
Nightingale and Rowley [28]). It is described here in ordeiset the enhanced log
encoding (in the following section) in context. We brieflypdain the main groups of
clauses in the encoding. For full technical details we referreader to Gent et al. [28].

In order to deal with the difficulty described above, the addpog encoding uses
indicator variables (first described by Rowley [32]) to icate when a universal as-
signment is not valid. An indicator variable takes valligff a particular (invalid)
assignment is made to universal variables. There is onedtutivariablez for each
of the original universal QCSP variablesz" is existentially quantified in a final block
at the end of the variable sequence. All clauses repregeodinstraints contain a lit-
eralz?. Hence, they are true under any assignment settirig true. In this way, if an
invalid assignment is made to universal variables, the fdarsimplifies to true by unit
propagation, as required to deal with the difficulty.

In SAT, it has often been noted that just three variables emsled to encode 8
values of a CSP variable, instead of the 8 in the direct emgpfl5, 45]. This is
known as the log encoding. Walsh proves that unit propagatiothe log encoding
does less work than on the direct encoding [45], and heneedirely used. However
we adapt the log encoding for QCSP with good results.

Each variable in a QCSP is encoded to a set of variables in @Bfrthese sets
quantified in the same way and in the same order as in the QG@BIRighal existential
variables are added to the end of the variable sequence. nFexistential variable,
each QBF variable represents one value. For a universdi, \eduoe is represented
by a unique assignment to the QBF variables, and also eaak i&represented by
an existential QBF variable quantified at the end. There Eneses which maintain
correspondence between these two representations, ridmaedellingclauses here.

We now describe the encoding in more detail. We first show He@vQCSP vari-
ables are encoded and then present the clauses of the emcddia notationw? is
used for the set ofy variables with superscript and any subscript. Theis used in
the same way witlr andi¥.
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e Quantification
To encode some existential variables {1...d}:

— We use existential variables?, . .., 3z
To encode some universal variables {1...d}:

— We use universal variablesoi,, 1y, -, Vwg
— We also use existential variables representing each vaidg:. . . , 3z

— Finally, We use indicator variables for each invalid assignt tow!, and
one overall indicator variabléli¥, 3z,

For some universal variabte the following clauses map assignmentsudfto 2
and:?. Thesechannellingclauses ensure that at least one of tfieor ;¥ variables is
set toT’, and that an indicator variable iti is only set tol’ when thew? variables take
the corresponding invalid assignment. Variablis the universal that directly precedes
v inthe QCSP variable order. The indicator variahlds T only whenu or a previous
universal has an invalid assignment: it is used to make tharwtiling clauses true in
this situation.

The clauses are given as an exampleffer 5, but the general form is easy to infer
from the example.

e Channelling clauses

V ((mwy A —wi A —wg) = 27)
V ((~ws A —~wi Awg) = x3)
((—|w2 Awi A —wg) = x%)
((ﬁwz Awy Awg) = xi)
((w —wy A —wf) = x¥
V ((ws A —~wi Awg) <= ig)
ng Awy A —wf) <= i¥)

wy Awy Awf) <= 3)

S ~—

<

These eight expressions correspond to all possible assigsno{w}y, wy, wy},
from (F, F, F') for the first expression, t¢I", ', T) for the last. Each assignment is
linked either to an:? variable if it is valid, or an¥ variable otherwise. The expressions
are expanded into clauses in the encoding.

The variableg? indicate when the assignment is invalid in a particular Widhese
variables are accumulated into a single indicator variaplhich isT iff at least one
of ¥ is T, or the previous accumulated indicator variahlds T'.

¢ Indicator collector clauses

Zy = g Vis VigV 2,

Note that ifz, is set toT’, this assignment will be propagated to the next indicator
collector clause and thus will make the next accumulate@tatdr variablel™. This
assignment will be propagated further, and so on.

For each existential variable at least one of the QBF variable$ must be set
to true to ensure that is assigned a value. This is accomplished with an at-le@st-o0
(ALO) clause.
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e ALO clause
v
\/ieL..d Z;

Constraints are represented as follows. Consider a camtstg between vari-
ablesu andv, whereu precedes in the variable order. A pair of valugs, j), where
i € D(u) andj € D(v), that do not satisfy the constraint (i.e. they do not belong
to rel(cyuy)) is represented with a single clause in the QBF. Assumeblarias uni-
versally quantified and directly precedesn the variable order. Note thatmay be
the same as. The indicator variable, for ¢ is used, so that if a preceding universal
variable is set in an invalid way, the conflict clause is $istis (When a universal is
set invalidly, the remaining part of the QBF must be truevegithis, conflict clauses
only contain indicator variables and negative literals.

e Conflict clauses
V{1, 7) ¢ rel(cuy) :

ze Vo Voo

For channelling and conflict clauses, if there is no preagdimversal variable in
the QCSP, the indicator variable is omitted. To illustrdte encoding, we give an
example of a simple QCSP.

Example 5 Consider the QCSRv3u : v # w whereD(v) = D(u) = {1,...,5}.
This is encoded as follows:

e QBF variables:

v v v V.U U .U .U U LU U .U .U v U U SV
va?wlawOa3x1’x27x37x47x573x17x27x35‘r47z5aElZ 77’671757’8

e Channelling clauses far.

_I

A —wi A —wl) =
A —w} Awf) = o}
w2 Awy A —wf) = xf
w2 /\w“l’/\wo) :x}l’
A-wi Awf) = ig
wQAwl wy) = ¥
wy Awy ANwp) = 0§

_I

J

J

(-w
(-w
(
(
(w3
(w3
(
(

e Indicator collector clauses far.

2Y = g Viy Vig

e At-least-one clause far:

Yy VayVas Vol Vg

e Conflict clauses representing# .
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z2YV ] V af
ZYV —xd V ozl
2"V nzy V oxy
2"V zy V oxy
Z¥ V axg V oxy

The subtlety of this encoding is that we omit the clauses wfacce equivalence
betweenz and the corresponding values @f: the implication is one way in the
channelling clauses involving. So we omit clauses such as Vv -z} vV —wj. It
might seem that this is erroneous, as it allows a universg@k® two values, if:} and
x4 are both true. But there is no way that setting of the universgablesw? canforce
more than one:? to be true. The advantage of this arrangement is ttjatariables
occur only positively in the channelling clauses. Therefibra particular variable:’
did not occur in any conflict clause, it would be pure. Funthere, this could lead to
w? variables becoming pure, reducing the need for search. iBosufficient care, we
can use the pure literal rule included in our QBF solver, aagktit work in the QCSP
case. This property carries over to the enhanced log engodi@scribed below.

4.5 Enhanced Log Encoding

The enhanced log encodinig a refinement of adapted log which has not been previ-

ously published. Each universal variablés encoded bylog,d] variablesw? which

are consecutively universally quantified. The order ofalalgs is preserved. We also

introducezy . ..z, variables for each universal QCSP variablevhich are existen-

tially quantified at the end of the variable sequence. Thé&sariables are used in the

conflict clauses. The! variables are channelled to thé variables with a set of

clauses. For the following example= 5.

e Channelling clauses

(mwd A —wy A —wf) = x¥
(—mwd A ~wy Awh) =

(—wd Awy) =}

(Wi A —wy) = x¥

(W ANwy) = af

There are 8 possible assignments toifjevariables, and 5 values, so for the values
3, 4 and 5 there are two? assignments mapped onto each, hence all 8 assignments
are valid. In contrast to adapted log, no local acceptghiliriable ¢, in the previous
subsection) is present, because no assignments to previaugssal variables can be
invalid.

To state this formally, we represent a QBF with the tule= (Q’, V', C") where
@' is the quantifier mappingd/’ is the ordered set of Boolean variables &ids the set
of disjunctive clauses, to mirror the QC3P= (Q,V, D, C). Domains are excluded
as they are alwayf), 1}.

The ordered set of variablds for the QCSP is encoded by an ordered set of
Boolean variables as shown by the following recursive rulesre translatd”) = V.
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translat¢dv € {1...d}, V1) = 3z} ... 3zY, translatél;)
translatévo € {1...d},V2) = VWhog,d1—1 - Ywyg, translatéVs), 3z} . .. 3z

An existential variable) in the QCSP instance is mappeddtexistential variables
(«7 ... 2Y) in the encoding. These represent each value in the domaia efihanced
log encoding also has the at-least-one clayjse{ , =7). In this respect, the enhanced
log encoding is identical to the adapted log.

A universal variable) in the QCSP is mapped {o= [log,d] variablesw?. Every
complete assignment to variablesw? (of which there are') is mapped to a value
b € D(v). All valuesb map to one assignment, or two assignments with only onaliter
different. Itis never necessary to have a valueapping to more than two assignments,
whatever the value aof. 2! — d values must map to two assignments. An assignment
A is represented as a conjunction of literals (ev§.A —w?). For some valué which
maps to just one assignmef the channelling clause is as follows.

—AV zy

The negated conjunctionA is converted to a disjunction in the usual way. For some
other valuec which maps to two assignments; and A,, the channelling clause is
given below.

ﬁ(Al V AQ) V xz?

The simplification of-(A; vV As) ends with a disjunction df— 1 literals.
For a constraint;;, with satisfying tuplesel(c;;) the conflict clauses are:

o Conlflict clausesFor all tuples(a, b ¢ rel(c;;),
(g v =)
To illustrate the encoding, we encode the QCSP of Example 5.

Example 6 We have the QCSFv3u : v # u whereD(v) = D(u) = {1,...,5}.
This is encoded as follows:

e QBF variables:

v v v v v v v v u u u u U
Yws, wy, wg, 3z, 25, 28, xf, vy, 32t Y, ¥, 2, o

e Channelling clauses far.

(—wy A —wy A —wg) = xf
(w3 A ~wy Awh) =z}
(w3 Awy) =z}

(W A —wy) = i

(

e At-least-one clause far:

Yy VayVas Vol Vary

e Conflict clauses representing# u:
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-z} V ~xf
—xy V oxy
x5 V xg
-y V xy
—xg V g

Theorem 1 A QCSP is true if and only if the encoded QBF is true, for theated
log encoding.

Proof: The proof is recursive and closely follows the definition cE&P seman-

tics (definition 2). A QCSPF = (V,Q, D, C) represents the logical formuta =

Q(v1)v1€D(v1) ... Q(vy)vpn€D(vy,) (C) whichis encoded asa QBF = (V',Q’,C")

representingy’ = Q'(x1)x1 ... Q" (zn)zy, (C'). The encoding of the empty QCSP

(containing no variables or constraints) is the empty QBketvis vacuously true.
Existential case:

e Assumeg is of the form3v,Q(vs) . .. (C) (domains are omitted for simplicity).
e Now ¢’ must be of the forniz7" ... 3z translatéQ(vs) .. .)(C”).

o By definition 2, F' is true iff there exists some value € D(v;) such that
Q(v2) ...Q(vy)(Cluy — a)) is true.

e Equivalently, in the encodindg” is true iff there exists an assignment =
' — bi...xy" — bgsuchthatthe ALO clause is true and trangl@te,) . . .)
(C'[4)) is true.

The QCSP value can be any value such thaf* — 1. If there is more than ones.t.
zy' — 1, then all these values can be extended to a solution.

a

Universal case:

Assumey is of the formvuv, Q(vs) ... (C).

Now ¢’ must be of the fornvw," ... Ywg'translat¢Q(vz) . ..)(C") wherel =

[log,d] — 1.
e By definition 2,F is true iff for all valuesa € D(v1) : Q(v3) ... (Clvy — a]) is
true.

Equivalently, in the encoding” is true iff for all assignmentel = w;* — b; ...
wgt — by : translatéQ(vs) .. .)(C'[A4]) is true.

Note that each value is covered by some assignmest If the assignmentd is

made, the additionat}' variable introduced by the encoding must be 1 because of

the channelling clauses. Other varial:xh{;a are not constrained by the channelling

clauses, and therefore can be set to 0 if they are contaireayinonflict clause.
Therefore, by examination of definition 2, the encodingugfiff the original QCSP

is true, because each step of the recursion of definition Degerformed equivalently

in the QCSP and in the encodin@QED
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The problem with this encoding is that the QBF solver cancfedwo equivalent
subtrees in some cases, for example wignr— 1" andw{ — T, the solver can branch
onwg which is not contained in any clause.

After settingwy andwy, if either is set tdl’ then the first two clauses above are
satisfied and in the reduced set of clausgsloes not exist. Bothyg and—wyg are pure,
so if the solver implements the pure literal rule then it wittt branch on this variable.
This solves the repeated subtree problem mentioned abowieccondition thatvg
is set last. Also, in common with the adapted log encoding,dhmannelling works
only fromw? to 2V variables, so only positive? literals are included in the clause set
above, therefore the pure literal rule can detect casesentherz? is involved in no
conflicts. In some circumstances, this can also lead to thergltion ofw® variables.
For example, it} andzf become pure, them; becomes pure as well and the search
is reduced accordingly.

5 QCSP-Solve: A Direct Solver for QCSPs

The efficiency of the adapted and enhanced log encodinggelyedue to their ability
to exploit sophisticated techniques offered by the undteglfpBF solver; namely, the
pure literal rule, conflict-based backjumping, and solilirected backjumping. Two
guestions that immediately arise are: what do these teabgigprrespond to in QCSPs,
and how can we implement them within direct algorithms? is Hection we try to
answer these questions and describe the resulting effatiieat solver, which we call
QCSP-Solve.

QCSP-Solve performs a backtracking search, as descrilsgetiion 3, augmented
with various capabilities. First of all, QCSP-Solve alwagplies algorithm QAC-2001
as a preprocessing step. As explained in Section 3.1, apantreducing the problem
size by deleting values from the domains of existentialsCc2001 removes from the
problem all constraints of the for@ v;V v; (c;;) andV v;V v; (c;5). During search,
QCSP-Solve can apply any of the basic forms of look-aheacritbes! in Section 3, i.e.
FCO0, MACO, and their enhancements FC1 and MACL1. In whatddleve will describe
how new look-ahead and look-back techniques are combingdani FC-based look-
ahead. Most of these techniques can be combined with a MA€eblaok-ahead in a
very similar way.

5.1 The Pure Value Rule

Our experiments showed that the most important QBF tecleniguerms of its prac-
tical effectiveness in the encoded QCSPs, is the purelliteles We now explain what
this corresponds to in a binary QCSP, and how we can expltitgtrune the search
space. We first define the notion opare value

Definition 5 A valuea € D(v;) in a QCSPF = (V,Q, D, C) is pureiff for each
v; € V, wherev; # v; and for eactb € D(v;), the assignments; — a andv; — b
are compatible.
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Bordeaux et al. introduced the notion dixablevalue in a CSP [10]. In few words,
a valuea of a variablev is fixable if for any solution which includes the assignment
of a valueb to v, we still have a solution it — b is substituted withy — a. As noted
in [10], a sufficient (but not necessary) condition for deting the fixability of a
value can be computed through local reasoning in polynotinied. This is similar
to the pure literal rule in SAT. The same authors defined th®nawof fixability for
QCSPs [11]. Following the terminology of [11], if a value iarp this is a sufficient
but not necessary condition for the value todbefixable.

In a way analogous to the pure literal rule in QBF, we have sViand imple-
mented a look-ahead technique, which we call ghee value (PV) rulethat detects
and exploits pure values. The actions taken are dual fotestial and universal pure
values. An existential variable with a pure value can bes#tat value as it will not
violate any constraint in any scenario. On the other handrayalue is removed from
the domain of a universal variable as it will certainly betpdiany solution and thus we
do not need to search for a consistent scenario that includesis duality reflects the
dual semantics of existential and universal variables.aRaniversal variable, showing
that a valuez is pure does not prove that it leads to a consistent sceranip that if
some other value of the same variable leads to a consisemasc therw does. Hence
it is a subsumption rule and the last value in the domain caomoemoved.

Note that values can become pure dynamically during seacladable assign-
ments and constraint propagation remove values from thaihsnof the variables (see
Example 9 in Section 5.3). Therefore, the PV rule is appliethas a preprocessing
technique and as a dynamic look-ahead technique duringtseline PV rule works as
follows.

e If a pure valuez of an existentiab; is discovered during preprocessirsgérch),
then the assignment — a is made and all other values of are permanently
(temporarily) removed fromD(v;). To check, during search, if a valueof an
existential; is pure, we only need to check if the assignmegnt- a is compat-
ible with all values of future variables. FC (or MAC) guareatthaty; — a is
compatible with the instantiations of the past variables.

e If a pure values of a universal; is discovered during preprocessirggérch),
thena is permanently temporarily) removed fromD(v;) unless it is the final
value inD(v;). To check if a value of a universal is pure, we only need to khec
against future variables since preprocessing with AC gueaes that there are
no constraints between a universal and a past variable. HWigeover during
preprocessing that all the values of a universal are punme wecan ignore it
thereafter as it is certain that all its values can be parhgfc@nsistent scenario.

In both cases, any value that was temporarily removed becafuthe pure value
rule is restored once a backtrack to a variable befpie V' occurs.

Currently, the PV rule is implemented within two simple ftinas; one for pre-
processing and another for the dynamic application of theduring search. In both
cases, to detect the pure values of a variablee iterate through the domains of the
other variables that are constrained with(only variables aftep; in case of dynamic
application). During preprocessing we have to repeat tirisfl the variables in the
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problem, which gives a worst-case time complexity ¢fi&1?). During search we can
restrict PV detection to the values of the current variablgs gives a worst-case time
complexity of Qnd?).

The function that applies the PV rule during search need belyalled before
assigning the current variable,,,. with its first available value. That is, immediately
after line 2 in Figure 4, assuming that the underlying aliponiis FCO. Calling the
function again when a backtrack tg,,. later occurs is redundant as the restoration
of the domains after a backtrack guarantees that the punewv#hat were previously
detected will remain pure and no new values will become pure.

Relation between the pure value and the pure literal rule The PV rule applied to

a QCSPF has a similar effect to the application of the pure literder(PL) to the
enhanced log encodingZj. In some cases, PV and PL are equivalent, and in other
cases details are different and an exact equivalence iz/&lu3o discuss this, we
consider four cases, two each for existential and univeesébles.

If an existential variable,. has one pure valuein F, v, will be assigned ta in
F. In the encoding PL will assign’c — T, since ifv. — a is not contained in any
conflict in F', then—z?- is not contained in any conflict clause # The instantiation
z¥e — T makes the ALO clause far, true.

If an existential variable. in F' has more than one pure valug, . . ., then one of
the pure values is instantiated by the PV rule. The valuaiistted would typically
be the first discovered by the algorithm. In the encodaibcorresponding variables
xye,x,°, ... are positively pure, and are instantiated/tdoy the PL rule. Again, this
makes the ALO clause true.

If a universal variable),, in F' has a set of pure valugd, andP C D(v,), then
all values inP are removed. In the encoding, all variablgs, wherea € P, are
positively pure, and are instantiatedfdoy the PL rule. Thus the channelling clauses
containing each of these variables are true, and the vasalé entirely removed from
E. This may cause variables in the séf to become pure, reducing the number of
branches explored by the QBF solver. However, there is nekant equivalence here
between PV and PL.

If all values of a universal variable, in F' are pure, then all but one are removed
in F. In the encoding, all variables’« are positively pure and all are set to true by
the PL rule. Consequently, all channelling clauses are and all variablesv?« are
pure. Therefore they are also instantiated, and the QBFesadlees not branch on
any variable in the seb?=. Similarly, the QCSP solver does not branchwgnafter
instantiating it.

5.2 CBJ and Solution-Directed Pruning

5.2.1 Conflict-Based Backjumping

CBJ has been successfully combined with FC in CSPs [39], dpidLabased proce-
dure in QBF [33] to deal with dead-ends in an intelligent way ahus, avoid redun-
dant search. We now explain how CBJ is implemented in QC3®:So
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As in CSPs, for each variabte € V' we keep a set of variables callednflict set
and denoted byonf_set(v;). This holds the past existentials that are responsible
for the deletion of values fronD(v;). Initially all conflict sets are empty. When
encountering a dead-end at an existential or when a valueuafvarsal is rejected,
the algorithm exploits information kept in the conflict sétloe current variable..,,
to backjump to one of the past existentials that are resplanfsir the dead-end instead
of blindly backtracking chronologically to the previoussiential in}". To be precise,
the algorithm backjumps to the most recently instantiatastential, sayv,, among
the existentials ircon f_set(v..-) and reassigns it with its next available value. As
v's previous assignment caused the deletion of (at least\aieg fromD (vey.), if
we reassign it, one or more valuesii{v.,,,-) may now become available. In contrast,
an algorithm that always backtracks chronologically, as&8i@l the two FC variants
do, may repeatedly encounter a dead-end since the exiteminediately before..,,
in V- may not belong teon f_set(v..,). In this case, reassigning this existential will
not “free” any ofv.,,'s values and therefore the dead-enaat. will be encountered
again.

Conflict sets are updated as follows.

o If the current variable..,,. is existentially quantified and, during forward check-
ing, a value of a future variable; is found to be incompatible with the assign-
ment ofv.,, thenv,,, is added taon f_set(v;). This is straightforward as now
the assignment af... is responsible for the removal of a value frdbfuv; ).

e If, after assigning a value to v.,,- (which may be existential or universal) and
forward checking, the domain of a future existentialis wiped out then the
existentials ircon f_set(v;) are added to the conflict set of the current variable.
This is done because the domain wipe-out piwill result in valuea being re-
jected. The past existentials that can be considered retgperor this rejection
are the ones whose instantiations removed values fqmy). To understand
this consider that were it not for the assignments to theisgemtials,a might
not be rejected sincB (v;) would not have been wiped out. Note that this is the
only way in which the conflict set of a universal can be updated

Backjumping can occur in either of the following two cases:

1. If the current variable,, is existential and there are no more values to be
tried for it then the algorithm backjumps to the latest (itke most recently
instantiated) existential, in V' that belongs t@onf_set(ve,,). At the same
time all variables incon f_set(vey.) (€xceptvy) are copied taon f_set(vy) SO
that no information about conflicts is lost. This requiresscexplanation.

Assume thaby, was added t@onf_set(v.,,) because the assignment — a
resulted in the removal of valuefrom D(v.,,). If after the backjump tay

all remaining values of;, are rejected then we have a dead-end and must jump
further back. Now assume that the most recent existestial con f_set(vy),
where the algorithm will backjump, was copiedto. f_set(vy ) from con f_set(veyr)-
Sincewv; was incon f_set(v.,,), its current assignment resulted in the removal
of (at least one) value from,,,.. When we change;’s assignment it is possible
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that one or more of these values will not be removed fidtw.,..). Therefore,

it may be possible to reassigp with « in the future without causing a dead-end
atv.,, further down the search tree. This gain of search effort diook be pos-
sible if con f_set(veyr) Was not copied teon f_set(vy) since we would have to
backjump to an existential beforg in V' once encountering the dead-end at
Example 7 further demonstrates this reasoning.

2. If the current variable..,,. is universal and one of its values fails (because it
results in the domain wipe-out of an existentig) then the algorithm backjumps
to the latest existential, in V' that belongs t@on f_set(v.,,). Thatis, to the
most recent existential whose instantiation removed aevlihm D(v;). Again
all variables inconf_set(v..,) (€XCeptyy) are copied taonf_set(vy) so that
no information about conflicts is lost. The reasoning belhid is similar to
above.

Example 7 Consider the following QCSP whe#é consists of 6 quantified variables,
andC is a conjunction of 5 constraint&v; Jvs JvsFvgVusJvg(v1 = v3 A ve # v A

v3 £ vg Avy < vg Avs # vg). Assume that the domains of the variables are as follows:
D(v1) = D(v3) = D(v4) = D(vs) = D(vg) = {0, 1,2}, D(ve) = {2, 3}. Algorithm
FC1 equipped with CBJ will proceed to solve the problem agv.

Variablewv, is assigned its first value 0. Forward checking removes salugnd 2
from D(v3) and we setonf_set(vs) = {v1}. Variablevs is assigned its first value
2. Forward checking removes value 2 frdifvg) and we setonf_set(vg) = {va}.
Variablevs is assigned its first value 0. Forward checking removes v@foem D (vg)
andvs is added tazon f_set(vg). SO now we haveon f_set(vg) = {v2,v3}. Variable
vy is assigned its first value 0. Forward checking does nothieynow reach variable
vs Which is universally quantified. FC1 will forward check eadtys’s values against
vg. Value 1 ofvs results in the domain wipe-out af. Therefore,conf_set(vg)
will be copied toconf_set(vs) and we haveronf_set(vs) = {v2,v3}. Since one
of v5's values failed we must backjump to the most recent variablen f_set(vs)
which isvs. All variables inconf_set(vs) (exceptvs) will be copied tocon f_set(vs)
and we now getonf_set(vs) = {v1,v2}. There are no more available values in
D(v3) and therefore the algorithm will jump further back to the tmesent variable in
conf_set(vs), which isv,.

Variablews is assigned its next value 3. Forward checking does nothiagable
vs is assigned its first value 0. Forward checking removes v@fiiem D(vg) and we
seteconf_set(vg) = {vs}. Variablev, is assigned its first available value 0. Forward
checking does nothing. We now reach variableagain so FC1 will forward check
each ofvs’s values againsts. None of its values results in the domain wipe-outgf
Therefore, there is no dead-end and the consistent strategyn in Figure 6 will be
found.

Note that if we had not added the variables:ém f_set(vs) to conf_set(vs), we
would backjump ta; when encountering the dead-endvat This would result in a
different solution being found, with more search effort.
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Figure 6: The search tree explored by FC1 with CBJ on the pmoldf Example 7.
The consistent strategy found is depicted with bold lines.

5.2.2 Solution-Directed Pruning

As discussed in Section 4.3, Giunchiglia et al. introduagdtson-directed backjump-
ing for QBF [33]. This allows backjumps over universally qtified literals once
reaching a true leaf node. Inspired by this idea, we haveamphted a technique that
can prune values from universal variables when reachingedéaf node and may also
perform solution-directed backjumps. We call tkiglution-directed pruningSDP).
SDP is based on the following idea.

Assume thaw; is the last universal i andg = (v;11 . ..v,) IS the sequence of
existentials aftep; in V. Also, assume that a consistent scenario including asgighm
v; — a; has been found an(; 1 — a;y1,...,v, — a,) are the assignments of the
existential variable$v;; ... v,) in this scenario. Then any value of that is com-
patible with all these assignments will, obviously, alsqhbet of a consistent scenario.
Therefore, for each such value we can avoid running a seattie iremaining existen-
tials (i.e. any such value can be pruned). Based on this,rafehing a true leaf node,
SDP first computes the values of the last universat V' that have the above property.
All such values are temporarily pruned frafn(v;). If there are no available values in
D(v;), SDP proceeds with the universal immediately befgrim V, sayv;.

SDP then checks if;'s remaining values are compatible with the assignments of
all existentials aftew;. Each such value is pruned frofM(v;), under the condition
thatall values ofD(v;), after the first one, were previously pruned by SDP. Or inothe
words, if all values of; were found to be compatible with the same set of assignments
(Vig1 — ait1,...,0, — ay) forthe existentials after;. Essentially this means that to
prune a value fronD(v;) it must be compatible with all the assignments in the previ-
ously discovered strategy for setting the variables afteihis is repeated recursively
until a universal is found which has available values lefitsndomain after SDP has
been applied. The algorithm then backjumps to this univeSgaample 8 illustrates
how SDP operates.
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Example 8 Consider the QCSRv;JuyVusdvyJus (C). Assume that all variables
have the domaif0, 1,2} exceptv; whose domain i§0,1,2,3}. C includes some
constraints which we don’t mention for simplicity reasolmagine that BT, coupled
with SDP, is used to solve the problem. Figure 7 depicts aisolto the problem, and
the nodes pruned by SDP together with the subtrees that aseached.

Assume that the consistent scendtip — 0,ve — 1,v3 — 0,v4 — 1,v5 — 2) has
been discovered. The algorithm will now backtrack to thedas/ersal (i.ev3) and ap-
ply SDP. Assuming that values 1 and 2gfare compatible with assignments— 1,
vs — 2, SDP will prune values 1 and 2 from(vs) and, thus, avoid searching the
subtrees below the corresponding nodes. Since there aralmesMeft inD(vs), the
algorithm will apply SDP to the previous universal (i.e;). Assuming that value 1
of v; is compatible with assignments — 1,v4 — 1, v5 — 2, SDP will prune value 1
from D(v;). According to the definition of SDP the pruning is possibledeseall val-
ues of D(v3), after the first one, were pruned by SDP previously. Thatssigament
vy — 1 is compatible with all the assignments in the previouslgoiered strategy for
setting the variables after .

Now assuming value 2 af; is not compatible with assignmenig — 1, vy — 1,
vs — 2, the algorithm will backjump ta; and proceed by making the assignment
v1 — 2. As shown in Figure 7, the algorithm will then find consistenénarios for
values 0 and 1 ofi;, while SDP will prune value 2 of; because it is compatible with
assignments, — 1,v5 — 1. Since there are no more valuesit{vs), the algorithm
will apply SDP tov;. However, value 3 of; cannot be pruned because not all of
vs's values, after the first one, had been previously pruned Di. Sherefore, the
algorithm will proceed as usual to explore the subtree baf@mwnode corresponding
to assignment; — 3. Note that SDP is not able to detect that the subtrees belew th
nodes corresponding tg +— 2 andv; +— 3 are similar because it only uses information
about the most recently discovered consistent scenario.

vl

Cv2

Cv3

[Cv4

[vs

Figure 7: A solution to the problem of Example 8. Dark nodespmuned by SDP and
the subtrees below them (enclosed in dotted areas) arearchsel.

The way SDP operates, illustrated in Example 8, immediagalygests possible
enhancements. For example, an algorithm that stores ayhidtaonsistent scenarios
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discovered earlier, as opposed to only the last one, mayledaerform more pruning
than SDP, albeit with greater spatial requirements. We tglémvestigate such learning
techniques in the future.

5.3 The Algorithm of QCSP-Solve

A high level description of QCSP-Solve’s algorithm is showrFigure 8. It takes a
QCSPF = (V,Q, D,C) and determines whether the problem is true or false. The
version of QCSP-Solve shown in Figure 8 is based on FC. InrEigu

e preprocess() is a function that preprocesses the problem by applyingrighgo
QAC-2001, and computing pure and NI values.

e compute_P\tomputes the pure valuesaf,, during search. li.,,, is existen-
tial and one of its values (say) is pure thercompute P\assignsv.., with a
and temporarily removes the rest Bfv.,,)’s values. Ifv.,, is universal then
compute_P\Memporarily removes all the pure values, except the last ioom
D(veur)- Theif statement of line 4 ensures tlampute_P\s only called be-
fore v, is assigned with its first available value.

e Forward_Checka@s the function of Figure 4 and implements the FCO-type look-
ahead. It is called after the current variable (existemtialniversal) is assigned
and checks this assignment against all future existert@istrained with,,,;..

If a value of a variable; is deleted then..,,,. is added taon f_set(v;). If D(v;)
is wiped out then each; € conf_set(v;) is added taon f_set(vey,).

e Forward_Checkis the function of Figure 5 and implements the FC1-type look-
ahead. It is called before.,, is assigned (if it is a universal) and checks all of
D(v.u)'s available values against the future variables congthmith v,.,,,.. If
the domain of a variable; is wiped out then each; € conf_set(v;) is added
to conf_set(veyr). Theif statement of line 30 ensures thyatl () is called only
beforev..,, is assigned with its first available value.

e SDPimplements solution-directed prunin§DPprunes values from universals
according to the reasoning described in Section 5.2 anthsethe first universal
found that has values left in its domain after SDP has beeliegpp

e Restoreis the procedure depicted in Figure 9 used to restore vatudsetdo-
mains of variables upon backtracks. This procedure istjiglfferent from the
one used by FC as it has to restore any values pruned by thel®W mddition
to the ones pruned by forward checking.

QCSP-Solve works as follows. It takes as input a QGSE (V,Q, D, C) and,
after preprocessing the problem (line 1), it proceeds byingatssignments of values
to variables until the truth of the problem is proved or disfgd. Before assigning
a value tov.,,, QCSP-Solve callsompute_PMo compute the pure values of,,,
(lines 4-5). Ifuv.,, is existential and there are no available valueDifv.,,) then
the algorithm backtracks to the latest variabl&ibelonging taconf_set(vey,) (lines
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BooleanQCSP-SolvéF = (V,Q, D, C))
input: AQCSPF
output: TRUE if a solution toF" exists and FALSE otherwise

1: preprocesgF)
2 Veyr — U1

3: while veyr # NIL

4.
5:
6:
7.
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22

23:
24.
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

40

if the previously assigned variable was,, 1
compute_PYF, veyr)
if Q(veur) = 3
if all values inD(vc.r) have been tried
Uback < latest variable i/ belonging tacon f_set(veur)
Restor¢F, veur, Vback )
Veur <~ Uback
else
assignue,» with the next available value € D(veur)
if Forward_CheckQF, vcur, a)
if Veur = Un
if there are no universals i return TRUE
else
Vback < SDHF)
Restor€F, veur, Vback )
Veur < VUback
elseveyr «— next{veyr)
elseRestoréF, veur, Veur)
: elsel/Q(veur) = VI
if all values inD(vc.r) have been tried
if veyr is the first universal iV return TRUE
else
RestoréF, veyr,last_Uveur))
Veur — laSt_Uveur)
else
FC_result—TRUE
if the previously assigned variable was,—1
FC_result—Forward_Check{F’, vcur)
if FC_result
assignue.» with the next available value € D (veur)
Forward_CheckQF, veyr, a)
Veur < neX(Ucur)
else
Uback < latest variable i/ belonging tocon f_set(veur)
RE‘StOF(@F7 Veur, vback)
Veur <~ Uback

if vewr = NIL return FALSE
Figure 8: The algorithm of QCSP-Solve.
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procedure RestoréF, veyr, Vback )

input: A QCSPF, the current variable..,, and the variable where the algorithm will backtragk.
output: -

1: for v; = vpaer 10 Veur

2: for each variabley; afterv; in V'

3 restore taD(v;) any value that was removed because s instantiation

4:  restore taD(v;) any value that was removed because of the PV rule

Figure 9: Restoration procedure of QCSP-Solve.

7-10). Otherwisey.,. is assigned with its next available value and the assignment
is checked against future variables (lines 12—-13). If there domain wipe-out and
the algorithm has reached a true leaf node (ig,, is the last variable i) then
SDPis called to perform solution-directed pruning (lines 18)1If QCSP-Solve is
not at a leaf node, it proceeds by moving to the next varidbie @0). If there is a
domain wipe-out, the next value of,,,. will be tried in the next iteration of thevhile
loop. Note that if there are no universals in the problem (itds a standard CSP),
QCSP-Solve terminates when a true leaf node is reachedi@ne

If v.yr IS @ universal and consistent scenarios have been foundl fifrits values,
then there are two cases.uf,, is the first universal, QCSP-Solve terminates success-
fully (line 24). Otherwise, it backtracks to the last uns@r(line 27). Before assigning
any value to a universal variable, QCSP-Solve chtisvard_Checklo perform the
FC1-type look-ahead (lines 30-31). If there is a domain wapg the algorithm back-
tracks to the latest variable ¥ belonging tocon f_set(vey,) (lines 36-39). If there
is no domain wipe-out, ofForward_Checklhas already been called at this levgl,,.
is assigned with its next available value (line 33), thegssient is checked against
future variables (line 34), and QCSP-Solve proceeds wigmtxt variable (line 35).

Although it is not shown in Figure 8, QCSP-Solve can also emfihe dynamic
symmetry-breaking technique based on computing NI valles;ribed in Section 3.3.
However, the experiments we have run so far have showedhbhaine overheads of
this technique outweigh the benefits it offers, when the R¥ iz1also used. That is
why it is not included in the pseudo-code of Figure 8. Howgweother problems than
the ones we tried, and with better implementation, it is ejpidssible that dynamic
NI-based symmetry breaking may be useful.

The following example demonstrates how QCSP-Solve operate

Example 9 Consider the following QCSP whe#é consists of 7 quantified variables,
andC is a conjunction of 9 constraintslv; JvoVusVu,Vus Jvg vz (v1 # vg A vy #
V7 A\ Vg 7é Vg A\ U3 7é Vg N3 < U7 AUy 7é Vg N\ Uy # V7 N\ U5 7é vg N\ U5 < U7). Assume
that the domains of the variables are as follodwv;) = {2,3}, D(v2) = {0,1,2},
D(vs) = {0,3}, D(vs) = {0,1,6}, D(vs) = {4,5}, D(ve) = {0,1,2,3}, D(vy) =
{0,2,3,6}.

Let us trace the execution of QCSP-Solve for a few steps tenstahd how its
various features prune the search space. Figures 10a tehtikdtrate how the search
tree explored by QCSP-Solve is built, how certain nodes arequl, and the way the
domains of the variables change during search.
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Figure 10a Preprocessing is applied (line 1 of the algorithm). Theeerar arc incon-
sistent or pure values, so no pruning is perforfned

Figure 10b The assignment; — 2 is made (line 12)Forward_Check®educed (vg)
andD(v7) to {0, 1, 3} and{0, 3, 6} respectively (line 13). We now have the fol-
lowing: conf_set(vg) = conf_set(vy) = {v1}.

Figure 10c Now, value 2 ofv, becomes pure because it is supported by all values in
future variables (lines 4-5). The PV rule will immediatelyke the assignment
Vg — 2.

Figure 10d The next variable is a universatorward_CheckXlines 30-31) does not
wipe out any future domain, so the assignmeni- 0 is made (line 33).For-
ward_Check@educesD(vg) and D(v7) to {1,3} and{3,6} respectively (line
34).

Figure 10e Value 0 ofv, is pure (lines 4-5). Therefore, itis removéerward_Checkl
(lines 30—31) does not wipe out any future domain, so thgasgntv, — 1 is
made (line 33) anéforward_Check@educesD(vg) to {3} (line 34).

Figure 10f The next variable is;. Forward_Checkldoes not wipe out any future
domain (lines 30-31), so the assignmept— 4 will be made (line 33).For-
ward_Check@educesD(v7) to {6} (line 34).

Figure 10g vg andv; are assigned their only available values (in line 12) andia tr
leaf node is found (line 14).

Figure 10h Now functionSDPis called (line 17).SDPdiscovers that value 5 of the
last universal+s) is compatible with the assignments of all the existentidilsr
vs. Therefore, this value is removed froM(v;). SDPis then applied to the
previous universad,. Value 6 ofv, is not compatible with the assignmentsitp
andv;. Therefore, a solution-directed backjumputois performed (line 19).

Figure 10i The assignment, — 6 is made (line 33)Forward_Check®educed (vg)
andD(v7) to {1, 3} and{3} respectively (line 34).

Figure 10j Forward_Checkl(lines 30-31) applied at; wipes outD(v;) because
value 4 ofvs is incompatible with the only value i (v7). Therefore, we have
a dead-end anebn f_set(v;) will be added tacon f_set(vs).

Figure 10k The algorithm will backjump to the latest variable n belonging to
conf_set(vs), which isv; (line 37-39).

Figure 10l shows the part of the search tree traced in the geaamd illustrates how
subtrees are pruned by applying look-ahead and look-babtkigues.

SValues 4 and 5 obs are NI, but let us ignore this for the sake of the example.

37



® O ©
vl {2,3} vl {2} g vl {2} @ vl {2} @ 1 {2} ©)

v2{0,1,2} Ov2 0.1,2} M @O @O 2@ ®0L
Ov3 0,3} Cv3 0,3} 0v3 0,3} 03 {0} ® Do @
0v4 {0,1,6} V4 {0,1,6) 0v4 {0,1,6} Uv4 {0.1.6} Cva {1 @O
V5 {45} V5 (4,5} V5 {45} 0vs {45} V5 4.9}
0v6 {0,1,2,3} 0v6 {0,1,3} 0v6 {0,1,3} L6 {13} (6 {3}
W7 {0,2,3,6} W7 {0,3,6} (V7 {0,3,6} Bv7 {36} V7 3.6}

(@) (b) © (¢] @

O O

Ol {2} (2 V1 {2} 2) vl {2} vl {2}
V2 {2} 0XOJO, V2 {2} OJOlO; V2 {2} w2 {2}
0Ov3 {0} © Ov3 {0} O 0Ov3 {0} Dva {0} {
Ova {1 @ ® Ov4 {1} ofo) Ov4 {1} D4 (6} @ i
0v5 {4} @ Ov5 {4 @ 0v5 {4} Ov5 {4,5} @.—' @
w6 {3} V6 {3} O V6 {3} ) Cv6 {1,3} @
V7 {6} V7 {6} ® w7 36} ® CW7 {3} ®

(4}
. = % vl
OVl {2} ovi 3 @

D w2
ov2 (2 o212 @ O @ '
0w () 0v3 {0.3) @ Ove
CIv4 {6} @0 ® v 18 @ g ® Cva
OV {} @ ® [IV5 {4,5) @ ® ® s
w6 (1.3} ® o6 0123 ®
o7 3} & V7 (02,36} ® e
0 ® O

Figure 10: Search tree of Example 9. Dark nodes are pruneddgfR5olve. Such
nodes together with the feature responsible for their mgi@re included in dotted
ovals in the last figure. Dotted edges denote parts of thettiaevere visited in the
past. DWO stands for domain wipe-out.
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6 Experimental Evaluation

To compare the performance of the methods presented in¢hips sections, we ran
experiments on randomly generated QCSPs. Before pregahgmresults, we discuss
the issue of flaws in random instances, which is familiar fratimer search problems
such as CSP and QBF and can have a significant impact on exgmeahstudies. We
show that random generators derived by extending standardrgtors for QBF and
CSP give rise to flaws, which quickly infect all generatedhpeans. Since this is an
important problem for experiments in QCSP, we propose aamngenerator that is
free from these flaws.

6.1 Flaws in Random QCSP Generation

Local flaws have been discovered in random generation mdaletearch problems,
such as CSPs [1] and QBF [30]. We show that random generatiaielis for QCSPs
that are based on standard generators for QBF and CSPs éanfsuh a local flaw
(specific to QCSPs) that makes almost all of the generatadnioss false, even for
small problem sizes.

Consider, for example, the-QBF random generation model [30] which has been
widely used in experiments with QBF. In this model therefa#el blocks of variables
with alternating quantification, with the variables in thesffiblock being existentially
quantified. For example, in a 2-QBF problem we have a blockistential variables
followed by a block of universal variables followed by anatiblock of existential
variables. This model can be easily adapted to generate @G&iAces. The blocks of
variables are generated askvQBF and the binary constraints can be generated using
a standard model for binary CSPs (e.g. model B [43]).

However, thek-QCSP generator is subject to a local flaw. Suppose we can find
assignmentsv; — 7,vy — 2,..., v, — 3) for universalsuy, . .., v, and there exists
an existentiab, appearing later i’ than all variables); wherei € 1...k. If every
value ofv, conflicts with one of the chosen values of one of the univerghls tuple
of assignments is inconsistent. But it remains inconsistegspective of assignments
to other universals or existentials and so the problemigtly false as a whole. Even
taking the extreme case of only one conflict per constrdirg,dan happen as long as
there are as many universals befogeas values in its domain.

Assume there aré universals, and there is a constraint between a pair ofhlaga
with probabilityp. Each constraint has one nogood. Assume ibat.) = {1,...d}.
The probability of a conflict between some universal andevalin D (v, ) is pd/d (i.e.
we pick a universal, from d universals, with probability there is a constraint between
u andwv,, and with probabilityl /d the single conflict involves value € D(v.)). For
value 2, the set of available universals has gizel, so the probability ig(d — 1)/d.
Overall the probability of a flaw between existentiglandd particular universals is
P(ve) = TIi_, pi/d.

With & existential variables quantified aftéuniversals, the probability of no flaw
occurring is(1 — P(v.))¥. SinceP(v.) does not depend di, with fixed d andp this
probability tends to 0 a8 — oo. Not only are flaws certain to occur, but there is no
phase transition: i.e. for any> 0 almost all problems are false asymptotically.
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This flaw is not only very common, but also discovering itssemece is aNP-
complete problem. Let us repeat the description of the flayhdy more formally.

Definition 6 Flawed Problem Suppose that we have a set of variable assignments
S={vy—ai,...,v;— a;},whereforeach,,j =1...4,a; € D(v;),and each,,

j =1...4,is universally quantified and appearslirbefore an existential variable.

If every valueb € D(v.) is incompatible withat least onevalue assignment; — a; €

S ({aj,b) ¢ cje), then the entire problem is false, and is said to be flawed.

Notice that the only case of this which is detected by eith@GSP technique or
encoding is the case where the set of variable-value pamssiagleton. l.e. some
v; — a; is inconsistent with every value et. In this case algorithm QAC-2001 re-
ports failure. For the case where each constraint contailysame conflict, it is easy
to check each existential variable for a flaw. That is how wapated the proportion
of flawed problems above. However, in general it is hard tdinorthe existence of a
flaw:

Theorem 2 Checking for the presence of a flaw in a QCSP is NP-complete.

Proof: Consider any SAT instance. We convert this into a QCSP suatithie SAT
instance has a solution iff the QCSP is flawed. For each SARbiarv we have a
corresponding universal QCSP variablgith two values, 0 and 1. We have a single
existential variable), quantified last, with domain size equal to the number of @aus
in the SAT problem. We have a constraint between every usaerariable and..
This constraint has a conflict for each SAT clause that theabks occurs in. If the
literal in clausei is —v, the conflict rules out the paiv — 0, v, — 7), while if the
literal is v, the conflict rules outv — 1, v, — 7).

Now consider any satisfying assignment to the SAT instafbés is a set of literals
such that at least one occurs in each clause.-8aig in the set and occurs in clause
1. Then the translation ensures that- 0 rules outv. — 4. Similarly, if » is in the
assignment and occurs in claugethenu — 1 is in conflict withv, — j. So each
value ofwv, is ruled out. We never need to set any variable to 0 and 1 simedusly,
as the satisfying assignment does not contain both a varéta its negation.

The reverse direction is similar. Say that the translate&R flawed. Then there
is a set of assignments; — q;} ruling out each value of.. If a; = 0 then, by
construction, the literalv occurs in clausé and satisfies it. And ifi; = 1 thenv
occurs in clause. As all values ofv, are ruled out, the SAT instance is satisfied.

The flaw is easily witnessed, by a choice of values for unalerariables, so the
problem of instances being flawed is also in NP so is NP-campl@ED

Note that the flaw is simply a situation in which search cargbminated. As such
it might give rise to interesting new propagation technijieQCSP, or valuable new
clauses in QBF encodings.

6.1.1 Random problem generator

The random generator we used controls the probability ofsflaMariables appear in
blocks with alternating quantification. For simplicity, wdescribe the model in the
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case of three blocks. That is, a block of existentials foddviby a block of universals
then another block of existentials. The generator takesr@npeters: (n, nv, npos,
d,p, qv3, qa3) wheren is the total number of variablesy, is the number of universally
quantified variablesy,, is the position of the first universally quantified variabte i
V, d is the uniform domain size; is the number of binary constraints as a fraction of
all possible constraints.

¢33 is the number ofjoods(i.e. satisfying tuples) i v;3 v; (¢;;) constraints as a
fraction of all possible tuples, angs is a similar quantity fol/ v;3 v; (c;;) constraints
explained below. The other two types of binary constraimtlza removed entirely by
preprocessing and so we do not generate them.

Since the flaw is a characteristicwi; 3 v; (c;;) constraints, we restrict these in the
following way: we generate a random total bijection (i.e na-¢o-one correspondence)
from one domairD(v;) to the othetD(v;). Conflicts are chosen only from those pairs
in the bijection. All 2-tuples not in the bijection are goodéow ¢y is the fraction of
goods from thel tuples in the bijection.

Notice that thep, ¢33, ¢v3, andgys parameters are proportions rather than proba-
bilities, hence this model is similar in style to model B fandom CSPs.

To control the probabilityp; of the flaw, we write down an expression fpy,
approximating proportions, ¢v3, g3z as probabilities.ny is the number of universal
variables, andhs is the number of existential variables in the second existdnlock.

For each existential assignment— 1, the probability that it is covered by a uni-
versalv,, is p(1 — qv3). If the variablev, is flawed, then all its values are in conflict
with some value of some universal variable. However, eadleusal variable can only
cover one value (since we use a bijection).

For an individual existential variabte (in the second existential block), and repre-
senting domain values using positive integers, we start titjng down the following
equation. It places an ordering on the values and repretenpsobability of all values
in D(v.) being flawed as a product of the probabilities of each valugiven that all
values less than are flawed. So for example, if = 5, the probability that value 5 is
flawed (given values, 2, 3, 4 are flawed) is written ag(5|1, 2, 3, 4).

p(ve flaw) = p(1)p(2[1)p(3[1,2) ... 1)

The probability that value: is flawed, given that the previous— 1 values are
flawed, is given by equation (2)1 — qv3 is the probability of the particular value
a € D(v.) being in a nogood of any particular constraint. This is nplid by p; to
obtain an approximate probability of a particular univérgsaand constraint,. having
a nogood containing € D(ve).

The exponenty — (a — 1) is the number of universal variables, minus thase 1)
variables which are already instantiated to conflict with th — 1) lower values in
D(v.). The probabilityp, (1 — gv3) of a particular universal having a conflict with
a € D(v.) is complemented, raised to the exponent and complemené agbtain
the probability of any remaining universal variable havingonflict witha € D(v,).

p(a|1...a7 1) =1- (17]91(1 ,qva))nvf(afl) (2)
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Substituting equation (2) into equation (1) gives the philits of one particular
existential variable being flawed.

d—1
p(ve flaw) = H (1 —(1-p1(1- qvg))"\’fi) 3)
=0
The probability that no existential variables are flawedveigbelow. This formula
gives incorrect results wheh > ny. In this casep; = 1 since there are not enough
universal variables to cover all elements of a domain.

py = (1= p(ve flaw))™ (4)

6.2 Experimental Results

In this section we present experimental results from problgenerated using the
model described above. Our aim is to demonstrate the hugega®in the efficiency
of QCSP solving that was made, starting from our first methartts culminating in
the most advanced ones. Therefore, we only give indicadggelts for the various
techniques.

6.2.1 Direct Algorithms

Figure 11 presents a comparison of algorithms FC1, FC1+RACM-PV, and QCSP-
Solve on problems generated according to the model desdcaibave. All algorithms
apply AC, and NI preprocessing. For each value=gfshown in the figures, 100 prob-
lem instances were generated and we use the mean averaggerigration parame-
tersaren = 21,d = 8, p = 0.2, andqys = 0.5. Variablesuv; ... v; are existentials,
vg ... V14 are universals, and s . . . vo; are existentials. These parameters ensure that
the instances are unflawed. Finaljyg is varied across the satisfiability phase transi-
tion. We include FC1+PV and MAC1+PV in the comparison tosthate the power of
the PV rule. Note that, for the problems we tried, the FC-tadgorithms are more
efficient than the corresponding MAC-based ones. Howeweldafger problems this
may easily be reversed.

In the problems of Figure 11 the execution of FC1 was stopptetaut-off limit of
2 hours in more than 50 of the instances. As we can see, QCSP-Solve is many orders
of magnitude faster than FC1. The speed-up obtained islyatige to the application
of the PV rule. Similar results were obtained with variousgpaeter settings.

At this point we should note that both the recently propos&$® solvers Block-
Solve and QeCode, of [44] and [4] respectively, achieved gerod results on ran-
domly generated QCSPs. Both these solvers are consideatifglyent than QCSP-
Solve. BlockSolve is a bottom-up solver that displays bgtegformance than QCSP-
Solve on satisfiable instances, but as a downside requipesiertial space. QeCode
is built on top of Gecode and hence is equipped with many ashh@SP techniques
such as GAC algorithms for certain global constraints. Gmdther hand, it lacks
specialized features for QCSPs, such as pure value handling
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Figure 11: Comparison of direct algorithms for QCSRPs= 21, ny = 7, d = 8,
p = 0.20, qQv3 = 1/2.
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Figure 12: Comparison of the enhanced log encoding with tedajpg and QCSP-
Solve

6.2.2 Encodings of QCSP as QBF

As explained in Section 4, the global and local acceptgl#iitcodings perform poorly
compared to the other encodings and the direct methodseftiner we do not include
results for these two encodings. The enhanced log encodieg g remarkable im-
provement over adapted log. It is also competitive with Q&8Ie and can be two
orders of magnitude better. Figure 12 shows results usm¢htiee methods. The gen-
eration parameters are= 24, d = 9, p = 0.2, andgys = 0.5. Variablesv; ... vg
are existentialsyg . . . v16 are universals, and,; . . . vo4 are existentialsqss is varied
across the satisfiability phase transition. For each pb1,instances were generated.
The median average is used because of high outliers. Thetdike@ to encode the
instances is not included, but since it is a linear encodiigis negligible for difficult
instances.

The closest setting afs3 to the phase transition is 0.55, with 43 instances out of
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100 being true. This also approximately coincides with tif#cdlty peaks for the
encodings, but not for QCSP-Solve. For lower valueg=sf fewer of the instances
are true and the enhanced log encoding is less competititte QCSP-Solve. For
example atz3 = 0.35, 99 of the instances are false, and QCSP-Solve outperfdrmens t
enhanced log encoding. Wheyg; = 0.8 all the instances are true and the enhanced
log encoding outperforms QCSP-Solve. At = 0.9, the median for the enhanced
log encoding fell below the resolution of the timer, so it & shown on the graph.

This suggests that the QBF solver CSBJ is more effectivelnipg or backjump-
ing over universal variables, because in a loosely-coimgtianstance the main cost is
branching on universals. Testing this, and identifyingahkhiules in CSBJ are respon-
sible, remains for future work.

We very briefly experimented with two other solvers, the hation solver Quantor,
and the hybrid (search and resolution) solver sKizzo. Timeveas to gather some initial
evidence as to whether the enhanced log encoding is as effigign non search-based
solvers as it is with search-based ones like CSBJ. The raridstences run had the
following parametersn = 24, 3 blocks of 8 variables with alternating quantification,
andd = 9, ensuring that the instances are unflaweek 0.2, gy3 = 0.5, andgsz = 0.5
(at the phase transition and difficulty peak for CSBJ). 1@ainses were generated.
CSBJ solved 9 instances in under half a second each, andriteine8.98 seconds.
Quantor quickly ran out of memory (>1GB) on eight of the imst&s, solved one in
2.98s and ran out of time for the other (>60s). sKizzo was len@lsolve any instance
within 60s. From this we conjecture that search-based sobwee preferable for the
encoding. However, further experiments are necessarnlittata this conjecture.

7 Conclusions

In this paper we studied various methods for solving QCSHRis fiviite discrete non-
Boolean domains. Our first approach was based on adaptihgitees from CSPs
to deal with QCSPs. We described an AC algorithm for QCSPsdiia deal with
arbitrary binary constraints. We then extended the BT, K@, MAC algorithms so
that they can handle quantification. We also proposed matliics of FC and MAC
that are better suited to QCSPs.

Our second approach was based on encoding QCSPs as QBFs. ofiwation
was that at an early stage of research into a new problem &k8R)encoding into a
more studied problem like QBF would very likely provide cogtiive performance.
We introduced progressively more efficient encodings, quditing in the enhanced
log encoding, which can be several orders of magnituderfésém the direct QCSP
algorithms. Through this study it was also demonstratetitheaeffective encoding of
QCSP into QBF can be a complex process, since simple gezadiatis of CSP-to-SAT
encodings are very inefficient.

Apart from giving us efficient tools for QCSP solving, the foemance and prop-
erties of encodings and techniques used in QBF solving atelitsignificant enhance-
ments to the direct QCSP algorithms. We identified two festwf the log encodings
and the underlying QBF solver as largely responsible far thecess; first, their abil-
ity to take advantage of the pure literal rule in QBF, and ségdheir backjumping
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capabilities, manifested by CBJ and SBJ. We devised anceimghted analogues of
these features within direct QCSP algorithms, resultin@@®@SP-Solve, an efficient
direct solver.

Finally, we proposed a model for the random generation of Es18at is free from
known flaws. Experiments with problems generated usingrtiosel demonstrated
the dramatic improvement in performance when comparingrotial QCSP solving
attempts to the sophisticated techniques developed later.
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