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Abstract

We present a new kind of recognizer for tree-adjoining languages, the linear indexed
automata. Such recognizers allow straightforward realization by means of logical pro-
gramming languages. We show that the computations by such automata, which are
in general nondeterministic, can be tabulated by means of an extension of a technique
originally devised for context-free languages. The proposed application of this work
is the design of efficient parsing algorithms for tree-adjoining grammars.

1 Introduction

Design of correct and efficient parsing algorithms for tree-adjoining grammars (TAGs) is
a difficult task. As discussed in [9], certain problems relating to TAG parsing were solved
only after many years, and in one case a parsing algorithms was shown to be incorrect
beyond repair as much as seven years after its publication. Many open problems still exist.

A possible way to simplify the task of developing tabular algorithms is to apply well-
known techniques from the realm of context-free parsing and logical programming, which
allow tabulation to be seen separately from the parsing strategy: the actual parsing strat-
egy can be described by means of a (nondeterministic) pushdown automaton or a set of
Horn clauses, and tabulation is introduced by means of some generic mechanism such as
memoization. For example, if we choose the parsing strategy to be LR parsing [13] and
generate a nondeterministic LR parser in the form of a pushdown automaton, then we
may construct a tabular LR parser by applying the generic technique from [4, 3], which
allows tabulation of any pushdown automaton.

This modular way of constructing tabular algorithms has obvious advantages over
direct constructions, as exemplified for tabular LR parsing by [14]. For example, it al-
lows more straightforward proofs of correctness, is easier to understand and cheaper to
implement.

The first modular approach to TAG parsing was proposed in [6]: a TAG is compiled into
a logical pushdown automaton, which is interpreted by means of dynamic programming.
However, it turns out that the chosen dynamic programming technique is too general for
this particular task, and therefore requires fine-tuning in order to obtain an appropriate
TAG parsing algorithm.

Notable are further [7, 16], which propose to separate the parsing problem into the
intersection of the grammar with an input and reduction of the resulting grammar.



In this paper we propose a different approach, which has strong advantages for certain
parsing strategies. In particular, in a recent publication [10] we presented a new non-
deterministic LR parsing algorithm for TAGs that is expressed in terms of a particular
kind of recognizer, different from existing types of recognizer for TAGs such as embedded
pushdown automata [12] and 2-SA [2]. The work presented here shows that the new type
of recognizer can be simulated by means of tabulation. This results in a new tabular
algorithm. Furthermore, we conjecture that by our new approach many existing parsing
algorithms for TAGs can be reformulated in a modular way, by distinguishing between the
parsing strategy and the tabulation technique.

2 Linear indexed grammars

Linear indexed grammars (LIGs) generate the same class of languages as the tree-adjoining
grammars. Other kinds of grammar generating this class of languages are the head gram-
mars and the combinatory categorial grammars [17].

For presentational reasons we restrict ourselves to LIGs in a normal form: each right-
hand side consists of either a terminal, the empty string, or one or two nonterminals, and
each production manipulates at most one index. The last restriction helps us to avoid
some of the technical problems that had to be overcome in [15]. The weak equivalence to
standard forms of LIG will not be proven here.

Thus, a LIG G is a 5-tuple (Z,N,S,Z,P), where ¥ is a finite set of terminals, N is
a finite set of nonterminals, S € N is the start symbol, T is a finite set of indices and P
is a finite set of productions, having one of the following forms: Afcon] — Bloon'] C[],
A[oon] — BH C[oo’r”], A[oo’r]] — B[Oon’], AH — a, or A[] — &, where A,B,C € N,
n,m' € TU{e}, a € ; and for each production, either 5 or ' (or both) must be the empty
string (denoted by ¢).

For a precise description of how LIGs generate languages, we refer to [17]. Let it suffice
here to mention that [co7] stands for a list. In the case that 7 is of the form p € Z then p
is the head of that list and oo is the unspecified tail. In the case that n = € however, oo
is the list itself. Both occurrences of oo in a production refer to the same list (“consistent
substitution”). The empty list is written as []. Thus, a production A[oop] — Bloo]| C[]
can be written as the following production of a definite clause grammar [11]:

big_a([p | List]) --> big_b(List), big_c([1).
As another example, a production A[] — a can be written as
big_a( [] ) —_—> ||a|| .

The start symbol is to be attached to the empty list of indices: S[]. Thus, a Prolog query
for input a; - - - an, would be of the form

?- big_s([1, [a_1, ..., a_.nl, [1).
An example of a LIG is given by the following set of productions:

S[oo] — A[] X[oo] Y[oo] — B[] Z[oo] AH — a
X[oo] — Y[oop] D[] Z[oop] — P[oo] C[] BH — b
Y[oo] — A[] X[oo] P[oo] — B[] Z[oo] C[] — C

P[] — ¢ D] — d
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Figure 1: Parse tree for a LIG.

The language it generates is {a"b"c"d™ | n > 0}. A parse tree for the string aabbcedd is
given in Figure 1.

3 Linear indexed automata

We introduce a type of recognizer that is equivalent to linear indexed grammars and that is
based on the well-known pushdown automata, which are equivalent to context-free gram-
mars. The rationale is that LIGs are nothing more than context-free grammars extended
with parameters in the form of lists of indices, and therefore pushdown automata extended
with the same kind of parameter suffice to built recognizers for languages generated by
LIGs.

Again for presentational reasons, we give a restricted type. A linear indexzed automaton
M is a 6-tuple (X, Q,I,F,Z,T), where ¥ and Z are as before, Q is a finite set of stack
symbols, I € Q is the initial stack symbol, F € Q is the final stack symbol and T is a finite
set of transitions, having one of the following forms:

o X[oo] 5 Xoo] 2]}

o X[oon] 5 Zloor];

o Y[] X[oon] & Z[oon]; or
o Y[oon] X[]5 Zlooq],

where X,Y,Z € Q, n,n' € TU{e}, z € T U {e}; and for each transition that is of one of
the last three forms, either n or ' (or both) must be the empty string.

We define a configuration to be an element of (Q x Z*)* x ¥*. Each element from
Q X I* contains a stack symbol and a list of indices. A list of such elements from Q x Z*
represents the stack of the automaton. The stack is constructed from left to right, i.e.
the bottom element will be represented as the leftmost element. An element from X*



‘ Stack ‘ Input H Next step ‘

I[] aaabbbeeeddd || Ifoo] —)I[oo] X([]
I[] X]] aabbbceeddd || X [oo] —)X[oo] X[]
I[] X[] X[] abbbeeeddd || X [oo] —)X[oo] X[]
I[] X[] X[] X[] bbbeeeddd || X [oo] —>X[oo] Y[]
1] X[) X[] X[ ¥[] bheceddd | Y[ee] % ¥ o] Y1)
1] X{] X[] X[] Y]] Y[] boceddd | Y(oo]  ¥eo] ]
1] XT] X[] X[] Y] YT] YT ceeddd || Yoo] S Z[oop]

1] X7 X[] X[ Y{] Y] Z[p] ceddd || Y] Zeo] 1y Z[oo p]
I X[] X[] X[1Y[] Z[pp] cddd | Y] Z[eo] 15 Z[oop]
11) X[] X[] X1] Zlppp) ddd | X[] Z[e2p] 5 Poo
11] X[] X[] Plpp] dd. | X[] Ploop] & Plc)
11] X[] Ply] a || X1] Ploop] % ploo]
I7] P[] e || Ileo] P[] 5 Floo]
F[] € || recognition

Figure 2: Sequence of configurations of a linear indexed automaton.

represents the remaining suffix of the input v after a certain number of symbols at the left
end have been consumed.

The finite set of transitions can conceptually be seen as the infinite set that results
by consistently substituting oo in the right-hand and left-hand sides of transitions by
arbitrary elements from Z*. For example, a transition X [oon] L, Z[oon'] may be seen as

an infinite set of transitions of the form X [n’ 77] % Z[n"n'], where 5" € T*.

Let the resulting infinite set of “instantiated transitions” be called 7'. We define the
binary relation - between configurations as: (a3, zw) - (ay,w) if and only if 3 5 ~ in
T', for any o € (Q x Z*)* and w € X*. The transitive and reflexive closure of |- is denoted
by H*.

Some input v is recognized if (I[],v) F* (F[],e). The language accepted by M is
defined to be the set of all v that are recognized. A language is accepted by a linear
indexed automaton if and only if it is generated by a linear indexed grammar. A proof
will not be given here.

An example of a linear indexed automaton is given by the following set of transitions.

Iloo] V% Ifoo] X[] X[oo] & X[oo] X[]

X[oo] & Xloo] Y] Yioo] ¥ Yloo] Y]]

Y[oo] +S Zfoop] Y[] Z[oo] ¥ Z[oop]
X[] Z[oop] +% Ploo] X[] Ploop] +% P[oo]
I[oo] P[] + Floo]

The automaton accepts the language {a"b"c"d"™ | n > 0}. Figure 2 shows how the input
a®b3c3d? is recognized.

Linear indexed automata represent a subclass of the logical pushdown automata [5].
The reason this subclass is considered in isolation is that it allows a specific form of



tabulation, as will be explained below.

4 Tabulation

Linear indexed automata manipulate stacks on two levels, since the lists of indices act as
stacks embedded in the other stack formed by elements from Q x Z*. (We will further
abstain from referring to lists of indices as stacks in order to avoid the obvious confusion
that would ensue from this.) The consequence is that we can apply in a 2-dimensional way
the tabulation technique from [4, 3], which was originally devised for pushdown automata
with only one kind of stack. The nature of the resulting tabular algorithm shows some
similarities to the tabular, LR-like algorithm from [1].

The algorithm is described as follows. Given a linear indexed automaton M and an
input v, we construct a table U in polynomial time. From certain entries in U, we can
effectively decide whether the input is in the language. The procedure can be extended so
that a representation of all parse trees, the parse forest, is produced as side-effect of the
construction of U.

The table U contains items consisting of 9 fields which we pragmatically divide into
two tuples of 4 and 5 fields respectively: ((X,Y,1,),(p, Z, P,k,l)), where X,Y,Z, P € Q,
p € T and 1, j,k,l are natural numbers between 0 and n, representing positions in the
input v=ai---a, € X*.

The meaning of the 4-tuple is unchanged with regard to the original tabulation method
for pushdown automata: by reading the input from 7 to j we may push Y on top of X.
The 5-tuple contains information with respect to the list of indices that is associated with
Y': its head is p and its tail is a list that is associated with some P that can be pushed on
top of Z by reading the input from k to [. See Figure 3 for a pictorial representation.

More precisely, an element ((X,Y,4,j), (p, Z, P, k,1)) indicates the existence of a se-
quence of steps of the automaton of the form (o X[n], a;+1---a,) H* (a X[n] B Z[7'],
apy1an) F* (a X[n] B ZI0'] P[], aip1-+an) F* (a Xn] Y[1"pl, ajs1---ap), where
a,B € (QxT*)* and n,7',n" € IT*, and

e nowhere between (o X[n], ait1---a,) and (o X[n] Y[n"p], aj+1---an) does the
stack shrink to the height of a X[n];

e nowhere between (a X[n] 8 Z[n'], axy1---an) and (a X[n] B Z[0'] P[n"], ai41---an)
does the stack shrink to the height of a X[n] 8 Z[n']; and

e the two occurrences of 1" are the same list in the sense that it is passed on unaf-
fected through the steps from (a X|[n] 8 Z['] P[n"], ai+1---axn) to (a X[n] Y[n"p],
@j+1---ap). It is allowed that elements from 7 are pushed on 7" and then popped
again, but it is not allowed that elements from 7" are popped and then other elements
are pushed to accidentally result in the same list.

If we want to indicate that the list of indices associated with Y is empty, we use a “dummy”
5-tuple (<,0,0,0,0), where < is a fresh symbol representing an imaginary index in an
empty list of indices, and similarly O is a “dummy” stack symbol. In the initial item that
is added to U, O also acts as imaginary element below the actual bottom element I.

The steps of the tabular algorithm are the following:
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Figure 3: Meaning of an item ((X,Y,4,7), (p, Z, P, k,1)). Time t,, is when a,, is read.

1. We initialize U = {((0O, 1,0, 0), (<, 0,0,0,0))}.
2. We repeat the following until no more new items can be added to U.
(a) We choose an item ((Y, X,1,3), (p, P, R,k,1)) € U.
(b) We choose some transition of one of the 4 types:
i X[oo] 5 X[oo] 2]];
ii. X[oo 77] i) Z[oo ’r]’];
iii. Y[] X[OOT’] i) Z[oo’q’]; or
iv. Y[°°77"] XH i) Z[oo?’]’],

and
e in the case of type (iii) we choose an item ((Q,Y,m, 1), (<,0,0,0,0)) € U;
and
e in the case of type (iv) we choose an item ((Q, Y, m, 1), (p”, P",R", k",1")) €
U,

such that the following is satisfied:

o If z = ¢, then we define j' = j. If z € X, then we require z = a;41 and
define j' = 7 + 1.

e (for type (ii) and (iii):) If n = £ and 1 = ¢, then we define (p/, P', R’ k', ') =
(p,P,R,k,l). If n = ¢ and ' € Z, then we define (p',P',R',K',l') =
(n',Y,X,i,7). If n € T (and therefore ' = ¢), then we require n = p and
we choose an item ((P, R, k,1), (¢, P',R,K',l")) € U.



’ Nr ‘ Item in U Derived from

0 ((0,1,0,0),(<,0,0,0,0)) | initial item

1 ((,X,0,1),(©,0,0,0,0)) | I[oo] ¢ —>I[oo] X[]and 0

2 | ((X,X,1,2),(¢,0,0,0,0)) | X[oo] —>X[oo] X[]and 1

3 ((XX23),(<>'3'300)) X[oo] % X[oo] X[] and 2

4 | ((X,Y,3,4),(©,0,0,0,0)) | Xloo] iX[oo] Y[] and 3

5 | ((v,Y,4,5),(©,0,0,0,0)) | Y[oo] 5 ¥[oo] Y[] and 4

6 | ((¥,Y,5,6),(,0,0,0,0) | Y[oo] 5 ¥[oo] Y[] and 5

7 | ((v,2,57),(p, Y,Y,5,6)) Y[oo] ' Z[oop] and 6

8 (Y, Z,4,8),(p,Y, Z,5,7)) | Y]] Z[oo] > Z[oop] and 7+ 5

9 (X, Z,3,9),(p,Y, Z,4,8)) | Y[] Z]oo] I—)Z[oop] and 8 + 4

10 | ((X,P,2,10),(p,Y, Z,5,7)) | X[] Z[oop] —) Ploo] and 9+ 3 + 8

11 ((X’P’:lall)’( YY56)) X[] P[Oop]—)P[oo] and 104+2+7
12 ((I,P,O,lZ),(O 0,0 00)) X[] P[°°I’]—)P[oo] and 11+14+6
13 ((D,F’0’12)’(<> 0,0,0, 0)) I[Oo] PH —)F[oo] and 124+ 0

Figure 4: Tabular recognition of the input ajas - -

o (for type (iv):) We require (p, P, R, k,l) =
n' = ¢, then we define (p', P', R, K',l') = (p",P",R",k",1"). If n"" = € and
n' € Z, then we define (p/, P', R',k'",l') = (0, Q,Y, m,7). If n € Z, then we
" and we choose an item ((P",R",k",1"), (¢, P, R',K',l")) €

(c) Depending on which of the 4 types of transition we have chosen, we add a new

require "' = p’

U.

item to U.

In the case of
In the case of
In the case of

SN/

In the case of

-a12 = aaabbbceeddd.

(©,0,0,0,0).

i) we add ((X, Z, 4,5"), (¢,0,0,0,0)).
ii) we add ((Y, Z,4,5'), (¢’

iii) we add ((Q, Z,m, j’
iv) we add ((Q, Z, m, j'

v, P, R,K,I)).
,(p ’Pl7 RI) k’7 l’))'

)
), (@', P!, R k', 1")).

3. We accept the input if and only if U contains ((O, F,0,n), (¢,0,0,0,0)).

Application of the tabular algorithm on the running example is presented in Figure 4.

The proof of correctness will not be discussed here.

In each iteration of step 2, at most seven different input positions are manipulated at
the same time. This implies that the algorithm can straightforwardly be implemented to
). By using ideas from [9], this can easily be improved to
), since items contain four input positions.

have a time-complexity of O(n”

O(n®

). The space-complexity is O(n*

If o =



5 A dual type of linear indexed automata

The type of linear indexed automaton introduced in Section 3 is biased towards manipula-
tion of lists of indices while the stack shrinks. The consequence for the kind of recognition
we may express by our automata is best illustrated by means of Figure 1. The arrows
leading from S[] to P[] indicate how lists are passed on from mother to daughter nodes.
A maximal collection of nodes that conceptually pass on lists from one to the other will
be called a spine. The spine between S[] and P[] in Figure 1 is the only nontrivial spine.
In general, several spines can be found in a parse tree.

The task of a recognizer in this example is to verify that the numbers of a’s, b’s, ¢’s
and d’s match. In the automaton we gave for the same language in Section 3 this was
done by two cooperating mechanisms. First, the automaton stores X’s and Y’s on the
stack for all a’s and b’s that it reads and later matches these to the numbers of d’s and
c’s, respectively. This means that the stack symbols by themselves, without the lists of
indices, ensure that the input string is of the form a™b™c™d".

The second mechanism consists of the manipulation of indices. This mechanism is
initiated only after reading the first ¢, as can be seen in Figure 2. The indices ensure that
the number of d’s equals the number of ¢’s, and only due to the first mechanism this also
ensures that the number of a’s equals the number of b’s.

That the second mechanism is only initiated after reading the first c is a consequence of
the type of automaton defined in Section 3, which does not allow manipulation of indices
while the stack grows. As a result, we cannot in general define automata that satisfy the
correct-prefix property.

The correct-prefix property means that the algorithm does not read past the position
of the first syntax error in the input. This position can be defined as the rightmost symbol
of the shortest prefix of the input which cannot be extended to be a correct sentence in
the language L.

In formal notation, this prefix for a given erroneous input v ¢ L is defined as the string
wa, where v = waz, some z, such that wy € L, for some y, but waz ¢ L, for any z. The
occurrence of @ in v indicates the error position.

In our example, the automaton will detect that aabbbccedd is incorrect only after it
has read the complete input, when it finds no applicable transition for the configuration
(I[] P[p], €). However, the error position can be defined by the fifth input position, where
the third b already indicates that the numbers of a’s and b’s do not match. Therefore the
automaton does not satisfy the correct-prefix property.

The bias towards manipulation of lists of indices while the stack shrinks is related to
similar biases of other recognizers for tree-adjoining languages, such as embedded push-
down automata [12] and 2-SA [2]. Often a dual type of recognizer exists. In our case, a
straightforward dual type results by simply reversing the constraints on allowable transi-
tions. Strictly speaking, this means that transitions can be of one of the following forms:

o X[oo] Z[] 5 X[oo],
® Z[oon i)X[oo’l]’];
d Z[OO"I] i) Y[] X[oo’r”]; or

o Zloon] 5 Yieon/] X[],



An example of such an automaton is obtained by reversing the transitions of the automaton
from the running example and making F' the initial stack symbol and I the final stack
symbol. This automaton accepts the language {d"c"b"a™ | n > 0} and satisfies the correct-
prefix property.

We conjecture that a dual form of the tabulation algorithm from Section 4 exists that
preserves the correct-prefix property for linear indexed automata of the dual type. Due to
the unusual form of the two types of transition that increase the height of the stack, the
items may need to be of a slightly different form. See a similar problem for context-free
parsing in [8].

It is a subject of future research to establish how tabular algorithms such as that
described in [9] can be reformulated in a modular way by this approach.
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