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Abstract

We make a number of contributions to the study of the Quantified Constraint
Satisfaction Problem (QCSP). The QCSP is an extension of the constraint satisfac-
tion problem that can be used to model combinatorial problems containing contin-
gency or uncertainty. It allows for universally quantified variables thatcan model
uncertain actions and events, such as the unknown weather for a futureparty, or an
opponent’s next move in a game. In this paper we report significant contributions
to two very different methods for solving QCSPs. The first approach isto imple-
ment special purpose algorithms for QCSPs; and the second is to encode QCSPs
as Quantified Boolean Formulas and then use specialized QBF solvers. The dis-
covery of particularly effective encodings influenced the design of more effective
algorithms: by analyzing the properties of these encodings, we identify thefea-
tures in QBF solvers responsible for their efficiency. This enables us to devise
analogues of these features in QCSPs, and implement them in special purpose al-
gorithms, yielding an effective special purpose solver, QCSP-Solve.Experiments
show that this solver and a highly optimized QBF encoding are several orders of
magnitude more efficient than the initially developed algorithms. A final, but sig-
nificant, contribution is the identification of flaws in simple methods of generating
random QCSP instances, and a means of generating instances which arenot known
to be flawed.

Keywords: Quantified Constraint Satisfaction Problems, Quantified Boolean For-
mulas, Arc Consistency, Search Algorithms, Random Problems

∗Parts of this paper have appeared in the conference papers [28,29].
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1 Introduction

Quantified Constraint Satisfaction Problems (QCSPs) can beused to model various
PSPACE-complete combinatorial problems from domains likeplanning under uncer-
tainty, design, adversary game playing, and model checking. For example, in game
playing we may want to determine if a consistent strategy exists for all possible moves
of the opponent. In a design problem it may be required that a configuration must be
possible for all possible sequences of user choices. As a final example, when planning
in a safety critical environment, such as a nuclear station,we may require that an action
is possible for every eventuality. QCSPs extend traditional, unquantified, CSPs to deal
with the kind of contingency found in the above examples.

The QCSP naturally generalizes the standard CSP formalism by allowing for uni-
versally quantified variables. Universal variables are used to model actions or events
which are contingent, for which we are uncertain, or just those which are not in our
control. Examples would be contingencies such as user choices in a configuration
problem, uncertainties such as the weather in a plan to hold agarden party, or oppo-
nent moves in an adversary game. In a conventional CSP, all variables are existentially
quantified, since all are within our control. The values in the domain of a universal
variable capture all the possible outcomes of the event or action modelled by this vari-
able. In this way, QCSPs modelboundeduncertainty. In a QCSP we try to find a
strategy, defining the values of the existential variables for all possible sequences of
instantiations for the universal variables, so that all theconstraints in the problem are
satisfied. Such a strategy guarantees that there is a solution whatever values the uni-
versal variables take, i.e. whatever the outcome of the uncertain actions and events.
The generalization of CSPs to QCSPs increases the expressiveness of the framework,
but at the same time the complexity of the decision task risesfrom NP-complete to
PSPACE-complete [8,26,38].

There is already considerable interest in quantified constraint reasoning in the case
of Quantified Boolean Formulae(QBF), which is the generalization of SAT that al-
lows universal quantification (for example, [13,23,30,33,34]). Also, there is a signifi-
cant body of work on quantified problems with continuous realdomains (e.g. [5, 41]).
Ratschan gives numerous references to papers on this subject [40]. As far as QCSPs
with discrete finite non-Boolean domains are concerned, there is recent research on
theory defining the complexity of various reasoning tasks and also specifying tractable
subclasses (e.g. [8, 11, 15–18]). Also, various useful concepts from CSPs, such as
global and local consistency, substitutability and interchangeability, have been defined
for QCSPs [11, 12]. However, little has been done as far as algorithms for solving
QCSPs are concerned. In the few existing works, Bordeaux andMonfroy introduced
a framework for implementing arc consistency and describedfiltering operators for
certain classes of constraints [9, 12]. Also, very recently, Verger and Bessiere pro-
posed a bottom-up solver for QCSPs called BlockSolve [44], while Benedetti, Lal-
louet and Vautard implemented QeCode, a QCSP solver built ontop of the CSP solver
Gecode [4].

In this paper we report the first comprehensive attempt to build effective QCSP
solvers, although we limit ourselves to the case where constraints are binary. We make
contributions to two very different approaches to solving QCSPs. These are special pur-
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pose solvers for QCSPs; and encoding QCSPs as QBF instances so that existing QBF
solvers can be used. In each approach we introduce novel and effective techniques. We
also show how experience with the encodings directly influenced the design of better
techniques for the specialized solvers.

We first approach QCSPs directly by extending well-known algorithms from the
standard to the quantified case. This is analogous to the approach taken at the early
stages of research in QBF. We show that some of the most widelyused techniques
for CSPs can be adapted to deal with quantification. We first describe a generic arc
consistency algorithm that can be used to enforce AC in any binary QCSP. We then
extend the chronological backtracking (BT), forward checking (FC), and maintaining
arc consistency (MAC) algorithms so that they can handle quantification. We also
propose modifications of FC and MAC that take advantage of theproperties of QCSPs.

Then we follow an orthogonal approach, based on encoding QCSPs as QBFs. A
particular advantage of encoding one search problem as another occurs when, as here,
search techniques for the target problem are more highly developed than the original.
In contrast to QCSP, numerous advanced solvers are available for QBF. We describe a
finely-tuned encoding which can be several orders of magnitudes more efficient than
the direct methods described so far. The tuning of encodingsto be effective for search
is considerably more involved than in the case of SAT, where encodings often have an
elegant simplicity. A simple way of lifting CSP encodings toQCSP is very ineffective,
so we explore and implement new ideas, without analogues in SAT, that make search
very effective.

Apart from obtaining efficient tools for QCSP solving, we benefit from the study
and development of encodings to learn valuable lessons thatcan be transferred to direct
algorithms. So in the third, and final, stage in the development of algorithms for QC-
SPs we analyze the advantages offered by our QBF encoding to identify the features
responsible for its efficiency. We identify three sophisticated techniques; conflict-based
backjumping [39], solution-directed backjumping [33], and most importantly, the pure
literal rule [14], as important reasons for the success of QBF solvers in solving encoded
QCSP instances. We devise analogues of these features in QCSPs, and implement them
on top of direct algorithms, to yield a specialized direct solver, called QCSP-Solve.

A final issue we address in this paper is that of benchmarking,since there is natu-
rally a distinct lack of benchmarks to compare algorithms on. This is a familiar problem
that has appeared in the early stages of experimental research in various other areas.
As was the case with CSP, SAT, and QBF, we address this problemby proposing and
using methods to generate random instances. We show that a simple generalization
of random generation models from CSPs or QBF to QCSPs is proneto flaws, which
quickly affect all generated instances. We then introduce arandom generator that is
free from these flaws, although it remains possible that it will suffer from a currently
unknown flaw. Experiments run on problems created using thisgenerator reveal a pro-
gressive, and dramatic, improvement in the efficiency of ourmethods; starting with the
initial direct algorithms and culminating in QCSP-Solve and a highly optimized QBF
encoding.

This paper is structured as follows. In Section 2 we give the necessary definitions
and background. We then present progressively more efficient methods of handling
QCSPs. In Section 3 we follow the direct approach by extending standard algorithms
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from CSPs to QCSPs. In Section 4 we describe some of the existing work on encod-
ings, and develop a finely-tuned encoding which is remarkably more efficient than the
direct approaches. In Section 5 we show how lessons learned from the encoding of
QCSP into QBF can be utilized to enhance the direct algorithms, resulting in QCSP-
Solve; an advanced solver for QCSPs. Section 6 describes a flaw which can arise
in random QCSPs, introduces a random generator for QCSPs, and gives indicative
experimental results which demonstrate the building of progressively more efficient
techniques. Finally, in Section 7 we conclude.

2 Preliminaries

A Constraint Satisfaction Problem(CSP) consists of a set of variables, each associated
with a domain of possible values, and a set of constraints restricting the combinations
of values that the variables can simultaneously take. In CSPs all variables are existen-
tially quantified. QCSPs are more expressive in that they allow universally quantified
variables. In this way they enable the formulation of problems where all contingencies
must be allowed for. We now give a formal definition of a QCSP instance. As is usual
practice in CSPs, we use the name QCSP to denote both particular instances and the
decision problem of determining whether an instance is true(i.e. soluble) or not.

Definition 1 A Quantified Constraint Satisfaction Problem(QCSP) F is a tuple
〈V,Q,D,C〉 where:

• V is a linearly ordered set of n variables. In the following we will denote byvi

thei-th element ofV with respect to this linear order.

• Q is a mapping fromV to the set of quantifiers{∃,∀}. For each variablevi ∈ V ,
Q(vi) is a quantifier (∃ or ∀) associated withvi.

• D is a mapping fromV to a set of domainsD = {D(v1), . . . ,D(vn)}. For each
variablevi ∈ V , D(vi) is the finite domain of its possible values.

• C = {c1, . . . , cm} is a set ofm constraints. Each constraintci ∈ C is defined
as a pair(vars(ci), rel(ci)), where: 1)vars(ci) = (vj1 , . . . , vjk

) is an ordered
subset ofV called the constraintscope. The size ofvars(ci) is called thearity
of ci. 2) rel(ci) is a subset of theCartesianproductD(vj1) × . . . × D(vjk

) and
it specifies the allowed combinations of values for the variables invars(ci).

The above definition of a QCSP reduces to that of a standard CSPif there are no
universally quantified variables in the problem.

A blockof variables in a QCSPF is a maximal subsequence of variables inV that
have the same quantification. The assignment (also called instantiation) of valueaj ∈
D(vj) to variablevj ∈ V will be denoted byvj 7→ aj . Accordingly, the tuple assigning
valuesa1, . . . , ai to variablesv1, . . . , vi will be denoted by〈v1 7→ a1, . . . , vi 7→ ai〉.
The set of variables over which a tupleτ is defined will be denoted byvars(τ). For
any subsetvars′ of vars(τ), τ [vars′] denotes the sub-tuple ofτ that includes only
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assignments to the variables invars′. A tuple τ is consistent, iff for all ci ∈ C, s.t.
vars(ci) ⊆ vars(τ), τ [vars(ci)] ∈ rel(ci). For any constraintci ∈ C, variable
vj ∈ V and valuea ∈ D(vj), we denote byci[vj 7→ a] the subset ofrel(ci) that only
includes tuples wherevj takes valuea. If vj /∈ vars(ci) thenci[vj 7→ a] ≡ rel(ci).
We writeC[vj 7→ a] as a shorthand forc1[vj 7→ a] ∧ . . . ∧ cm[vj 7→ a].

In what follows we will often refer to universally and existentially quantified vari-
ables asuniversalsandexistentialsrespectively.

Definition 2 QCSP semantics.
A QCSPF = 〈V,Q,D,C〉 represents the logical formulaφ = Q(v1)v1∈D(v1)

. . . Q(vn)vn ∈D(vn) (C). The semantics of a QCSP can be defined recursively as
follows.

The base case is a QCSP instance with an empty quantifier prefixQ, i.e. all vari-
ables assigned. This QCSP instance is true iff, for each constraint ci ∈ C, the tuple of
values of assigned variables in its scopevars(ci) belongs to its relationrel(ci). Note
that an empty QCSP is vacuously true. Ifφ is of the form∃v1 ∈D(v1) Q(v2)v2 ∈
D(v2) . . . Q(vn)vn∈D(vn) (C) thenF is true iff there exists some valuea ∈ D(v1)
such thatQ(v2)v2 ∈D(v2) . . . Q(vn)vn ∈D(vn)(C[v1 7→ a]) is true. Or in words,
if under the assignmentv1 7→ a the rest of the problem is true. Ifφ is of the form
∀v1∈D(v1) Q(v2)v2∈D(v2) . . . Q(vn)vn∈D(vn) (C) thenF is true iff for each value
a ∈ D(v1), Q(v2)v2∈D(v2) . . . Q(vn)vn∈D(vn)(C[v1 7→ a]) is true.

To better understand the semantics of a QCSP, we first need to define the notion
of a strategy. Astrategyis a tree with each level of the tree corresponding to a vari-
able. Level 1 corresponds to the first variablev1 in V , and levels thereafter follow
the order ofV . A node in thei-th level of the tree corresponds to a tuple of vari-
able assignments〈v1 7→ a1, . . . , vi 7→ ai〉, wherea1 ∈ D(v1), . . . , ai ∈ D(vi). The
root of the tree corresponds to the empty tuple, the first level nodes correspond to a
1-tuple assigning a value to the first variable inV , the second level nodes correspond
to 2-tuples assigning the first two variables inV , generated by extending the first level
assignment, etc. A node in the tree corresponding to tuple〈v1 7→ a1, . . . , vi 7→ ai〉 has
as many children as the values inD(vi+1), if vi+1 is universally quantified, whereas
it has a single child ifvi+1 is existentially quantified. A node corresponding to tuple
τ = 〈v1 7→ a1, . . . , vi 7→ ai〉 is true iff τ is consistent. Otherwise, the node isfalse. A
tuple of assignments to all variables in a QCSP (i.e. an-tuple) constitutes ascenario.
Within a scenario, the value of each existential variable depends on the values of the
universal variables that precede it inV . A scenario isconsistentiff all the variable
assignments in the scenario satisfy all constraints in the problem.

We can now give an alternative definition of the semantics of aQCSP: A QCSP
with n variables istrue (or satisfiable) iff there exists a strategy where all the leaf
nodes (i.e. the nodes of leveln) are true1. Or in other words, iff there exists a strategy
such that all the scenarios of the strategy are consistent. Such a strategy is called a
consistent strategy, or simply asolution, to the QCSP. As we will show, backtracking-
based algorithms can solve a QCSP by traversing the space of strategies until they
discover a consistent one or prove that none exists.

1This definition can easily be extended to the case where nodesmay be pruned by propagation.
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Example 1 Consider the problem∀v1∃v2∀v3∃v4 (v1 6= v2 ∧ v1 6= v4 ∧ v3 6= v4).
This is a QCSP whereV consists of four variables, andC is a conjunction of three
constraints. The problem reads “for all values ofv1 there exist values ofv2 such that
for all values ofv3 there exist values ofv4, such that all constraints are satisfied”.
Assuming that all variables have domain{0, 1, 2} then the problem is true. A solution
to this problem is depicted in Figure 1. Each path to a leaf node is a consistent scenario.

" v1

$v2

" v3

$v4

0 1 2

1 0 0

0 1 2 0 1 2 0 1 2

1 2 1 2 0 0 1 0 0

Figure 1: A solution to the problem of Example 1.

Note that, in contrast to standard CSPs, the variables in a QCSP are ordered. This
means that changing their order gives rise to a different problem. For example, the
problem∀vi∃vj (vi = vj), with D(vi) = D(vj) = {0, 1}, is true as for any value of
vi we can find a value forvj to satisfy the constraint. However, the problem∃vj∀vi

(vj = vi), with D(vj) = D(vi) = {0, 1}, is false as no value ofvj satisfies the
constraint for both possible assignments tovi.

In this paper we restrict our attention to binary QCSPs. As iscommon, we assume
that at most one constraint is defined on any pair of variables. In a binary QCSP, each
constraint, denoted bycij , involves two variables (vi andvj) which may be universally
or existentially quantified. We assume that for any constraint cij , variablevi precedes
vj in V , unless explicitly specified otherwise. Some of the techniques described below
can be easily extended to constraints of any arity, but for others this extension is much
more involved. We briefly elaborate on this in Section 3.1.

3 Extending CSP Algorithms to handle QCSPs

In this section we begin the presentation of techniques for solving QCSPs. We first
approach the problem directly by extending standard algorithms from CSPs to deal with
quantification. Namely, we describe an arc consistency algorithm for binary QCSPs,
and adapt widely used backtracking search algorithms to handle QCSPs. We also show
how the notion of value interchangeability can be exploitedin QCSPs to break some
symmetries.
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3.1 Arc Consistency

An important concept in CSPs is the concept of local consistency. Local consistencies
are properties that can be achieved in a CSP, using (typically) algorithms with poly-
nomial time complexity, to remove some inconsistent valueseither prior to or during
search. Arc consistency is the most commonly used local consistency property in the
existing constraint programming engines.

A constraintcij in a CSP isarc consistent(AC) iff for each valuea ∈ D(vi) there
exists a valueb ∈ D(vj) so that the assignmentsvi 7→ a andvj 7→ b arecompatible(i.e.
satisfycij). In this case we say thatb is asupportfor a on constraintcij . Accordingly,
a is a support forb on the same constraint. A binary CSP is arc consistent iff allits
constraints are arc consistent. The operation performed todetermine whether a value
a ∈ D(vi) is supported by a valueb ∈ D(vj) with respect to constraintcij is called a
constraint check.

Bordeaux and Monfroy extended the definition of AC to QCSPs and described
the schema of a generic AC3-based algorithm for QCSPs [12]. This algorithm can be
instantiated to achieve AC on specific constraints (not necessarily binary) once filtering
operators have been defined for these constraints. A filtering operator for a constraint
c is a function that specifies which values in the domains of thevariables involved inc
are arc inconsistent with respect toc, taking in consideration the quantification of the
variables [12]. Consider the following example:

Example 2 Bordeaux and Monfroy defined filtering operators for constraint ¬vi =
vj , wherevi andvj have Boolean domains [12]. These operators specify the values
in D(vi) and D(vj) that are arc inconsistent according to the quantification ofthe
two variables. The application of an AC algorithm will prunethese values from the
domains. For instance, ifvi is existentially quantified andvj is universally quantified
(i.e. the formula is∃vi∀vj(¬vi = vj)) then the following applies: IfD(vj) = {0}
then value 0 is pruned fromD(vi). If D(vj) = {1} then value 1 is pruned fromD(vi).

The definition of AC and the AC algorithm of [12] are based on decomposing
complex constraints (e.g. constraints of high arity), thatmay be present in a QCSP,
into “primitive” constraints for which AC filtering operators have been defined. As
noted in [12], this definition is somewhat different from thestandard definition of AC
in CSPs, and is actually closer to the definition ofrelational consistency[21]. In [12],
and later in [9], filtering operators for constraints on Boolean variables and also for
linear numerical constraints were defined. The aim of our work on AC for QCSPs
is to define filtering operators for arbitrary binary constraints, as opposed to specific
constraints with known semantics, and embed these into an efficient algorithm.

We first give an alternative definition of AC for binary QCSPs that closely follows
the standard CSP definition. Based on this definition, we thendefine filtering operators
for arbitrary binary constraints in a straightforward way.Finally, we describe QAC-
2001, a generic AC algorithm that utilizes these filtering operators to achieve AC in
arbitrary binary QCSPs. In contrast to the algorithm of [12]which is based on AC3,
QAC-2001 is based on AC2001/3.1, the AC algorithm of [6] for binary CSPs2.

2Note that other AC algorithms, like AC-6, can be used as basis.We chose to use AC2001/3.1 because
of its simplicity and optimal time complexity.
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Definition 3 A binary QCSPF = 〈V,Q,D,C〉 is arc consistentiff all the constraints
cij ∈ C are arc consistent. Consider a constraintcij ∈ C, wherevi is beforevj in
V . There are four possible combinations of quantification forvi andvj . For each case,
constraintcij is arc consistent iff:

∃ vi ∃ vj : Each valuea ∈ D(vi) is supported by at least one value inD(vj), and each
valueb ∈ D(vj) is supported by at least one value inD(vi).

∀ vi ∀ vj : Each valuea ∈ D(vi) is supported by all values inD(vj), and each value
b ∈ D(vj) is supported by all values inD(vi).

∀ vi ∃ vj : Each valuea ∈ D(vi) is supported by at least one value inD(vj), and each
valueb ∈ D(vj) is supported by at least one value inD(vi).

∃ vi ∀ vj : Each valuea ∈ D(vi) is supported by all values inD(vj), and each value
b ∈ D(vj) is supported by at least one value inD(vi).

Matching the four cases of the definition above, we can define filtering operators
for an arbitrary binary constraintcij as follows. These filtering operators specify the
values that are arc inconsistent, and thus must be removed from the domains of the
variables involved in the constraint.

∃ vi ∃ vj (cij) : If a valuea ∈ D(vi) has no support inD(vj) thena is removed from
D(vi). Similarly, if a valueb ∈ D(vj) has no support inD(vi) thenb is removed
from D(vj). If any of the two domains becomes empty then the problem is false.

∀ vi ∀ vj (cij) : If any valuea ∈ D(vi) is not supported by all values inD(vj) (in
which case at least one valueb ∈ D(vj) will also not be supported by all values
in D(vi)) then the problem is false. Note that it suffices to check the constraint
only in one direction. If all values ofvi are supported by all values ofvj then,
obviously, the opposite also holds.

∀ vi ∃ vj (cij) : If a valuea ∈ D(vi) has no support inD(vj) then the problem is
false. If a valueb ∈ D(vj) has no support inD(vi) then b is removed from
D(vj). If D(vj) becomes empty then the problem is false.

∃ vi ∀ vj (cij) : If a valuea ∈ D(vi) is not supported by all values inD(vj) thena
is removed fromD(vi). If D(vi) becomes empty then the problem is false. If a
valueb ∈ D(vj) has no support inD(vi) then the problem is false. Note that it
suffices to check the constraint only in one direction. If there is at least one value
in D(vi) that is supported by all values inD(vj) then, obviously, all values in
D(vj) have at least one support inD(vi).

In Figure 2 we sketch algorithm QAC-2001. The algorithm takes as input a QCSP
F = 〈V,Q,D,C〉 and removes unsupported values from the domains of the variables
using the filtering operators described above. If the domainof an existential becomes
empty or a value is removed from the domain of a universal thenthe algorithm returns
FALSE.
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BooleanQAC-2001(F = 〈V, Q, D, C〉)
input: A QCSPF

output: TRUE if AC is successfully applied onF and FALSE if there a domain wipeout
of an existential or a value is removed from the domain of a universal

put all constraints ofC in S

S′ ← ∅
for eachcij ∈ C whereQ(vi) = ∀ andQ(vj) = ∀

for eacha ∈ D(vi)
if a is not supported by all values inD(vj) return FALSE

addcij to S′

for eachcij ∈ C whereQ(vi) = ∃ andQ(vj) = ∀
for eacha ∈ D(vi)

if a is not supported by all values inD(vj)
removea from D(vi)

if D(vi) = ∅ return FALSE
elseaddcij to S′

S ← S \ S′

return Propagation(F, S)

function Propagation(F, S : stack)
input: A QCSPF and a stack of variablesS
output: TRUE if AC is successfully applied onF and FALSE if there a domain wipeout

of an existential or a value is removed from the domain of a universal
for each constrained pair of variablesvi, vj ∈ V

for eacha ∈ D(vi)
currentSupportvi,a,vj

← NIL

while S 6= ∅
pop a constraintcij from S

if Revise(vi, vj , currentSupport)
if Q(vi) = ∀ or D(vi) = ∅ return FALSE
put each constraintcki in S

return TRUE

function Revise(vi, vj , currentSupport)
input: A pair of variablesvi,vj and the data structurecurrentSupport

output: TRUE if a value is removed from a domain and FALSE otherwise
DELETION← FALSE
for eacha ∈ D(vi)

if currentSupportvi,a,vj
is NIL or is no longer inD(vj)

if existsb(∈ D(vj)) > currentSupportvi,a,vj
andb supportsa

currentSupportvi,a,vj
← b

elseremovea from D(vi)
if Q(vi) = ∀ return TRUE
DELETION← TRUE

return DELETION

Figure 2: QAC-2001: An arc consistency algorithm for binaryQCSPs.

9



The algorithm performs constraint-based propagation. That is, it uses a stack of
constraints that are propagated instead of a stack of variables. Apart from this, it
is similar to AC2001/3.1 augmented with the handling of universal variables. As in
AC2001/3.1, we use a structure, calledcurrentSupport (corresponding to structure
Last in [6]), to keep track of the most recently discovered supports for the values of
the variables. To be precise, ifcij ∈ C thencurrentSupportvi,a,vj

is the value in
D(vj) that currently supports valuea ∈ D(vi). For eachvi ∈ V , a ∈ D(vi), and
vj ∈ V (s.t. vi is constrained withvj) currentSupportvi,a,vj

is initialized toNIL.
As in [6], valueNIL is defined as a dummy value which precedes any value in any
domain. We assume that there exists an order of the values in the domains.

Initially, all constraints are added to the stackS. Constraints of the form∃ vi∀ vj

(cij) and∀ vi∀ vj (cij) are dealt with by a preprocessing step in functionQAC-2001.
For the former, each value ofD(vi) that is not supported by all values ofD(vj) is
removed fromD(vi). For the latter, if there is a value ofD(vi) that is not supported by
all values ofD(vj) then we can determine that the problem is false. Such constraints
are thereafter removed fromS and are not considered during the propagation phase.

In the propagation phase, functionReviseis called for each constraintcij in the
stack. This function looks for a support inD(vj) for each valuea of D(vi). This
is done by first looking at valuecurrentSupportvi,a,vj

. If this is NIL or it has been
removed fromD(vj) because of propagation then the values ofvj are examined starting
with the one immediately aftercurrentSupportvi,a,vj

. If no support is found fora, it
is removed fromD(vi). In this case, ifvi is universally quantified orD(vi) becomes
empty then we can determine that the problem is false. Otherwise, each constraintcki

involving vi and some other variablevk is added to the stack so that it can be revised.
The algorithm terminates successfully if the stack becomesempty.

We now show that, despite the presence of universal quantifiers, the worst-case
time complexity ofQAC-2001is the same as that of AC-2001/3.1. We assume thatm
is the number of binary constraints in a problem, andd is the maximum domain size.

Proposition 1 The worst-case time complexity of algorithmQAC-2001is O(md2).

Proof: The worst-case time complexity of the algorithm can be determined by ex-
amining the constraint checks executed in the twofor loops in functionQAC-2001and
also in functionPropagation.

In the firstfor loop we iterate through all constraintscij that involve two universal
variablesvi andvj . For each valuea ∈ D(vi), we check ifa is supported by all values
in D(vj) or not. Therefore, each iteration costs O(d2) constraint checks. Hence, the
first for loop costs O(md2) checks. In the secondfor loop we iterate through all
constraintscij that involve an existential variablevi and a universalvj . As with the
first loop, it is easy to see that the cost of the second loop is again O(md2).

FunctionReviseis called at mostd times for each constraintcij ∈ C; once for every
deletion of a value fromD(vj). In each call toRevisethe algorithm performs at most
d checks (one for each valuea ∈ D(xi)) to see ifcurrentSupportvi,a,vj

is still in the
domain ofD(vj). If it is not (or it isNIL), the algorithms tries to find a new support for
a in D(vj) starting from the value immediately aftercurrentSupportvi,a,vj

. Since we
use structurecurrentSupport, each timeRevise is called forcij , and for each value
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a ∈ D(xi), we only check values that have not been checked before. In other words,
we can check each of thed values inD(vj) at most once for each value ofvi. So
overall, in the worst case, we haved checks plus thed checks to test the validity of
the current support. For thed values ofvi the upper bound in checks performed to
make one variable AC is thereforeO(d2). Form constraints the worst-case complexity
bound ofPropagationis O(md2). Hence, the worst-case time complexity ofQAC-
2001is O(md2 + md2 + md2)=O(md2). QED

The generalization of AC to non-binary constraints is usually referred to asGen-
eralized Arc Consistency(GAC). Processing a non-binary constraint to achieve GAC
according to the definition by Bordeaux et. al. [9, 11, 12] is much more challenging
than the binary case for several reasons. Firstly, since this level of consistency is a
generalization of GAC for CSP, enforcing it takes exponential time in general, whereas
binary quantified arc consistency can be enforced in O(md2). Secondly, an algorithm
that achieves GAC on non-binary QCSPs would be considerablymore complex than a
similar algorithm for GAC in CSP, because (for a constraint with arity k) it should be
able to handle up to2k different quantifier sequences. Thirdly, a support for a value
in a non-binary constraintc is no longer simply a tuple that includes that value and is
allowed byc, as in the CSP case. Here, we need a more complex definition of asup-
port that takes into account the quantified variables in the constraint’s scope. Hence we
restrict our attention to binary QCSPs in this paper and leave consistency algorithms
for non-binary QCSPs as future work.

Finally, compared to the work of [12] on AC, we can note the following differences:
We only deal with binary constraints whereas the definition of [12] is generic (i.e.
it covers GAC). We have defined filtering operators for arbitrary binary constraints,
whereas [12] defined filtering operators for specific binary (and ternary) Boolean and
numerical constraints. The AC algorithm of [12] is based on AC3 while ours is based
on AC2001/3.1.

3.2 Search Algorithms

Numerous search algorithms have been developed for CSPs. Most of them are based on
backtracking search. In this section we adapt chronological backtracking (BT), forward
checking (FC) [36] and maintaining arc consistency (MAC) [42] to deal with binary
QCSPs. Also, we show that by slightly modifying FC and MAC we get algorithms that
can discover inconsistencies earlier, and therefore can bemore efficient.

For any algorithm, we assume that before commencing search the input QCSP
has been made AC using algorithm QAC-2001. Under this assumption, we do not
have to consider constraints of the form∃ vi∀ vj (cij) or ∀ vi∀ vj (cij) in the algo-
rithms. All values of variablevi, in such constraints, are definitely consistent with
all values of variablevj . If some value was not consistent then it would have been
removed by the application of QAC-2001. This implies that, during search, we can
safely ignore the last variables inV if they are universally quantified. For instance, if
a problem∃vi∀vj∃vk∀vl (cij ∧ cjk ∧ ckl) is AC, then we can remove constraintckl

and ignore variablevl. Hence it suffices to apply search on the simplified problem
∃vi∀vj∃vk (cij ∧ cjk).
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3.2.1 Chronological Backtracking

BT is a straightforward extension of the corresponding algorithm for standard CSPs.
It takes as input a QCSPF and traverses the space of strategies until the truth of the
problem is proved or disproved. To simplify the descriptionof the algorithm (and the
ones that follow), we assume that variables are assigned values following their order in
V . However, consecutive variables with the same quantification can be instantiated in
any order. The variable that is currently instantiated is called thecurrent variableand
is denoted byvcur. The variables inV aftervcur are calledfuturevariables, while the
ones beforevcur are calledpastvariables. A situation where all values of the current
variable are deemed inconsistent is called adead-end. We make use of the following
functions:

next: For any variablevi, functionnext(vi) returns the variable immediately aftervi

in V .

last_u: For any variablevi, function last_u(vi) returns the variablevj ∈ V such that
vj is universally quantified, it precedesvi in V , and there is no universal variable
aftervj and beforevi in V . If vfu is the first universal inV thenlast_u(vfu) is
NIL.

last_e: For any variablevi, functionlast_e(vi) returns the variablevj ∈ V such thatvj

is existentially quantified, it precedesvi in V , and there is no existential variable
aftervj and beforevi in V . If vfe is the first existential inV thenlast_e(vfe) is
NIL.

BT terminates successfully if all the values of the first universal variable are found
to be part of a consistent scenario (line 15). In case there are no universals in the
problem, the algorithm terminates successfully once the last existential has been con-
sistently instantiated (line 10), as the problem is a standard CSP.

If the current variable is existential and a dead-end occursthen the algorithm back-
tracks to the previously instantiated existential variable, possibly jumping over some
universal variables (lines 4–5). Detecting a dead-end means that the algorithm deter-
mines that the currently explored strategy cannot be extended to a solution. Therefore,
it backtracks to the previous existential to assign it a new value and explore an alterna-
tive strategy. If there is no dead-end, the next available value of the current variable is
checked against the previous assignments (line 8). If the value is compatible with all
assignments to past variables and BT has reached a true leaf node then it backtracks
to the previous universal variable (line 11). If BT is not at aleaf node, it proceeds by
moving to the next variable (line 12). In case some constraint check fails, BT tries the
next value of the current variable in the next iteration of thewhile loop.

If the current variable is universal then there are two cases. If all of its values have
been proved to be part of a consistent scenario, BT backtracks to the previous universal
variable (lines 14,16) to assign it its next value. If not allof the current variable’s values
have been tried, BT assigns it with its next value and proceeds with the next variable
(lines 17,18). Note that when BT assigns a value to a universal variable it does not
check this value against the previously made assignments. The reason is that, due to
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BooleanBT(F = 〈V, Q, D, C〉)
input: A QCSPF

output: TRUE if a solution toF exists and FALSE otherwise
1: vcur ← v1

2: while vcur 6= NIL

3: if Q(vcur) = ∃
4: if all values inD(vcur) have been tried
5: vcur ← last_e(vcur)
6: else
7: assignvcur with the next valuea ∈ D(vcur)
8: if vcur 7→ a is compatible with the assignments to all past variables
9: if vcur = vn

10: if there are no universals inV return TRUE
11: elsevcur ← last_u(vcur)
12: elsevcur ← next(vcur)
13: else//Q(vcur) = ∀//
14: if all values inD(vcur) have been tried
15: if vcur is the first universal inV return TRUE
16: elsevcur ← last_u(vcur)
17: elseassignvcur with the next valuea ∈ D(vcur)
18: vcur ← next(vcur)
19: if vcur = NIL return FALSE

Figure 3: Chronological Backtracking for binary QCSPs.

AC preprocessing, all values of a universal variablevi are definitely consistent with all
values of the variables beforevi in V .

Correctness of BT We now demonstrate, informally, the correctness of BT. To show
soundness, we need to demonstrate that whenever BT returns true after traversing a
strategy, this strategy is indeed consistent. Or, in other words, that all the scenarios in
the strategy are consistent. Take any scenario in the strategy and consider any tuple of
assignmentsτ = 〈v1 7→ a1, . . . , vi 7→ ai〉 along this scenario. BT extends this tuple to
variablevi+1 by assigning it a valueai+1 only if ai+1 is consistent with all assignments
in τ . Therefore, when a tuple〈v1 7→ a1, . . . , vi 7→ an−1〉 is extended to ann−tuple,
all assignments in the tuple will be consistent with each other. This means that the
tuple is a consistent scenario.

To show completeness, we need to demonstrate that if a consistent strategy ex-
ists, BT will correctly verify it by returning true once it has traversed it. It suffices
to show that BT traverses the entire search space apart from some sub-spaces that
are not part of any consistent strategy. BT systematically explores the search space
trying to verify that for any sequence of assignments to the universals we can find a
consistent scenario that includes these assignments. Search sub-spaces are skipped 1)
when a value of the current variable fails a constraint checkwith an assignment of a
past variable, and 2) when there is a backtrack to an existential. In the first case, let
τ = 〈v1 7→ a1, . . . , vi−1 7→ ai−1〉 be the current tuple of assignments and assume that
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valueai of the current variablevi fails a constraint check with an assignment inτ . Tu-
ple τ cannot be extended to a consistent scenario and henceai (and the sub-tree below
the corresponding node) is correctly pruned. A backtrack toan existentialvi assigned
valueai means that the currently explored strategy cannot be extended to a consistent
strategy and thereforeai (and the sub-tree below the corresponding node) is correctly
pruned.

3.2.2 Forward Checking and MAC

Many ways to improve the performance of BT have been proposedin the CSP litera-
ture. Most of them are classified as eitherlook-aheador look-backmethods. The for-
mer try to detect inconsistencies early by performing some amount of local reasoning
after each variable instantiation. The latter try to deal with a dead-end in an intelli-
gent way by identifying the variables that are responsible for the dead-and and directly
backtracking to one of these variables. We now show how the most commonly used
look-ahead algorithms, FC and MAC, can be adapted to QCSPs. Look-back methods
for QCSPs are discussed in Section 5.

The algorithm FC0, shown in Figure 4, is an extension of standard FC to QCSPs.
It operates in a way similar to BT with the difference that, asin standard CSPs, con-
straint checks are made against future instead of past variables. To be precise, once a
variable assignment to an existential or universal is made,it is checked against values
of future existentials using functionForward_Check0(lines 9 and 25). In this function
any value that is not compatible with the current assignmentis temporarily removed
from the domain of the corresponding variable. As mentioned, constraints of the form
∃ vi∀ vj (cij) or ∀ vi∀ vj (cij) have already been handled by preprocessing. There-
fore, no checks against universals are performed. If all thevalues are removed from the
domain of a variable (domain wipe-out) then the current assignment is rejected. In this
case, ifvcur is an existential, procedureRestoreis called to undo any changes made
in the domains of the variables (line 16). Then the algorithmwill try the next value of
vcur in the next iteration of thewhile loop. If vcur is a universal, the algorithm will
backtrack to the previous existentiallast_e(vcur) in V (line 29). Before backtracking,
all values that were temporarily removed because of the assignments to variables be-
tweenlast_e(vcur) andvcur are restored in their domains using procedureRestore(line
28).

Note thatRestoremust be called whenever a backtrack occurs. That is, apart from
the case described above, restoration of values to domains is required when a dead-end
is encountered (line 5), when a true leaf node is reached (line 13), and when all the
assignments to a universal have been proved to be part of a consistent scenario (line
21).

By slightly modifying the forward checking function of FC0 we get an algorithm,
which we call FC1, that can discover inconsistencies earlier than FC0. Algorithm FC1
has exactly the same behavior as FC0 when the current variable is existentially quan-
tified. If the current variablevcur is universally quantified then we first check every
value ofvcur against all future variables before assigning a specific value to it. This
is done using FunctionForward_Check1, depicted in Figure 5. If one ofvcur ’s values
causes a domain wipe-out then we backtrack to the last existential variable. Other-
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BooleanFC0(F = 〈V, Q, D, C〉)
input: A QCSPF

output: TRUE if a solution toF exists and FALSE otherwise
1: vcur ← v1

2: while vcur 6= NIL

3: if Q(vcur) = ∃
4: if all values inD(vcur) have been tried
5: Restore(F, vcur,last_e(vcur))
6: vcur ← last_e(vcur)
7: else
8: assignvcur with the next valuea ∈ D(vcur)
9: if Forward_Check0(F, vcur, a)
10: if vcur = vn

11: if there are no universals inV return TRUE
12: else
13: Restore(F, vcur,last_u(vcur))
14: vcur ← last_u(vcur)
15: elsevcur ← next(vcur)
16: elseRestore(F, vcur, vcur)
17: else//Q(vcur) = ∀//
18: if all values inD(vcur) have been tried
19: if vcur is the first universal inV return TRUE
20: else
21: Restore(F, vcur,last_u(vcur))
22: vcur ← last_u(vcur)
23: else
24: assignvcur with the next valuea ∈ D(vcur)
25: if Forward_Check0(F, vcur, a)
26: vcur ← next(vcur)
27: else
28: Restore(F, vcur,last_e(vcur))
29: vcur ← last_e(vcur)
30: if vcur = NIL return FALSE

function Forward_Check0(F, vcur, a)
input: A QCSPF , the current variablevcur and its assigned valuea
output: TRUE if no domain is wiped out and FALSE otherwise
1: for each existentialvi aftervcur in V

2: for eachb ∈ D(vi)
3: if vi 7→ b is incompatible withvcur 7→ a

4: temporarily removeb from D(vi)
5: if D(vi) is wiped outreturn FALSE
6: return TRUE

procedureRestore(F, vcur, vback)
input: A QCSPF , the current variablevcur and the variable where the algorithm will backtrackvback

output: -
1: for vi = vback to vcur

2: for each existentialvj aftervi in V

3: restore toD(vj) any value that was removed because ofvi’s instantiation

Figure 4: FC0: Forward Checking for binary QCSPs.
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wise, we proceed in the usual way by instantiatingvcur with its next available valuea
and removing all values of future variables that are incompatible with the assignment
vcur 7→ a. In this way we can discover dead-ends earlier and avoid fruitless exploration
of search tree branches.

Note that the look-ahead of FC1 need only be applied once whenthe algorithm
reaches a universal at some branch of the search tree. That is, immediately before trying
the first available assignment of the universal. Assuming that none of the universal’s
possible assignments causes a domain wipe-out, then applying the FC1 type of look-
ahead again after a backtrack to the universal occurs is redundant. This is obvious since
the restoration of values guarantees that the result will bethe same as before, i.e. none
of the remaining possible assignments for the universal will cause a domain wipe-out.

It is easy to see that FC1 will always visit at most the same number of search tree
nodes as FC0 as it may discover an inconsistency earlier thanFC0 but never later. The
two algorithms are incomparable in the number of constraintchecks they perform. That
is, depending on the problem, FC0 may perform less checks than FC1 and vice versa.

function Forward_Check1(F, vcur)
input: A QCSPF and the current variablevcur

output: FALSE if some value ofvcur is incompatible with all values of an existential, and
TRUE otherwise
1: for eacha ∈ D(vcur)
2: for each existentialvi aftervcur in V

3: if vcur 7→ a is incompatible with all values inD(vi) return FALSE
4: return TRUE

Figure 5: Forward checking function of algorithm FC1.

Correctness of FC The correctness of FC can be informally demonstrated following
similar arguments as in the case of BT. In addition, we need toshow that the forward
checking functions of FC0 and FC1 are correct. That is, they prune parts of the search
space that do not belong to a consistent strategy. FunctionForward_Check0is called
after assigning an existential or universal variablevi with a valueai. Assume that the
current tuple of assignments isτ = 〈v1 7→ a1, . . . , vi 7→ ai〉. Forward_Check0will
prune any value from the domain of a future existential that fails a constraint check
with assignmentvi 7→ ai. This means that any such value is not consistent withτ and
thereforeτ cannot be extended to a consistent scenario that includes this value. Hence,
it is correctly pruned.Forward_Check1is called before assigning a universal variable
vi and for each valueai ∈ D(vi) it temporarily prunes any value from the domain
of a future existential that fails a constraint check withai. If the domain of a future
existentialvj is wiped out then the algorithm backtracks. Assume that the assignment
vi 7→ ai causes the wipeout ofD(vj). This means that no value ofvj can participate
in a consistent scenario of the currently explored strategythat includes the assignment
vi 7→ ai. Therefore, no consistent scenario that includesvi 7→ ai exists in the current
strategy and, hence, the algorithm correctly backtracks totry an alternative strategy.
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Maintaining Arc Consistency Based on the above description of FC, we can easily
adapt the MAC algorithm to QCSPs. MAC is the most widely used complete search
algorithm for CSPs. It reduces the domains of future variables during search by ap-
plying an AC algorithm on the problem after each variable instantiation. In this way
inconsistencies are discovered early and search effort is saved.

To implement MAC for QCSPs we need a simple modification in thepseudo-code
of FC0. We need to replace the calls toForward_Check0in lines 9 and 25 of Figure 4
with calls to functionPropagationof QAC-2001. In this case the stack of constraints
would have to be initialized by adding to it only constraintsthat involve the current vari-
able. MAC can also be modified in the same way as FC to yield MAC1, an algorithm
analogous to FC1. That is, when the current variablevcur is universally quantified we
can (temporarily) enforce AC for each instantiationvcur 7→ a, wherea ∈ D(vcur),
before committing to a particular instantiation. If one of the instantiations causes a
domain wipe-out then we backtrack. Otherwise, we commit to one of the values and
proceed with the next variable.

3.3 Symmetry Breaking

Many CSPs contain symmetries which means that for a given solution there are equiv-
alent solutions. This can have a profound effect on the search cost when looking for
one or (even more) all solutions to a CSP. Various methods forsymmetry breaking have
been proposed. Most of these methods add symmetry breaking constraints to the prob-
lem either statically, before search, or dynamically during search. A survey of work on
symmetry in standard CSPs has recently been published, giving extensive references to
the large body of work in that area [31].

QCSPs, in particular, can greatly benefit from symmetry breaking techniques, since
we have to check if there exists a consistent scenario for allvalues of all universally
quantified variables. We propose the exploitation of value interchangeability as a static
and dynamic symmetry breaking technique in QCSPs. However,we consider only a
simple type of symmetry in this paper, leaving until future work extension of more
powerful techniques devised for constraint satisfaction.Some advanced concepts, like
value substitutability, that can be used for symmetry breaking in QCSPs have been
defined (though not implemented) in [11].

The notion of interchangeable values in CSPs was defined by Freuder in [24]. A
valuea of a variablevi is fully interchangeablewith a valueb of vi, iff every solution
which contains the assignmentvi 7→ a remains a solution if we substituteb for a, and
vice versa. Since determining full interchangeability iscoNP-complete [10], Freuder
also defined various local interchangeabilities that are polynomially computable.

Definition 4 Given a variablevi ∈ V , a valuea ∈ D(vi) is neighborhood interchange-
able(NI) with a valueb ∈ D(vi), iff for eachvj ∈ V , such thatvj is constrained with
vi, a andb are supported by exactly the same values inD(vj).

Neighborhood interchangeability is a sufficient (but not necessary) condition for
full interchangeability [24]. A set of NI values can be replaced by a single representa-
tive of the set without losing any solutions. Experiments showed that this can reduce the
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search effort in standard CSPs when applied as a preprocessing step or during search,
and especially when looking for all solutions to a problem [2, 37]. In what follows we
will often refer to NI values simply as interchangeable.

In the context of QCSPs we can exploit interchangeability tobreak symmetries by
pruning the domains of universal variables. That is, for each set (sometimes called
bundle) of NI values we can keep one representative and remove the others, either
permanently before search, or temporarily during search. If the algorithm finds a con-
sistent scenario for the representative value then surely there exists one for the rest of
the NI values as well. Therefore, branching on these values is redundant. Consider the
following example.

Example 3 We have the QCSP∀v1∃v2∃v3 (v1 6= v2 ∧ v1 6= v3), where the domains
of the variables areD(v1) = {0, 1, 2, 3, 4}, D(v2) = {0, 1}, D(v3) = {0, 2}. Values
3 and 4 ofv1 are NI since they are supported by the same values in bothv2 andv3.
Therefore, they can be replaced by a single value or, to put itdifferently, one of them
can be pruned out of the domain.

The cost of computing all neighborhood interchangeable values in a CSP, using the al-
gorithm of [24], is O(d2n2). In QCSPs we can detect NI values as a preprocessing step
and thus remove values from the domains of universal variables, and we can also detect
them dynamically during search to avoid repeated exploration of similar subtrees.

Example 4 Assume that variables∀vi∃vj∃vk∃vl are part of a QCSP and their domains
areD(vi) = {a1, a2}, D(vj) = D(vk) = D(vl) = {a3, a4, a5, a6}. Also, the QCSP
includes constraintscij , cik, cil. Assume that valuea1 is supported by valuesa3, a4, a5

in each ofvj , vk andvl, anda2 is supported bya3, a4, a6. If the current variable at
some stage of search isvi and valuesa5 anda6 have been previously removed from
the domains ofvj , vk andvl then at that stagea1 anda2 are NI. We can proceed to
search for a consistent scenario that includes assignmentvi 7→ a1. If one is found then
when we backtrack to universal variablevi we do not need to perform a similar search
for assignmentvi 7→ a2. If we backtrack further back and undo the deletions of values
a5, a6 from the domains ofvj , vk andvl then the next time we reach variablevi the
valuesa1 anda2 may not be NI.

Naturally, we can also use NI to reduce the domains of existential variables as proposed
by Freuder. However, our experiments showed that this is an overhead that slows down
the algorithms. The (small) reduction in the number of search tree node visits is out-
weighed by the cost of computing the NI values of existentials.

NI-based symmetry breaking can be embedded in the search algorithms described
previously using two simple procedures. The first one detects bundles of NI values as a
preprocessing step, keeps one representative of each bundle and removes the rest from
the domains of universals. To check if two valuesa, b of a universal variablevi are NI,
this procedure iterates through the domain of any existential variablevj ∈ V that is
constrained withvi and is aftervi in V . If a value is found that is a support fora but
not forb, or vice versa, thena andb are not NI. Otherwise, they are NI, so one of them
is removed. This is repeated for all pairs of values ofvi. In a similar way, the second
procedure dynamically detects bundles of NI values each time the algorithm reaches a
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universal variablevi. In this case, one representative of each bundle is kept, andthe rest
of the values are temporarily removed fromD(vi). The values are restored when the
algorithm backtracks to a variable beforevi in V . The worst-case time complexity of
these symmetry detecting procedures, as they are currentlyimplemented, is O(d3n2).

4 Encoding QCSP as QBF

In this section we first give some general background on QBFs.Then we briefly elab-
orate on the difficulties in encoding QCSP into QBF and describe the features of the
QBF solver we used in our experiments. In the main part of the section we present
the previous best encoding of QCSP into QBF (the adapted log encoding), and we
introduce a new encoding which improves on it, both in simplicity and performance.

4.1 Quantified Boolean Formulae

A special case of a QCSP is a Quantified Boolean Formula (QBF).A QBF is of the
form 〈V,Q,D,C〉 whereV andQ are defined as in Definition 1, but each domain in
D has only two elements{F, T} (or {0, 1}). C is a Boolean formula in conjunctive
normal form (CNF), a conjunction of clauses where each clause is a disjunction of
literals. Each literal is a variable and a sign. A literal is said to be negative if negated
and positive otherwise. Auniversal literal is a literal whose variable is universally
quantified and anexistential literalis a literal whose variable is existentially quantified.
The semantic definition is the same as for QCSPs. Note that 2-QBF (i.e. QBF problems
with at most two literals per clause) is solvable in polynomial time. However, binary
QCSPs are PSPACE-complete [8].

A QBF is vacuously true if it consists of an empty set of clauses. It is vacuously
false if the set of clauses contains either an empty clause (i.e. a clause with no literals)
or an all universal clause (i.e. a clause with only universalliterals).

4.2 The difficulty in encoding QCSP to QBF

Gent, Nightingale and Rowley introduced a number of different ways to encode a
QCSP instance into QBF [28]. To encode an existential QCSP variable to a set of
QBF variables, some assignments to the QBF variables represent values of the original
variable, and other assignments are ruled out by adding clauses to the formula. For ex-
ample, if an assignment to the QBF variables indicates that the original QCSP variable
has no values in its domain, the assignment is invalid and is ruled out with a clause.
However this approach is not possible for a universal QCSP variable.

To see why, consider the following example. In QBF instanceφ, we have two
universal variablesxi andxj . φ represents an adversarial game, and the assignment
xi = T , xj = T represents a cheating move in the game. Naively we might use a
clause(¬xi ∨¬xj) to rule out this assignment. Unfortunately, such a clause istrivially
false, and therefore would renderφ false.

The encodings introduced in [28] were able to overcome this difficulty. However,
the global acceptability encodingand thelocal acceptability encodingwere very in-
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efficient compared to direct QCSP algorithms. In contrast, theadapted log encoding,
which we describe below, turned out to be very efficient.

4.3 QBF Solver

Many advanced solvers for QBF have been proposed in the literature [3,7,22,27,33,35].
We concentrate on search-based solvers, which interleave search (by instantiating vari-
ables individually, in quantifier order) with reasoning on the formula (local reasoning).
They are based on the Davis-Putnam-Logemann-Loveland algorithm [19,20], adapted
to QBF [14]. Local reasoning cuts down the search space. Also, in certain situations,
backjumping is applied which allows the solver to jump several levels up the search
tree (undoing several search operations at once), by identifying the cause of a success
or failure.

We give a brief overview of some of the literature to set the encodings in context.
We use the solver CSBJ [27], which implements the following two local reasoning
techniques. We only sketch each technique in the broadest way and refer the reader
elsewhere for full details.

Unit propagation A literal l of variablex is unit if it appears alone in a clause, or if
the other literals in the clause are universal, and their corresponding variables are
quantified afterx [14]. Whenl is unit, it is instantiated (l = T ) and the formula
is simplified. Ifx is universal, the formula simplifies to false. Otherwise, clauses
containingl are removed, and all literals¬l are removed. This may cause other
literals to become unit.

The pure literal rule A literal l is calledpure (or monotone) if its complementary
literal does not appear in any clause [14]. Such literals areimportant because
they can immediately be assigned a value without any need forbranching. This
is what thepure literal ruledoes. If an existential pure literall is found, it is set to
true. If a false leaf node is then reached, assigningl to false will be unnecessary
since it is certain that this will again lead to a false leaf node. If a universal pure
literal l is found, it is set to false. If a true leaf node is then reached, assigning
l to true will be unnecessary since it is certain that this willagain lead to a true
leaf node.

As we mentioned, local reasoning and search is commonly augmented with back-
jumping. CSBJ implements conflict and solution backjumping. We informally describe
these two techniques. This is only intended to give a flavor ofthe techniques.

Conflict-based backjumping Conflict-based backjumping (CBJ) is a look-back tech-
nique, originally proposed for CSPs, that tries to reduce the number of backtracks
performed by a search algorithm [39]. CBJ tries to deal with dead-ends in an
intelligent way by recording and exploitingconflict sets. A conflict set is a set of
existential literals whose assignments are responsible for a contradiction in the
formula, i.e. an empty or all universal clause. When a contradiction is encoun-
tered, CBJ backjumps to one of the existential literals in the conflict set of the
current variable, instead of blindly backtracking to the last assigned existential.
In this way, search effort can be saved.
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Solution-directed backjumping Solution-directed backjumping (SBJ) is a special-
ized technique for QBF that tries to avoid redundant search after a true leaf node
is reached in the search tree [33]. This is accomplished by recording and exploit-
ing solution sets. A solution set is a set of universals such that all clauses not
satisfied by the current assignment of the existentials are satisfied by at least one
of the universals. After a true leaf node is reached, a solution set is calculated
and SBJ backjumps to one of the variables in the set, possiblyjumping over some
universals.

Efficient implementation is crucial in the SAT domain, and various techniques have
been carried across into the solver we used. For example, watched literals give us
efficient lazy unit propagation, and watched clauses do the same for the pure literal
rule [27].

4.4 Adapted Log Encoding

This section describes a previous contribution, the adapted log encoding (by Gent,
Nightingale and Rowley [28]). It is described here in order to set the enhanced log
encoding (in the following section) in context. We briefly explain the main groups of
clauses in the encoding. For full technical details we referthe reader to Gent et al. [28].

In order to deal with the difficulty described above, the adapted log encoding uses
indicator variables (first described by Rowley [32]) to indicate when a universal as-
signment is not valid. An indicator variable takes valueT iff a particular (invalid)
assignment is made to universal variables. There is one indicator variablezv for each
of the original universal QCSP variablesv. zv is existentially quantified in a final block
at the end of the variable sequence. All clauses representing constraints contain a lit-
eralzv. Hence, they are true under any assignment settingzv to true. In this way, if an
invalid assignment is made to universal variables, the formula simplifies to true by unit
propagation, as required to deal with the difficulty.

In SAT, it has often been noted that just three variables are needed to encode 8
values of a CSP variable, instead of the 8 in the direct encoding [25, 45]. This is
known as the log encoding. Walsh proves that unit propagation on the log encoding
does less work than on the direct encoding [45], and hence it is rarely used. However
we adapt the log encoding for QCSP with good results.

Each variable in a QCSP is encoded to a set of variables in QBF,with these sets
quantified in the same way and in the same order as in the QCSP. Additional existential
variables are added to the end of the variable sequence. For an existential variable,
each QBF variable represents one value. For a universal, each value is represented
by a unique assignment to the QBF variables, and also each value is represented by
an existential QBF variable quantified at the end. There are clauses which maintain
correspondence between these two representations, namedchannellingclauses here.

We now describe the encoding in more detail. We first show how the QCSP vari-
ables are encoded and then present the clauses of the encoding. The notationwu

∗ is
used for the set ofw variables with superscriptu and any subscript. The∗ is used in
the same way withxu

∗ andiu∗ .
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• Quantification
To encode some existential variablev ∈ {1 . . . d}:

– We use existential variables∃xv
1, . . . ,∃xv

d

To encode some universal variableu ∈ {1 . . . d}:

– We use universal variables∀wu
⌈log

2
d⌉−1, . . . ,∀wu

0

– We also use existential variables representing each value:∃xu
1 , . . . ,∃xu

d

– Finally, We use indicator variables for each invalid assignment towu
∗ , and

one overall indicator variable:∃iu∗ ,∃zu

For some universal variablev, the following clauses map assignments ofwv
∗ to xv

∗

andiv∗. Thesechannellingclauses ensure that at least one of thexv
∗ or iv∗ variables is

set toT , and that an indicator variable iniv∗ is only set toT when thewv
∗ variables take

the corresponding invalid assignment. Variableu is the universal that directly precedes
v in the QCSP variable order. The indicator variablezu is T only whenu or a previous
universal has an invalid assignment: it is used to make the channelling clauses true in
this situation.

The clauses are given as an example ford = 5, but the general form is easy to infer
from the example.

• Channelling clauses

zu ∨ ((¬wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

1)
zu ∨ ((¬wv

2 ∧ ¬wv
1 ∧ wv

0) ⇒ xv
2)

zu ∨ ((¬wv
2 ∧ wv

1 ∧ ¬wv
0) ⇒ xv

3)
zu ∨ ((¬wv

2 ∧ wv
1 ∧ wv

0) ⇒ xv
4)

zu ∨ ((wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

5)
zu ∨ ((wv

2 ∧ ¬wv
1 ∧ wv

0) ⇐⇒ iv6)
zu ∨ ((wv

2 ∧ wv
1 ∧ ¬wv

0) ⇐⇒ iv7)
zu ∨ ((wv

2 ∧ wv
1 ∧ wv

0) ⇐⇒ iv8)

These eight expressions correspond to all possible assignments to{wv
2 , wv

1 , wv
0},

from 〈F , F , F 〉 for the first expression, to〈T , T , T 〉 for the last. Each assignment is
linked either to anxv variable if it is valid, or aniv variable otherwise. The expressions
are expanded into clauses in the encoding.

The variablesiv∗ indicate when the assignment is invalid in a particular way.These
variables are accumulated into a single indicator variablezv which isT iff at least one
of iv∗ is T , or the previous accumulated indicator variablezu is T .

• Indicator collector clauses

zv ⇐⇒ iv6 ∨ iv7 ∨ iv8 ∨ zu

Note that ifzv is set toT , this assignment will be propagated to the next indicator
collector clause and thus will make the next accumulated indicator variableT . This
assignment will be propagated further, and so on.

For each existential variablev, at least one of the QBF variablesxv
∗ must be set

to true to ensure thatv is assigned a value. This is accomplished with an at-least-one
(ALO) clause.
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• ALO clause
∨

i∈1...d xv
i

Constraints are represented as follows. Consider a constraint cuv between vari-
ablesu andv, whereu precedesv in the variable order. A pair of values〈i, j〉, where
i ∈ D(u) andj ∈ D(v), that do not satisfy the constraint (i.e. they do not belong
to rel(cuv)) is represented with a single clause in the QBF. Assume variable t is uni-
versally quantified and directly precedesv in the variable order. Note thatt may be
the same asu. The indicator variablezt for t is used, so that if a preceding universal
variable is set in an invalid way, the conflict clause is satisfied. (When a universal is
set invalidly, the remaining part of the QBF must be true). Given this, conflict clauses
only contain indicator variables and negative literals.

• Conflict clauses

∀〈i, j〉 /∈ rel(cuv) :
zt ∨ ¬xu

i ∨ ¬xv
i

For channelling and conflict clauses, if there is no preceding universal variable in
the QCSP, the indicator variable is omitted. To illustrate the encoding, we give an
example of a simple QCSP.

Example 5 Consider the QCSP∀v∃u : v 6= u whereD(v) = D(u) = {1, . . . , 5}.
This is encoded as follows:

• QBF variables:

∀wv
2 , wv

1 , wv
0 ,∃xv

1, x
v
2, x

v
3, x

v
4, x

v
5,∃xu

1 , xu
2 , xu

3 , xu
4 , xu

5 ,∃zv, iv6, i
v
7, i

v
8

• Channelling clauses forv:

(¬wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

1

(¬wv
2 ∧ ¬wv

1 ∧ wv
0) ⇒ xv

2

(¬wv
2 ∧ wv

1 ∧ ¬wv
0) ⇒ xv

3

(¬wv
2 ∧ wv

1 ∧ wv
0) ⇒ xv

4

(wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

5

(wv
2 ∧ ¬wv

1 ∧ wv
0) ⇐⇒ iv6

(wv
2 ∧ wv

1 ∧ ¬wv
0) ⇐⇒ iv7

(wv
2 ∧ wv

1 ∧ wv
0) ⇐⇒ iv8

• Indicator collector clauses forv:

zv ⇐⇒ iv6 ∨ iv7 ∨ iv8

• At-least-one clause foru:

xu
1 ∨ xu

2 ∨ xu
3 ∨ xu

4 ∨ xu
5

• Conflict clauses representingv 6= u:
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zv ∨ ¬xv
1 ∨ ¬xu

1

zv ∨ ¬xv
2 ∨ ¬xu

2

zv ∨ ¬xv
3 ∨ ¬xu

3

zv ∨ ¬xv
4 ∨ ¬xu

4

zv ∨ ¬xv
5 ∨ ¬xu

5

The subtlety of this encoding is that we omit the clauses which force equivalence
betweenxv

a and the corresponding values ofwv
b : the implication is one way in the

channelling clauses involvingxv
a. So we omit clauses such aszu ∨ ¬xv

1 ∨ ¬wv
2 . It

might seem that this is erroneous, as it allows a universal totake two values, ifxv
1 and

xv
2 are both true. But there is no way that setting of the universal variableswv

∗ canforce
more than onexv

a to be true. The advantage of this arrangement is thatxv
∗ variables

occur only positively in the channelling clauses. Therefore if a particular variablex1
v

did not occur in any conflict clause, it would be pure. Furthermore, this could lead to
wv

∗ variables becoming pure, reducing the need for search. So, with sufficient care, we
can use the pure literal rule included in our QBF solver, and have it work in the QCSP
case. This property carries over to the enhanced log encoding, described below.

4.5 Enhanced Log Encoding

Theenhanced log encodingis a refinement of adapted log which has not been previ-
ously published. Each universal variablev is encoded by⌈log2d⌉ variableswv

∗ which
are consecutively universally quantified. The order of variables is preserved. We also
introducexv

1 . . . xv
d variables for each universal QCSP variablev, which are existen-

tially quantified at the end of the variable sequence. Thesexv
∗ variables are used in the

conflict clauses. Thewv
∗ variables are channelled to thexv

∗ variables with a set ofd
clauses. For the following exampled = 5.

• Channelling clauses

(¬wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

1

(¬wv
2 ∧ ¬wv

1 ∧ wv
0) ⇒ xv

2

(¬wv
2 ∧ wv

1) ⇒ xv
3

(wv
2 ∧ ¬wv

1) ⇒ xv
4

(wv
2 ∧ wv

1) ⇒ xv
5

There are 8 possible assignments to thewv
∗ variables, and 5 values, so for the values

3, 4 and 5 there are twowv
∗ assignments mapped onto each, hence all 8 assignments

are valid. In contrast to adapted log, no local acceptability variable (zv in the previous
subsection) is present, because no assignments to previousuniversal variables can be
invalid.

To state this formally, we represent a QBF with the tupleF ′ = 〈Q′, V ′, C ′〉 where
Q′ is the quantifier mapping,V ′ is the ordered set of Boolean variables andC ′ is the set
of disjunctive clauses, to mirror the QCSPF = 〈Q,V,D,C〉. Domains are excluded
as they are always{0, 1}.

The ordered set of variablesV for the QCSP is encoded by an ordered set of
Boolean variables as shown by the following recursive ruleswhere translate(V ) = V ′.
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translate(∃v ∈ {1 . . . d}, V1) = ∃xv
1 . . . ∃xv

d, translate(V1)
translate(∀v ∈ {1 . . . d}, V2) = ∀wv

⌈log
2
d⌉−1 . . . ∀wv

0 , translate(V2),∃xv
1 . . . ∃xv

d

An existential variablev in the QCSP instance is mapped tod existential variables
(xv

1 . . . xv
d) in the encoding. These represent each value in the domain. The enhanced

log encoding also has the at-least-one clause (
∨

i∈1...d xv
i ). In this respect, the enhanced

log encoding is identical to the adapted log.
A universal variablev in the QCSP is mapped tol = ⌈log2d⌉ variableswv

∗ . Every
complete assignmentA to variableswv

∗ (of which there are2l) is mapped to a value
b ∈ D(v). All valuesb map to one assignment, or two assignments with only one literal
different. It is never necessary to have a valueb mapping to more than two assignments,
whatever the value ofd. 2l − d values must map to two assignments. An assignment
A is represented as a conjunction of literals (e.g.wv

0 ∧ ¬wv
1 ). For some valueb which

maps to just one assignmentA, the channelling clause is as follows.

¬A ∨ xv
b

The negated conjunction¬A is converted to a disjunction in the usual way. For some
other valuec which maps to two assignmentsA1 andA2, the channelling clause is
given below.

¬(A1 ∨ A2) ∨ xv
c

The simplification of¬(A1 ∨ A2) ends with a disjunction ofl − 1 literals.
For a constraintcij , with satisfying tuplesrel(cij) the conflict clauses are:

• Conflict clausesFor all tuples〈a, b〉 /∈ rel(cij),

(¬xvi
a ∨ ¬x

vj

b )
To illustrate the encoding, we encode the QCSP of Example 5.

Example 6 We have the QCSP∀v∃u : v 6= u whereD(v) = D(u) = {1, . . . , 5}.
This is encoded as follows:

• QBF variables:

∀wv
2 , wv

1 , wv
0 ,∃xv

1, x
v
2, x

v
3, x

v
4, x

v
5,∃xu

1 , xu
2 , xu

3 , xu
4 , xu

5

• Channelling clauses forv:

(¬wv
2 ∧ ¬wv

1 ∧ ¬wv
0) ⇒ xv

1

(¬wv
2 ∧ ¬wv

1 ∧ wv
0) ⇒ xv

2

(¬wv
2 ∧ wv

1) ⇒ xv
3

(wv
2 ∧ ¬wv

1) ⇒ xv
4

(wv
2 ∧ wv

1) ⇒ xv
5

• At-least-one clause foru:

xu
1 ∨ xu

2 ∨ xu
3 ∨ xu

4 ∨ xu
5

• Conflict clauses representingv 6= u:
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¬xv
1 ∨ ¬xu

1

¬xv
2 ∨ ¬xu

2

¬xv
3 ∨ ¬xu

3

¬xv
4 ∨ ¬xu

4

¬xv
5 ∨ ¬xu

5

Theorem 1 A QCSP is true if and only if the encoded QBF is true, for the enhanced
log encoding.

Proof: The proof is recursive and closely follows the definition of QCSP seman-
tics (definition 2). A QCSPF = 〈V,Q,D,C〉 represents the logical formulaφ =
Q(v1)v1∈D(v1) . . . Q(vn)vn∈D(vn) (C) which is encoded as a QBFF ′ = 〈V ′, Q′, C ′〉
representingφ′ = Q′(x1)x1 . . . Q′(xn)xn (C ′). The encoding of the empty QCSP
(containing no variables or constraints) is the empty QBF which is vacuously true.

Existential case:

• Assumeφ is of the form∃v1Q(v2) . . . (C) (domains are omitted for simplicity).

• Now φ′ must be of the form∃xv1

1 . . . ∃xv1

d translate(Q(v2) . . .)(C ′).

• By definition 2, F is true iff there exists some valuea ∈ D(v1) such that
Q(v2) . . . Q(vn)(C[v1 7→ a]) is true.

• Equivalently, in the encodingF ′ is true iff there exists an assignmentA =
xv1

1 7→ b1 . . . xv1

d 7→ bd such that the ALO clause is true and translate(Q(v2) . . .)
(C ′[A]) is true.

The QCSP valuea can be any value such thatxv1

a 7→ 1. If there is more than onea s.t.
xv1

a 7→ 1, then all these values can be extended to a solution.
Universal case:

• Assumeφ is of the form∀v1Q(v2) . . . (C).

• Now φ′ must be of the form∀wv1

l . . . ∀wv1

0 translate(Q(v2) . . .)(C ′) wherel =
⌈log2d⌉ − 1.

• By definition 2,F is true iff for all valuesa ∈ D(v1) : Q(v2) . . . (C[v1 7→ a]) is
true.

• Equivalently, in the encodingF ′ is true iff for all assignmentsA = wv1

l 7→ bl . . .
wv1

0 7→ b0 : translate(Q(v2) . . .)(C ′[A]) is true.

Note that each valuea is covered by some assignmentA. If the assignmentA is
made, the additionalxv1

a variable introduced by the encoding must be 1 because of
the channelling clauses. Other variablesxv1

b 6=a are not constrained by the channelling
clauses, and therefore can be set to 0 if they are contained inany conflict clause.

Therefore, by examination of definition 2, the encoding is true iff the original QCSP
is true, because each step of the recursion of definition 2 canbe performed equivalently
in the QCSP and in the encoding.QED
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The problem with this encoding is that the QBF solver can search two equivalent
subtrees in some cases, for example whenwv

2 7→ T andwv
1 7→ T , the solver can branch

onwv
0 which is not contained in any clause.

After settingwv
2 andwv

1 , if either is set toT then the first two clauses above are
satisfied and in the reduced set of clauseswv

0 does not exist. Bothwv
0 and¬wv

0 are pure,
so if the solver implements the pure literal rule then it willnot branch on this variable.
This solves the repeated subtree problem mentioned above, on the condition thatwv

0

is set last. Also, in common with the adapted log encoding, the channelling works
only fromwv to xv variables, so only positivexv literals are included in the clause set
above, therefore the pure literal rule can detect cases where thexv

a is involved in no
conflicts. In some circumstances, this can also lead to the elimination ofwv variables.
For example, ifxv

4 andxv
5 become pure, thenwv

2 becomes pure as well and the search
is reduced accordingly.

5 QCSP-Solve: A Direct Solver for QCSPs

The efficiency of the adapted and enhanced log encodings is largely due to their ability
to exploit sophisticated techniques offered by the underlying QBF solver; namely, the
pure literal rule, conflict-based backjumping, and solution-directed backjumping. Two
questions that immediately arise are: what do these techniques correspond to in QCSPs,
and how can we implement them within direct algorithms? In this section we try to
answer these questions and describe the resulting efficientdirect solver, which we call
QCSP-Solve.

QCSP-Solve performs a backtracking search, as described inSection 3, augmented
with various capabilities. First of all, QCSP-Solve alwaysapplies algorithm QAC-2001
as a preprocessing step. As explained in Section 3.1, apart from reducing the problem
size by deleting values from the domains of existentials, QAC-2001 removes from the
problem all constraints of the form∃ vi∀ vj (cij) and∀ vi∀ vj (cij). During search,
QCSP-Solve can apply any of the basic forms of look-ahead described in Section 3, i.e.
FC0, MAC0, and their enhancements FC1 and MAC1. In what follows we will describe
how new look-ahead and look-back techniques are combined with an FC-based look-
ahead. Most of these techniques can be combined with a MAC-based look-ahead in a
very similar way.

5.1 The Pure Value Rule

Our experiments showed that the most important QBF technique, in terms of its prac-
tical effectiveness in the encoded QCSPs, is the pure literal rule. We now explain what
this corresponds to in a binary QCSP, and how we can exploit itto prune the search
space. We first define the notion of apure value.

Definition 5 A value a ∈ D(vi) in a QCSPF = 〈V,Q,D,C〉 is pure iff for each
vj ∈ V , wherevj 6= vi and for eachb ∈ D(vj), the assignmentsvi 7→ a andvj 7→ b
are compatible.
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Bordeaux et al. introduced the notion of afixablevalue in a CSP [10]. In few words,
a valuea of a variablev is fixable if for any solution which includes the assignment
of a valueb to v, we still have a solution ifv 7→ b is substituted withv 7→ a. As noted
in [10], a sufficient (but not necessary) condition for determining the fixability of a
value can be computed through local reasoning in polynomialtime. This is similar
to the pure literal rule in SAT. The same authors defined the notion of fixability for
QCSPs [11]. Following the terminology of [11], if a value is pure this is a sufficient
but not necessary condition for the value to bed−fixable.

In a way analogous to the pure literal rule in QBF, we have devised and imple-
mented a look-ahead technique, which we call thepure value (PV) rule, that detects
and exploits pure values. The actions taken are dual for existential and universal pure
values. An existential variable with a pure value can be set to that value as it will not
violate any constraint in any scenario. On the other hand, a pure value is removed from
the domain of a universal variable as it will certainly be part of any solution and thus we
do not need to search for a consistent scenario that includesit. This duality reflects the
dual semantics of existential and universal variables. Fora universal variable, showing
that a valuea is pure does not prove that it leads to a consistent scenario,only that if
some other value of the same variable leads to a consistent scenario thena does. Hence
it is a subsumption rule and the last value in the domain cannot be removed.

Note that values can become pure dynamically during search as variable assign-
ments and constraint propagation remove values from the domains of the variables (see
Example 9 in Section 5.3). Therefore, the PV rule is applied both as a preprocessing
technique and as a dynamic look-ahead technique during search. The PV rule works as
follows.

• If a pure valuea of an existentialvi is discovered during preprocessing (search),
then the assignmentvi 7→ a is made and all other values ofvi are permanently
(temporarily) removed fromD(vi). To check, during search, if a valuea of an
existentialvi is pure, we only need to check if the assignmentvi 7→ a is compat-
ible with all values of future variables. FC (or MAC) guarantee thatvi 7→ a is
compatible with the instantiations of the past variables.

• If a pure valuea of a universalvi is discovered during preprocessing (search),
thena is permanently (temporarily) removed fromD(vi) unless it is the final
value inD(vi). To check if a value of a universal is pure, we only need to check
against future variables since preprocessing with AC guarantees that there are
no constraints between a universal and a past variable. If wediscover during
preprocessing that all the values of a universal are pure then we can ignore it
thereafter as it is certain that all its values can be part of any consistent scenario.

In both cases, any value that was temporarily removed because of the pure value
rule is restored once a backtrack to a variable beforevi in V occurs.

Currently, the PV rule is implemented within two simple functions; one for pre-
processing and another for the dynamic application of the rule during search. In both
cases, to detect the pure values of a variablevi we iterate through the domains of the
other variables that are constrained withvi (only variables aftervi in case of dynamic
application). During preprocessing we have to repeat this for all the variables in the
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problem, which gives a worst-case time complexity of O(n2d2). During search we can
restrict PV detection to the values of the current variable.This gives a worst-case time
complexity of O(nd2).

The function that applies the PV rule during search need onlybe called before
assigning the current variablevcur with its first available value. That is, immediately
after line 2 in Figure 4, assuming that the underlying algorithm is FC0. Calling the
function again when a backtrack tovcur later occurs is redundant as the restoration
of the domains after a backtrack guarantees that the pure values that were previously
detected will remain pure and no new values will become pure.

Relation between the pure value and the pure literal rule The PV rule applied to
a QCSPF has a similar effect to the application of the pure literal rule (PL) to the
enhanced log encoding (E). In some cases, PV and PL are equivalent, and in other
cases details are different and an exact equivalence is elusive. To discuss this, we
consider four cases, two each for existential and universalvariables.

If an existential variableve has one pure valuea in F , ve will be assigned toa in
F . In the encoding PL will assignxve

a 7→ T , since ifve 7→ a is not contained in any
conflict inF , then¬xve

a is not contained in any conflict clause inE. The instantiation
xve

a 7→ T makes the ALO clause forve true.
If an existential variableve in F has more than one pure valuea, b, . . ., then one of

the pure values is instantiated by the PV rule. The value instantiated would typically
be the first discovered by the algorithm. In the encoding,all corresponding variables
xve

a , xve

b , . . . are positively pure, and are instantiated toT by the PL rule. Again, this
makes the ALO clause true.

If a universal variablevu in F has a set of pure valuesP , andP ( D(vu), then
all values inP are removed. In the encoding, all variablesxvu

a , wherea ∈ P , are
positively pure, and are instantiated toT by the PL rule. Thus the channelling clauses
containing each of these variables are true, and the variables are entirely removed from
E. This may cause variables in the setwvu

∗ to become pure, reducing the number of
branches explored by the QBF solver. However, there is not anexact equivalence here
between PV and PL.

If all values of a universal variablevu in F are pure, then all but one are removed
in F . In the encoding, all variablesxvu

∗ are positively pure and all are set to true by
the PL rule. Consequently, all channelling clauses are true, and all variableswvu

∗ are
pure. Therefore they are also instantiated, and the QBF solver does not branch on
any variable in the setwvu

∗ . Similarly, the QCSP solver does not branch onvu after
instantiating it.

5.2 CBJ and Solution-Directed Pruning

5.2.1 Conflict-Based Backjumping

CBJ has been successfully combined with FC in CSPs [39], and aDLL-based proce-
dure in QBF [33] to deal with dead-ends in an intelligent way and, thus, avoid redun-
dant search. We now explain how CBJ is implemented in QCSP-Solve.
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As in CSPs, for each variablevi ∈ V we keep a set of variables calledconflict set
and denoted byconf_set(vi). This holds the past existentials that are responsible
for the deletion of values fromD(vi). Initially all conflict sets are empty. When
encountering a dead-end at an existential or when a value of auniversal is rejected,
the algorithm exploits information kept in the conflict set of the current variablevcur

to backjump to one of the past existentials that are responsible for the dead-end instead
of blindly backtracking chronologically to the previous existential inV . To be precise,
the algorithm backjumps to the most recently instantiated existential, sayvk, among
the existentials inconf_set(vcur) and reassigns it with its next available value. As
vk’s previous assignment caused the deletion of (at least one)value fromD(vcur), if
we reassign it, one or more values inD(vcur) may now become available. In contrast,
an algorithm that always backtracks chronologically, as BTand the two FC variants
do, may repeatedly encounter a dead-end since the existential immediately beforevcur

in V may not belong toconf_set(vcur). In this case, reassigning this existential will
not “free” any ofvcur ’s values and therefore the dead-end atvcur will be encountered
again.

Conflict sets are updated as follows.

• If the current variablevcur is existentially quantified and, during forward check-
ing, a value of a future variablevj is found to be incompatible with the assign-
ment ofvcur thenvcur is added toconf_set(vj). This is straightforward as now
the assignment ofvcur is responsible for the removal of a value fromD(vj).

• If, after assigning a valuea to vcur (which may be existential or universal) and
forward checking, the domain of a future existentialvj is wiped out then the
existentials inconf_set(vj) are added to the conflict set of the current variable.
This is done because the domain wipe-out ofvj will result in valuea being re-
jected. The past existentials that can be considered responsible for this rejection
are the ones whose instantiations removed values fromD(vj). To understand
this consider that were it not for the assignments to these existentials,a might
not be rejected sinceD(vj) would not have been wiped out. Note that this is the
only way in which the conflict set of a universal can be updated.

Backjumping can occur in either of the following two cases:

1. If the current variablevcur is existential and there are no more values to be
tried for it then the algorithm backjumps to the latest (i.e.the most recently
instantiated) existentialvk in V that belongs toconf_set(vcur). At the same
time all variables inconf_set(vcur) (exceptvk) are copied toconf_set(vk) so
that no information about conflicts is lost. This requires some explanation.

Assume thatvk was added toconf_set(vcur) because the assignmentvk 7→ a
resulted in the removal of valueb from D(vcur). If after the backjump tovk

all remaining values ofvk are rejected then we have a dead-end and must jump
further back. Now assume that the most recent existentialvl in conf_set(vk),
where the algorithm will backjump, was copied toconf_set(vk) from conf_set(vcur).
Sincevl was inconf_set(vcur), its current assignment resulted in the removal
of (at least one) value fromvcur. When we changevl’s assignment it is possible
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that one or more of these values will not be removed fromD(vcur). Therefore,
it may be possible to reassignvk with a in the future without causing a dead-end
atvcur further down the search tree. This gain of search effort would not be pos-
sible if conf_set(vcur) was not copied toconf_set(vk) since we would have to
backjump to an existential beforevl in V once encountering the dead-end atvk.
Example 7 further demonstrates this reasoning.

2. If the current variablevcur is universal and one of its values fails (because it
results in the domain wipe-out of an existentialvj) then the algorithm backjumps
to the latest existentialvk in V that belongs toconf_set(vcur). That is, to the
most recent existential whose instantiation removed a value fromD(vj). Again
all variables inconf_set(vcur) (exceptvk) are copied toconf_set(vk) so that
no information about conflicts is lost. The reasoning behindthis is similar to
above.

Example 7 Consider the following QCSP whereV consists of 6 quantified variables,
andC is a conjunction of 5 constraints:∃v1∃v2∃v3∃v4∀v5∃v6(v1 = v3 ∧ v2 6= v6 ∧
v3 6= v6∧v4 ≤ v6∧v5 6= v6). Assume that the domains of the variables are as follows:
D(v1) = D(v3) = D(v4) = D(v5) = D(v6) = {0, 1, 2}, D(v2) = {2, 3}. Algorithm
FC1 equipped with CBJ will proceed to solve the problem as follows.

Variablev1 is assigned its first value 0. Forward checking removes values 1 and 2
from D(v3) and we setconf_set(v3) = {v1}. Variablev2 is assigned its first value
2. Forward checking removes value 2 fromD(v6) and we setconf_set(v6) = {v2}.
Variablev3 is assigned its first value 0. Forward checking removes value0 fromD(v6)
andv3 is added toconf_set(v6). So now we haveconf_set(v6) = {v2, v3}. Variable
v4 is assigned its first value 0. Forward checking does nothing.We now reach variable
v5 which is universally quantified. FC1 will forward check eachof v5’s values against
v6. Value 1 ofv5 results in the domain wipe-out ofv6. Therefore,conf_set(v6)
will be copied toconf_set(v5) and we haveconf_set(v5) = {v2, v3}. Since one
of v5’s values failed we must backjump to the most recent variablein conf_set(v5)
which isv3. All variables inconf_set(v5) (exceptv3) will be copied toconf_set(v3)
and we now getconf_set(v3) = {v1, v2}. There are no more available values in
D(v3) and therefore the algorithm will jump further back to the most recent variable in
conf_set(v3), which isv2.

Variablev2 is assigned its next value 3. Forward checking does nothing.Variable
v3 is assigned its first value 0. Forward checking removes value0 fromD(v6) and we
setconf_set(v6) = {v3}. Variablev4 is assigned its first available value 0. Forward
checking does nothing. We now reach variablev5 again so FC1 will forward check
each ofv5’s values againstv6. None of its values results in the domain wipe-out ofv6.
Therefore, there is no dead-end and the consistent strategyshown in Figure 6 will be
found.

Note that if we had not added the variables inconf_set(v5) to conf_set(v3), we
would backjump tov1 when encountering the dead-end atv3. This would result in a
different solution being found, with more search effort.
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Figure 6: The search tree explored by FC1 with CBJ on the problem of Example 7.
The consistent strategy found is depicted with bold lines.

5.2.2 Solution-Directed Pruning

As discussed in Section 4.3, Giunchiglia et al. introduced solution-directed backjump-
ing for QBF [33]. This allows backjumps over universally quantified literals once
reaching a true leaf node. Inspired by this idea, we have implemented a technique that
can prune values from universal variables when reaching a true leaf node and may also
perform solution-directed backjumps. We call thissolution-directed pruning(SDP).
SDP is based on the following idea.

Assume thatvi is the last universal inV andq = (vi+1 . . . vn) is the sequence of
existentials aftervi in V . Also, assume that a consistent scenario including assignment
vi 7→ ai has been found and〈vi+1 7→ ai+1, . . . , vn 7→ an〉 are the assignments of the
existential variables(vi+1 . . . vn) in this scenario. Then any value ofvi that is com-
patible with all these assignments will, obviously, also bepart of a consistent scenario.
Therefore, for each such value we can avoid running a search in the remaining existen-
tials (i.e. any such value can be pruned). Based on this, after reaching a true leaf node,
SDP first computes the values of the last universalvi in V that have the above property.
All such values are temporarily pruned fromD(vi). If there are no available values in
D(vi), SDP proceeds with the universal immediately beforevi in V , sayvj .

SDP then checks ifvj ’s remaining values are compatible with the assignments of
all existentials aftervj . Each such value is pruned fromD(vj), under the condition
thatall values ofD(vi), after the first one, were previously pruned by SDP. Or in other
words, if all values ofvi were found to be compatible with the same set of assignments
〈vi+1 7→ ai+1, . . . , vn 7→ an〉 for the existentials aftervi. Essentially this means that to
prune a value fromD(vj) it must be compatible with all the assignments in the previ-
ously discovered strategy for setting the variables aftervj . This is repeated recursively
until a universal is found which has available values left inits domain after SDP has
been applied. The algorithm then backjumps to this universal. Example 8 illustrates
how SDP operates.
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Example 8 Consider the QCSP∀v1∃v2∀v3∃v4∃v5 (C). Assume that all variables
have the domain{0, 1, 2} exceptv1 whose domain is{0, 1, 2, 3}. C includes some
constraints which we don’t mention for simplicity reasons.Imagine that BT, coupled
with SDP, is used to solve the problem. Figure 7 depicts a solution to the problem, and
the nodes pruned by SDP together with the subtrees that are not searched.

Assume that the consistent scenario〈v1 7→ 0, v2 7→ 1, v3 7→ 0, v4 7→ 1, v5 7→ 2〉 has
been discovered. The algorithm will now backtrack to the last universal (i.e.v3) and ap-
ply SDP. Assuming that values 1 and 2 ofv3 are compatible with assignmentsv4 7→ 1,
v5 7→ 2, SDP will prune values 1 and 2 fromD(v3) and, thus, avoid searching the
subtrees below the corresponding nodes. Since there are no values left inD(v3), the
algorithm will apply SDP to the previous universal (i.e.v1). Assuming that value 1
of v1 is compatible with assignmentsv2 7→ 1, v4 7→ 1, v5 7→ 2, SDP will prune value 1
fromD(v1). According to the definition of SDP the pruning is possible becauseall val-
ues ofD(v3), after the first one, were pruned by SDP previously. That is, assignment
v1 7→ 1 is compatible with all the assignments in the previously discovered strategy for
setting the variables afterv1.

Now assuming value 2 ofv1 is not compatible with assignmentsv2 7→ 1, v4 7→ 1,
v5 7→ 2, the algorithm will backjump tov1 and proceed by making the assignment
v1 7→ 2. As shown in Figure 7, the algorithm will then find consistentscenarios for
values 0 and 1 ofv3, while SDP will prune value 2 ofv3 because it is compatible with
assignmentsv4 7→ 1, v5 7→ 1. Since there are no more values inD(v3), the algorithm
will apply SDP tov1. However, value 3 ofv1 cannot be pruned because not all of
v3’s values, after the first one, had been previously pruned by SDP. Therefore, the
algorithm will proceed as usual to explore the subtree belowthe node corresponding
to assignmentv1 7→ 3. Note that SDP is not able to detect that the subtrees below the
nodes corresponding tov1 7→ 2 andv1 7→ 3 are similar because it only uses information
about the most recently discovered consistent scenario.

∀ v1

∃ v2

∀ v3

∃ v4

∃ v5

0

1

0 1 2

1 1 1

2 2 2

1

1

0 1 2

1 1 1

2 2 2

2

0

0 1 2

0 1 1

0 1 1

3

0

0 1 2

0 1 1

0 1 1

Figure 7: A solution to the problem of Example 8. Dark nodes are pruned by SDP and
the subtrees below them (enclosed in dotted areas) are not searched.

The way SDP operates, illustrated in Example 8, immediatelysuggests possible
enhancements. For example, an algorithm that stores a history of consistent scenarios
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discovered earlier, as opposed to only the last one, may be able to perform more pruning
than SDP, albeit with greater spatial requirements. We planto investigate such learning
techniques in the future.

5.3 The Algorithm of QCSP-Solve

A high level description of QCSP-Solve’s algorithm is shownin Figure 8. It takes a
QCSPF = 〈V,Q,D,C〉 and determines whether the problem is true or false. The
version of QCSP-Solve shown in Figure 8 is based on FC. In Figure 8,

• preprocess() is a function that preprocesses the problem by applying algorithm
QAC-2001, and computing pure and NI values.

• compute_PVcomputes the pure values ofvcur during search. Ifvcur is existen-
tial and one of its values (saya) is pure thencompute_PVassignsvcur with a
and temporarily removes the rest ofD(vcur)’s values. Ifvcur is universal then
compute_PVtemporarily removes all the pure values, except the last one, from
D(vcur). The if statement of line 4 ensures thatcompute_PVis only called be-
forevcur is assigned with its first available value.

• Forward_Check0is the function of Figure 4 and implements the FC0-type look-
ahead. It is called after the current variable (existentialor universal) is assigned
and checks this assignment against all future existentialsconstrained withvcur.
If a value of a variablevi is deleted thenvcur is added toconf_set(vi). If D(vi)
is wiped out then eachvj ∈ conf_set(vi) is added toconf_set(vcur).

• Forward_Check1is the function of Figure 5 and implements the FC1-type look-
ahead. It is called beforevcur is assigned (if it is a universal) and checks all of
D(vcur)’s available values against the future variables constrained withvcur. If
the domain of a variablevi is wiped out then eachvj ∈ conf_set(vi) is added
to conf_set(vcur). The if statement of line 30 ensures thatfc1() is called only
beforevcur is assigned with its first available value.

• SDPimplements solution-directed pruning.SDPprunes values from universals
according to the reasoning described in Section 5.2 and returns the first universal
found that has values left in its domain after SDP has been applied.

• Restoreis the procedure depicted in Figure 9 used to restore values to the do-
mains of variables upon backtracks. This procedure is slightly different from the
one used by FC as it has to restore any values pruned by the PV rule in addition
to the ones pruned by forward checking.

QCSP-Solve works as follows. It takes as input a QCSPF = 〈V,Q,D,C〉 and,
after preprocessing the problem (line 1), it proceeds by making assignments of values
to variables until the truth of the problem is proved or disproved. Before assigning
a value tovcur, QCSP-Solve callscompute_PVto compute the pure values ofvcur

(lines 4–5). Ifvcur is existential and there are no available values inD(vcur) then
the algorithm backtracks to the latest variable inV belonging toconf_set(vcur) (lines
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BooleanQCSP-Solve(F = 〈V, Q, D, C〉)
input: A QCSPF

output: TRUE if a solution toF exists and FALSE otherwise

1: preprocess(F )
2: vcur ← v1

3: while vcur 6= NIL

4: if the previously assigned variable wasvcur−1

5: compute_PV(F, vcur)
6: if Q(vcur) = ∃
7: if all values inD(vcur) have been tried
8: vback ← latest variable inV belonging toconf_set(vcur)
9: Restore(F, vcur, vback)
10: vcur ← vback

11: else
12: assignvcur with the next available valuea ∈ D(vcur)
13: if Forward_Check0(F, vcur, a)
14: if vcur = vn

15: if there are no universals inV return TRUE
16: else
17: vback ← SDP(F )
18: Restore(F, vcur, vback)
19: vcur ← vback

20: elsevcur ← next(vcur)
21: elseRestore(F, vcur, vcur)
22: else//Q(vcur) = ∀//
23: if all values inD(vcur) have been tried
24: if vcur is the first universal inV return TRUE
25: else
26: Restore(F, vcur,last_u(vcur))
27: vcur ← last_u(vcur)
28: else
29: FC_result←TRUE
30: if the previously assigned variable wasvcur−1

31: FC_result←Forward_Check1(F, vcur)
32: if FC_result
33: assignvcur with the next available valuea ∈ D(vcur)
34: Forward_Check0(F, vcur, a)
35: vcur ← next(vcur)
36: else
37: vback ← latest variable inV belonging toconf_set(vcur)
38: Restore(F, vcur, vback)
39: vcur ← vback

40: if vcur = NIL return FALSE

Figure 8: The algorithm of QCSP-Solve.
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procedureRestore(F, vcur, vback)
input: A QCSPF , the current variablevcur and the variable where the algorithm will backtrackvback

output: -
1: for vi = vback to vcur

2: for each variablevj aftervi in V

3: restore toD(vj) any value that was removed because ofvi’s instantiation
4: restore toD(vj) any value that was removed because of the PV rule

Figure 9: Restoration procedure of QCSP-Solve.

7–10). Otherwise,vcur is assigned with its next available value and the assignment
is checked against future variables (lines 12–13). If thereis no domain wipe-out and
the algorithm has reached a true leaf node (i.e.vcur is the last variable inV ) then
SDP is called to perform solution-directed pruning (lines 16–19). If QCSP-Solve is
not at a leaf node, it proceeds by moving to the next variable (line 20). If there is a
domain wipe-out, the next value ofvcur will be tried in the next iteration of thewhile
loop. Note that if there are no universals in the problem (i.e. it is a standard CSP),
QCSP-Solve terminates when a true leaf node is reached (line15).

If vcur is a universal and consistent scenarios have been found for all of its values,
then there are two cases. Ifvcur is the first universal, QCSP-Solve terminates success-
fully (line 24). Otherwise, it backtracks to the last universal (line 27). Before assigning
any value to a universal variable, QCSP-Solve callsForward_Check1to perform the
FC1-type look-ahead (lines 30–31). If there is a domain wipe-out, the algorithm back-
tracks to the latest variable inV belonging toconf_set(vcur) (lines 36–39). If there
is no domain wipe-out, orForward_Check1has already been called at this level,vcur

is assigned with its next available value (line 33), the assignment is checked against
future variables (line 34), and QCSP-Solve proceeds with the next variable (line 35).

Although it is not shown in Figure 8, QCSP-Solve can also employ the dynamic
symmetry-breaking technique based on computing NI values,described in Section 3.3.
However, the experiments we have run so far have showed that the time overheads of
this technique outweigh the benefits it offers, when the PV rule is also used. That is
why it is not included in the pseudo-code of Figure 8. However, in other problems than
the ones we tried, and with better implementation, it is quite possible that dynamic
NI-based symmetry breaking may be useful.

The following example demonstrates how QCSP-Solve operates.

Example 9 Consider the following QCSP whereV consists of 7 quantified variables,
andC is a conjunction of 9 constraints.∃v1∃v2∀v3∀v4∀v5∃v6∃v7(v1 6= v6 ∧ v1 6=
v7 ∧ v2 6= v6 ∧ v3 6= v6 ∧ v3 < v7 ∧ v4 6= v6 ∧ v4 6= v7 ∧ v5 6= v6 ∧ v5 < v7). Assume
that the domains of the variables are as follows:D(v1) = {2, 3}, D(v2) = {0, 1, 2},
D(v3) = {0, 3}, D(v4) = {0, 1, 6}, D(v5) = {4, 5}, D(v6) = {0, 1, 2, 3}, D(v7) =
{0, 2, 3, 6}.

Let us trace the execution of QCSP-Solve for a few steps to understand how its
various features prune the search space. Figures 10a to 10k demonstrate how the search
tree explored by QCSP-Solve is built, how certain nodes are pruned, and the way the
domains of the variables change during search.
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Figure 10a Preprocessing is applied (line 1 of the algorithm). There are no arc incon-
sistent or pure values, so no pruning is performed3.

Figure 10b The assignmentv1 7→ 2 is made (line 12).Forward_Check0reducesD(v6)
andD(v7) to {0, 1, 3} and{0, 3, 6} respectively (line 13). We now have the fol-
lowing: conf_set(v6) = conf_set(v7) = {v1}.

Figure 10c Now, value 2 ofv2 becomes pure because it is supported by all values in
future variables (lines 4–5). The PV rule will immediately make the assignment
v2 7→ 2.

Figure 10d The next variable is a universal.Forward_Check1(lines 30–31) does not
wipe out any future domain, so the assignmentv3 7→ 0 is made (line 33).For-
ward_Check0reducesD(v6) andD(v7) to {1, 3} and{3, 6} respectively (line
34).

Figure 10e Value 0 ofv4 is pure (lines 4–5). Therefore, it is removed.Forward_Check1
(lines 30–31) does not wipe out any future domain, so the assignmentv4 7→ 1 is
made (line 33) andForward_Check0reducesD(v6) to {3} (line 34).

Figure 10f The next variable isv5. Forward_Check1does not wipe out any future
domain (lines 30–31), so the assignmentv5 7→ 4 will be made (line 33).For-
ward_Check0reducesD(v7) to {6} (line 34).

Figure 10g v6 andv7 are assigned their only available values (in line 12) and a true
leaf node is found (line 14).

Figure 10h Now functionSDP is called (line 17).SDPdiscovers that value 5 of the
last universal (v5) is compatible with the assignments of all the existentialsafter
v5. Therefore, this value is removed fromD(v5). SDP is then applied to the
previous universalv4. Value 6 ofv4 is not compatible with the assignments tov6

andv7. Therefore, a solution-directed backjump tov4 is performed (line 19).

Figure 10i The assignmentv4 7→ 6 is made (line 33).Forward_Check0reducesD(v6)
andD(v7) to {1, 3} and{3} respectively (line 34).

Figure 10j Forward_Check1(lines 30–31) applied atv5 wipes outD(v7) because
value 4 ofv5 is incompatible with the only value inD(v7). Therefore, we have
a dead-end andconf_set(v7) will be added toconf_set(v5).

Figure 10k The algorithm will backjump to the latest variable inV belonging to
conf_set(v5), which isv1 (line 37–39).

Figure 10l shows the part of the search tree traced in the example and illustrates how
subtrees are pruned by applying look-ahead and look-back techniques.

3Values 4 and 5 ofv5 are NI, but let us ignore this for the sake of the example.
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Figure 10: Search tree of Example 9. Dark nodes are pruned by QCSP-Solve. Such
nodes together with the feature responsible for their pruning are included in dotted
ovals in the last figure. Dotted edges denote parts of the treethat were visited in the
past. DWO stands for domain wipe-out.
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6 Experimental Evaluation

To compare the performance of the methods presented in the previous sections, we ran
experiments on randomly generated QCSPs. Before presenting the results, we discuss
the issue of flaws in random instances, which is familiar fromother search problems
such as CSP and QBF and can have a significant impact on experimental studies. We
show that random generators derived by extending standard generators for QBF and
CSP give rise to flaws, which quickly infect all generated problems. Since this is an
important problem for experiments in QCSP, we propose a random generator that is
free from these flaws.

6.1 Flaws in Random QCSP Generation

Local flaws have been discovered in random generation modelsfor search problems,
such as CSPs [1] and QBF [30]. We show that random generation models for QCSPs
that are based on standard generators for QBF and CSPs can suffer from a local flaw
(specific to QCSPs) that makes almost all of the generated instances false, even for
small problem sizes.

Consider, for example, thek-QBF random generation model [30] which has been
widely used in experiments with QBF. In this model there arek +1 blocks of variables
with alternating quantification, with the variables in the first block being existentially
quantified. For example, in a 2-QBF problem we have a block of existential variables
followed by a block of universal variables followed by another block of existential
variables. This model can be easily adapted to generate QCSPinstances. The blocks of
variables are generated as ink-QBF and the binary constraints can be generated using
a standard model for binary CSPs (e.g. model B [43]).

However, thek-QCSP generator is subject to a local flaw. Suppose we can find
assignments〈v1 7→ 7, v2 7→ 2, . . . , vk 7→ 3〉 for universalsv1, . . . , vk, and there exists
an existentialve appearing later inV than all variablesvi wherei ∈ 1 . . . k. If every
value ofve conflicts with one of the chosen values of one of the universals, this tuple
of assignments is inconsistent. But it remains inconsistent irrespective of assignments
to other universals or existentials and so the problem is trivially false as a whole. Even
taking the extreme case of only one conflict per constraint, this can happen as long as
there are as many universals beforeve as values in its domain.

Assume there ared universals, and there is a constraint between a pair of variables
with probabilityp. Each constraint has one nogood. Assume thatD(ve) = {1, . . . d}.
The probability of a conflict between some universal and value 1 inD(ve) is pd/d (i.e.
we pick a universalu from d universals, with probabilityp there is a constraint between
u andve, and with probability1/d the single conflict involves value1 ∈ D(ve)). For
value 2, the set of available universals has sized − 1, so the probability isp(d − 1)/d.
Overall the probability of a flaw between existentialve andd particular universals is
P (ve) =

∏d

i=1 pi/d.
With k existential variables quantified afterd universals, the probability of no flaw

occurring is(1 − P (ve))
k. SinceP (ve) does not depend onk, with fixedd andp this

probability tends to 0 ask → ∞. Not only are flaws certain to occur, but there is no
phase transition: i.e. for anyp > 0 almost all problems are false asymptotically.
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This flaw is not only very common, but also discovering its presence is anNP-
complete problem. Let us repeat the description of the flaw slightly more formally.

Definition 6 Flawed Problem Suppose that we have a set of variable assignments
S = {v1 7→ a1, . . . , vi 7→ ai}, where for eachaj , j = 1 . . . i, aj ∈ D(vj), and eachvj ,
j = 1 . . . i, is universally quantified and appears inV before an existential variableve.
If every valueb ∈ D(ve) is incompatible withat least onevalue assignmentvj 7→ aj ∈
S (〈aj , b〉 /∈ cje), then the entire problem is false, and is said to be flawed.

Notice that the only case of this which is detected by either aQCSP technique or
encoding is the case where the set of variable-value pairs isa singleton. I.e. some
vj 7→ aj is inconsistent with every value ofve. In this case algorithm QAC-2001 re-
ports failure. For the case where each constraint contains only one conflict, it is easy
to check each existential variable for a flaw. That is how we computed the proportion
of flawed problems above. However, in general it is hard to confirm the existence of a
flaw:

Theorem 2 Checking for the presence of a flaw in a QCSP is NP-complete.

Proof: Consider any SAT instance. We convert this into a QCSP such that the SAT
instance has a solution iff the QCSP is flawed. For each SAT variable v we have a
corresponding universal QCSP variablev with two values, 0 and 1. We have a single
existential variableve quantified last, with domain size equal to the number of clauses
in the SAT problem. We have a constraint between every universal variable andve.
This constraint has a conflict for each SAT clause that the variable occurs in. If the
literal in clausei is ¬v, the conflict rules out the pair〈v 7→ 0, ve 7→ i〉, while if the
literal isv, the conflict rules out〈v 7→ 1, ve 7→ i〉.

Now consider any satisfying assignment to the SAT instance.This is a set of literals
such that at least one occurs in each clause. Say¬v is in the set and occurs in clause
i. Then the translation ensures thatv 7→ 0 rules outve 7→ i. Similarly, if u is in the
assignment and occurs in clausej, thenu 7→ 1 is in conflict with ve 7→ j. So each
value ofve is ruled out. We never need to set any variable to 0 and 1 simultaneously,
as the satisfying assignment does not contain both a variable and its negation.

The reverse direction is similar. Say that the translated QCSP is flawed. Then there
is a set of assignments{vi 7→ ai} ruling out each value ofve. If ai = 0 then, by
construction, the literal¬v occurs in clausei and satisfies it. And ifai = 1 thenv
occurs in clausei. As all values ofve are ruled out, the SAT instance is satisfied.

The flaw is easily witnessed, by a choice of values for universal variables, so the
problem of instances being flawed is also in NP so is NP-complete. QED

Note that the flaw is simply a situation in which search can be terminated. As such
it might give rise to interesting new propagation techniques in QCSP, or valuable new
clauses in QBF encodings.

6.1.1 Random problem generator

The random generator we used controls the probability of flaws. Variables appear in
blocks with alternating quantification. For simplicity, wedescribe the model in the
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case of three blocks. That is, a block of existentials followed by a block of universals
then another block of existentials. The generator takes 7 parameters:〈n, n∀, npos,
d, p, q∀∃, q∃∃〉 wheren is the total number of variables,n∀ is the number of universally
quantified variables,npos is the position of the first universally quantified variable in
V , d is the uniform domain size,p is the number of binary constraints as a fraction of
all possible constraints.

q∃∃ is the number ofgoods(i.e. satisfying tuples) in∃ vi∃ vj (cij) constraints as a
fraction of all possible tuples, andq∀∃ is a similar quantity for∀ vi∃ vj (cij) constraints
explained below. The other two types of binary constraint can be removed entirely by
preprocessing and so we do not generate them.

Since the flaw is a characteristic of∀ vi∃ vj (cij) constraints, we restrict these in the
following way: we generate a random total bijection (i.e. a one-to-one correspondence)
from one domainD(vi) to the otherD(vj). Conflicts are chosen only from those pairs
in the bijection. All 2-tuples not in the bijection are goods. Now q∀∃ is the fraction of
goods from thed tuples in the bijection.

Notice that thep, q∃∃, q∀∃, andq∀∃ parameters are proportions rather than proba-
bilities, hence this model is similar in style to model B for random CSPs.

To control the probabilitypf of the flaw, we write down an expression forpf ,
approximating proportionsp, q∀∃, q∃∃ as probabilities.n∀ is the number of universal
variables, andn∃ is the number of existential variables in the second existential block.

For each existential assignmentve 7→ 1, the probability that it is covered by a uni-
versalvu is p(1 − q∀∃). If the variableve is flawed, then all its values are in conflict
with some value of some universal variable. However, each universal variable can only
cover one value (since we use a bijection).

For an individual existential variableve (in the second existential block), and repre-
senting domain values using positive integers, we start by writing down the following
equation. It places an ordering on the values and representsthe probability of all values
in D(ve) being flawed as a product of the probabilities of each valuea, given that all
values less thana are flawed. So for example, ifa = 5, the probability that value 5 is
flawed (given values1, 2, 3, 4 are flawed) is written asp(5|1, 2, 3, 4).

p(ve flaw) = p(1)p(2|1)p(3|1, 2) . . . (1)

The probability that valuea is flawed, given that the previousa − 1 values are
flawed, is given by equation (2).1 − q∀∃ is the probability of the particular value
a ∈ D(ve) being in a nogood of any particular constraint. This is multiplied byp1 to
obtain an approximate probability of a particular universal vg and constraintcge having
a nogood containinga ∈ D(ve).

The exponentn∀−(a−1) is the number of universal variables, minus those(a−1)
variables which are already instantiated to conflict with the (a − 1) lower values in
D(ve). The probabilityp1(1 − q∀∃) of a particular universal having a conflict with
a ∈ D(ve) is complemented, raised to the exponent and complemented again to obtain
the probability of any remaining universal variable havinga conflict witha ∈ D(ve).

p(a|1 . . . a − 1) = 1 − (1 − p1(1 − q∀∃))
n∀−(a−1) (2)
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Substituting equation (2) into equation (1) gives the probability of one particular
existential variable being flawed.

p(ve flaw) =

d−1
∏

i=0

(

1 − (1 − p1(1 − q∀∃))
n∀−i

)

(3)

The probability that no existential variables are flawed is given below. This formula
gives incorrect results whend > n∀. In this case,pf = 1 since there are not enough
universal variables to cover all elements of a domain.

pf = (1 − p(ve flaw))
n∃ (4)

6.2 Experimental Results

In this section we present experimental results from problems generated using the
model described above. Our aim is to demonstrate the huge progress in the efficiency
of QCSP solving that was made, starting from our first methodsand culminating in
the most advanced ones. Therefore, we only give indicative results for the various
techniques.

6.2.1 Direct Algorithms

Figure 11 presents a comparison of algorithms FC1, FC1+PV, MAC1+PV, and QCSP-
Solve on problems generated according to the model described above. All algorithms
apply AC, and NI preprocessing. For each value ofq∃∃ shown in the figures, 100 prob-
lem instances were generated and we use the mean average. Thegeneration parame-
ters aren = 21, d = 8, p = 0.2, andq∀∃ = 0.5. Variablesv1 . . . v7 are existentials,
v8 . . . v14 are universals, andv15 . . . v21 are existentials. These parameters ensure that
the instances are unflawed. Finally,q∃∃ is varied across the satisfiability phase transi-
tion. We include FC1+PV and MAC1+PV in the comparison to illustrate the power of
the PV rule. Note that, for the problems we tried, the FC-based algorithms are more
efficient than the corresponding MAC-based ones. However, for larger problems this
may easily be reversed.

In the problems of Figure 11 the execution of FC1 was stopped at the cut-off limit of
2 hours in more than 50% of the instances. As we can see, QCSP-Solve is many orders
of magnitude faster than FC1. The speed-up obtained is largely due to the application
of the PV rule. Similar results were obtained with various parameter settings.

At this point we should note that both the recently proposed QCSP solvers Block-
Solve and QeCode, of [44] and [4] respectively, achieved very good results on ran-
domly generated QCSPs. Both these solvers are considerablydifferent than QCSP-
Solve. BlockSolve is a bottom-up solver that displays better performance than QCSP-
Solve on satisfiable instances, but as a downside requires exponential space. QeCode
is built on top of Gecode and hence is equipped with many advanced CSP techniques
such as GAC algorithms for certain global constraints. On the other hand, it lacks
specialized features for QCSPs, such as pure value handling.
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Figure 11: Comparison of direct algorithms for QCSPs.n = 21, n∀ = 7, d = 8,
p = 0.20, q∀∃ = 1/2.
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6.2.2 Encodings of QCSP as QBF

As explained in Section 4, the global and local acceptability encodings perform poorly
compared to the other encodings and the direct methods. Therefore, we do not include
results for these two encodings. The enhanced log encoding gives a remarkable im-
provement over adapted log. It is also competitive with QCSP-Solve and can be two
orders of magnitude better. Figure 12 shows results using the three methods. The gen-
eration parameters aren = 24, d = 9, p = 0.2, andq∀∃ = 0.5. Variablesv1 . . . v8

are existentials,v9 . . . v16 are universals, andv17 . . . v24 are existentials.q∃∃ is varied
across the satisfiability phase transition. For each point,100 instances were generated.
The median average is used because of high outliers. The timetaken to encode the
instances is not included, but since it is a linear encoding this is negligible for difficult
instances.

The closest setting ofq∃∃ to the phase transition is 0.55, with 43 instances out of
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100 being true. This also approximately coincides with the difficulty peaks for the
encodings, but not for QCSP-Solve. For lower values ofq∃∃ fewer of the instances
are true and the enhanced log encoding is less competitive with QCSP-Solve. For
example atq∃∃ = 0.35, 99 of the instances are false, and QCSP-Solve outperforms the
enhanced log encoding. Whereq∃∃ = 0.8 all the instances are true and the enhanced
log encoding outperforms QCSP-Solve. Atq∃∃ = 0.9, the median for the enhanced
log encoding fell below the resolution of the timer, so it is not shown on the graph.

This suggests that the QBF solver CSBJ is more effective in pruning or backjump-
ing over universal variables, because in a loosely-constrained instance the main cost is
branching on universals. Testing this, and identifying which rules in CSBJ are respon-
sible, remains for future work.

We very briefly experimented with two other solvers, the resolution solver Quantor,
and the hybrid (search and resolution) solver sKizzo. The aim was to gather some initial
evidence as to whether the enhanced log encoding is as efficient with non search-based
solvers as it is with search-based ones like CSBJ. The randominstances run had the
following parameters:n = 24, 3 blocks of 8 variables with alternating quantification,
andd = 9, ensuring that the instances are unflawed.p = 0.2, q∀∃ = 0.5, andq∃∃ = 0.5
(at the phase transition and difficulty peak for CSBJ). 10 instances were generated.
CSBJ solved 9 instances in under half a second each, and the tenth in 8.98 seconds.
Quantor quickly ran out of memory (>1GB) on eight of the instances, solved one in
2.98s and ran out of time for the other (>60s). sKizzo was unable to solve any instance
within 60s. From this we conjecture that search-based solvers are preferable for the
encoding. However, further experiments are necessary to validate this conjecture.

7 Conclusions

In this paper we studied various methods for solving QCSPs with finite discrete non-
Boolean domains. Our first approach was based on adapting techniques from CSPs
to deal with QCSPs. We described an AC algorithm for QCSPs that can deal with
arbitrary binary constraints. We then extended the BT, FC, and MAC algorithms so
that they can handle quantification. We also proposed modifications of FC and MAC
that are better suited to QCSPs.

Our second approach was based on encoding QCSPs as QBFs. Our motivation
was that at an early stage of research into a new problem like QCSP, encoding into a
more studied problem like QBF would very likely provide competitive performance.
We introduced progressively more efficient encodings, culminating in the enhanced
log encoding, which can be several orders of magnitude faster than the direct QCSP
algorithms. Through this study it was also demonstrated that the effective encoding of
QCSP into QBF can be a complex process, since simple generalizations of CSP-to-SAT
encodings are very inefficient.

Apart from giving us efficient tools for QCSP solving, the performance and prop-
erties of encodings and techniques used in QBF solving indicated significant enhance-
ments to the direct QCSP algorithms. We identified two features of the log encodings
and the underlying QBF solver as largely responsible for their success; first, their abil-
ity to take advantage of the pure literal rule in QBF, and second, their backjumping
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capabilities, manifested by CBJ and SBJ. We devised and implemented analogues of
these features within direct QCSP algorithms, resulting inQCSP-Solve, an efficient
direct solver.

Finally, we proposed a model for the random generation of QCSPs that is free from
known flaws. Experiments with problems generated using thismodel demonstrated
the dramatic improvement in performance when comparing ourinitial QCSP solving
attempts to the sophisticated techniques developed later.
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