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Abstract. Random 2+p-SAT interpolates between the polynomial-
time problem Random 2-SAT when p = 0 and the NP-complete
problem Random 3-SAT when p = 1. At some value p = po =~ 0.41,
a dramatic change in the structural nature of instances is predicted
by statistical mechanics methods. This is reflected by a change in the
typical cost scaling for a complete search method TABLEAU, seen
experimentally. We show empirically the same change of of beha-
viour in the local search algorithm NovELTY T, a recent variant of
WSAT. Between p = 0.3 and p = 0.5 we see typical cost scaling
of NovELTY ™ at the 50% satisfiability point apparently change from
slow polynomial growth to superpolynomial. That this behaviour is
seen in two such different algorithms lends credibility to the hypo-
thesis that there is change of typical-case complexity around py.
Previous work linked the emergence of a backbone of fully con-
strained variables to the cost peak seen in Random k-SAT. Initial
experiments suggest that for those instances whose cost was typical,
backbone size is no larger for p = 0.5 than for p = 0.3, imply-
ing that this property is not wholly responsible for any typical cost
scaling change. A preliminary study shows that the backbones of in-
stances at p = 0.5 are more sensitive to the removal of clauses than
those at p = 0.3. This “backbone fragility”, which has previously
been linked to local search cost, may cause the drastic increase.

1 INTRODUCTION

The theory of NP-completeness is one of worst-case analysis. Es-
tablishing a decision problem to be NP-complete guarantees that for
any algorithm, some instances of the problem will require an expo-
nential amount of effort to solve, unless P=NP. However, a probabil-
istic distribution of an NP-complete problem can be tractable in the
average or typical case, as long as the instances requiring exponen-
tial effort appear infrequently enough. There are also distributions of
NP-complete problems which are widely believed to be intractable
(i.e. require superpolynomial cost) in the typical case as well as the
worst case since the observed typical cost scales badly for a range of
algorithms. Finally, there are tractable special cases of NP-complete
problems which have polynomial algorithms.

Itis of importance to basic Al research to know why some distribu-
tions in the average, typical or worst case are intractable whereas oth-
ers are not. This will help us to identify the core of the search prob-
lem which algorithms face and thereby improve them. Hooker [10]
suggested that one advantage of an empirical science of algorithms
is that it can investigate how performance is related to the charac-
teristics of the problem. In this paper we take an empirical approach
to study the emergence of structural characteristics which may be
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responsible for intractability, with the aim of formulating an explan-
ation of why some distributions may be intractable.

We study the NP-complete satisfiability (SAT) problem. In this pa-
per we use the Random 2+p-SAT model due to Monasson, Zecchina,
Selman, Kirkpatrick and Troyansky [15]. By varying p, we may in-
terpolate between Random 2-SAT (p = 0), a tractable special case of
SAT which has a linear worst case algorithm [2] and Random 3-SAT
(p = 1). Random 3-SAT is NP-complete in its own right and the
“threshold” region of this distribution is conjectured to be intractable
in the average and typical as well as the worst case (e.g. Cook and
Mitchell [6]).

Monasson et al. suggested that the range over which p varies may
be divided into two qualitatively different regions delineated by a
value po estimated at about 0.41. With p < po, Random 2+p-SAT
is structurally very similar to Random 2-SAT whereas in the region
p > po, Random 2+p-SAT is distinct and appears to share struc-
tural properties with Random 3-SAT. Monasson et al. also studied
the effect of varying p on search cost for TABLEAU, a complete pro-
cedure for SAT. To represent typical cost, the scaling of the median
was studied. We take the same approach in this paper. Note that a
distribution can be tractable in the typical case, but intractable in the
average case if difficult instances occur rarely but affect the mean
cost. For TABLEAU, the typical cost scaled linearly for p < 0.4 but,
as in Random 3-SAT, it scaled as a simple exponential for p = 0.6.
If this change in search cost scaling applies to substantially differ-
ent algorithms and is not peculiar to TABLEAU or its algorithm class,
this would suggest more strongly that one or more of the structural
properties which emerge at po causes the onset of typical-case in-
tractability. In this paper we analyse the search cost of NovELTYF
[12, 14] on Random 2+p-SAT. This is a state-of-the-art algorithm
from the important class of incomplete stochastic local search pro-
cedures. Our experimental data lends credibility to the hypothesis
that the typical case complexity changes near po.

We also investigate which emergent structural properties cause
change in typical cost for local search. The approach we take is
to look for structural properties which distinguish typical instances
where p < po from those where p > po and which could conceiv-
ably affect the algorithm’s operation.

Section 2 gives background information on SAT, Random k-SAT
and Random 2+p-SAT and details of the test instances which were
used. In Section 3 we discuss the NOVELTY T algorithm and the ex-
perimental conditions under which it was run. Section 4 presents ex-
perimental scaling data for the search cost of NovELTY* on Random
2+p-SAT. In Section 5 we relate the structural properties of Random
2+p-SAT to the behaviour of local search cost. Finally, Section 6
gives conclusions and suggestions for further work.



2 SATISFIABILITY DISTRIBUTIONS

This section discusses SAT and the distribution and instance collec-
tions which were used.

A SAT instance C is a propositional formula in conjunctive nor-
mal form. C is a bag of m clauses which represents their conjunction.
A clause is a disjunction of literals, which are Boolean variables or
their negations. The variables constitute a set of n symbols V. An
assignment is a mapping from V" to {true, false}. The decision ques-
tion asks whether there exists an assignment which makes C' true
under the standard logical interpretation of the connectives. Such an
assignment is a solution of the instance. If there is a solution, the SAT
instance is said to be satisfiable.

In k-SAT we specify that each clause must contain exactly & dis-
tinct literals. For & > 3 the problem is NP-complete [5]. Random
k-SAT is a parameterised, probabilistic distribution of k-SAT. Each
k-clause in a Random k-SAT instance is independently chosen by
randomly selecting as its literals & distinct variables from V' and in-
dependently negating each with probability % We do not guarantee
that all variables in V' are mentioned in C nor that C' contains no
duplicate clauses. If n is fixed and the ratio m/n is increased, at
a critical value ao.5 of m/n, Random k-SAT exhibits a threshold,
where the probability of satisfiability rapidly changes from 1 to 0.
For k = 2, the location of ag_5 in the limit has been derived analyt-
ically, whereas for k > 3, assuming that in the limit it converges to a
constant, it must be estimated (at about 4.25 for k = 3) using exper-
iments since to date even advanced analysis can only derive bounds.

Experiments [3, 4, 7, 13] have revealed that average cost to de-
termine satisfiability for both complete and incomplete algorithms
of substantially different designs peaks near ao 5 in Random 3-SAT.
When m/n is less than about 3 in Random 3-SAT, a solution can
be found with probability tending to 1, in polynomial time [8]. At
.5 on Random 3-SAT, average cost for complete backtracking al-
gorithms appears to scale as a simple exponential [7, 9]. For incom-
plete local search algorithms, Gent, Prosser, Maclntyre and Walsh
[9] showed that average GSAT cost growth on Random 3-SAT was
consistent with a polynomial (at most quartic), where m/n is less
than ap. 5. Parkes and Walser [18] studied larger instances at ao.5
and found that WSAT average cost growth was not consistent with
any function of the form an®, but that certain functions which were
superpolynomial but which grew more slowly than a simple expo-
nential, did fit the data. The fact that the pattern is invariant across
such different algorithms strongly suggests that as m/n is increased
towards a5, the Random 3-SAT distribution acquires a “hardness”
property which somehow causes instances to require superpolyno-
mial time to solve.

The value of k affects the worst-case complexity. For k& = 2 there
is a worst-case linear time algorithm and so in Random 2-SAT the
hardness property is never acquired. This property must emerge at
some point between £ = 2 and k& = 3; for this reason the Random
2+p-SAT model was developed. A Random 2+p-SAT instance con-
sists of (1 — p)m Random 2-SAT clauses and pm Random 3-SAT
clauses. Hence varying p interpolates between 2-SAT and 3-SAT.

Monasson et al. [15] show that for p < po the Random 2+p-SAT
satisfiability probability changes continuously in the limit. Bounds of
2/5 (lower) and 0.695 (upper) have been established for po [1], which
Monasson et al. estimate numerically at about 0.41. For p > po the
change in the satisfiability probability is thought to be discontinu-

ous®.

3 See e.g. Achlioptas, Kirousis, Kranakis and Krizanc [1] for a fuller explan-
ation of of the meaning of (dis)continuous in this context.

In this study we used instances generated from the Random 2+p-
SAT distribution using various values of p and n. For each combin-
ation of p and n we determined the largest value of m for which at
least 50 % of the instances were satisfiable. We generated a large set
of satisfiable instances at this point, using both TABLEAU [7] and
MODOC [21] as SAT testers. Satisfiable instances comprise the sat-
isfiable phase of the distribution. We study only the satisfiable phase
because local search cannot solve unsatisfiable instances. Table 1
gives details of these test instances.

P (n, m) points at approx. 50 % satisfiability
0.0 (25,41) (50,74) (100,136) (250,313) (500,598)
(1000,1147) (1500,1690) (2000,2228)* (3000,3288)F
03 (25,52) (50,95) (100,177) (250,414) (500,799)
(1000,1555)* (1500,2299)f (2000,3052)F
05 (25,63) (50,115) (100, 217) (250, 520)
(500, 1015)* (750, 1511)* (1000, 2005)* (1500, 2991)*
1.0 (25, 112) (50, 218) (100, 428) (150, 640)
(200, 853)* (250, 1065)F

Table1. Each instance collection contained 5,000 instances, except those
marked * which contained 2,500 and those marked t, which contained
1,500. Collection sizes were reduced for larger n so that the computation
time required was manageable.

3 THE NovELTYt ALGORITHM

In this section we discuss the local search algorithm class, the
NovELTY* procedure and the experimental conditions we used.

Local search procedures try to find a solution to a SAT instance
by examining a sequence of assignments. In a run of a local search
procedure, the first assignment is usually selected at random. Local
search then proceeds by moving from one assignment to another by
“flipping” (i.e. inverting) the truth value of a single variable. These
flips are generally considered to be the basic unit of search cost. The
number of flips taken to find a solution is called the run length. Due
to the randomness in the algorithm, multiple runs must be made to es-
timate the cost of an instance for local search. Typically, local search
is incomplete for the SAT decision problem: there is no guarantee
that if a solution exists, it will be found within any time bound. Un-
like complete procedures, most local search algorithms cannot prove
for certain that no solution exists. However, the average cost for
local search procedures scales much better than that of complete pro-
cedures near the threshold region in Random 3-SAT (see e.g. [18]).
Therefore local search procedures can have an important role to play
in any SAT system where completeness may be sacrificed.

NOVELTY [14] is a variable selection strategy, combining memory
and greediness, which was developed for the WSAT local search ar-
chitecture [19]. In WSAT, only variables appearing in a clause unsat-
isfied by the current assignment may be flipped. Hoos [12] made a
“random walk modification” to the algorithm; the modified algorithm
is NovELTY ™. With a small probability wp (we followed Hoos in
using wp = 0.01) the modified algorithm chooses the variable to flip
at random from the unsatisfied clause. This modification guarantees
that all runs on satisfiable instances will succeed with probability ap-
proaching 1 as the run length is increased.

Following Hoos [11], we test the algorithm without a restart mech-
anism and use the median run length mrl(C') as our measure of per
instance search cost: this represents a “typical” run of NOVELTY ™
on the instance C. We took the mrl of 100 runs of the algorithm per



instance except on collections marked * where 50 runs per instance
were made and collections marked 1 where 30 runs were made. Fol-
lowing Monasson et al. [15] we then look at the typical per-instance
cost (i.e. median mrl) over the collection as = is increased.

The algorithm also has a noise parameter (0.0 < noise < 1.0)
which, roughly speaking, represents the probability that the choice
of variable to flip is non-greedy. To test the algorithm’s perform-
ance scaling, this parameter should be optimised if possible. To com-
plicate matters, the optimal noise setting at 50 % satisfiability de-
pends on p, n and the measure being optimised. For each instance
collection we determined the noise setting which was optimal to
within 0.05, minimising the total number of flips to perform all runs
on all instances to completion®. On three collections (p = 0.3,
n = 25,50, 100) 100 runs per instance were not enough to distin-
guish a clear noise optimum and so 2,000 runs per instance were
performed.

On certain collections (p = 0.5, n > 500, p = 0.3, n > 1000)
it was not feasible to allow all runs to complete and so instead we
imposed a cut-off run length large enough so as not to affect our
measurement of median mrl. On these collections we used the noise
setting which minimised the median mrl (optimal to within 0.05).

4 NOVELTYT ON RANDOM 2+p-SAT

In this section we present results of experimental tests of NOVELTY +
on the instance collections described in Section 2.

41 0<p<po: Typical cost appearstobealow
polynomial

Some analytic results are known for this class of algorithm when p =
0 (2-SAT). Papadimitriou [16] showed that for a simple random walk
algorithm also based on flipping variables in an unsatisfied clause, a
run length of O(n?) is sufficient to solve any 2-SAT instance with
probability at least % For p > 0, Random 2+p-SAT is NP-complete
since any 3-SAT instance may constitute the pm 3-SAT clauses.

P n Median 95th perc. 99th perc. Mean run
mrl (3s.f) | mrl (3s.f) | mrl(3s.f) | length (3s.f.)

0 25 15 245 30 17.8
50 30 495 61.5 35.1

100 60 95 115 68.3

250 147 219 255 161

500 294 401 463 311

1000 562 746 862 591
1500 832 1,060 119 863
2000 1,090 1,350 1,490 1,120
3000 1,590 1,950 2,130 1,630

0.3 25 18 31 43 30.6
50 36 73 138 101

100 82 189 682 297

250 208 801 9,310 3,890

500 464 6,560 54,600 30,400

1000 979 22,300 142,000 -
1500 1,580 54,700 481,000 -
2000 2,290 81,400 | > 500,000 -

Table2. Run length statistics for NOvELTY* on Random 2+p-SAT for
p=0,0.3

4 So, for example, this is a different optimality criterion from that of Mc-
Allester et al. [14].

Table 2 gives experimental data for p = 0 and p = 0.3 on Random
2+p-SAT. As well as median mrl, we also give 95th and 99th per-
centiles of mrl and the mean run length. The data for the typical cost
for p = 0,0.3 is consistent with a dependence on n which is O(n®)
with b =~ 1. For p = 0 a linear-bounded growth is also observed
for the 95th and 99th percentiles and for the mean. This suggests
that algorithms of this class may perform well on 2-SAT, or that in-
stances requiring superlinear cost of the algorithms occur rarely in
this distribution. For p = 0.3 the higher parts of the cost distribution
apparently grow more quickly, although these high percentiles were
not stable enough to infer a growth function. The more difficult in-
stances appear to become so costly that they affect the growth of the
mean run length. The presence of these instances caused large vari-
ances in mean run length which meant that more runs per instance
were required for the smaller n. Possible ramifications of the super-
linear mean are that either the distribution for 0 < p < po requires
superlinear cost in the average case or that NOVELTY ™ is a poor
choice of algorithm at this level of p if all instances are to be solved.

4.2 py < p < 1: Typical cost appears
superpolynomial

Figure 1 plots the typical (median) mrl for the different values of
p as n is increased. The data suggests a qualitative change in the
scaling nature between p = 0.3 and p = 0.5. Plotting the growth for
p > 0.5 on a log scale (not shown) the downward curve shows that
it is (at least for this range of n) slower than a simple exponential.
A log-log scale (Figure 2) reveals a slight upward curve for p >
0.5 suggesting that the scaling is superpolynomial. This is similar to
the experimental average case scaling results for the closely related
WSAT/SKC algorithm [18]. Also, in these two important respects
scaling for p = 0.5 and 1.0 is similar. For p < 0.3 the typical cost is
a straight line, which confirms polynomial dependence on n.
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5 STRUCTURE AND COST IN RANDOM
2+p-SAT

The results from Section 4, along with Monasson et al.’s work on
TABLEAU cost scaling are consistent with the notion that as p is
increased, Random 2+p-SAT acquires a property around po which
causes the distribution to require superpolynomial computational
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Figure2. Typical cost, log-log scale

cost to solve in the typical case. In this section we focus on the
structural properties which might distinguish the satisfiable phase of
p = 0.3 from that of p = 0.5.

One structural property of SAT instances which has been studied
in Random SAT is the backbone [15, 17] . If the SAT instance C'
is satisfiable, the backbone is the set of literals which are logically
entailed by C®. A literal z is entailed by C' iff every solution to C
makes z true. The backbone size bsize(C) is the number of liter-
als entailed by C'. Parkes showed that backbone size is an important
factor in cost for WSAT/SKC on Random 3-SAT at the threshold
[17]. There was a strong positive relationship between backbone size
and average cost. Cost increases with backbone size presumably be-
cause backbone size limits the regions of the search space in which
solutions exist. A large backbone implies that solutions are tightly
clustered whereas a small one allows them to be widely distributed.

Monasson et al. [15] claim that the backbone changes discontinu-
ously as m/n is varied in the limit for p > po. Presumably for
p < po the change is continuous, reflecting the continuous change
in the satisfiability probability. The possibly different nature of the
backbone either side of po could be one reason for the differences in
local search cost. We calculated backbone sizes for the p = 0.3, 0.5
SAT instance collections®. The average bsize(C') over each collec-
tion is plotted against n in Figure 3. The data shows that backbone
sizes in the p = 0.5 satisfiable phase are slightly larger for this range
of n, although we found no clear evidence of a qualitative difference
between the distributions of bsize(C) at these two values of p (as for
example can be seen between p = 0 and p = 1 [15]).

As mentioned, bsize(C) is an important factor partly determining
the local search cost of an instance within a collection. However,
there is also evidence that the difference in mean bsize(C') between
p =0.3and p = 0.5 is not the cause of the stark difference in typical
cost. To establish this we focused on the “cost-typical” portion of
each collection. We ranked each instance in the collection by local

5 Monasson et al. also extend their definition of the backbone to unsatisfiable
instances, which we do not consider.

6 The basic method for determining whether a literal z is entailed by C is to
determine the satisfiability of C' A —z. This method for finding the back-
bone can then be extended by certain optimisations. If a solution to C' is
found making —z true then x cannot be entailed. So for example, many
entailed literals can often be eliminated by finding several solutions using
local search. If z is entailed by C, C is equivalent to C' A x. This means
that in future searches on C, branches where z is false can be pruned.
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search cost as determined in Section 4. The cost-typical portion is
the 10 % of the instance collection whose costs lie in the centre of
this ranking. Table 3 gives statistics on the backbone sizes of the

cost-typical portion instances at various settings of n and p.

n p=0.3 p=20.5
Median Cost-typical | Median Cost-typical
bsize mrl range bsize mrl range
25 15 17-19 16 19-21
50 24 35-38 25 435-48
100 38 79-85.5 39 109 - 126
250 72 198 - 217.5 73 327-381
500 108 437 -490.5 95 936 — 1187
1000 176 | 1110.5-1339.5 148.5 3868.5 — 6156
1500 2235 1462 — 1716.5 223.5 | 11621.5-18932.5

Table 3. Cost-typical instances for p = 0.3, 0.5. The collection sizes were
made equal at each level of n. Note that the cost ranges do not overlap
except for n = 25 and that the costs of cost-typical instances are quite

narrowly distributed around the median.

The data suggest that for larger n, where the cost differences are
greater, the backbones of the p = 0.3 cost-typical instances are gen-
erally no smaller than those at p = 0.5 even though they are much
less costly. This would imply that backbone size is not the reason that
typical cost grows so much more quickly for p = 0.5.

In a recent article [20], we showed that a large backbone combined
with backbone fragility was a very plausible cause of the high typical
local search cost which appears near aig.5 in Random 3-SAT. An in-
stance is backbone-fragile if, when a few of its clauses are removed at
random, much of the backbone is lost (i.e. many fewer literals are en-
tailed). We suggested that backbone-fragile instances are difficult for
local search because assignments at which few clauses are unsatisfied
are so much more widely-distributed through the search space than
solutions. If the backbone size changes discontinuously (as m/n is
varied) we would expect to observe backbone fragility: the removal
of a small number of clauses will cause a finite fraction of entailed
literals to be lost. We studied the effect on the backbone of remov-
ing clauses from instances from the collections p = 0.5, n = 1000
and p = 0.3,n = 1000. We progressively removed clauses from
each instance, calculating the change in backbone size as they were
removed. Although the clauses were removed at random, this was



done so that the ratio of 2- to 3-clauses was preserved in each case.
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Figure4. The effect on mean backbone size of removing clauses from
cost-typical satisfiable threshold instances n = 1000.

Figure 4 shows the effect on backbone size of removing clauses
from the cost-typical instances. The original backbone size (seen at 0
clauses removed) is very similar, but as we remove clauses the back-
bone decays much more sharply at p = 0.5 than at p = 0.3. The
p = 0.5 instances are more backbone-fragile. This preliminary res-
ult combined with our previous work [20] suggests that backbone
fragility may also be the cause of the change in cost scaling between
p = 0.3 and p = 0.5. While we do not show data here, the same ef-
fect was also seen with respect to the number (rather than the propor-
tion) of clauses removed. A similar effect is also seen when averaged
over all satisfiable instances rather than just the cost-typical ones.

6 CONCLUSIONSAND FURTHER WORK

We tested the local search algorithm NOVELTY ™ at optimal noise
levels on the Random 2+p-SAT distribution. The experimental data
suggested some significant conclusions. Typical NOVELTY * cost ap-
pears to scale as a low polynomial up to p = 0.3. However, solving
all instances using this algorithm appears to be costly for p > 0.
For p = 0.5 typical cost appears to grow superpolynomially but
more slowly than a simple exponential: in this sense cost scaling for
p = 0.5 is similar to that for p = 1. The apparent cross-algorithm
nature of the change in typical cost scaling from low polynomial to
superpolynomial suggests that some ’hardness property” of instances
becomes common enough to effect the median near po. We also re-
ported on some experiments designed to identify the hardness prop-
erty. The average backbone size is larger for p = 0.5 than it is for
p = 0.3. However, for cost-typical instances and sufficiently large
n, the backbone size is no smaller for p = 0.3 so this can be ruled
out as the cause of high typical cost. Another possibility is that the
cost-typical instances are more backbone-fragile for p = 0.5 than for
p = 0.3 and this causes the high typical cost. Our initial experiments
are consistent with this hypothesis.

Many interesting questions remain to be answered. How do other
classes of SAT algorithm perform on Random 2+p-SAT? Do all al-
gorithms begin to encounter difficulties at the same value of p? The
hardness property should be identified in more detail. Does backbone
fragility affect complete algorithms? If not, what is the property caus-
ing superpolynomial typical cost for complete algorithms? Can these
properties be found in non-random, realistic SAT instances?
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