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A new upper bound is presented for the computational complezity of the parsing problem
for TAGs, under the constraint that input is read from left to right in a way that errors
in the input are observed as soon as possible, which is called the “correct-prefix property.”

The former upper bound was O(n®), which is now improved to O(nb), which is the
same as that of practical parsing algorithms for TAGs without the additional constraint

of the correct-prefix property.
1 Introduction

Traditionally, parsers and recognizers for regular and context-free languages process input
from left to right. If a syntax error occurs in the input they often detect that error
immediately after its position is reached. The position of the syntax error can be defined
as the rightmost symbol of the shortest prefix of the input which cannot be extended to
be a correct sentence in the language L.

In formal notation, this prefix for a given erroneous input w ¢ L is defined as the
string va, where w = vaz, some z, such that vy € L, for some y, but vaz ¢ L, for any z.
(The symbols v, w, ... denote strings, and a denotes an input symbol.) The occurrence
of a in w indicates the error position.

If the error is detected as soon as it is reached, then all prefixes of the input that
have been processed at preceding stages are correct prefixes, or more precisely, they are
prefixes of some correct strings in the language. Hence, we speak of the correct-prefix
property.!

An important application can be found in the area of grammar checking: upon finding
an ungrammatical sentence in a document, a grammar checker may report to the user the
presumed position of the error, obtained from a parsing algorithm with the correct-prefix
property.

For context-free and regular languages, the correct-prefix property can be enforced
without additional costs of space or time. Surprisingly, it has been claimed by Schabes and
Waters (1995) that this property is problematic for the mildly context-sensitive languages
represented by tree-adjoining grammars (TAGs): the best practical parsing algorithms
for TAGs have time complexity O(n®) (Vijay-Shankar and Joshi, 1985) (see Satta (1994)
and Rajasekaran and Yooseph (1995) for lower theoretical upper bounds), whereas the
only published algorithm with the correct-prefix property, viz. that by Schabes and Joshi
(1988), has complexity O(n?).

In this paper we present an algorithm that fulfils the correct-prefix property and
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prefix property is used.

© 1998 Association for Computational Linguistics



Computational Linguistics Volume 00, Number 0

operates in O(n®) time. This algorithm merely recognizes input, but it can be extended
to be a parsing algorithm, with the ideas from Schabes (1994), which also suggests how
it can be extended to handle substitution in addition to adjunction. The complexity
results carry over to linear indexed grammars, combinatory categorial grammars and
head grammars, since these formalisms are equivalent to TAGs (Vijay-Shanker and Weir,
1993; Vijay-Shanker and Weir, 1994).

Section 3 presents the actual algorithm, after the necessary notation has been dis-
cussed in Section 2. The correctness proofs are discussed in Section 4. Section 5 presents
the time complexity. The ideas from this paper give rise to a number of open questions,
as discussed in Section 6.

2 Definitions

Our definition of TAGs simplifies the explanation of the algorithm, but differs slightly
from standard treatment such as that by Joshi (1987).

A tree-adjoining grammar is a 4-tuple (X, NT, I, A), where X is the set of terminals,
I is the set of initial trees and A is the set of auxiliary trees. We refer to the trees in
IU A as elementary trees. The set NT', the set of nonterminals, does not play any
role in this paper.

We refer to the root of an elementary tree ¢ as R;. Each auxiliary tree has exactly
one distinguished leaf, which is called the foot. We refer to the foot of an auxiliary tree
t as F;.

We use variables N and M to range over nodes in elementary trees. We assume that
the sets of nodes belonging to distinct elementary trees are pairwise disjoint.

For each leaf N in an elementary tree, except when it is a foot, we define label(IV)
to be the label of the node, which is either a terminal from ¥ or the empty string e. For
all other nodes, label is undefined.

For each node N that is not a leaf or that is a foot, Adj(IV) is the set of auxiliary
trees that can be adjoined at IV, plus possibly the special element nil. For all other nodes,
Adj is undefined. If a set Adj(IN) contains nil, then this indicates that adjunction at N
is not obligatory.

For each non-leaf node N we define children(N) as the (non-empty) list of daughter
nodes. For all other nodes, children is undefined.

An example of a TAG is given in Figure 1.

The language described by a TAG is given by the set of strings that are the yields
of derived trees. A derived tree is obtained from an initial tree, by performing the
following operation on each node N, except when it is a leaf. The tree is excised at IV,
and between the two halves a fresh instance of an auxiliary tree is inserted which is
taken from the set Adj(IV), or the element nil is taken from Adj(IN) in which case no
new nodes are added to the tree. Insertion of the new auxiliary tree, which will from now
on be called adjunction, is done in such a way that the bottom half of the excised tree
is connected to the foot of the auxiliary tree. The new nodes that are added to the tree
as a result, are recursively subjected to the same operation.

This process ends in a complete derived tree once all nodes have been treated.

An example of the derivation of a string is given in Figure 2. We start with initial
tree al and treat R,i, for which we find Adj(Rs1) = {b2,nil}. We opt to select nil,
so that no new nodes are added. However in the picture we do split R,; in order to
mark it as having been treated. Next we treat N, and we opt to adjoin b1, taken from
Adj(NY,) = {b1,b3}. After another “nil-adjunction” at Rp1, we adjoin b2 at N};. Note
that this is an obligatory adjunction, since Adj(INZ,) does not contain nil. Some more
nil-adjunctions lead to a derived tree with yield acdb, which is therefore in the language
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Initial trees Auxiliary trees
(al) (a2) (b1) (v2) (83)
Ra1 a2 Ro1 ﬂ Re3
1
; Ngl N52 N32 ; Nbll Fy1 Fyy 2 b3
L4 F N2
b c € c a b8 b3
Adj(Ral) = Ad](Rag) = Ad](Rbl) = Ad](RbQ) = b
{b2, nil} {b3, nil} {b1, b2, nil} {b3,nil}  Adj(Rp3) = {b1,nil}
Adj(Ngy) = Adj(N,,) = Adj(Nyy) = Adj(Fye) = Adj(Ny3) = {b2}
{b1,03} {b1, b2} {b2} {nil} Adj(NZ) = {b3,nil}
Adj(N2,) = Adj(Fy) = Adj(Fy3) = {nil}

{nil} {nil}
Figure 1

A tree-adjoining grammar

~
Initial tree: R nil- N adjoin /I
adjunction bl at N, ® Ry,
« om, — ¢ omy —

N Fy

o
o
o> —C

nil-
adjunction

Derived Y three nil- adjoin
tree: ./I adjunctions ./I b2 at N,

>)

r
W
N

-~ o O/\Rb? I
N} Fon
<N\ A Z
bt d b I d b
! o
c
Cc
Figure 2

Derivation of the string acdb

described by the TAG.

In order to avoid cluttering the picture with details, we have omitted the names
of nodes at which (nil-)adjunction has been applied. We will reintroduce these names
later. A further point worth mentioning is that here we treat the nodes in preorder: we
traverse the tree top-down and left-to-right, and perform adjunction at each node during
its first visit.? Any other strategy would lead to the same set of derived trees, but we
chose preorder treatment since this matches the algorithm we will present below.

2 The tree that is being traversed grows in size during the traversal, contrary to traditional usage of
the notion of “traversal.”
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3 The Algorithm

The input to the recognition algorithm is given by the string ajas - - - a,,, where n is the
length of the input. Integers ¢ such that 0 < ¢ < n will be used to indicate “positions”
in the input string. Where we refer to the input between positions 7 and j we mean the
StI‘iDg iyl Q5.

The algorithm operates by means of least fixed-point iteration: a table is gradually
filled with elements derived from other elements, until no more new ones can be found. A
certain collection of “steps” indicate how table elements are to be derived from others.?

For the description of the steps we use a pseudo-formal notation. Each step consists
of a list of antecedents and a consequent. The antecedents are the conditions under which
an incarnation of the step is executed. The consequent is a new table element that the
step then adds to the parse table, unless of course it is already present. An antecedent
may be a table element, in which case the condition that it represents is membership in
the table.

The main table elements, or items, are 6-tuples [h, N — a e 3, i, j, fi, f2]. Here,
N is a node from some elementary tree ¢, and af is the list of the daughter nodes of IV.
The daughters in o together generate the input between positions 7 and j. The whole
elementary tree generates input from position A onwards.

Internal in the elementary tree there may be adjunctions; in fact, the traversal of
the tree (implying (nil-)adjunctions at all nodes) has been completed up to the end of
a. Furthermore, tree ¢t may itself be an auxiliary tree, in which case it is adjoined in
another tree. Then, the foot may be dominated by one of the daughters in «, and the
foot generates the part of the input between positions f; and fo. When the tree is not
an auxiliary tree, or when the foot is not dominated by one of the daughters in «, then
f1 and f3 both have the dummy value “—”.

Whether ¢ is an initial or an auxiliary tree, it is part of a derived tree of which
everything to the left of the end of a generates the input between positions 0 and j. The
traversal has been completed up to the end of a.

See Figure 3 for a pictorial representation of the meaning of items. We assume R;
and F; are the root and foot of the elementary tree ¢ to which N belongs; F; may not
exist, as explained above. R is the root of some initial tree. The solid lines indicate what
has been established; the dashed lines indicate what is merely predicted. If F; exists, the
subtree below F; indicates the lower half of the derived tree in which ¢ was adjoined.

The nodes in the shaded areas labelled by I, IT and III have not been visited yet by
the traversal. In particular it has not yet been established that these parts of the derived
tree together generate the input between positions j and n.

For technical reasons, we assume an additional node for each elementary tree ¢, which
we denote by T. This node has only one daughter, viz. the actual root node R;. We also
assume an additional node for each auxiliary tree ¢, which we denote by L. This is the
unique daughter of the actual foot node Fy; we set children(F;) = L.

In summary, an item indicates how a part of an elementary tree contributes to the
recognition of some derived tree.

Figure 4 illustrates the items needed for recognition of the derived tree from the
running example. We have simplified the notation of items by replacing the names of
leaves (other than foot nodes) by their labels.

There is one special kind of item, with only 5 fields instead of 6. This is used as

3 A “step” is more accurately called an “inference rule” in the literature on deductive parsing
(Shieber, Schabes, and Pereira, 1995). For the sake of convenience we will apply the shorter term.
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[ T_).Ralaooa_v_]
[0Ra1—>oaN1,00 =]
:[0,Rq1 —ae N, 0,1,—, ]
LT = o Royy 1,1, —,—]
[1 Rbl_).Nl:,ll Fbla 1a11_1_
[1aT_).Rb2a 1ala_a_]
[1;Rb2_).Fb2 da 111a_’_]
[1 Fb2_>.J—a 171,_7_]
(LN —ec, 1,1, —, ]
[1,N} —ce, 1,2, —, —]

1 Fp — Lo, 1,2,1,2]

[1 Ry — Fyp e d, 1,2,1 a2]
[1,Rys — Fyz d o, 1,3,1,2]
[ T_>Rb2 e, 173a1a ]

[N —ce, 1,3, —, —]
[LRbl — Nbll L4 Fbla 1a3a_a_]
[1an1 _>.J—a 3a3a_1_]
[0,N1, — b, 3,3,—,—]
0,NL, —be, 3,4,—,—]
[lFb1—>J_. 3434]

[1, Ry — N}, Fyy e, 1,4,3,4]
[1,T — Ry o, 1,4,3,4]

[N;1_>b.a 1a 4a_a _]
[Oa Ro1 — a Ngl °, 0a4a_a_]
[O,T — Ral e, Oa 4$ R _]

The items needed for recognition of a derived tree

(Init)

(Pred 2)1
(Scan 1)2
(
(

Pred 1)3

Pred 2)4

= (Pred 1)5

(Pred 2)6

(Pred 2)7

= (Pred 3)8+5

= (Scan 1)9

= (Comp 1)10+8+5

(Comp 2)11+7

(Scan 1)12

= (Comp 2)13+6

(Adj 0)14 + 10

= (Adj 2)15a + 5

= (Pred 2)15

= (Pred 3)16 + 3

= (Scan 1)17

(Comp 1)18 + 16+ 3
(Comp 2)19 + 15

= (Comp 2)20 + 4

— (Adj 0)21 + 18
(
(

Adj 2)22a + 3
= (Comp 3)22+1

intermediate result in the adjunctor steps to be discussed in Section 3.5.

3.1 Initializer

The initializer step predicts initial trees ¢ starting at position 0; see Figure 5.
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Init
Figure 5
The initialization
N N
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aMB o
h i f fj j+l
Scan 1
Figure 6
The first scanner step
tel

Init
0, T 5eR, 0,0, —, | (Init)

For the running example, item 1 in Figure 4 results from this step.

3.2 Scanner

The scanner steps try to shift the dot rightward in case the next node in line is labelled
with a terminal or €, which means the node is a leaf but not a foot. Figure 6 sketches
the situation with respect to the input positions mentioned in the step. The depicted
structure is part of at least one derived tree consistent with the input between positions
0 and j + 1, as explained earlier.

[ha N_)O‘.M/B$ ia j7 f17 f2]$
label(M) = ajt+1

Scan 1
[hy N> aMef, i, j+1, f1, f2) ( :
[h, N—)O[OM,B, i, ja fla fZ]a
label(M) =
abel(M) = e (Scan 2)

[h, N = aM e, i, j, f1, fa

For the running example in Figure 4, Scan 1 derives among others item 3 from
item 2, and item 13 from item 12.
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Figure 7
The three predictor steps

3.3 Predictor

The first predictor step predicts a fresh occurrence of an auxiliary tree ¢, indicated in
Figure 7. The second predicts a list of daughters « lower down in the tree, abstaining
from adjunction at the current node M. The third predicts the lower half of a tree in
which the present tree ¢t was adjoined.

[ha N_)O‘.Mﬂa ia j7 f17 f2]7
t € Adj(M)
[ja T—e Rta j’ ja ] _]

(Pred 1)

[ha N_)a.Mﬂa ia ja f17 fz]a
nil € Adj(M),
children(M) = ~

[ha M_>.7a ja ja R _]

(Pred 2)

[ja Ft — @ J—a ka ka ) _]a
[ha N_)a.Mﬂa ia ja f17 f2]7
t € Adj(M),
children(M) = ~
[ha M — e Y k7 k$ Bl _]

(Pred 3)

For the running example, Pred 1 derives item 4 from item 3 and item 6 from item 5.
Pred 2 derives among others item 5 from item 4. Pred 3 derives item 9 from items 8
and 5, and item 17 from items 16 and 3.

3.4 Completer

The first completer step completes recognition of the lower half of a tree in which an
auxiliary tree t was adjoined, and asserts recognition of the foot of ¢; see Figure 8. The
second and third completer steps complete recognition of a list of daughter nodes 7, and
initiate recognition of the list of nodes 3 to the right of the mother node of +.
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Comp 1
Figure 8

Two of the completer steps

[h7 M_>'Y., k’ l’ f{7 fé]’
t e Adj(M),

[ja Ft_>.J-a ka ka T _]7

[h, N = aeMp, i, j, f1, f2]
4, Ft — Lo k, I, Kk, I

(Comp 1)
[ha M_>'y.a ja ka fla f2]a
[ha N%a.Mﬂa ia ja ] _]a
M dominates foot of tree
: (Comp 2)
[ha N_)aM.ﬂa 1, ka fl’ f2]

[ha M_>7.$ ja ka‘ ] _]:
[ha N—ae M/B’ (295 f1$ f2]
. (Comp 3)
[ha N—)OAM.ﬂ, 2, ka fla f2]
See Figure 4 for use of these three steps in the running example.

3.5 Adjunctor

The adjunctor steps perform the actual recognition of an adjunction of an auxiliary tree
t in another tree at some node M. The first adjunctor step deals with the case that the
other tree is again adjoined in a third tree (the two darkly shaded areas in Figure 9) and
M dominates the foot node. The second adjunctor step deals with the case that either
the other tree is an initial tree, or has the foot elsewhere, i.e. not dominated by M.
The two respective cases of adjunction are realised by step Adj 0 plus step Adj 1,

and by step Adj O plus step Adj 2. The auxiliary step Adj 0 introduces items of a
somewhat different form than those considered up to now, viz. [M — v e, 4, k, fi, fi].
The interpretation is suggested in Figure 10: at M a tree has been adjoined. The adjoined
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h i Kf ff k h
Adj 1

Figure 9
The two adjunctor steps, implicitly combined with Adj O

tree and the lower half of the tree that M occurs in together generate the input from j
to k. The depicted structure is part of at least one derived tree consistent with the input
between positions 0 and k. In the case that M dominates a foot node, as suggested in
the figure, f; and f} have a value other than “—”.

[ja T_>Rt o, ja ka fla f2]7
[ha M_>7.a fla f2a f:{a fé]a
t € Adj(M)

. Adjo
M e 5,k Fr Fl (A4 0)
[M—)’yO, J» k, f{a fé]a

M dominates foot of tree ¢,

[ha Ft’ _>J—.a f{a féa f{a fé]a

h, N — MB, i, §, —, —

[k, ae ﬁ,?,J, » ] (Adj 1)
[h, N —aM e, i, k, fi, fs]

[M_>7.a ja ka _3 _]a

[h,N—>O{.MIB, Z’ J’ f{’ fé] (Adj 2)

[h7 'N_)aM.ﬂ’ i’ k7 f{’ fé]

For the running example, Adj O derives the intermediate item 15a from items 14
and 10 and from this and item 5, Adj 2 derives item 15. Similarly, Adj 0 and Adj 2
together derive item 22. There are no applications of Adj 1 in this example.

An alternative formulation of the adjunctor steps, without Adj 0, could be the
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Figure 10
An item [M_)'Y.y jy k1 .f{? fé]

following,.

[j’ T_)Rt o, ja ka fla fz]a
[ha M_)’Y.a fla f2a f{a fé]a
t e Adj(M),

M dominates foot of tree t',
[h, Ft’ _>L.’ f{a féa f{’ fé]’
[ha N—)OZOM,B, i’ ja ) _]

Adj 1’
[h, N—aM e, i, k, fi, f3] A )
[j, T—)Rt o, j, k, fla fZ]a
[h, M—)’Y., fl, f2a E) _]a
te Adj(M),
[h, N = aeMp, i, j, fi, fal (Adj 2)

[h’ N_>O{M.ﬂ’ i’ k’ f{’ fé]

That this formulation is equivalent to the original combination of the three steps
Adj 0, Adj 1 and Adj 2 can be argued in two stages.

FirSta the h in [ha M — Y e fla f2’ f{’ fé] or [ha M — v e fla f2a ] _]
occurring as second antecedent of Adj 1’ or Adj 2’, respectively, can be replaced by
a fresh variable h' without affecting the correctness of the algorithm. In particular, the
occurrence of h in the second antecedent of Adj 1’ is redundant because of the inclusion
of the fifth antecedent [h, Fyr — 1 e, fi, fi, fi, fi]. Note that conversely this fifth
antecedent is redundant with respect to the second antecedent, since existence of an item
[h, M — v e, f1, fa, fi, f5], such that M dominates the foot of a tree ¢, implies the
existence of an item [h, Fyy — L o, f{, fs5, fi, f4]- For further explanation, see Section 4.

Second, the first three antecedents of Adj 1° and Adj 2’ can be split off to obtain
Adj 0, Adj 1 and Adj 2, justified by principles that are the basis for optimization of
database queries (Ullman, 1982).

The rationale for the original formulation of the adjunction steps as opposed to the
alternative formulation by Adj 1° and Adj 2’ lie in considerations with respect to the
time complexity, as will be discussed in Section 5.

4 Properties

The first claim we make about the algorithm pertains to its correctness as a recognizer:

10
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Figure 11
Pred 1 preserves the invariant

Claim
After completion of the algorithm, the item [0, T — R; e, 0, n, —, —], for some ¢ € I,
is in the table if and only if the input is in the language described by the grammar.

Note that the input is in the language if and only if the input is the yield of a derived
tree.

The idea behind the proof of the “if” part is that for any derived tree constructed from
the grammar we can indicate a top-down and left-to-right tree traversal that is matched
by corresponding items that are computed by steps of the algorithm. The tree traversal
and the corresponding items are exemplified by the numbers 1, ..., 23 in Figure 4.

For the “only if” part, we can show for each step separately that the invariant
suggested in Figure 3 is preserved. To simplify the proof one can look only at the last
five fields of items [h, N — a e 3, 4, 4, f1, f2], h being irrelevant for the above claim.
We do however need h for the proof of the following claim:

Claim
The algorithm satisfies the correct-prefix property, provided the grammar is reduced.

A TAG is reduced if it does not contain any elementary trees that cannot be part of
any derived tree. (One reason why an auxiliary tree might not be a part of any derived
tree is that at some node it may have obligatory adjunction of itself, leading to “infinite
adjunction.”)

Again, the proof relies on the invariant sketched in Figure 3. The invariant can be
proven correct by verifying that if the items in the antecedents of some step satisfy the
invariant, then so does the item in the consequent.

A slight technical problem is caused by the obligatory adjunctions. The pertains to
the shaded areas in Figure 3, which represent not merely subtrees of elementary trees,
but subtrees of a derived tree, which means that at each node either adjunction or nil-
adjunction has been performed.

This issue arises when we prove that Pred 1 preserves the invariant. Figure 11(a) rep-
resents the interpretation of the first antecedent of this step, [h, N — o @ MG, 1, j, f1, f2];
without loss of generality we only consider the case that f; = f; = —. We may assume
that below M some subtree exists, and that at M itself either adjunction with auxiliary
tree t' or nil-adjunction has been applied; the figure shows the former case.

11
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JAN

j ff f, kO h

@

Figure 12
Adj 1 preserves the invariant

In order to justify the item from the consequent, [j, T — e Ry, j, 4, —, —], we
construct the tree in Figure 11(b), which is the same as that in Figure 11(a), except that
t' is replaced by auxiliary tree £, which has been traversed so that at all nodes either
adjunction or nil-adjunction has been applied, including the nodes introduced recursively
through adjunctions. Such a finite traversal must exist since the grammar is reduced.

For the other steps we do not need the assumption that the grammar is reduced in
order to prove that the invariant is preserved. For example, for Adj 1 we may reason as
follows. The item [M — ~ o, j, k, fi, f3], the first antecedent, informs us of the existence
of the structure in the shaded area of Figure 12(a). Similarly, the items [h, Fy — L
, fiy f5, fi, f3) and [h, N —» o e Mp, i, j, —, —] provide the shaded areas of
Figures 12(b) and 12(c). Note that in the case of the first or third item, we do not use
all the information that the item provides. In particular, that the structures are part of
a derived tree consistent with the input between positions 0 and k (in the case of (a)) or

12
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J (in the case of (c)) is not needed.

The combined information from these three items ensures the existence of the derived
tree depicted in Figure 12(d), which justifies the consequent of Adj 1, viz. [h, N — oM e
/Ba i, k, f{a fé]

The other steps can be proven to preserve the invariant in similar ways.

Now the second claim follows: if the input up to position j has been read resulting
in an item of the form [h, N — aa e 8, i, J, f1, fz], then there is a string y such that
ay ---a;y is in the language. This y is the concatenation of the yields of the subtrees
labelled I, II, and III in Figure 3.

The full proofs of the two claims above are straightforward but tedious. Furthermore,
our new algorithm is related to many existing recognition algorithms for TAGs (Vijay-
Shankar and Joshi, 1985; Schabes and Joshi, 1988; Lang, 1988; Vijay-Shanker and Weir,
1993; Schabes and Shieber, 1994; Schabes, 1994), some of which were published together
with proofs of correctness. Therefore including full proofs for our new algorithm does not
seem justified.

5 Complexity

The steps presented in pseudo-formal notation in Section 3 can easily be composed into
an actual algorithm (Shieber, Schabes, and Pereira, 1995). This can be done in such
a way that the order of the time-complexity is determined by the maximal number of
different combinations of antecedents per step. If we restrict ourselves to the order of the
time-complexity expressed in the length of the input, this means that the complexity is
given by O(n?), where p is the largest number of input positions in any step.

However, a better realization of the algorithm exists that allows us to exclude the
variables for input positions that occur only once in a step, which we will call irrelevant
input positions. This realization relies on the fact that an intermediate step

I

II
may be applied that reduces an item I with ¢ input positions to another item I’ with
¢ < q input positions, omitting those that are irrelevant. That reduced item I' then
takes the place of I in the antecedent of the actual step. This has a strong relationship
to optimization of database queries (Ullman, 1982).

For example, there are 9 variables in Comp 1, of which i, f1, fa2, f1, f4 are all irrele-

vant, since they occur only once in that step. An alternative formulation of this step is
therefore given by the combination of the following three steps:

[h’ M_)’Y.’ k7 l7 f]’.’ fé]

Omit 5-6
h, M =~ K L, 7,7 (Omit 5-6)

[h’ N—)OZOM,B, ia ja fla f2]

Omit 3-5-6
[h, N > aeMB, 7, j 7, 7 (Omi )

[ha M_>'Y.a ka la ?a ?]a

t e Adj(M),

[j’ Ft_>.J~a k’ ka ] _]a
[h, N> aeMB, ?, 4,7, 7

C 1°
[ja Ft_>J—.a ka la ka l] ( omp )

13
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The question marks indicate omitted input positions. Items containing question
marks are distinguished from items without them, and from items with question marks
in different fields.

In Comp 1’ there are now only 4 input positions left. The contribution of this step
to the overall time-complexity is therefore O(n*) rather than O(n?). The contribution of
Omit 5-6 and Omit 3-5-6 to the time complexity is O(n®).

For the entire algorithm, the maximum number of relevant input positions per step
is 6. Thereby, the complexity of left-to-right recognition for TAGs under the constraint
of the correct-prefix property is O(n®). There are five steps that contain 6 relevant input
positions, viz. Comp 2, Comp 3, Adj 0, Adj 1 and Adj 2.

In terms of the size of the grammar G, the complexity is O(|G|?), since at most 2
elementary trees are simultaneously considered in a single step. Note that in some steps
we address several parts of a single elementary tree, such as the two parts represented
by the items [h, F — L o, f1, f3, fi, f3) and [h, N > a e MG, i, j, —, —] in Adj 1.
However, the second of these items uniquely identifies the second field of the first item,
and therefore this pair of items amounts to only one factor of |G| in the time complexity.

The complexity of O(n®) that we have achieved depends on two ideas: first, the use
of Adj 0, Adj 1 and Adj 2 instead of Adj 1’ and Adj 2°, and second, the exclusion of
irrelevant variables above. Both are needed. The exclusion of irrelevant variables alone, in
combination with Adj 1’ and Adj 2’, leads to a complexity of O(n®). Without excluding
irrelevant variables, we obtain a complexity of O(n®) due to Comp 1, which uses 9 input
positions.

The question arises where the exact difference lies with the algorithm from Schabes
and Joshi (1988), and whether that algorithm could be improved to obtain the same time-
complexity as ours, using techniques similar to those discussed above. This question is
difficult to answer precisely because of the significant difference between the types of
item that are used in the respective algorithms. However, some general considerations
suggest that the algorithm from Schabes and Joshi (1988) is inherently more expensive.

First, the items from the new algorithm have 5 input positions, which implies that
storage of the parse table requires a space-complexity of O(n®). The items from the older
algorithm have effectively 6 input positions, which leads to a space-complexity of O(n®).

Second, the “Right Completor” from Schabes and Joshi (1988), which roughly corre-
sponds with our adjunctor steps, has 9 relevant input positions. This step can be straight-
forwardly broken up into smaller steps that each have fewer relevant input positions, but
it seems difficult to reduce the maximal number of positions to 6.

A final remark on Schabes and Joshi (1988) concerns the time-complexity in terms
of the size of the grammar that they report, viz. O(|G|?). This would be the same upper
bound as in the case of the new algorithm. However, the correct complexity seems to
be O(]G]?), since each item contains references to 2 nodes of the same elementary tree,
and the combination in “Right Completor” of two items entails the simultaneous use of
3 distinct nodes from the grammar.

6 Further Research

The algorithm in the present paper operates in a top-down manner, being very similar
to Earley’s algorithm (Earley, 1970), which is emphasized by the use of the “dotted”
items. As shown by Nederhof and Satta (1994), a family of parsing algorithms (viz. top-
down, left-corner, PLR, ELR, and LR parsing (Nederhof, 1994)) can be carried over to
head-driven parsing. An obvious question is whether such parsing techniques can also be
used to produce variants of left-to-right parsing for TAGs. Thus, one may conjecture, for
example, the existence of an LR-like parsing algorithm for arbitrary TAGs that operates
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in O(n®%) and that has the correct-prefix property.

Note that LR-like parsing algorithms were proposed by Schabes and Vijay-Shanker
(1990) and Nederhof (1998). However, for these algorithms the correct-prefix property is
not satisfied.

Development of advanced parsing algorithms for TAGs with the correct-prefix prop-
erty is not at all straightforward. In the case of context-free grammars, the additional
benefit of LR parsing, in comparison to, for example, top-down parsing, lies in the ability
to process multiple grammar rules simultaneously. If this is to be carried over to TAGs,
then one needs to decide in what way multiple elementary trees can be handled simul-
taneously. However, this is difficult to reconcile with the mechanism we used to ensure
the correct-prefix property, since enforcing the correct-prefix property relies on filtering
out hypotheses with respect to “left context,” and this requires detailed investigation
of that left context, which precludes treating multiple elementary trees simultaneously.
An exception may be the case when a TAG contains many, almost identical, elementary
trees. It is not clear whether this case occurs often in practice.

Therefore, further research is needed not only to precisely define advanced parsing
algorithms for TAGs with the correct-prefix property, but also to determine whether

there are any benefits for practical grammars.
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