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ABSTRACT
We introduce a new kind of pushdown automaton, called reversible pushdown automa-
ton, which has the property that it can process input from left to right as well as from
right to left. We show that such automata constitute a new approach to bidirectional
parsing, which means that parsing in both directions may be done alternately.

1 Introduction

Traditionally, parsing algorithms which are studied in formal language theory process
input from left to right. The motivation for this monodirectionality may be found
in psycho-linguistic arguments, both for programming languages and for natural lan-
guages. However, some arguments can be found in favour of bidirectional processing.
By bidirectional processing of input we mean that the order in which the individual
input symbols are read is neither strictly from left to right nor strictly from right to
left, but alternately in both directions.

For example, for error handling in the case of programming languages, it may be
advantageous to read the input backwards starting at an error position after having
reached that position by normal left-to-right parsing [4]. Another form of bidirectional
parsing is island-driven parsing [14] in the area of speech recognition: processing
of input starts at those positions within the input where acoustic perception could
be done most reliably. Related to the island-driven algorithms are the head-driven
algorithms [11], which process the parts of the input in an order which allows some
particular parts of an underlying grammar to be handled before other parts are. Such
head-driven algorithms also lead to bidirectional processing of the input.

Incremental parsing algorithms [6] are similar to island-driven parsing: modified
input is processed starting at the substrings within the input that were not modified,
making use of subparses already found for those substrings. Conceptually or actually,
the order in which modified substrings are processed may be in both directions.

A number of approaches to bidirectional parsing have been proposed. The oldest
approach deals with two-way pushdown automata [1]. These automata differ from
ordinary pushdown automata in that each transition may either cause an increment or
a decrement of the input pointer. The order in which the input symbols are processed
is however completely fixed by the definition of each such automaton.



The island-driven approach in [14] allows more flexibility in the order of processing.
Regrettably, the algorithms are very complicated and not systematically derived. The
same holds for the algorithm in [13] (see also [6]), which proposes a bidirectional
algorithm comnsisting of an LR parser and a reverse LR parser, which collaborate to
process the input both from left to right and from right to left in different substrings
of the input.

In this paper we introduce a new approach to bidirectional parsing. The approach
is based on the existence of pushdown automata which are reversible, which means
that they can process input both from left to right and from right to left. This is
accomplished by choosing a symmetrical definition for the allowable transitions, so
that they are interpretable in both directions. Such automata can be simulated by
fixed tabular techniques in a way that yields different bidirectional algorithms for
different automata.

2 Context-free grammars and reversible PDAs

A context-free grammar G = (T, N, S, P) consists of two finite disjoint sets 7" and N
of terminals and nonterminals, respectively, a start symbol S € N, and a finite set of
rules P. Every rule has the form A — «, where A € N and a € (T'U N)*.

We generally use symbols A, B, C, ... to range over NN, symbols a, b, c, . .. to range
over T, and symbols «, 3,7, ... to range over (1T'U N)*.

A pushdown automaton (PDA) is a 5-tuple (3, A, Xypiriars X finars 7 ), where 3, A
and 7 are finite sets of input symbols, stack symbols and transitions, respectively.!
Both Xpitiqr and Xg,, are distinguished stack symbols in A.

We consider a fixed input string a; . ..a, € ¥*, 0 < n. A configuration of the PDA
is a pair (9,17) consisting of a stack § € A* and an input position i, with 0 < i < n.
In our notation, the right-most element of 0 represents the top of the stack. The
initial configuration is of the form (X4, 0); the final configuration is of the form
(X final> n)

The transitions in 7 are objects of the form §; — dy or of the form &; +% Js,
where 01,0, € A* and a € Y. For a fixed PDA and input string a; ...a, we define
the binary relation - on configurations as the least relation satisfying, for all 7 and ¢,
(001,7) F (869, 7) if there is a transition 0y +— dq, and (661,7 — 1) = (092, 4) if there is a
transition d; +> 5 such that a = a;.

The input string a; . .. a, is recognized by a PDA if (X;pitiar, 0) F* (Xfinar, n). An
input which can be recognized is called a sentence. For a certain PDA A, the set of all
such sentences is called the language accepted by A. A PDA is called deterministic if
for all possible configurations (4,4) for some input there is at most one configuration
(8',4") such that (8,7) F (&',4').2

Note that we have no notion of state as some definitions of PDAs have. This does not affect the
descriptive power, since states can be encoded into the stack symbols and the transitions.

2According to the above definition, deterministic PDAs cannot describe all deterministic (i.e.
LR(k)) languages since our definition requires the stack to contain a single element upon recognition




stack input The position of the input pointer 7

[S — e aAe] labcde is indicated by a vertical line just
[S — ae Ae€] albede after the i-th input symbol. Note
[S — aAe][A — e bAd] albede that this sequence of configurations
[S — ade|[A — b e Ad| ablcde may be seen as a top-down recogni-
[S — aAe|[A — DAd|[A — e c| | ablcde tion process starting with the initial
[S — aAe|[A — DAd|[A — c o] | abclde configuration, but equally well as a
[S — aAe|[A — DA o d] abclde top-down recognition process start-
[S — aAe|[A — bAd o] abcdle ing with the final configuration, by
[S— aA e¢] abcd]e reading this table from the last line
[S — ade o] abedel upwards.

Figure 1: Behaviour of an RPDA resulting from Construction 1.

The transitions in 7 of a reversible PDA (RPDA) are of one of the forms XY — Z,
Z+— XY or X5 Y, where X,Y,Z € A and a € . The first kind is called popping
transition, the second pushing transition, and the third reading transition.

What makes this kind of PDA reversible is that a pushing transition may also be
seen as a popping transition performed backwards, and vice versa. This prevents any
undesirable bias towards either left-to-right or right-to-left processing of the input.

It is important to note that reversibility does not add to the descriptive power:
the languages accepted by RPDAs are the context-free languages. That reversibility
does also not restrict the descriptive power is witnessed by the following example of
a construction of an RPDA from a context-free grammar.

Construction 1 Consider a context-free grammar G = (T, N, S, P). Without loss
of generality, assume that there is only one rule of the form S — o. Construct the
RPDA with the transitions below. The stack symbols are of the form [A — a e ],
where A — aff € P, or [A — aBf], where A — aBfS € P; as X;,;1ia We take
[S — e 0], as Xpy we take [S — o o]

[A — ae Bf] — [A—aBf] [B— ey forall A—aBf,B—~y€eP
[A— aBB] [B— e — [A— aBe/[] foral A — aBB,B —~y€P
[A — a eaf] Fs [A — aae [ for all A — aaff € P

Consider this construction of top-down recognizers applied to the grammar with the
rules: S — aAe, A — bAd, A — c. That the input abcde is recognized by the
resulting RPDA is shown in Figure 1.

3 Tabular simulation of RPDAs

The task of determining recognition of some input by some PDA is complicated by
possible nondeterminism of that PDA. A naive way to solve this task is to compute all

[7]. This can however easily be solved by introducing endmarkers. We will not assume determinism
of PDAs here and therefore this issue is outside the scope of this paper.



sequences of steps (X;p,itiar, 0) F* (6,7) that the PDA may perform. Regrettably, there
may be exponentially (and for some PDAs even infinitely) many of such sequences.

However, it has been shown that all such sequences may be simulated in poly-
nomial time by tabular algorithms. For example, the RPDAs resulting from Con-
struction 1 can be simulated by a tabular algorithm similar to Earley’s algorithm [5]
(see also [10, Chapter 1]). Simulation of arbitrary PDAs, generalizing the results by
Earley, was presented in [2]. We will present here a variant of that idea to RPDAs.

The main data structure we will need is a table (set) of items of the form
(X,7,Y,i), where X,Y € A and 0 < j < i < n. Such an item represents a piece
of tabulated computation by an RPDA, namely that if X occurs on top of the stack
at input position j, then by reading the input up to position 7 this stack element is
replaced by Y.? Because of the reversible nature of our RDPAs, this can of course
also be seen the other way around: the input is read from right to left, from 7 to j,
and Y is replaced by X.

The following tabular algorithm simulates an RPDA by processing the input from
left to right.

Algorithm 1 (On-line) Consider a fixed RPDA. Assume the input is a; . .. a,. Let
the set of items U be {(Xjpitials 0s Xinitiar-0)}- Perform one of the following three
steps as long as one of them is applicable.

push Choose a pair, not considered before, consisting of a transition Z — XY and
an item (W, 7, Z,i) € U. Add to U the item (Y, 4, Y, %) (if it is not already there).

pop Choose a quadruple, not considered before, consisting of two transitions 7; +—
XY and XY; — Zy and items (W, k, Z1,7),(Y1,],Ys,7) € U. Add to U the
item (W, k, Zs,1).

read Choose a pair, not considered before, consisting of a transition X +% Y and an
item (W, j, X,i — 1) € U such that a; = a. Add to U the item (W, j,Y,1).

The input is recognized if (X;pisia, 0, Xfinar,n) € U.

This algorithm performs on-line processing of the input. Informally, this means that
no steps of the RPDA are simulated which could not actually be performed by the
RPDA processing the input from left to right. One of the consequences of this on-
line property is that if no sequence of steps of the RPDA would lead past the i-th
input symbol, then Algorithm 1 would also not compute any items (X, 7,Y,d), with
1" > 4. The usefulness of such on-line processing for the location of syntax errors is
demonstrated in [9].

Formally, we have that an item (X, j,Y, ) is eventually added to U by Algorithm 1
if and only if

1. either X = X NJ =0 or
(Xinitiar, 0) F* (024, 7) F (WX, j), for some §, Z and W; and

3Such items bear some resemblance to the table elements from [3, 8, 12].




2. (X.5) F* (Y.4).

From this characterization of the table U resulting from Algorithm 1, its correctness as
simulation of RPDAs immediately follows. Note that the first of these two conditions
represents the on-line property. An off-line algorithm, where this first condition is
absent, is investigated shortly.

As an example, we consider an RPDA with the transitions X +% P, P — Y X,
X =27 Z%Q,YQw— Z, where Xjpitisy = X and Xgq = Z. The table resulting
from Algorithm 1 on the input aacaa is given in Figure 2a. We use a pictorial
representation for a set of items U: we have one column of nodes for each input
position; the nodes in each column represent stack symbols that may be on top of the
stack at the corresponding input position. Items (X, 4,V j) are represented by an arc
from a node labelled X in the i-th column to a node labelled Y in the j-th column.

An alternative to the on-line simulation of PDAs is such that the simulation on
each substring of the input is performed irrespective of the preceding input. This is
called off-line simulation. This kind of simulation was already presented in [1], be it
for a more general type of automaton, viz. for the two-way PDAs.

Algorithm 1 can be adapted to perform off-line simulation:

Algorithm 2 (Off-line) Consider a fixed RPDA and input as usual. Let the set of
items U be {(X,7, X,7) | X € AANO < i < n}. Perform one of the popping or reading
steps from Algorithm 1 as long as one of them is applicable. The pushing step is no
longer required.

The input is recognized if (Xt 0, Xfinar, n) € U.

An item (X, j,Y,1) is eventually added to U by Algorithm 2 if and only if (X, j) F*
(Y,7). This implies that more items will be added to the table U than in the case of
Algorithm 1. This can be informally explained by the fact that Algorithm 1 only adds
items to the table if they are useful with regard to the previously processed input,
whereas Algorithm 2 has no such mechanism for filtering out useless items.

Because we restricted ourselves to reversible PDAs, the on-line and off-line al-
gorithms above can be put in mirrored forms such that they are oriented towards
right-to-left processing. For the off-line algorithm this does not change the final form
of the table. The on-line algorithm on the other hand changes its behaviour after
mirroring so that it filters out items with regard to input to the right instead of input
to the left:

Algorithm 3 (On-line, mirrored) Consider a fixed RPDA and input as usual. Let
the set of items U be {(Xfq1, 7, Xfina; 7))} Perform one of the following three steps
as long as one of them is applicable.

push Choose a pair, not considered before, consisting of a transition XY — Z and
an item (7,4, W, j) € U. Add to U the item (Y,4,Y,1).

pop Choose a quadruple, not considered before, consisting of two transitions XY; —
7y and Zy — XY; and items (71,7, W, k), (Y2,4,Y1,7) € U. Add to U the item
(227 ia I/I/) k)



a) On-line left-to-right

b) On-line right-to-left

d) On-line bidirectional

Figure 2: The tables U resulting from various tabular algorithms.



read Choose a pair, not considered before, consisting of a transition Y +% X and an
item (X,i+ 1,W,j) € U such that a;1; = a. Add to U the item (Y, 7, W, j).

The input is recognized if (X;pisia, 0, Xfinar,n) € U.
An item (X, j,Y,7) is eventually added to U by Algorithm 3 if and only if

L. either Y = Xg, At =nor
(WY,i) F (07,i) F* (Xfipal, ), for some 0, Z and W5 and

2. (X,7) F* (Y,4).

From this characterization, we conclude that the mirrored on-line algorithm filters
out useless items (X, 7,Y,7) with regard to the input from position i to position n,
whereas Algorithm 1 filters out such items with regard to the input from position 0
to position j.

For the running example, the table U resulting from Algorithm 3 is given in
Figure 2b. The table U resulting from the off-line algorithm (Algorithm 2) contains
those in Figure 2a and Figure 2b plus some additional items indicated in Figure 2¢;
we have omitted however the items (X, X, ), since such items are in U for all X
and 1.

4 Bidirectional parsing

In the previous section we have shown that reversible PDAs can be simulated on-line
from left to right or from right to left. We have also presented off-line simulation,
which has no inherent directionality. In this section we address bidirectional parsing,
which means that left-to-right and right-to-left processing of input proceed simulta-
neously and in collaboration.

As the simplest case of bidirectionality we consider the problem of recognizing
some input string starting from a distinguished input position, which is not necessarily
the left-most or right-most position. From this position we scan the input to the right
up to the right-most position, and also to the left down to the left-most position.
These two activities collaborate so that items are filtered out which are useless with
regard to the already scanned input (a substring of the complete input including the
distinguished position).

The on-line algorithms we saw in the previous section both simulated RPDAs
starting from a completely known configuration, viz. either the initial or the final
configuration. A bidirectional algorithm which operates starting from an arbitrary
input position however must allow for any stack that may exist at that input position.
In particular, some special arrangements are needed to simulate a popping transition
when information concerning the element immediately below the top-of-stack is not
available.

We propose to solve this issue by choosing an on-line bidirectional algorithm which
allows the left-to-right and right-to-left processing of the input to collaborate by mak-
ing joint assumptions about the unknown stack elements upon popping transitions.



Intuitively, if the left-to-right activity can proceed if a certain stack element is assumed
just below the top-of-stack, then this assumption is made only if the right-to-left ac-
tivity can proceed under the same assumption; and vice versa.

The complete bidirectional on-line algorithm is given by the following.

Algorithm 4 (Bidirectional) Consider a fixed RPDA and input as usual. Choose
some distinguished input position m, where 1 < m < n. Let the set of items U be
{(X;m—-1,Y,m) | XY €T Aa= a,,}. Perform one of the following seven steps
as long as one of them is applicable.

(left-to-right) push For m < i, as in Algorithm 1.
(left-to-right) pop For m < i, as in Algorithm 1.
(left-to-right) read For m + 1 <, as in Algorithm 1.
(right-to-left) push For i < m, as in Algorithm 3.
(right-to-left) pop For ¢ < m, as in Algorithm 3.
(right-to-left) read For i < m — 1, as in Algorithm 3.

bidirectional pop Choose a triple, not considered before, consisting of two transi-
tions Z; — XY; and XY, — Zy and item (Y7,7,Ys,4) € U, j <m < i. Add to
U the item (Zl,j, ZQ, Z)

The input is recognized if (X;pitiar 0, Xfina,n) € U.

In this algorithm, the bidirectional pop is what constitutes the collaboration between
the left-to-right and the right-to-left processes. Both processes are constrained to
make the same assumption concerning the stack element X which occurs below the
top-most stack elements Y; and Y5.

For a characterization of the table U constructed by the algorithm, we need to
distinguish between three kinds of item. An item (X, 7,Y,17), j < m <1, is eventually
added to U by Algorithm 4 if and only if

1. (X,j) F* (Y,19).

An item (X, j,Y,1), m < j, is eventually added to U if and only if
1. (Z1,k) F*(0Z5,7) F (0WX, j), for some 6, Zy, Zs, k < m and W; and
2. (X,7) F* (Y,1).

An item (X, j,Y,7), i <m, is eventually added to U if and only if
1. (0WY,i)F (0Z,4) * (Z1,k), for some &, Z, Zs, k > m and W; and
2. (X,j)F* (Y1),



By choosing m = 3 for the running example, Algorithm 4 results in the table in
Figure 2d.

A generalization of Algorithm 4 to more than one distinguished input position is
straightforward, and is called island-driven parsing. We need one extra step which
computes items (7, k, X, 1) from pairs of items (7, k, Y, j), (Y, 7, X,i). We omit the
complete description of such an algorithm because of space limitations. See [14] for
related ideas.*

All tabular algorithms described above have a time complexity of O(n?) for gen-
eral PDAs. For specific PDAs however, the time-complexities may vary significantly
between the different algorithms, with regard to constant factors, but also with regard
to the order of the time-complexities.

5 Input/output reversibility

PDAs may be extended to be pushdown transducers [2|: we add writing transitions
that write output symbols. The tabular algorithms in this paper may be extended to
simulate pushdown transducers.

With careful definition, writing transitions are the mirror images of reading transi-
tions, and transduction may be reversed. This input/output reversibility is orthogonal
to the left-to-right /right-to-left reversibility that we have discussed above.

6 Conclusions

Reversible pushdown automata constitute a flexible approach to bidirectional parsing:
a parsing algorithm may be described by a combination of a PDA construction and the
application of a certain tabular simulation algorithm for PDAs. This is in contrast to
the algorithms in e.g. [6, 11, 13, 14] that are fixed for a chosen context-free grammar.

Because of the high level of flexibility, our approach is a suitable theoretical frame-
work for studying bidirectional parsing, in that it may clarify existing algorithms and
lead to new algorithms.
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