Efficient generation of random sentences

Mark-Jan Nederhof

1 Introduction

Writing a grammar for a natural language is a difficult task. A number of tools
have been devised to assist the author of a grammar. For example, detection
of undergeneration (i.e. the grammar generates not all those sentences that it
should) can be accomplished by automatically parsing a large corpus, and then
singling out those sentences for which there is no parse according to the current
version of the grammar.

For the detection of the opposite of undergeneration, viz. overgeneration,
corpus analysis is not useful. The detection of overgeneration may be achieved
however by (mechanical) random generation of sentences.! The grammar writer
can inspect these sentences in order to find constructs which are unjustly gen-
erated by his grammar, and then make the appropriate corrections.

Random generators of sentences and sentence fragments have been incorpo-
rated into a number of development environments for grammatical formalisms
[1, 2, 3, 4, 5, 6]. See [7, Chapter 8] for more playful use.

Apart from the detection of overgeneration, some other applications can be
found. For example, some grammar developers use sentence generation for mon-
itoring the consequences that alterations to a grammar have with respect to the
generated language. This is done as follows. A set of sentences is generated from
the grammar, once before and once after the alteration. The grammaticality
of the sentences from one version of the grammar is then checked with regard
to the other. This may reveal wanted or unwanted differences in the languages
generated by the two versions. This is an example of progressive evaluation [8].

Random generation of sentences may not only be applied for testing gram-
mars, but also for testing parsers [9, 10] and NLP systems [8]. In the area
of programming languages, randomly generated programs may be used to test
compilers [11, 12, 13, 14, 15].

Further use may be found in the area of natural language interfaces: a
frequent complaint is that a system’s linguistic capabilities are not obvious to

1With “random” we mean in particular that the sentences are not generated from some
semantic value.

the user [16, Section 3]. Perhaps, automatically generated sentences may be
used by the developer of the system to compose an example list of sentences
within the linguistic coverage. This list is then applied to instruct users in the
possibilities of the system.

This paper treats some technical aspects of the random generation of sen-
tences and sentence fragments. We concentrate on a formalism called AGFL,
which is a type of context-free grammar extended with arguments. The ar-
guments range over finite domains, which causes useful properties related to
parsing and generating to be decidable.

Our first realisations of the generator made use of naive top-down back-
tracking techniques, with a limit on the depth of derivations in order to ensure
termination in the presence of recursion. Extensive experimentation convinced
us however that the time complexities of such algorithms were unacceptably
high for practical grammars, even with some techniques of smart backtracking.

Additional problems were caused by informal requirements that the gener-
ated sentences should not be too short, in order to allow interesting constructs
to occur, but neither too long, in order to allow insight into the structure of the
sentences.

We have solved the problem of efficiency by precomputing for each nonter-
minal those combinations of argument values with which derivations from that
nonterminal are possible. Together with such a combination of values we also
compute the minimal depth of such derivations.

The actual generation algorithm does not use any backtracking, so that it has
a very low time complexity. The problem of generating sentences of convenient
lengths has been solved by applying appropriate heuristics.

Because nonterminals may have very large numbers of arguments, an effi-
cient representation for sets of tuples of argument values was required. (This
representation can also be applied for parsing, which has been discussed in [17].)

The structure of this article is as follows. First we give an introduction
to the formalism AGFL, and show that naive generation algorithms are inade-
quate. This is followed by a discussion of the analysis of AGFLs and the actual
random generation of sentences, which uses the results of this analysis. Sub-
sequently, an efficient representation for sets of tuples, or in other word, for
subsets of Cartesian products, is discussed. We conclude by outlining possible
variants and extensions of the basic analysis and generation algorithms, in two
sections. The first of these sections proposes simple variants and extensions for
formalisms such as AGFL. The second discusses generalization to unification-
based formalisms.

2 Affix grammars over finite lattices

Affix grammars over finite lattices (AGFLs) are a restricted form of affix gram-
mars [18, 19, 20]. An affix grammar can be seen as a context-free grammar of

which the rules are extended with affizes (cf. parameters, attributes, or features)
to express agreement between parts of the rule. The distinguishing property
of AGFLs is that the domains of the affixes are given by a restricted form of
context-free grammar, the meta grammar, in which each right-hand side consists
of one terminal.

Formally, an AGFL G is a 7-tuple (A,, A, Ay, Gp, Gt, Gp, S) with the fol-
lowing properties.

The disjoint sets A, and A; and the function A, together form the meta
grammar of G, where

e A, is the finite set of affix nonterminals;
e A, is the finite set of affix terminals;

e A, is a function from elements in A, to subsets of A;. The fact that A,
maps some affix nonterminal A to some set of affix terminals {z1,...,Zm}
is written as

Az T,

We call the set {z1,...,z,} the domain of A.

The elements from A,, occur in the rules from G, which we define shortly,
in the so called displays. A display is a list of elements from A,,, separated
by “” and enclosed in brackets “(” and “)”. Displays consisting of zero affix
nonterminals are omitted.

The set of lists of zero or more elements from some set D is denoted by D*.
Thus, the set of all displays is formally described as A,".

For the second part of an AGFL G we have

e (G, is the finite set of nonterminals. Each nonterminal has a fixed arity,
which is a non-negative integer;

e G is the finite set of terminals (G, N G¢ = 0);

e G, is the finite set of rules C (Gn X A,") X ((Gn X A,") UGy)*. Rules are
written in the form

—

N(d) : Ni(dh), .-, Npm(dm).

where m > 0, and N is a nonterminal, which is followed by a display (cf),
and each member N;, 1 < ¢ < m, is a terminal or nonterminal, which is
followed by a display (d;). The number of affix nonterminals in a display
should correspond with the arity of the symbol preceding it (we assume

the arity of terminals to be zero).

e The start symbol S € G,, has arity 0.

PER :: 1;

2;

3.

NUM :: sing; plur.

simple sentence:

pers pron
pers pron
pers pron
pers pron
pers pron

to be (1,

pers pron (PER, NUM),

to be (PER, NUM),

to be (PER, NUM):

to be (3,

adjective:

adjective.
(1, sing): "I".
(1, plur): "we".
(2, NUM): ‘*“you".
(3, sing): '"he".
(3, plur): '"they".
sing): "am".
are", [PER =
PER
sing): "is".

2;
1| 3, NUM = plur].

"supercalifragilisticexpialadocious".

Figure 1: An example AGFL (with thanks to Mary Poppins)

Example 1 The small AGFL in Figure 1 illustrates some of the definitions
above. This example incorporates a number of shorthand constructions, which
are explained below.

The affix terminal “sing” in the first alternative of “pers pron” constitutes
a so called affiz expression, which is to be seen as an anonymous affix nonter-
minal, the domain of which is the singleton set {sing}. In general, an affix
expression consists of one or more affix terminals, separated by “|”, and denotes
an anonymous affix nonterminal, the domain of which is the set of all specified
affix terminals. E.g. the affix expression “1 | 3” denotes an affix nonterminal
with domain {1, 3}.

Another example of shorthand is the guard in the second alternative of “to
be”, which specifies under what conditions a form of “to be” is "are". The
comma, is to be seen as “and” and the semicolon as “or”. The operator “="
denotes unification.

The full syntax of AGFLs is defined in [21]. 0 O

We use the term wvariable to refer to an instance of an affix nonterminal in
an instance of a rule in a derivation (during parsing or generating).

Because the domains are finite, all possible values that variables can be
instantiated with may be computed simultaneously, which reduces the amount
of nondeterminism during parsing (and generating). Unification of variables now
is no longer a test on equality of values, but causes an intersection of two sets
of values, which should be non-empty for the unification to succeed. It should
be noted that even some formal presentations of AGFLs consider variables to
be set-valued.

For now, we will assume that variables are instantiated with single affix
terminals. We define a substitution o for a rule to be a mapping from the affix
nonterminals in the rule to affix terminals from the domains of the nonterminal_§.
If (d) is some display in a rule and o is a substitution for that rule, then o(d)
is defined to be the tuple of affix terminals that the affix nonterminals in (J)
are mapped to by o.

Later we will return to the idea that variables may be instantiated with sets
of affix terminals.

3 Naive random generation

In this section, we present an algorithm to generate random sentences using a
naive top-down strategy. This algorithm consists of a recursive procedure G,
which is to be called with two arguments, the first being a terminal or nonter-
minal and the second a tuple of affix terminals, of which the length matches the
arity of the terminal or nonterminal. If it terminates, it returns a string derived
from that (non)terminal with that tuple of affix terminals.

procedure G(N,t) :
if N is a terminal
then return the name of N
else for some rule N(d): Ny(d1), ..., Ny (dm).
and substitution o for this rule
and tuples t1,...,tm,
such that U(J) =t, and
for 1 < j <m we have t; :a(d_;')
do return G(Ny,t1) + G(Na,t2) + ... + G(Nmy t)
end
end
endproc

Figure 2: The naive generation algorithm

The procedure G is given in Figure 2. If the first argument is a terminal,
then that terminal is the return value of the procedure. If the first argument is
a nonterminal, then an appropriate rule is selected and the procedure is called
recursively on the members from the right-hand side, with appropriate tuples of
affix terminals. The string formed by the concatenation of the strings yielded
by the recursive calls is the result of the procedure. (We denote concatenation
of strings by the operator +.)

The nondeterminism involved in choosing a rule and an appropriate substi-
tution can be implemented using a generator of random numbers. For example,
assume that for a nonterminal NV and a tuple ¢ the grammar contains n rules of
the form N(d) : Ny(dy), ..., N (dp). such that a substitution o can be found
that satisfies O'(J) = t. The procedure may then make its choice based on a
random number between 1 and n. A further random number may dictate the
choice of an appropriate substitution ¢ if more than one exists.

In order to handle cases when no rule at all can be found, a backtracking
mechanism may be introduced.

Regrettably, this simple algorithm does not perform very well in practice.
It may loop or require a long time to terminate. (Termination is related to
consistency of probabilistic grammars [22].)

Example 2 Consider the following AGFL, which is also a context-free grammar
due to the absence of affix nonterminals.

a: b.

a: "P" , a.

a: a, "q", a.

o
I

b: "r".

G(a, ()

G(a,()) 6(°9”,0) 9(=a,0)
| |
G(v,0)) Gg(v,0))

|
Gz, () G(a, ()

g(”r”’ ())

Figure 3: A call-graph for generation of "rqr"

An example of a string generated by a call G(a,()) is given in Figure 3.

Note that if the algorithm selects one of the three rules for a by a probability
of 1/3 each, and similarly selects one of the two rules for b by a probability of
1/2 each, then in general the chances are against termination of the algorithm.

The above grammar also demonstrates that simple refinements that intro-
duce a bias towards selecting rules that do not lead to recursive calls cannot by
themselves ensure termination, since each of the three rules for a may lead to
recursion. O

Termination can be ensured by imposing a limit on the depths of derivations:
an additional argument to the procedure is a counter which is increased for each
level of recursion. If this counter reaches a certain threshold, the algorithm
backtracks.

However, the generation process may still be very expensive, since exponen-
tially many prospective derivations are considered within the threshold.

Example 3 Consider the following grammar.

a: b, c.
b: b, b.
'b: "P"-
c: cl.

cl: c2.
c8: «c9.
c9: "q".

For this grammar, no derivations exist of depth smaller than 11. If the threshold
is set to 10, then eventually the algorithm will terminate (unsuccessfully), but
many subderivations will have been computed for b; note that the number of
subderivations for b is exponential in the threshold. O

4 Analysis of AGFLs

For the generation of sentences to be possible using an algorithm which is guar-
anteed to return a result but does not use backtracking, we need to know in
advance whether a derivation is possible from some nonterminal with some affix
values within some restriction on the depths of derivations. The extra restric-
tion on the depths of derivations pertains to our previously mentioned desire to
generate sentences which are not too long. It also ensures termination of the
generation process.

This information for each nonterminal and each tuple of affix values can be
obtained by bottom-up analysis of the grammar. The result is a set of tuples
for each nonterminal, such that derivations with those tuples of affix terminals
exist. The tuples are partitioned according to the minimal depth of the possible
derivations.

For our algorithm, we need the following variables. For each nonterminal N
we have the sets D;(IN) of all tuples ¢ such that with ¢ a derivation of depth i
has been found, but not of any depth i’ < 7; the maximum value for 7 that we
need depends on the grammar. We also have the sets D(N) = |J; D;(NV) of all
tuples with which derivations of any depth have been found.

We compute the sets D;(N) for all nonterminals N, for ¢ = 1,2,3,... in
that order, based on the sets D;/(NN'), for other nonterminals N’ and for ¢’ < 4,
which have been computed earlier. We assume that initially D;(N) = @ and
D(N) = 0 for all nonterminals N and indices 7. For technical reasons we also
have constant values Do(T") = {()} for all terminals T'.

Figure 4 presents the algorithm in a naive way in order to enhance the
simplicity of our presentation. The algorithm we actually implemented is more
complicated and more efficient. In particular, we do not manipulate individual
tuples but sets of tuples, as will be discussed later.

Note that we can correctly deal with rules with empty right-hand sides if we
define mazimum() = 0.

Example 4 Consider the following AGFL.

1 1= 0;
repeat i := i+ 1;
for each rule N(d): Ni(d), ..., Ny (dm)-
and substitution o for this rule
and tuples t1,...,tn,
and indices i1,...,%im
such that for 1 < j < m we have
tj € Dij (N]) and
t; = a(d—;), and

mazimum(iy,...,iy,) =1 —1
do t := o(d);
ift ¢ D(N)

then D(N) := D(N) U {t};
D;(N) := D;(N)u{t}
end
end
until D;(N) =0 for all N
end.

Figure 4: The analysis algorithm

X : 1; 2.
Y : 1; 2; 3.
Z : 1; 2.
W : 2; 3.

a(X, Z): b(X, Y), c(Y, 2).
a(X, 2): a(x, 2), 4(2).

b(X, X): "p".
c(W, 2): "q".
a(Ww): "r".

The algorithm computes

Do("p") = Do("a") = Do("z") = {0}
D;(b) ={(1,1),(2,2)}

Dl(c) = {(2’ 1)a (2a 2)a (3a 1)a (3’ 2)}
D, (a) ={(2),(3)}

D (a) ={(2,1),(2,2)}

The D;(N) for all other combinations of ¢ and N remain 0.

procedure G(N,t, k) :
if N is a terminal
then return NV
else for some rule N(d): Ny(d1), ..., Ny (dm).
and substitution o for this rule
and tuples t1,...,tm,
and indices i1,...,im
such that o(d) = t, and
for 1 < j < m we have
t; = o(d;) and
t]' € Dij (N]) and
’I:]' <k
do choose some numbers ki,.. .,k such that
ij <kj <k forl<j<m;
return g(Nl,tl, kl) + g(Ng,tQ, kz) +...+ g(Nm,tm, km)
end
end
endproc

Figure 5: The efficient generation algorithm

5 Random generation of sentences

Relying on the sets D;(IN) which have been computed by the algorithm from
the previous section, we can generate sentences top-down without backtracking.
We usually begin at the start symbol S, but we can also begin at any other
nonterminal N. In the case we begin at N, we take some tuple ¢ from D;(N),
for some ¢. We know that derivations within some maximum depth k& > ¢ from
N with t are possible.

We determine some value k > ¢ using some heuristics (the higher & is chosen
the deeper the computed derivation may be). We then call a procedure G with
arguments N, t and k. This procedure is to return a string generated by some
derivation from N with ¢, of some depth < k. (For some applications the
derivation itself may be returned.)

The procedure G is a recursive function, which selects some rule such that
derivations from the members with appropriate affix values are possible, and
of which the depths are within the limit dictated by the argument k. The
procedure then calls itself recursively for each member in the chosen rule with
an appropriate tuple of values, and with the limit on the depths of derivations
reduced by (at least) one.

Formally, G is defined by Figure 5.

The nondeterminism in this algorithm may be resolved using random gen-

10

G(a,(2,2),6)

/ o 2) 1)

G(a,(2,2),

— \ G("e" o 2)

g(b’ (27 2)’3) g(c’ (2’ 2)72)
| |

g("p",(),0) g("q"(),1)
Figure 6: One possible call-graph for generation of "pqr"

erators, possibly guided by some heuristics.

Example 5 For the running example, we may call e.g. G(a,(2,2),6), since
(2,2) € Da(a) and 6 > 2. One of the sentences which may be generated by
this call is "pgr", as shown by the call-graph in Figure 6. Due to the nondeter-
minism of the generation algorithm, other third components in calls of G might
have been used. For example, instead of the call G(d, (2),4), we may have had
any call G(d, (2), k) for k less than 6 (the third component of the mother-node in
the call-graph) but greater than or equal to 1 (the value 7 such that (2) € D;(d)).

Furthermore, other sentences, such as "pq" and "pqrr", would have been
generated by G(a, (2,2),6) if other rules had been chosen in recursive incarna-
tions of G. O

6 Efficient processing of sets of tuples

Typically, nonterminals in AGFLs for natural languages have large arities, in
some cases more than eight. Furthermore, the domains sometimes contain more
than fifty affix terminals. Consequently, processing and storage of all possible
combinations of affix terminals is often not feasible.

Fortunately, the set of tuples of affix terminals with which derivations exist
from a certain nonterminal is typically a Cartesian product of a number of
domains. (For nonterminals where this does not hold, usually a mistake in
the design of the grammar can be found.) Note that a Cartesian product of
domains may be represented as a list of those domains, which requires O(m x q)
space although O(g™) tuples may be represented, where m is the arity of the
nonterminal and q is the size of the largest domain.

Also for the intermediate results in our analysis and during random gener-
ation of sentences this representation may be used. In those cases however, we

11

sometimes need a union of a number of Cartesian products to represent a set of
tuples. This amounts to the representation of a set of tuples of affix terminals
by a set of tuples of sets of affix terminals.

For example, the set of tuples

{ (a,b,d) , (a,b,e),
(a,e,d) , (a,c€),
(pzy) 5 (¢:2,9)}

can be represented by the set of tuples of sets

{ ({a},{b,c} {d,e}) , ({p,g}:{z},{v}) }

This form can be obtained by first taking the following set of tuples of
singleton sets:

{ ({a},{0}:{d}) , ({a};{b},{e}),
({a}, {ch{d}) , (a}{c};{e}),
(ph{=zh{vh) » {ah{=}{w}) }

and by then merging pairs of tuples. E.g. ({a}, {b},{d}) and ({a}, {0}, {e}) can
be merged into ({a}, {b},{d,e}). Repeated application of merging leads to the
desired form.

The union of two sets represented in this form is complicated by the fact that
two tuples may overlap. E.g. if we want to compute the union of {(X,Y, Z)}
and {(P,Q,R)}, where X,Y,Z, P,Q, R denote sets of affix terminals, we may
have that XNP #Pand YNQ # 0 and ZN R # (. A solution is to mould e.g.
{(P,Q,R)} into a different form:?

{(P-X,Q , R

)

()
(PmX Q_YaR)7
(PNX ,QNY ,R-2),
()}

PNX ,QnNnY ,RNZ
Possibly some of the tuples in this form may be discarded because one or
more of their parts may be the empty set.
The union of the two sets is now represented by:

{x vy ,z),
(P_XaQ 7R),
(PNX ,Q-Y,R),
(PNX ,QNY ,R—Z)}

This example demonstrates that this representation can become fragmented
considerably because of the union operation (this also holds for subtraction of

2Note a similarity to lifting disjunction in feature descriptions [23].

12

sets of tuples, not shown here). To be exact, the union of k& (non-overlapping)
tuples of sets with m (non-overlapping) tuples of sets, respectively, may yield
a set consisting of more than k + m (again non-overlapping) tuples of sets, in
general less than or equal to k+m x t* tuples, where ¢ is the width of the tuples.

To prevent quick degeneration of this representation to sets of tuples of sin-
gleton sets, it is necessary to regularly apply the merge operation, which reduces
the number of tuples (possibly after deliberately fragmenting the representation
further to allow more extensive merging).

We have found that the costs of merging tuples of sets do not outweight the
high costs of operating on tuples of affix terminals. It required some experi-
menting however to determine how often the expensive merging operation had
to be applied to improve instead of deteriorate the time complexity. In some
cases, allowing temporary overlapping of tuples in a set proved to reduce the
time-costs of the analysis.

In the present implementation, overlapping is allowed during an iteration of
the analysis algorithm, i.e. for one instance of counter i. At the end of each
such iteration, the sets D;(N) and D(N) are restructured by eliminating the
overlapping of tuples and by applying the merging operation.

A representation of sets of tuples similar to ours is proposed in [24]. This
representation, called sharing trees, may be more compact than ours, and has
the advantage that a unique sharing tree exists for each set of tuples, which
simplifies the test for equivalence. However, sharing trees were developed with
a certain application in mind (analysis of synchronized automata), and it seems
that for our case sharing trees would not behave any better than the above
representation, using sets of tuples of sets. This is because the analysis of
AGFLs requires different operations (such as subtraction), some of which are
more complicated for sharing trees than for our representation.

7 Simple variants and extensions

The analysis and the generation algorithm are based on the idea of computing,
for each nonterminal and each tuple, the minimal depth of which derivations
exist. An obvious variant results from using other quantities besides the minimal
depths of derivations. We could for instance also take the minimal lengths of
generated sentences from nonterminals with certain tuples. Yet other quantities,
such as the number of nodes in derivations, are possible as well. For some
grammars such alternative quantities may give better results.

One may further consider the use of head information [25] to influence the
generation process. For example, one may choose k; to be k — 1 if IV}, (d_l;) is the
head of the rule N(d) : Ni(d1),..., Ny(dm)., and i; otherwise. This results in
deep but narrow derivations, with the depth in the direction of the heads.

Such assignments to k; may also play a role when sentences of specific forms
are desired: the user may want to find sentences exhibiting a certain linguistic

13

phenomenon. For this, certain subderivations may need to be deep, whereas
other subderivations should be short and simple since they do not directly per-
tain to the investigated phenomenon [8]. This idea may be realised by marking
certain grammar rules that should be contained in the constructed derivations,
or by allowing the user instead of the automatic generator to select the appro-
priate grammar rules at some critical moments [5]. After construction of a part
of a derivation containing the required rules, where all k; are chosen to be k —1,
the remaining parts of the derivation are completed in the most simple way, by
choosing all k; to be ;.

We have not considered the task of generating a set of sentences which is
as small as possible, yet contains at least one occurrence of each rule. We refer
to [9, 12, 13] for such algorithms. We feel that these algorithms, devised for
the testing of compilers for programming languages, are not very useful for the
detection of overgeneration of natural language grammars, since overgeneration
seems to be typically caused by unforeseen interaction of several rules, instead
of by individual rules. The requirement that each rule occurs at least once is
therefore not sufficient. However, the general idea of increasing the coverage of
a limited set of generated sentences by avoiding frequent repetition of language
constructions may lead to interesting variants of our algorithm.

Other possible refinements include extension of the grammar with probabil-
ities [11, 14, 15].

A last remark concerns an optimization of the analysis with regard to the
subsequent generation. Our algorithm namely also allows generation from non-
terminals other than from the start symbol S. Since from a certain nonterminal
N not every other nonterminal M may be reachable, the execution of G(N, ¢, k),
for some ¢ and k may be performed without previous computation of D(M) and
D;(M), for many nonterminals M. In addition, the tuple ¢ with which G is
called may give rise to a further reduction of the search space, since not all
tuples ¢’ for a nonterminal M reachable from N may be relevant for derivations
from N with ¢t. Computing only the relevant tuples can for example be achieved
by magic transformations [26].

8 Unification-based formalisms

The formalism of AGFL we have considered up to now has attractive properties
from a computational point of view. In particular, we have seen that the minimal
depth of derivations from a certain nonterminal with a certain tuple is effectively
computable.

However, the grammatical formalisms that are used in practice for natural
language processing are often more expressive than AGFL. An example are the
unification-based formalisms, of which the definite clause grammars (DCGs) [27]
are a well-known instance.

In DCGs, we have terms as arguments instead of affixes. A term can be

14

e a constant, which is comparable to an affix terminal;
e a variable, comparable to an affix nonterminal; or

e an expression of the form f(ry,...,7n), m > 0, where f is a functor and
T1, ..., Tm are terms.

There is no equivalent to the meta grammars that we know from AGFLs, al-
though a similar system can be derived, as shown later in this section. A
nonterminal together with arguments will itself be seen as a term, by regarding
the nonterminal as functor.

The language described by a grammar can be defined analogously to that
in the case of AGFLs: the variables in instances of rules are instantiated with
ground terms, which means that no variables occur within those terms. A parse
tree formed by such a collection of rule instances derives a string in the language
(cf. the tree structure in Figure 6). Two rules are linked through the left-hand
side of the one and a member in the right-hand side of the other, which is
allowed if they are identical after the instantiation.

For efficiency reasons however, practical implementations do not instantiate
arguments further than necessary, or more precisely, variables are instantiated
with terms which may contain variables themselves, until additional rule in-
stances in the parse tree under construction provide sufficient information to
further guide such instantiations effectively; cf. computations with tuples of
sets of affix terminals in the case of AGFLs.

An example of a substitution is o = {X/g(a,Y),Z/b}, which means that all
occurrences of X are to be replaced by the term g(a,Y) and those of Z are to be
replaced by b. For example, o(£(X,h(Z,2))) = £(g(a, Y),h(b,b)).

We say a term 7 is more general than 7', denoted 7 C 7/, if there is a
substitution ¢ such that o(7) = 7'.

A key notion for parsing and generation with DCGs is unification of terms.
An example is unification of two terms f(X,a) and £(g(Y,Z),Y), which is given
by £(X,a) U £(g(Y,Z),Y) = £f(g(a, Z), a). Informally, the term £(g(a,Z),a) is the
most general term that can be obtained from both f£(X,a) and £(g(Y,Z),Y) by a
substitution. If such a unification of terms 7 and 7' exists, we say 7 and 7' are
unifiable.

The substitution that instantiates the variables from two terms such that
the unified term results is called the most general unifier. The most general
unifier for terms 7 and 7/, if it exists, is denoted by mgu(7,7'). In general,
o = mgu(r,7’) implies o(7) = o(7') = 7 U 7'. For the running example,
mgu(£(X, a), £(g(Y, 2), Y)) = {X/g(a,2),Y/a}.

The definition of mgu can be generalized to pairs of tuples of equal lengths:
mgu((T1,-.-,Tm), (71, --.,7),)) is the most general substitution ¢ such that
o(m) =0(11), ..., 0(Tm) = o(71,)-

The precise definition of unification is outside the scope of the present article;
we refer to [28] for more explanation.

15

1 := 0;
repeat i := i+ 1;

for each rule 7 : 7y,..., 7.
and substitution o
and terms 1{,...,7T},
and indices i1, ...,0m
such that for 1 < j <m we have 7; € D;;, and
o=mgu((T1,..,Tm), (1, -+, 7h,)), and
mazimum(iy,...,iy,) =1 —1

do 7' := ®(o(7));
if -3r" € D[C 7]
then D := DU {r'};

D, :=D;u{r'}
end
end
until D; =0

end.

Figure 7: The analysis algorithm for DCGs

8.1 Analysis of DCGs

Since the number of (ground) terms that arguments can be instantiated to is
in general infinite, we need to adapt the analysis that we have performed for
AGFLs. Instead of computing the minimal depths of derivations for all possible
ground instantiations, we compute those depths for a finite number of tuples of
arguments that have been instantiated down to a certain depth, but no further.
This is achieved by the notion of restriction [29]. A restrictor is a function
that truncates a term, i.e. that replaces subterms by fresh variables. A suitable
restrictor for our purposes maps each term over a fixed set of functors and
constants to a truncated one from a finite set of such terms.

A simple example of a restrictor is ®2, which truncates terms beyond the
depth of two nested functors. For example ®5(f(g(h(X,a), i(b)),c)) = £(g(¥, Z), c).
We will discuss more refined types of restrictor later.

The objective of the analysis of DCGs is to compute the minimal depths of
derivations from the finite set of truncated terms. As Figure 7 shows, existing
terms from D;; are combined by unifying them with members in the right-hand
side of a rule. The most general unifier is then applied to the left-hand side. The
result is truncated according to some suitable restrictor ¢, and matched against
terms derived earlier. It is discarded if some existing term is more general;
otherwise it is added to the sets D and D;.

We initialize D; = () for all indices ¢ > 0, and Dy = {T | T is a terminal}.

16

8.2 Generation for DCGs

The use of restrictors ensures termination of the analysis, but no longer guaran-
tees the existence of derivations of a certain depth: if 7 € D;, for some i, then a
derivation from 7 of depth ¢ may exist, but is not guaranteed to exist. The gen-
eration algorithm must therefore be able to deal with failure of the construction
of a prospective derivation.

There are two obvious ways to deal with failure. First, if certain choices
lead to failure, we may backtrack. This has the advantage that computation
done before a “wrong” choice was made can still be used to successfully obtain a
derivation. The disadvantage is that excessive (unsuccessful) computation may
be needed before that choice is ever retracted. The other option is to restart
the generation process from the beginning upon failure.

In our implementation we have avoided the use of backtracking as far as
possible, in order to avoid the disadvantage mentioned above. Only in the
process of choosing the next rule is backtracking applied. Once a rule is chosen,
the algorithm is committed to that choice. When the generation process arrives
in a situation where no appropriate rules at all can be found, the current attempt
is abandoned and the procedure is started afresh. (In our experiments, failure
occurs for about two out of three attempts to generate a sentence.)

The procedure is given in Figure 8 in an abstract form. What is not given
explicitly is the backtracking needed to find some rule, a substitution, terms and
indices with the required conditions. Also not shown is that all incarnations of
the procedure are aborted when the above-mentioned objects cannot be found
in one such incarnation.

The procedure is to be called with arguments 7’ and k, where 7’ is unifiable
with some 7 € D;, and k > i, analogously to the generation algorithm for
AGFLs that we have seen earlier.

In selecting the rule, we demand that the left-hand side 7 unifies with the
first parameter 7/, and that the members in the right-hand side unify with terms
in appropriate sets D;;; cf. Figure 5. The most general unifier oy is determined,
and in the first recursive call for the first member 7; of the rule, this substitution
is applied on that member 73. The motivation for instantiating variables in
that member at an early stage is that it may help recursive incarnations of
the procedure to select only those rules that are likely to lead to successful
generation. Note that there is no need to take into account the unification of
the first member 7; itself with some 7] for the purpose of computing oy, since
the variables in 7; will be appropriately instantiated in the first recursive call
in any case.?

The first recursive call results in a pair (7', w1), where w; is a string derived

3For a rule with zero members or one member in the right-hand side we have m = 0
or m = 1, respectively. In both cases the expression mgu((7,72,...,7m), (7', 75,..., 7))
should be read as mgu(r,7'). For a rule with zero members, the condition “r; and oo(r]) are
unifiable” should be read as “true”.

17

procedure G(7',k) :

if 7' is a terminal

then return (7/,7')

else for some rule 7:71,...,Tm-
and substitution oy
and terms T{,..., 7T,
and indices i1,...,im

such that o9 = mgu((7, 72, .-, ™m), (7', Tay- . -, T0))s
71 and oo(1]) are unifiable, and
for 1 < j < m we have
'r]'- € D;; and

’i]' <k
do choose some numbers ky,.. .,k such that
i <kj <k for1<j<m;
for j=1,...,m
do (7j,w;) := G(oj-1(75), k;);
aj = mgu((T, 71, T2, s Tm), (7', T4 T T s e
end;
return (o, (7), w1 + ... + W)
end
end
endproc

Figure 8: Generation for DCGs

18

from 7', and o¢(m1) C 71’ due to possible further instantiation of variables from
71 in recursive incarnations. Now a substitution o, is computed, this time taking
into account 71" instead of 71, and the next recursive call is made.

This is repeated until for each member in the right-hand side a string w; has
been found that is generated from that member. The substitution o, accumu-
lates the results from all unifications performed recursively and is applied on the
left-hand side to form ¢, (7), which is returned together with the concatenated
string wi + ... 4+ wp,.

We have performed experiments with HPSG-style grammars [30], which were
compiled to DCGs. Such grammars contain many lexical entries, which are
in effect rules of the form 7 : T., where T is a terminal, and 7 a term. In
comparison to the lexical entries, the grammar contains few other rules. This
means that if lexical entries and other rules are treated on an equal footing, then
the generation procedure will choose lexical entries with a very high probability,
which leads to very short sentences being generated.

Our solution is the following. We choose fixed numbers a and b, where
0 < b < a. Appropriate values can be determined empirically. At the beginning
of the procedure in Figure 8, a random number r between 0 and a is generated,
and if b < r, then lexical entries will be tried first and only then the other rules;
otherwise lexical entries are tried last.

Among the rules that are not lexical entries, we further implemented a bias
towards selection of rules that have not been selected very often before. Among
lexical entries, a similar bias is implemented.

It is important to note that the above ideas are merely heuristics. They
work well for some grammars that we have developed, but for other grammars,
the analysis and generation algorithms may require changes.

8.3 Appropriate restrictors

The analysis applies a restrictor @ to reduce the number of terms that need to
be stored in the sets D;. In order to ensure that the analysis terminates, only
a finite number of such terms should be considered, and for this it is sufficient
that the restrictor maps each term to a truncated term from a finite set of such
terms. A second requirement is that the restrictor does not truncate more than
necessary, since the more is truncated, the worse the precision becomes, and the
larger is the chance that subsequent attempts to generate sentences will fail.

These requirements are satisfied by a restrictor that truncates subterms that
are potentially unbounded in depth. What subterms possess this potential can
be found by means of type inference. Not all kinds of type inference are equally
precise. The algorithm we have implemented is relatively crude with respect to
other published algorithms [31, 32, 33].

For each argument position we introduce a type, not only for arguments
to nonterminals but also for arguments to functors embedded in terms in the

19

grammar. Such a type represents the set of terms that may occur at the argu-
ment position. We record how different types are related according to the way
that the corresponding terms and subterms are related by functor and argument
position.

If in a rule two subterms are represented by the same variable, the corre-
sponding types are unified. In contrast to more advanced kinds of type inference,
described e.g. in [31, 32, 33], our type unification amounts to union only; no in-
tersection is applied. This means that unification of types 77 and 75 results in
a type T3 which represents at least as many terms as those represented by T3
and T3 together.

If types are then found to be recursive, this indicates that corresponding
subterms may be unboundedly deep, and our restrictor will apply truncation of
just those subterms.

Example 6 Consider the following grammar.

ath(£(X)), V: a(X), V), blg(¥)).
a(h(i),): "p".

b(g(J)): "q"'

The type system below can be inferred. Our notation stresses that the system
is very similar to a meta grammar for AGFLs.

S :: a(Ti, T3); b(T4).
T1 :: h(T2).

T2 :: £(T2); i.

T3 :: j.

T4 :: g(T3).

The “super-type” S represents all nonterminals together with their arguments.
For nonterminal a the arguments are of type T1 and T3, respectively. A term
of type T1 is composed of a functor h and an argument of type T2. Type T2 is
recursive: it is a subtype of itself. This indicates that terms of that type may
be unboundedly deep.

A restrictor ® that truncates terms at recursive types will map a term such
as a(h(£(£(1))), j) to a(h(Z), j). O

9 Conclusions

We have presented an algorithm for AGFLs which finds random derivations
without resorting to backtracking. This algorithm relies on an analysis of the
grammar. The reason the algorithm always terminates is that a non-negative
value is kept which decreases each time we descend the derivation under con-
struction. The reason the algorithm cannot fail is that the results of the analysis

20

provide enough information to successfully guide the algorithm towards a com-
plete derivation.

The feasibility of the analysis depends on efficient processing of sets of tuples.
Experience has shown that the analysis takes less time than finding a single
derivation using a top-down backtrack algorithm.

Our technique allows much flexibility: many variants are possible, and the
underspecified parts of the generation algorithm can be made more precise so
as to generate sentences according to certain syntactic requirements.

The technique has also been generalized to unification-based grammars.
Since the analysis in this case cannot be exact without risking nontermina-
tion, the subsequent generation algorithm cannot rely on precise guidance how
to find a complete derivation, and may consequently fail. However, since each
attempt at constructing a derivation is cheap, it does not necessarily lead to
excessive time consumption if a successful generation attempt is preceded by
several unsuccessful attempts.

Acknowledgments

Cambridge University Press has kindly granted permission for reprint of a num-
ber of sections from an article with the same name, published as Natural Lan-
guage Engineering 2(1): 1-13, 1996.

Much of the ideas in this paper were developed at the Computer Science
Department of the University of Nijmegen and at the Department of Humanities
Computing of the University of Groningen. The author is currently funded by
the German Federal Ministry of Education, Science, Research and Technology
(BMBEF) in the framework of the VERBMOBIL Project under Grant 01 IV 701
Vo.

References

[1] V.H. Yngve. Computer programs for translation. Scientific American, June
1962, pages 68-76.

[2] V.H. Yngve. Random generation of English sentences. In 1961 Interna-
tional Conference on Machine Translation of Languages and Applied Lan-
guage Analysis, volume 1, pages 6682, National Physical Laboratory, Ted-
dington, Middlesex, 1962. London: Her Majesty’s Stationery Office.

[3] O. Lecarme. Usability and portability of a compiler writing system. In
Methods of Algorithmic Language Implementation, Lecture Notes in Com-
puter Science, volume 47, pages 41-62. Springer-Verlag, 1977.

[4] L. Karttunen and M. Kay. Parsing in a free word order language. In D.R.
Dowty, L. Karttunen, and A.M. Zwicky, editors, Natural language parsing:

21

[15]

[16]

Psychological, computational, and theoretical perspectives, pages 279-306.
Cambridge University Press, 1985.

B. Boguraev, J. Carroll, T. Briscoe, and C. Grover. Software support for
practical grammar development. In Proc. of the 12th International Con-
ference on Computational Linguistics, volume 1, pages 54-58, Budapest,
August 1988.

M.-J. Nederhof and K. Koster. A customized grammar workbench. In
J. Aarts, P. de Haan, and N. Oostdijk, editors, English Language Corpora:
Design, Analysis and Exploitation, Papers from the thirteenth International
Conference on English Language Research on Computerized Corpora, pages
163-179, Nijmegen, 1992. Rodopi.

D.R. Hofstadter. Gaddel, Escher, Bach: an Eternal Golden Braid. Basic
Books, 1979.

L. Balkan, D. Arnold, and F. Fouvry. Test suites for evaluation in natural
language engineering. In Proceedings of the Second Language Engineering
Convention, pages 203-210, London, October 1995.

P. Purdom. A sentence generator for testing parsers. BIT, 12:366-375,
1972.

C.S. Mellish. Some chart-based techniques for parsing ill-formed input.
In 27th Annual Meeting of the Association for Computational Linguis-
tics, Proceedings of the Conference, pages 102-109, Vancouver, British
Columbia, Canada, June 1989.

A.J. Payne. A formalised technique for expressing compiler exercisers. SIG-
PLAN Notices, 13(1):59-69, January 1978.

A. Celentano et al. Compiler testing using a sentence generator. Software—
Practice and Ezxperience, 10:897-918, 1980.

F. Bazzichi and I. Spadafora. An automatic generator for compiler testing.
IEEE Transactions on Software Engineering, 8(4):343-353, July 1982.

V. Murali and R.K. Shyamasundar. A sentence generator for a compiler
for PT, a Pascal subset. Software—Practice and Ezperience, 13:857-869,
1983.

D.L. Bird and C.U. Munoz. Automatic generation of random self-checking
test cases. IBM Systems Journal, 22(3):229-245, 1983.

I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural language in-
terfaces to databases — an introduction. Natural Language Engineering,
1(1):29-81, March 1995.

22

[17]

[18]

[28]

M.-J. Nederhof and J.J. Sarbo. Efficient decoration of parse forests. In
H. Trost, editor, Feature Formalisms and Linguistic Ambiguity, pages 53—
78. Ellis Horwood, 1993.

C.H.A. Koster. Affix grammars. In J.E.L. Peck, editor, ALGOL68 Imple-
mentation, pages 95-109. North Holland Publishing Company, Amsterdam,
1971.

C.H.A. Koster. Affix grammars for natural languages. In Attribute Gram-
mars, Applications and Systems, International Summer School SAGA, Lec-
ture Notes in Computer Science, volume 545, pages 358-373, Prague,
Czechoslovakia, June 1991. Springer-Verlag.

M.-J. Nederhof. On the borderline between finite and infinite argument
domains. In C.H.A. Koster and E. Oltmans, editors, Proceedings of the
first AGFL Workshop, Technical Report CSI-R9604, Computing Science
Institute, pages 17—43, University of Nijmegen, January 1996.

C. Dekkers, C.H.A. Koster, M.-J. Nederhof, and A. van Zwol. Manual
for the Grammar WorkBench Version 1.5. Technical Report no. 92-14,
University of Nijmegen, Department of Computer Science, July 1992.

T.L. Booth and R.A. Thompson. Applying probabilistic measures to ab-
stract languages. IEEE Transactions on Computers, C-22(5):442-450, May
1973.

A. Eisele and J. Dorre. Unification of disjunctive feature descriptions.
In 26th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, pages 286—294, Buffalo, New York, June
1988.

D. Zampuniéris and B. Le Charlier. A yet more efficient algorithm to
compute the synchronized product. Research Report 94/5, Institute of
Computer Science - FUNDP Namur, Belgium, 1994.

G. van Noord. Reversibility in Natural Language Processing. PhD thesis,
University of Utrecht, 1993.

S. Debray and R. Ramakrishnan. Abstract interpretation of logic programs
using magic transformations. Journal of Logic Programming, 18:149-176,
1994.

F.C.N. Pereira and D.H.D. Warren. Definite clause grammars for language
analysis—a survey of the formalism and a comparison with the augmented
transition networks. Artificial Intelligence, 13:231-278, 1980.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

23

[29]

[30]

[31]

S.M. Shieber. Using restriction to extend parsing algorithms for complex-
feature-based formalisms. In 28rd Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, pages 145-152,
Chicago, Illinois, USA, July 1985.

C. Pollard and I.A. Sag. Information-Based Syntar and Semantics, vol-
ume 1. Center for the Study of Language and Information, Leland Stanford
Junior University, 1987.

P. Mishra. Towards a theory of types in Prolog. In International Symposium
on Logic Programming, pages 289-298, Atlantic City, New Jersey, February
1984.

E. Yardeni and E. Shapiro. A type system for logic programs. Journal of
Logic Programming, 10:125-153, 1991.

N. Heintze and J. Jaffar. Set constraints and set-based analysis. In Princi-
ples and Practice of Constraint Programming, Second International Work-
shop, Lecture Notes in Computer Science, volume 874, pages 281-298,
Rosario, Orcas Island, WA, USA, May 1994. Springer-Verlag.

24

