Models of tabulation for TAG parsing

Mark-Jan Nederhof
DFKI

Stuhlsatzenhausweg 3, D-66123, Saarbrucken, Germany
E-mail: nederhof@dfki.de

Abstract

We propose a modular design of tabular parsing al-
gorithms for tree-adjoining languages. The modu-
larity is made possible by a separation of the pars-
ing strategy from the mechanism of tabulation. The
parsing strategy is expressed in terms of the con-
struction of nondeterministic automata from a gram-
mar. The mechanism of tabulation leads to the in-
terpretation of these nondeterministic automata as
tabular recognizers, independent of the strategy.

The proposed application of this work is the de-
sign of efficient parsing algorithms for tree-adjoining
grammars.

1 Introduction

Design of correct and efficient parsing algorithms
for tree-adjoining grammars (TAGs) is a difficult
task. A possible way to simplify this task is to apply
well-known techniques from the realm of context-free
parsing and logical programming, which allow tabu-
lation to be seen separately from the parsing strat-
egy: the actual parsing strategy can be described by
means of a (nondeterministic) pushdown automaton
or a set of Horn clauses, and tabulation is intro-
duced by means of some generic mechanism such as
memoization. For example, if we choose the pars-
ing strategy to be LR parsing (Sippu and Soisalon-
Soininen, 1990) and generate a nondeterministic LR
parser in the form of a pushdown automaton, then
we may construct a tabular LR parser by applying
the generic technique from Lang (1974) and Billot
and Lang (1989), which allows tabulation of any
pushdown automaton.

This modular way of constructing tabular algo-
rithms has obvious advantages over direct construc-
tions, as exemplified for tabular LR parsing by
Tomita (1986). For example, it allows more straight-
forward proofs of correctness, is easier to understand
and cheaper to implement.

The first modular approach to TAG parsing was
proposed by Lang (1988b): a TAG is compiled into a
logical pushdown automaton, which is interpreted by
means of dynamic programming. However, it turns
out that the chosen dynamic programming technique

is too general for this particular task, and therefore
requires fine-tuning in order to obtain an appropri-
ate TAG parsing algorithm.

For further relevant work we refer to Lang (1994)
and Vijay-Shanker and Weir (1993b), who propose
to separate the parsing problem into the intersection
of the grammar with an input and reduction of the
resulting grammar.

The approach chosen in this paper relies on tabu-
lation as originally devised for context-free parsing.
We use certain types of recognizer for TAGs, which
are notational variants of existing types such as em-
bedded pushdown automata (Schabes and Vijay-
Shanker, 1990), 2-SA (Becker, 1994), and the P2 -
automata from Weir (1994). The use of our notation
simplifies the task of adapting tabulation techniques
for context-free parsing to tree-adjoining languages.

One type of recognizer in this notation, which we
will refer to here as right-oriented linear indexed au-
tomata, was discussed by Nederhof (1998b), where
we also introduced its tabulation. Nederhof (1998a)
used this type as a means to define a new nondeter-
ministic LR parsing algorithm for TAGs. Using the
tabulation technique introduced earlier we thereby
found a modular way to define tabular LR parsers
for TAGs.

A dual type of recognizer, the left-oriented linear
indezed automata, was briefly mentioned by Neder-
hof (1998b), but its tabulation has until now not
been defined. In this paper, we will recall tabulation
for the right-oriented automata, and we will intro-
duce tabulation for the left-oriented type.

Independently from our work, Villemonte de la
Clergerie and Alonso Pardo (1998) have proposed
an alternative type of automaton that captures both
right and left orientation. However, the generality
of these automata also causes tabulation to be very
complicated. Our restriction to either left or right
orientation allows significant simplification, both in
terms of presentational elegance and in terms of
computational complexity.

The article may be outlined as follows: In Sec-
tion 2 we recall the definition of linear indexed gram-
mars. In Section 3 we present two types of recog-

nizer, and Section 4 shows the equivalence of each
of these two types to linear indexed grammars, and
thereby to tree-adjoining grammars. Tabulation is
discussed in Sections 5 and 6, for the respective two
types of recognizer. There we will show that all com-
putations of such recognizers can be simulated in
polynomial time. Section 7 presents final conclu-
sions.

2 Linear indexed grammars

Linear indexed grammars (LIGs) generate the same
class of languages as the tree-adjoining grammars.
Other kinds of grammar generating this class of lan-
guages are the head grammars and the combina-
tory categorial grammars (Vijay-Shanker and Weir,
1994). This class is a strict subclass of the mildly
context-sensitive languages (Joshi et al., 1991).

A LIG G is a 5-tuple (X,N, S,Z,P), where T is
a finite set of terminals, N is a finite set of nonter-
minals, S € N is the start symbol, T is a finite set
of indices and P is a finite set of productions, each
having one of the following forms:

e Afoon] — a Bloon'] 3, where A,B € N, n,n €
T*, and « and (3 are lists of objects of the form
C[n"'], where C € N and 1’ € I*; or

e Aln] — z, where A € N, n € I*, and z €
YU {e}.

(In this paper, the empty string is denoted by ¢.)
We say a LIG is in binary normal form, if each
production has one of the following forms:

[A[oo?’)] — B[oon'] C[],
[A[ooﬂ] — B[] C[oo’l]’]; or
o Al] - =.

where in productions of the first and second type,
n,m' € TU {e} and either or i’ (or both) must be
the empty string. As before, z € X U {e}.

The restriction to binary normal form helps us to
avoid some of the technical problems that had to be
overcome by Vijay-Shanker and Weir (1993a). It can
be easily shown that any LIG can be transformed
into a weakly equivalent LIG in binary normal form.
Apart from the manipulation of indices, this proof is
more simple than the corresponding proof for Chom-
sky normal form and context-free grammars (Lewis
and Papadimitriou, 1981), since right-hand sides are
here allowed to be empty. We will not discuss this
matter any further, and assume implicitly from now
on that the class of LIGs and the class of LIGs in
binary normal form generate the same class of lan-
guages.

For a precise description of how LIGs generate lan-
guages, we refer to Vijay-Shanker and Weir (1994).
Let it suffice here to mention that [oo7)] stands for
a list. In the case that 7 is of the form p € 7 then

q]
— T~y
Al X[
[
a Ypl=- D[]
Al Xp d
N
a Y[ppl == D[]
AV | _
B[] Zlpp] d
I S
b Pp) = cu
1
E‘a[] Zip] ©
b P‘[]<~~" C‘[]

€ C

n times

ntimes

n times

n times

Figure 1: Parse tree for a LIG.

p is the head of that list and oo is the unspecified
tail. In the case that = ¢ however, oo is the
list itself. Both occurrences of oo in a production
refer to the same list (“consistent substitution”).
The empty list is written as []. Thus, a production
Aloop] — Bloo] C[] can be written as the following
production of a definite clause grammar (Pereira and
Warren, 1980):

A’ ([p | List]) --> °B’(List), °C’([1).

As another example, a production A[] — a can be
written as:

JA)([]) ——> tgn,

The start symbol is to be attached to the empty
list of indices: S[]. Thus, a Prolog query for input
aj - -+ an, would be of the form:

?- ’s° (11, a_nl, [1).

An example of a LIG is given by the following set
of productions:

[a_1, ...,

(1) S[oo] — A[] X[oo] (7) P[] — €
(2) X[oo] — Yoop] DI] 8) A] — a
(3) Y[oo] — A[] X[oo] (9) B[] — b
(4) Y[oo] — B[] Z]oo] (10) C[] — ¢
(5) Z[oop] — Ploo] O] (11) D[] — d
(6) P[oo] — BH Z[oo]

The language it generates is {a™b"c"d"™ | n > 0}. A
parse tree for the string aabbcedd is given in Figure 1.

3 Linear indexed automata

We discuss two types of recognizer that are equiva-
lent to linear indexed grammars and that are based

on the well-known pushdown automata, which are
equivalent to context-free grammars. The ratio-
nale is that LIGs are nothing more than context-free
grammars extended with parameters in the form of
lists of indices, and therefore pushdown automata
extended with the same kind of parameter suffice to
built recognizers for languages generated by LIGs.

The difference of the two types of automaton with
(bottom-up) embedded pushdown automata (Sch-
abes and Vijay-Shanker, 1990) is restricted to no-
tation. However, the chosen notation will simplify
the development of tabulation techniques, to be dis-
cussed in the following sections.

A right-oriented linear indezed automaton (R-
LIA) is a 6-tuple (X, Q,I,F,Z,T), where ¥ and T
are as before, Q is a finite set of stack symbols, I € Q
is the initial stack symbol, F' € Q is the final stack
symbol and T 1is a finite set of transitions. Each
transition should be of one of the following forms:

o X[oon] % Yoon'];
e X[oo] 5 Yloo] Z[];

[] Z[oo] ¥ X[oo]; or
e Y[oo] Z[] % X[oo],

where X,Y,Z € Q,n,m € ZU{e}, z € XU {e}; and
for transitions of the first form, either n or ' (or
both) must be the empty string.

We now represent the second type of automaton.
A left-oriented linear indezed automaton (L-LIA) is
a 6-tuple (X, Q, I, F,Z,T) as before. The only differ-
ence lies in the allowable transitions, each of which
should be of one of the following forms:

e X[oon
° X[oo]li)
e XJoo]
] Y[Oo] Z[] lﬁ)X[oo],

with the same restrictions on z, n and i’ as before.

We define a configuration to be an element of
(@ x I*)* x £*. Each element from Q x I* con-
tains a stack symbol and a list of indices. A list of
such elements from Q x Z* represents the stack of
the automaton. The stack is constructed from left
to right, i.e. the bottom element will be represented
as the leftmost element. An element from X* rep-
resents the remaining suffix of the input v after a
certain number of symbols at the left end have been
consumed.

The finite set of transitions can conceptually be
seen as the infinite set that results by consistently
substituting oo in the right-hand and left-hand sides
of transitions by arbitrary elements from 7Z*. For
example, a transition X [oon] % Y[oon'] may be seen

as an infinite set of transitions of the form X [n'n] >

Y [n'"n'], where 0" € T*.

Let the resulting infinite set of “instantiated tran-
sitions” be called 7. We define the binary relation
F between configurations as: (af,zw) F (ay,w) if
and only if 3 ¥ « in T, for any a € (Q x Z*)* and
w € ¥*. The transitive and reflexive closure of I- is
denoted by H*.

Some input v is recognized if (I[],v) F* (F[],¢€).
The language accepted by R-LIA or L-LIA M is de-
fined to be the set of all v that are recognized.

Note that the only difference between R-LIA and
L-LIA lies in the third type of transition. In the case
of R-LIA, a list of indices cannot be carried to higher
regions of the stack, whereas for L-LIA, they cannot
be carried to lower regions. L-LIA correspond to
embedded pushdown automata (Schabes and Vijay-
Shanker, 1990) and 2-SA (Becker, 1994), whereas R-
LIA correspond to bottom-up embedded pushdown
automata (Schabes and Vijay-Shanker, 1990) and
bottom-up 2-SA (de la Clergerie et al., 1998). In
Section 4 we will discuss the consequences the dif-
ference between the two types of automaton has on
the typical behaviour during recognition.

The two types of linear indexed automaton rep-
resent subclasses of the logical pushdown automata
(Lang, 1988a). The reason these subclasses are con-
sidered in isolation is that they allow specific forms
of tabulation, as will be explained later.

4 R-LIA and L-LIA versus LIG

A language is accepted by a right-oriented linear in-
dexed automaton if and only if it is generated by a
linear indexed grammar.

For the first half of the proof, we show that,
for any LIG G = (%,N,S,Z,P) in binary nor-
mal form, we can construct an equivalent R-LIA
(%,9,I,F,Z,T), where Q = NU{I,F}U{V, |p€
P}, I and F being fresh symbols. The transitions in
T are given by the following:

e For any p = Afoon] — Bloon/] C[] in P, T
contains:

— Bloo] C[]+> Vp[oo]; and
- Vp[oon'] li} A[oo 7]].
e For any p = Afoon] — B[] Cloon'] in P, T

contains:
— B[] Cloo] ¥ Vp[oo]; and
— Vy[oon] ¥ Aloon].
e For any A[] — 2z in P, T contains:
— R[oo] % R[oo] A[], for all R € Q.
e T contains further:
— I[oo] S[] ¥ Floo].

The resulting automaton behaves like a pure
bottom-up recognizer for the language generated by
the grammar. That exactly this language is recog-
nized will not be proven here; we refer to standard
textbooks on language theory and parsing for very
similar types of recognizer and their proofs of cor-
rectness (e.g. Lewis and Papadimitriou (1981)).

For the second half of the proof, we show that
for any R-LIA (%, Q,I,F,Z,T) we can construct an
equivalent LIG G = (£,N, S,Z, P), where N' = Q x
Q and S = (I, F). The productions in P are given
by the following;:

e For any P € Q and X[oon] > Y[oon/] in T, P
contains:

~ (P,Y)[oon'] —+ (P, X)[oor]

e For any P € Q, and X[oo] & Yloo] Z[] and
Y(oo] Z'[] X'[o] in T, P contains:
— (P, X")[oo] = (P, X)[eo] 2 (2, 2")[] 2.

e For any P € Q, and X|[oo] & Yloo] Z[] and

Y[] Z'[o0] ¥ X'[00] in T, P contains:
— (P, X")[oo] = (P, X)[] 2 (2, Z")[c0].
e For any P € Q, P contains:
— (PP)]—e

For the resulting grammar, (X,Y)[n] =* w if and
only if (X[],w) F* (Y[n],¢), for any X,Y € Q,
n € I* and w € £*. (We assume the usual defi-
nition of relation =* for LIGs.) Again, we do not
give full details of the proof, but refer to standard
literature (e.g. Lewis and Papadimitriou (1981)) for
similar theorems and their proofs.

A R-LIA for the grammar of the running example
can be constructed as explained above. We obtain
the following set of transitions, identifying produc-
tions with their number.

A[] X[oo] ¥ Vjfoo] Vifoo] > Sloo]
Y[oo]D] Ii) V2[oo] V2[oop] Pi) X[oo]
Al X[oo] 5 Vool Vsloo] 5 Yoo]
B[]Z[oo] N V4[oo] V4[oo] N Y[oo]
Ploo] C[] ¥ Vs[oo] Vs[oo] = Z[oop]
B[] Z[oo] +5 Vglool Vool +5 Ploc]
R[oo] N R[oo]P[] forall R € Q
RJoo] it Rloo] A[], forall R€ Q
Rloo] % R[oo] B[], forallR€ Q
Rloo] +> R[oo] O[], for all R€ Q
Rloo] +% R[oo] D[], forallR € Q
I[oo] S[] +> Floo]

For each production with two elements in the right-
hand side, except for productions (2) and (5), the

two transitions that result can be merged to yield a
smaller automaton. Figure 2 presents this smaller
automaton and indicates how the input a2b2c%d? is
recognized.

We can further prove that a language is accepted
by a left-oriented linear indexed automaton if and
only if it is generated by a linear indexed grammar.
The proof is very similar to the above, since L-LIAs
can be seen as R-LIAs “in reverse”.

For example, if we want to construct a L-LIA from
a LIG, we can first “reverse” the grammar by ex-
changing the first and second members in all right-
hand sides that possess two members. We can then
construct a R-LIA as indicated above, and subse-
quently reverse this automaton by exchanging left-
hand and right-hand sides, and by exchanging oc-
currences of I and F.! The result is a L-LIA ac-
cepting the same language as generated by the orig-
inal grammar. This L-LIA exhibits a top-down be-
haviour, unlike the R-LIA for the reversed grammar,
which exhibits a bottom-up behaviour. The result-
ing (simplified) L-LIA for the running example and
its application on input is demonstrated in Figure 3.

The above observation is the reason I have ab-
stained from identifying the keywords “top-down”
and “bottom-up” with L-LIA and R-LIA, respec-
tively, since we see that it is the left-to-right inter-
pretation of the automata that make them behave in
a top-down or bottom-up fashion, rather than some
inherent aspect of the structure of transitions. If,
say, a R-LIA showing bottom-up behaviour with re-
spect to left-to-right processing is interpreted in re-
verse, by reading input from right to left, it could
reveal top-down behaviour instead.

Related to the top-down or bottom-up behaviour,
the two types of automaton are also distinct with re-
spect to the correct-prefix property, assuming from
now on ordinary left-to-right processing for both
types. We say a recognizer satisfies the correct-prefix
property if it does not read past the position of the
first syntax error in the input. This position can be
defined as the rightmost symbol of the shortest pre-
fix of the input which cannot be extended to be a
correct sentence in the language L. In formal nota-
tion, this prefix for a given erroneous input v ¢ L is
defined as the string wa, where v = waz, for some
z, such that wy € L, for some y, but waz ¢ L, for
any z. The occurrence of a in v indicates the error
position.

This can be illustrated with regard to Figure 1.
The path of dotted arrows starting from S[] and
ending at P[] indicates how lists are passed on from
mother to daughter nodes. A maximal collection of
nodes that conceptually pass on lists from one to the
other will be called a spine. The spine between S[]

1This kind of reversal for pushdown automata has been
discussed before by Nederhof (1996).

‘ Stack | Input | Next step |
I7] aabbeedd || I[oo] v Ifoo] A[]
I[] A[] abbeedd || Afoo] +% Aloo] AJ]
I[] A[] A] bbeedd || Afoo] > Afoo] B[]
. I[] A[] A[] B[] beedd || Bloo] > Bloo] B[]
A[] Xoo] = Sleo] I[] A[] A[] B[] B[] cedd || Bloo] ¥ Bloo] P[]
Y[oo] D[] — Valoo] I[] A[] A[] B[] B[] P[] cedd || Ploo] % Ploo] C[]
Valeop] > Xeo] I[] A[] A[] B[] B[] P[] C[] cdd || Poo] C[] % Vs[oo]
Al] Xoo] = Yloo] I[] A[] A[] B[] B[] Vs]] edd || Vs[oo] ¥ Z[oop]
B[] Z[ee] > Yloo] I[] A[] A[] B[] B[] Zp] cdd || B[] Z[oo] *% Ploo]
Ploo] C[] = Vs]oo] I[] A[] A[] B[] Plp] edd || Ploo] ¥ Ploo] C[]
Vsleo] = Zloop] I[] A[] A[] B[] Plp] C[] dd || P[oo] C[] ¥ Vs[oo]
B[] Z[oo] 5 Plec] I[] A[] A[] B[] Vsl dd || Vs[oo] ¥ Z[oop]
Rfoo] = R[oo] P[], any R I[] A[] A[] B[] Z[pp] dd || B[] Z[oo] > Y]oo]
Bleo] vy Rleo] All, any R 1[] A[] A[] Y{pp) dd || Y[eo] % Y[oo] D[]
Bloo] 2 Rloo] Bl], any R I[] A[) A[] Y[pp] D[] d || Y[oo] D[] % Vs[oo]
RM]T R[oo] C[], any R I[] A[] A[] Va[pp] d || Va[oop] = X[oo]
R[oo] i;) R[oo]D[], anyR I[]A[]A[]X[p] d AH X[oo]li)Y[oo]
Ifeo] S[] = Floo] I[] A[] Yp| d | Y[oo] % Y[oo] D[]
I[] A[] Y[p] D[] e || Y[oo] D[]+ Va[oo]
I[] A[] V2[p] € || Vz[eop] = X oo]
I1] A[] X[] e || A[] X[eo] ¥ S[oo]
IHSH € I[oo] S.'[JFE)F[OO]
F[] € || recognition

Figure 2: Transitions of the simplified R-LIA, and a sequence of configurations for input aabbcedd.

and P[] in Figure 1 is the only nontrivial spine. In
general, several spines can be found in a parse tree
for LIGs.

The task of a recognizer in this example is to verify
that the numbers of a’s, b’s, ¢’s and d’s match. In the
R-LIA we constructed, this was done by two cooper-
ating mechanisms. First, the automaton stores A’s
and B’s on the stack for all a’s and b’s that it reads
and later matches these to the numbers of d’s and
c’s, respectively. This means that the stack symbols
by themselves, without the lists of indices, ensure
that the input string is of the form a™b™c™d™.

The second mechanism consists of the manipula-
tion of indices, which takes place conceptually to
the right of the spine (which is why we refer to these
automata as right-oriented). This mechanism is ini-
tiated only after reading the first ¢, as indicated in
Figure 2. The indices ensure that the number of d’s
equals the number of ¢’s, and only due to the first
mechanism this also ensures that the number of a’s
equals the number of b’s.

A consequence is that the automaton will detect
that a'b?c2d? is incorrect only after it has read the
complete input, when it finds no applicable transi-
tion for the configuration (I[] X[], €). However, the
error position here is the third input position, where

the second b already indicates that the numbers of
a’s and b’s do not match. Therefore the automaton
does not satisfy the correct-prefix property.

On the other hand, the L-LIA in Figure 3 “al-
most” satisfies the correct-prefix property. While it
reads first a’s and then b’s, it manipulates the indices
to ensure an equal number of each is read, predicting
the required number of ¢’s and d’s to be read later,
when the stack starts shrinking, and C’s and D’s are
popped.

The only obstacle to the correct-prefix property is
caused by the transition Ploo] +> Z[oo] B[]. If the
top of stack is formed by P[], the transition may
replace this by Z[] and BJ[]. After B[] is popped,
consuming one b, the top of stack is Z[]. To this
however no transitions apply.

This situation occurs when the input starts with
a™b™*! (m > 0). The error is detected too late,
after the terminal at the error position (the b at po-
sition 2m + 1) has already been consumed. A simple
patch consists in replacing the transition above by
three other transitions:

Ploop] +» P'[oo]
P'loo] ¥ P"[oop]
P”[oo] N Z[OO]BH

\ Stack | Input | Next step |
I[] aabbeedd I[oo] li) F[oo] SH
F[] S[] aabbeedd || S[oo] = X[oo] A[]
FH X[] A[] aabbccdd X[oo] AH Pi} X[oo]
F[] X[] abbecdd X[oo] Ii) Vz[oop]
S[oo] Pi) X[oo] AH F[] Vz[p] abbecedd Vz[oo] ii) D[] Y[oo]
X[oo] = Va[oop] F[] D[] Y[p] abbeedd || Yoo] 5 X[oo] A[]
Va[oo] + D[] YJoo] F[] D[] X[p] A[] abbeedd || X[oo] A[] % XJoo]
Y[oo] > Xloo] A[] F[] D[] X[p] bbeedd || X[oo] v Va[oop]
Y[oo] Pi) Z[oo] B[] F[] DH Vg[pp] bbeedd Vz[oo] ii) D[] Y[oo]
Z[oop] 5 Vs[oo] F[] D[] D[] Y [pp] bbeedd || Yoo] > Z[oo] B[]
Vsloo] = C[] Ploo] F[] D[] D[] Z[pp] B[] bbeedd || Z[oo] B[] > Z[oo]
Ploo] + Z[oo] B[] F[] D[] D[] Z[pp) beedd || Z[oop] v Vs[oo]
Rloo] P[] +> Rleo], any R F[] D[] D[] Vs[p] beedd || Vs[oo] v O[] Ploo]
Rloo] A[] +% R[oo], any R F[] D[] D[] C]] Plp| beedd || Ploo] ¥ Z[oo] B[]
Rloo] B[] V> Roo], any R F[] D[] D[] C[] Z[p] B[] beedd || Z[oo] B[] V> Zoo]
R[eo] C[] > Rloo], any R F[] D[] D[] C[] Z[p] cedd || Z[oop] v V[oo]
Rloo] D[] > Roo], any R F[] D[] D[] C[] V5[] cedd || Vs[oo] ¥ C[] Ploo]
Ifoo] ¥ Floo] S[] F[] D[] D[] C[] C[] P[] ccdd || Cloo] P[]+ Cloo]
F[] DH DH C[] C[] CCdd C[oo] CH lﬁ) C[oo]
F[] D[] D[] C[] cdd || D[oo] C[] ¥ Dloo]
F[] D[] D[] dd || D[oo] D[] +% Dloo]
F[] D[] d || Floo] D[]+ Floo]
F] € || recognition

Figure 3: Transitions of the simplified L-LIA, and a sequence of configurations for input aabbccdd.

The effect of these transitions is that the list of
indices is first verified to be non-empty before the
next b is read. The new automaton does satisfy the
correct-prefix property.

As shown in Appendix A, a L-LIA with the
correct-prefix property can be constructed for any
LIG.

5 Tabulation for R-LTA

The right-oriented and left-oriented linear indexed
automata manipulate stacks on two levels, since the
lists of indices act as stacks embedded in the other
stack formed by elements from Q x Z*. (We will fur-
ther abstain from referring to lists of indices as stacks
in order to avoid the obvious confusion that would
ensue from this.) The consequence is that we can ap-
ply in a 2-dimensional way the tabulation technique
from Lang (1974) and Billot and Lang (1989), which
was originally devised for pushdown automata with
only one kind of stack. The nature of the resulting
tabular algorithm for R-LIA shows some similarities
to the tabular, LR-like algorithm from Alonso Pardo
et al. (1997). In fact, it can be seen as a gener-
alization of this algorithm, since we will formulate
tabulation independently of the parsing strategy.
The algorithm is described as follows. Given a

right-oriented linear indexed automaton M and an
input v, we construct a table U in polynomial time.
From the presence of a certain object in U, we can
effectively decide whether the input belongs to the
language. The procedure can be extended so that a
representation of all parse trees, the parse forest, is
produced as side-effect of the construction of U.

The objects in the table U will be called items
and consist of 9 fields which we pragmatically
divide into two 4-tuples separated by an index:
((X7Ki7j),p’ (Z7P,k’l))7 Where X,KZ,P e Q’
p € T and ¢, j, k,l are natural numbers between 0 and
n, representing positions in the input v =a;---a, €
*.

The meaning of the first 4-tuple is almost un-
changed with respect to the original tabulation
method for pushdown automata with a single stack,
mentioned above: by reading the input from posi-
tion ¢ to j we may replace stack symbol X by Y.
The remainder of an item contains information with
regard to the list of indices that is associated with
Y: its head is p and its tail is a list that is associated
with stack symbol P which results by replacing Z by
P while reading the input from k to I. See Figure 4
for a pictorial representation.

More precisely, an element ((X,Y,4,5), p,

stack
height z
[l
| |
| |
| |
X X
[[l
| | | |
t| ti+1 tk tk+1

same
list

Y U+1 tj tj+1

time

Figure 4: Meaning of an item ((X,Y,4,j),p,(Z, P, k,l)). Time t,, is when a,, is read.

(Z,P,k,1)) indicates the existence of a sequence
of steps of the automaton of the form (a X[],
aiy1-can) B* (o X'[] B Z[], apy1---an) B
(o X'n] B Plf), ars1--an) F* (@ Vsl
@jt+1--ap), where o, 8 € (@ x I*)* and n,7' € I*,
and

e nowhere between (o X[], ait1---a,) and
(¢ Y[n'p], aj+1---ayn) does the stack shrink to
below the height of @ X[];

e nowhere between (a X'[] 8 Z[], ak+1---an)
and (a X"[n] B P[n'], ait1- - an) does the stack
shrink to below the height of a X'[] 8 Z[]; and

e the two occurrences of i’ are the same list in
the sense that it is passed on unaffected through
the steps from (a X"[n] 8 P[], ai41---an) to
(¢ Y[n'p], ajq1---apn). It is allowed that ele-
ments from Z are pushed on 7’ and then popped
again, but it is not allowed that elements from 7’
are popped and then other elements are pushed
to accidentally result in the same list.

If we want to indicate that the list of in-
dices associated with Y is empty, we fill the
last 5 fields of an item with “dummy” elements:
((X,Y,4,7),<,(0,0,0,0)), where < is a fresh sym-
bol representing an imaginary index in an empty list
of indices, and similarly O is a “dummy” stack sym-
bol.

How items are derived from other items will be
specified by means of inference rules. Each such rule
consists of a list of antecedents, a consequent and
a list of side conditions. The antecedents and the
consequent are items. The side conditions refer to
transitions of the automaton and to terminals from

the input string. We omit further discussion of the
meaning of inference rules and assume the reader
is familiar with deductive parsing (Shieber et al.,
1995).

The items that need to be computed for recogni-
tion of aabbccdd, using the R-LIA from Figure 2, are
indicated in Figure 5.

The very first item to be added to the table is
due to an inference rule without antecedents or side
conditions:

((Z,1,0,0),<,(0,0,0,0))

The following rule is not used in the running exam-
ple:
((X’ K i7j)7p’ (Z’ P’ k’ l))
((XaYIaiaj)apa(Za Pakal))

{ Yoo] ¥ Y"[0o]

For deriving items 8 and 12 this rule is used:
((X,Y,i,4),p,(Z, P,k,1))
(X,Y",1,4),¢, (X,Y,1,5))

Items 16 and 20 are derived by:
((Z,P,k,0),q,(Z', P, K',I"))

(X,Y,4,5),p,(Z, P,k,1)) .
(X, ¥,0.0),q, (2, P, 0y) L Ylopl o Ve

{ Yoo] 5 Y'[ooq]

The following is used for items 1-6, 10, 14 and 18.

((Xa Yaiaj)apa (Za Pa ka l))
((Xla Xlaj’ajl)a <>a (Da Da Oa 0))
Y[oo] % Rloo] X'[]
z=eANj'=j V zZ=aj Aj'=j+1

[Nr. | Item in U Derived from
0 ((1,1,0,0),<,(0,0,0,0)) | initial item
1 ((4,4,1,1),0,(0,0,0,0)) | I[oo] ¥ I[oo] A[] and 0
2 ((4,4,2,2),¢,(0,0,0,0)) | Afoo] > Afoo] A[] and 1
3 | ((B,B,3,3),0,(0,0,0,0)) | Aloo] % Afoo] B[] and 2
4 | ((B,B,4,4),%,(0,0,0,0)) | Bloo] > Bloo] B[] and 3
5 ((P,P,4,4),¢,(0,0,0,0)) | Bloo] > Bloo] P[] and 4
6 ((¢,¢,5,5),<,(0,0,0,0)) | Ploo] +> Ploo] C[] and 5
7 | (P,Vs,4,5),¢,(0,0,0,0)) | Ploo]+> Ploo] C[] and Ploo] C[] +> V5[oo] and 5 + 6
8 (P, Z,4,5), p,(P,V5,4,5)) | Vs[oo] +> Z[oop] and 7
9 (B, P,4,5), p,(P,Vs,4,5)) | Bloo] > Bloo] P[] and B[] Z[oo] > Ploo] and 4 + 8
10 | ((c,C,6,6),¢,(0,0,0,0)) | Ploo]+> Ploo] C[] and 9
11 | ((B,Vs,4,6),p,(P,Vs,4,5)) | Ploo]+> Ploo] C[] and P[oo] C[] > V5[oo] and 9 + 10
12 | ((B,Z,4,6),p,(B,Vs,4,6)) | Vs[oo] = Z[oop] and 11
13 ((B,K3,6),p,(B,V5,4,6)) B[oo]li)B[oo] B[] and B[] Z[oo]li)Y[oo] and 3+12
14 | ((D,D,7,7),9,(0,0,0,0)) |Y¥[oo] % Y[oo] D[] and 13
15 | ((B,V2,3,7), p,(B,Vs,4,6)) | Y[oo] % Y[oo] D[] and ¥ [oo] D[]+ V3[oo] and 13 + 14
16 | ((B,X,3,7),p,(P,Vs,4,5)) | Va[oop] > X[oo] and 11 + 15
17 | ((4,Y,2,7),p,(P,Vs,4,5)) | Aloo] > Afoo] B[] and A[] X[oo] +> Y[oo] and 2+ 16
18 | ((D,D,8,8),0,(0,0,0,0)) | Yoo]+% ¥[oo] D[] and 17
19 | ((4,V2,2,8), p,(P,Vs,4,5)) | Y[oo] % Y[oo] D[] and ¥ [00] D[] > V3[oo] and 17 + 18
20 | ((4,X,2,8),9,(0,0,0,0)) | Vz[oop] = X[oo] and 7 + 19
21 ((4,5,1,8),<,(0,0,0,0)) Aloo] li)A[oo] Al] and A[] X[oo] ii)S[oo] and 1+ 20
22 ((1, F,0,8),<,(0,0,0,0)) | I[oo] +% Ifoo] A[] and I[oo] S[] > F[oo] and 0 4 21

Figure 5: Tabular recognition of the input ajas - - - ag = aabbcedd, using the R-LIA.

For items 9, 13, 17 and 21 we need:
((Xa K iaj)a <>a (Da Da Oa 0))

((X’,X”,j’,m),p, (Za Pakal))
((X7 Ylaiam)vpa (Za kaal))

{ Y[oo] Rfoo] X'[]

R[] X"[00] > Y'[o0]
z=e Nj'=j V z=aj A j'=j+1

Finally, items 7, 11, 15, 19 and 22 are derived by:

((XaY,i,j),P, (Z,P,k,l))
((X,a Xllajla m)a <>a (Da Da Oa 0))
((Xa Ylaiaml)apa (Za Pakal))
Y[oo] ¥ Rfoo] X[
Rloo] X"[] & Y'[o0]
z=eNj'=j Vv z=a; Aj'=j+1
= Am'=m V 2'=a, Am'=m+1

We accept the input if and only if we can derive
((Z, F,0,m),<,(0,0,0,0)). In the running example,
with input length n = 8, this condition is fulfilled.
The proof of correctness will not be discussed here.

In none of the inference rules there are more than
6 independent input positions. This implies that the
algorithm can straightforwardly be implemented to
have a time-complexity of O(n®).

6 Tabulation for L-LIA

Tabulation for L-LIA cannot simply be obtained by
reversing the tabulation algorithm from the previ-
ous section, if we assume that as before the input is
to be read from left to right. We also demand the
tabulation algorithm to preserve the correct-prefix
property, i.e. if the L-LIA has this property then so
does the tabulation algorithm.

In order to satisfy these requirements, we need to
introduce an additional type of item, which is of the
form (R, m, (X,Y,4,5), p).2 A pictorial represen-
tation of the meaning of such an item is given in
Figure 6.

More precisely, an item (R, m, (X,Y,%,5),p) indi-
cates the existence of a sequence of steps of the form

2A very similar structure is called CF item by Villemonte
de la Clergerie and Alonso Pardo (1998).

same
list

stack

height

time

livq {j G+1

Figure 6: Meaning of an item (R, m, (X,Y,14,3),p)-

(a R[], ami1---an) " (a B X[npl; aiy1---an) F*
(a BY[np, aj1---an), where

e the three occurrences of 7 are the same list in
the sense that it is passed on unaffected.

The type of item we used for R-LIAs needs
to be extended in order to adapt it to L-
LIAs. Such an item now has the form (R,m,
(X,Y,4,9), p, (Z,P,k,l)), and its meaning is pre-
sented by Figure 7. In such an item, the variables
X,Y,i,4,p,Z, P,k,l have the same function as be-
fore, except that the manipulation of the indices oc-
curs mirrored with respect to Figure 4, due to left
orientation taking the place of right orientation. R
and m have the same meaning as in the items of the
first form discussed above.

Below we will discuss the new inference rules,
some of which are demonstrated for the running ex-
ample in Figure 8.

The initial item results from:

(D,O, (Ia Ia Oa 0),0, (Da D,0,0))

The following four rules are not used in the running
example:
(R’ m’ (X’ Y, i’ j),p)

Bom, (X,V,i.5),p) L Y] Ybel

(R m, (X Y,i,j 7p)
(Y, 5, (Y, Y, 4,5),q)

{ Y[oo] I—) Y’[ooq]

(R',m', (X', R,k,m),q)
(R, ,(X,Yz J),p)

(m’(X’YI’i’j)’q)

{ Y[oop] Ii> Y’[oo]

(R m,(XY’I:j),p,(ZPkl
(R,m,(X,Y",i,5),p,(Z, P,k,l)

) {Y oo l—) Yl[oo]

The following rule is used to derive item 4:

(R7m7 (Xaxiaj)apa (Z5P7k7l))
(D’Oa (Y’aylajaj)aQ)

{Y[oo] 5 Y'[ooq]

The following rule marks the boundary between pro-
cessing the left and right sides of the spine, and is
used for deriving item 8.

(8,0,(X,Y,4,5),p)
(D70’ (X’ Y’)i,j)’p’ (D7 D’ 07 0))
{ Yoop] 5 Y'[oo]

We derive item 12 using:

(R)m’ (X’Ki)j))p7 (Z’P7k’l))
(D707 (XI,YI’jth)’q’ (D7D’0, 0))
(Rama (Xa Ylaiajl)apa (Za Pakal))
{ Y[oo] 5 X'[00q]

The following two rules we do not use in the running
example:

(R m,(TR’ om)p)

(R',m',(X",Y',,1),q)
(R m, (X Y,i J) p,(Z P k1))
(R ,(X Y,7,5),q,(X,Y,4,5))

{ ¥'[o0g] % X [oo]

stack
height

same
list

[
tn 1 g ty tie1 L ti4q g ti+1
time
Figure 7: Meaning of an item (R, m, (X,Y,4,5),p,(Z, P, k,1)).
| Nr. | Item in U Derived from

0 [(3,0,(1,1,0,0) ,<,(0,0,0,0)) | initial item
1 |(g,0,(8,8,0,0) ,<,(0,0,0,0)) | I[oo] ¥ Floo] S[] and 0
2 |(9,0,(4,4,0,0) ,<,(0,0,0,0)) | Sfoo] > X[oo] A[] and 1
3 | (9,0,(8,X,0,1) ,0,(0,0,0,0)) | S[oo] > X[oo] A[] and X[oo] A[]+% X[oo] and 1 + 2
4 |(0,0,(Vs,Vs,1,1), p) X[oo] ¥ V3[oop] and 3
5 |(0,0,(Y,Y,1,1) ,p) Va[oo] ¥ D[] Y[oo] and 4
6 |(0,0,(B,B,1,1) ,<,(0,0,0,0)) | Y]oo] > Z[oo] B[] and 5
7 | (0,0,(Y,2,1,2) ,p) Y[oo] % Z[oo] B[] and Z[oo] B[] % ZJoo] and 5 + 6
8 | (3,0,(Y,V5,1,2) ,p,(0,0,0,0)) | Zoop] > Vs[oo] and 7
9 |(3,0,(P,P,2,2) ,<,(0,0,0,0)) | Vs[oo] *> C[] P[oo] and 8
10 | (4,0,(v,C,1,2) ,p,(0,0,0,0)) V5[oo]r£)0[] PJoo] and C[oo]P[]lgC[oo]and 8+9
11 | (0,0,(V2,D,1,3) , p,(0,0,0,0)) | Vafoo] > D[] Y[oo] and D[oo] C[] +> D[oo] and 4 + 10
12 | (9,0,(S,D,0,3) ,<,(0,0,0,0)) | X[oo] = Va[oop] and 3 + 11
13 | (0,0,(I,F,0,4) ,<,(0,0,0,0)) | I[oo] ©% Floo] S[] and Floo] D[] % Floo] and 0 + 12

(Ra m, (Xla Yla ila Z)a q)
(Ra m, (Za Pa ka l)a q, (ZIaPla kla ll))
Y',i,(X,Y,4,4),p, (%, Pk, 1))

(
(R’ m’ (XI’ 1/’ il’ j), q’ (ZI’ Pl’ k” ll))

{ Y'[oo] > X[oop]

For item 6, we use:

(R’ m’ (X’Ki’ j),p)

(D,O, (XlaXlaj’ajl)a <>7 (Da D,0,0))

Y[oo] 2 Z[oo] X[
z=e Nj'=j V z=aj Nj'=j+1

Figure 8: Tabular recognition of the input ajazasas = abed, using the L-LIA.

The following is used for item 5:

(R,m,(X,Y,i,5),p
(R,m, (X', X", 3, J),p

7 { Yleo] 5 2[] X'eo)
The following is used for items 1 and 2:
(R’ m’ (X’ Y’ i’ j)’p’ (Z’ P’ k, l))
(Da 01 (Xla Xlajlajl)a <>a (Da Da 01 0))

Y[oo] % S[oo] X'[]
z=e Nj'=j V z=a; N j'=j+1

Item 9 is derived by:

(Rama (X,Y,i,j),p, (ZaP’ k’l))
(0,0, (X', X', 4,7),<,(0,0,0,0))
{ Y[oo] & S[] X'[00]

The following is used for item 7.

(R’m, (X’Y,i,j),p)
(D70’ (X”Y/’j”k),o, (D,D’O’ 0))
(Rama (Xa Paiakl)ap)
Y]oo] 15 Z[oo] X'[]
Z[o0] Y'[] £ Ploo]
z=e Nj'=j V z=a; A j'=j+1
Z=e Nk'=k V Z'=ap ANK'=k+1

The following is used for item 11.

(Rama (XaKZaJ)ap)
(R’ m’ (X” XI” j’ O)’p’ (Z’ P’ k’ l))
(Rama (XaYIaiaol)apa (Z,P,k,l))
Yoo] ¥ S[] X'[0o]
Sfoo] X"[]% Y'[oo]
z=e No'=0 V z=a, Ao'=o0+1

Items 3 and 13 are derived by:

(Rama (Xayaiaj)apa (ZaPakal))
(ana (X’,X",j',o),O,(D,D,0,0))
(R’ m, (X’ Yl,i’ OI),p, (Z, P’ k’ l))
Yloo] % So] X'[]
S[oo] X"[]% ¥'[oo]
z=e Nj'=j V z=aj N j'=j+1
Z’=eNo'=0 V Z'=a, Ao =0+1

Item 10 is derived by:

(Ra m, (XaK iaj)apa (Za Pa ka l))
(<>’ 07 (XI’ X”’j’ 0)7 <>’ (D’ D’ 0’ 0))
(Ra m, (Xa Yla ia Ol)apa (Z7 Pa kal))
Y[oo] 5 S[] X'[oc]
Sfoo] X"[]+5 Y'[oo]
z=e ANd'=0 V z=a, A od'=o0+1

The criterion for recognition is derivability of
(4,0,(I,F,0,n),<,(0,0,0,0)).

The maximum number of input positions per in-
ference rule is now 8, which means that the algo-
rithm can straightforwardly be implemented to have
a time-complexity of O(n8). We conjecture however
that using an idea from Nederhof (1997) this can be
reduced to O(n%). The space-complexity is O(n5),
since items contain 3 or 5 (i.e. maximally 5) input
positions.

Our automata differ in two ways from the SD-
2SA by Villemonte de la Clergerie and Alonso Pardo

(1998). First, we use stacks formed by the lists of in-
dices nested inside the main stack, whereas SD-2SA
apply two separate, but cooperating, stacks. Our
nested stacks allow an intuitive generalization of the
tabulation technique for pushdown automata as de-
veloped by Lang (1974) and Billot and Lang (1989).
This matter is purely presentational.

Second, our automata are less general: only at one
side of a spine can indices be manipulated. There-
fore fewer details need to be solved in the tabulation
algorithm. For R-LIA, this also results in a lower
time-complexity and in a lower space-complexity.

An automaton model that manipulates indices at
both sides of a spine, in such a way that there is
symmetry between manipulation on the two sides
(a pop or push of an index on one side should be
mirrored by a push or pop on the other side), can
also be formulated in our notation. At this moment,
the theoretical and practical advantages of such an
automaton model are not clear however. This may
be the subject of further study.

7 Conclusions

We have proposed a modular design of tabular pars-
ing algorithms for a class of languages represented
by, amongst others, tree-adjoining grammars and
linear indexed grammars. This modular design re-
lies on a separation of the parsing strategy from the
mechanism of tabulation. The parsing strategy is
expressed in terms of the construction of linear in-
dexed automata, which are nondeterministic recog-
nizers. The mechanisms of tabulation are indepen-
dent of the strategy and can turn any left-oriented or
right-oriented linear indexed automaton into a tab-
ular recognizer.

Acknowledgments

I would like to thank Tilman Becker, Eric de la
Clergerie and David J. Weir for interesting discus-
sions.

This work was funded by the German Federal
Ministry of Education, Science, Research and Tech-
nology (BMBF) in the framework of the VERBMOBIL
Project under Grant 01 IV 701 V0.

References

M.A. Alonso Pardo, E. de la Clergerie, and M. Vi-
lares Ferro. 1997. Automata-based parsing in dy-
namic programming for Linear Indexed Gram-
mars. In A.S. Narin’yani, editor, Computa-
tional Linguistics and its Applications, proceed-
ings, pages 22-27, Moscow, Russia, June.

T. Becker. 1994. A new automaton model for TAGs:
2-SA. Computational Intelligence, 10(4):422-430.

S. Billot and B. Lang. 1989. The structure of
shared forests in ambiguous parsing. In 27th

Annual Meeting of the Association for Compu-
tational Linguistics, pages 143-151, Vancouver,
British Columbia, Canada, June.

E. de la Clergerie, M.A. Alonso Pardo, and
D. Cabrero Souto. 1998. A tabular interpretation
of bottom-up automata for TAG. In Fourth Inter-
national Workshop on Tree Adjoining Grammars
and Related Frameworks, pages 42—45. Institute
for Research in Cognitive Science, University of
Pennsylvania, August.

A K. Joshi, K. Vijay-Shanker, and D. Weir. 1991.
The convergence of mildly context-sensitive gram-
mar formalisms. In P. Sells, S.M. Shieber, and
T. Wasow, editors, Foundational Issues in Natu-
ral Language Processing, chapter 2, pages 31-81.
MIT Press.

B. Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. In Automata,
Languages and Programming, 2nd Colloquium,
volume 14 of Lecture Notes in Computer Science,
pages 255—269, Saarbriicken. Springer-Verlag.

B. Lang. 1988a. Complete evaluation of Horn
clauses: An automata theoretic approach. Rap-
port de Recherche 913, Institut National de
Recherche en Informatique et en Automatique,
Rocquencourt, France, November.

B. Lang. 1988b. The systematic construction of
Earley parsers: Application to the production of
O(n®) Earley parsers for tree adjoining grammars.
Unpublished paper, December.

B. Lang. 1994. Recognition can be harder than pars-
ing. Computational Intelligence, 10(4):486-494.
H.R. Lewis and C.H. Papadimitriou. 1981. Ele-
ments of the Theory of Computation. Prentice-

Hall.

M.-J. Nederhof. 1996. Reversible pushdown au-
tomata and bidirectional parsing. In J. Dassow,
G. Rozenberg, and A. Salomaa, editors, Devel-
opments in Language Theory II, pages 472—481.
World Scientific, Singapore.

M.-J. Nederhof. 1997. Solving the correct-prefix
property for TAGs. In T. Becker and H.-U.
Krieger, editors, Proceedings of the Fifth Meet-
ing on Mathematics of Language, pages 124-130.
Deutsches Forschungszentrum fiir Kiinstliche In-
telligenz GmbH, August. Accepted for publica-
tion in Computational Linguistics.

M.-J. Nederhof. 1998a. An alternative LR algo-
rithm for TAGs. In 36th Annual Meeting of the
Association for Computational Linguistics and
17th International Conference on Computational
Linguistics, pages 946-952, Montreal, Quebec,
Canada, August.

M.-J. Nederhof. 1998b. Linear indexed automata
and tabulation of TAG parsing. In Actes des
premiéres journées sur la Tabulation en Analyse

Syntazique et Déduction (Tabulation in Parsing
and Deduction), pages 1-9, Paris, France, April.
F.C.N. Pereira and D.H.D. Warren. 1980. Definite
clause grammars for language analysis—a sur-
vey of the formalism and a comparison with the
augmented transition networks. Artificial Intelli-

gence, 13:231-278.

Y. Schabes and K. Vijay-Shanker. 1990. Determin-
istic left to right parsing of tree adjoining lan-
guages. In 28th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 276—
283, Pittsburgh, Pennsylvania, USA, June.

S.M. Shieber, Y. Schabes, and F.C.N. Pereira. 1995.
Principles and implementation of deductive pars-
ing. Journal of Logic Programming, 24:3-36.

S. Sippu and E. Soisalon-Soininen. 1990. Parsing
Theory, Vol. II: LR(k) and LL(k) Parsing, vol-
ume 20 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag.

M. Tomita. 1986. Efficient Parsing for Natural Lan-
guage. Kluwer Academic Publishers.

K. Vijay-Shanker and D.J. Weir. 1993a. Parsing
some constrained grammar formalisms. Compu-
tational Linguistics, 19(4):591-636.

K. Vijay-Shanker and D.J. Weir. 1993b. The use
of shared forests in tree adjoining grammar pars-
ing. In Sizth Conference of the European Chapter
of the Association for Computational Linguistics,
pages 384-393, Utrecht, The Netherlands, April.

K. Vijay-Shanker and D.J. Weir. 1994. The equiva-
lence of four extensions of context-free grammars.
Mathematical Systems Theory, 27:511-546.

E. Villemonte de la Clergerie and M. Alonso Pardo.
1998. A tabular interpretation of a class of 2-
Stack Automata. In 36th Annual Meeting of the
Association for Computational Linguistics and
17th International Conference on Computational
Linguistics, pages 1333-1339, Montreal, Quebec,
Canada, August.

D.J. Weir. 1994. Linear iterated pushdowns. Com-
putational Intelligence, 10(4):431-439.

A The correct-prefix property for
L-LIA

A L-LIA that is constructed as outlined in Section 4
and exemplified by Figure 3 can be shown to satisfy
the correct-prefix property under a certain condition
that depends on the grammar. The idea behind this
condition is that all objects of the form A[7] that can
be pushed on the stack may eventually be popped
again, leaving no objects B[n'] for which no applica-
ble transitions exist.

Since the constructed L-LIA exhibits top-down
behaviour, the objects A[n] that can be pushed on
the stack may be expressed in terms of the grammar

by:

Outside! =

{Aln] | S[]="w An o,A€ N,neT",
we T*a € (N x T*)*}

For the sake of convenience, we will consider a set of
objects which might be slightly larger:

Outside =
{An] | C[]="a An] B,
(Cc=8v
Dioon'] = Bloon"] C[] € P v
Dloon'] = C[| Bloon"] € P]),

A,B,C,D e N,n,n',n" € IT*,
a,B €N xT*)*}

(In the notation above we implicitly assume A[n] is
the “distinguished descendant” of C[] in a A[n] 8.)

The objects A[n] which may eventually be popped
without leaving a trace is given by:

Inside =
{An] | Aln] =* w,A e N,n e T*,w € B*}

It follows that the correct-prefix property is satis-
fied if Outside C Inside. This can be determined by
considering the languages:

Outsidey =
Insidey, =

{n | An] € Outside}
{n | A[n] € Inside}

for each A € N separately, and verifying Outside 4 C
Insides. We will call a LIG pure if and only if
Outside 4 C Inside 4 for all A € N.

These languages of lists of indices are in general
infinite, but as we will demonstrate below, we can ef-
fectively compute finite representations of these lan-
guages in terms of finite automata. Since contain-
ment for regular languages is decidable, this provides
us with a decision procedure for the correct-prefix
property.

For technical reasons, we will transform the gram-
mar so that the “dummy” index < occurs before
the actual indices, and thereby lists of indices can
no longer be empty. This is done simply by re-
placing all occurrences of [] in right-hand and left-
hand sides of productions by [¢]. We further intro-
duce a new start symbol ST and add a production
Stloo] — S[o0 O].

For Qutside4 we construct triples of the form
(A,p,B). Such a triple indicates that A[] =*
a B[p] B; in other words, a list of indices may grow
by the index p when reaching B from A, travers-
ing the spine downwards. A fresh symbol s denotes
the start of a spine; it should be seen an imaginary
nonterminal for which imaginary rules of the form

8[oo] = C[oo <] lead to the initial creation of indices

The triples will be derived by the following infer-
ence rules:

cC=8v
AJoor] — Bloon] C[0] v

(5:2,C) | Afoon] = C[©] Bloon]

o { Aloo] — Bloop] C[O] V
(4,p,B) | Aleo] = C[O] Bloop]
(D,p, A) { A[oo] — B[oo] C[O] V
(D,p, B) A[oo] — C[O] B[oo]
(E,q, D)
(D,Z, A) { A[oop] — B[OO] C[O] V
(E,q,B) | Alecop] = C[O] Bloo]

A triple (4, p, B) obtained by these rules can be
interpreted as a transition in a finite automaton from
state A to state B with label p. A path from A
to B with string 7 signifies existence of a derivation
A[] =* a B[n] 8. The initial state of the automaton
is s. For obtaining a particular language Outside 4,
we complete the automaton by making A the (only)
final state.

For the “inside” languages we do something very
similar, expect that we need to compute the deriva-
tions in reverse, starting from productions A[C] —
a. We also verify that nonterminals associated with
“empty” lists of indices directly next to the spine
generate terminal strings. We now have:

o A) { A[0] = a

M { A[oop] — B[oo] C[O] \

(Bapa A) A[oop] - C[O] B[oo]
(s,0,0)

(D,p,B) { A[oo] — B[oo] C[O] V
(D,p, A) | Aleo] = C[O] Bloo]
(5,,0)

(E,q, D)

(7;177) { A[OO] — B[oop] C<>] Vv
(E,q,4) | Aloo] = C[O] Bloop]

The required automaton for a particular language
Insides is obtained by making A the (only) final
state. This completes the definitions needed to de-
cide if the grammar is pure, which would be sufficient
to decide that the resulting L-LIA has the correct-
prefix property.

If a LIG is not pure, then it can however be trans-
formed into an equivalent and pure LIG. The idea
is that each index p is replaced by a pair consisting
of the original index p and a set of nonterminals K,
so that when an object A[n(p, K)] results in a top-
down derivation in the transformed grammar, then
a derivation A[n'p] =* w, for some w, is guaranteed
to exist with respect to the original grammar, where
71’ is the list of indices obtained from 7 by replacing
all pairs (p/, K') by p'.

The sets K are formed based on the triples
(A, p, B) we derived above for the inside languages.
Let us call this set of triples T'.

An initial set of nonterminals is given by:

Ko ={A] (s,0,4) € T}

which is to be associated with the conceptually
empty list of indices . If a list of indices with
top-element (g, K) grows, corresponding to a push
of index p in the old grammar, then for the new
grammar we obtain a push of (p, K'), where K’ =
{A| B € K,(B,p,A) € T}. We are careful to as-
sociate a list of indices with top-element (p, K') only
with nonterminals A that satisfy A € K.

The set of productions P’ of the new grammar are
specified by the following;:

e P’ contains:
~ §to0] = S[oo (¢, Ko)].

e For Afoo] = Bloo] C[] in P, with C € Ko, P’
contains:

— Aloo(p, K)] = Bloo (p, K)] C[(¢, Ko)], for
all K C N satisfying A,B € K.

e For A[oo] — B[oop] CH in P, with C € K¢, P’
contains:

- A[oo (q, K)] —
Bloo (g, K)(p, K')] C[(©, Ko)],
for all K,K' C N satisfying A € K,B €
K' and K' = {A' | B' € K,(B',p,A) €
T}.
e For A[oop] — B[oo] C[] in P, with C € Ko, P’
contains:
— Aloo(q,K")(p,K)] —
Bloo (g, K')] C[(©, Ko)],
for all K,K' C N satisfying A € K,B €
K'.

e For productions of the form Afoon] —
C]] Bleon'] in P, the new productions in P’ can
be specified similar to the above three cases.

e For A[] — a in P, with A € K¢, P’ contains:
— A[(C,Ko)] = a.

As before, ST is start symbol in the new grammar.

The resulting grammar is, strictly speaking, not in
the binary normal form we presented earlier. How-
ever, a trivial grammar transformation leads to this
normal form without affecting the “purity” of the
grammar. Therefore, after this transformation and
the creation of the L-LIA, the correct-prefix prop-
erty has been satisfied.

