REGULAR CLOSURE OF DETERMINISTIC LANGUAGES*

EBERHARD BERTSCH! AND MARK-JAN NEDERHOF*

Abstract. We recall the notion of regular closure of classes of languages. We present two
important results. The first one is that all languages which are in the regular closure of the class of
deterministic (context-free) languages can be recognized in linear time. This is a non-trivial result,
since this closure contains many inherently ambiguous languages.

The second one is that the class of deterministic languages is contained in the closure of the
class of deterministic languages with the prefix property, or stated in an equivalent way, all LR(k)
languages are in the regular closure of the class of LR(0) languages.

Key words. context-free languages, regular languages

AMS subject classifications. 68Q45, 68Q15

1. Introduction. In spite of important insights in applying sophisticated ma-
trix operations to recognition techniques [16], the known upper bound on the time
complexity of context-free language recognition still exceeds O(n?), measured in the
length of the input string. On the other hand, there are many languages whose time
complexity has been shown to be linear by means of specialized algorithms but which
are not recognized in linear time by general recognition algorithms. The frontier of
knowledge in this area is moved on by the results of the present article.

We introduce a special class of two-level automata. Their upper level is consti-
tuted by a (classical) finite automaton whose transitions are, however, not enabled
by a single terminal symbol but by any element of a given (lower level) language. All
languages at the lower level are assumed to have the restrictive LR(k)-property. Due
to the well-known correspondence between regular expressions and finite automata,
the new class of languages may thus be stated to result from the set of deterministic
(i.e. LR(k)) languages by recursively applying concatenation, union, and Kleene star
to given languages in that class.

The new class contains some notorious specimens such as {a™b™c"} U{a™b"c"},
an inherently ambiguous language [8]. As will be developed in the body of this paper,
a linear upper time bound on recognizing such languages can be established.

The results are related to previous work by the authors [13] on efficient recogni-
tion of language suffixes which had in turn been motivated by practical syntax error
detection (more precisely, by non-correcting error recovery [15]).

The article may be outlined as follows: After introducing the definitional frame-
work in Section 2, we show that all deterministic context-free languages can be con-
structed from prefix-free deterministic languages by regular operations (Section 3).
This follows from a detailed decomposition of pushdown computations into sequences
of moves that do not discard more than one element of the stack they started with.

*Portions of this paper appear in a modified form as “M.J. Nederhof and E. Bertsch, An innovative
finite state concept for recognition and parsing of context-free languages. In Andras Kornai (ed):
Eztended finite state models of language, Cambridge University Press, 1998”, an abstract of which
has appeared in Natural Language Engineering, 2(4), 1996, pp. 381-382.

fRuhr University, Faculty of Mathematics, D-44780 Bochum, Germany
(bertsch@lpi.ruhr-uni-bochum.de).

IDFKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany (nederhof@dfki.de). Research
by the second author was carried out within the framework of the Priority Programme Language
and Speech Technology (TST), while working at the Faculty of Arts of the University of Groningen.
The TST-Programme is sponsored by NWO (Dutch Organization for Scientific Research).

1

2 E. BERTSCH AND M. J. NEDERHOF

The most important proposition of Section 4 is that each deterministic pushdown
automaton can be transformed into an equivalent one which is “loop-free”. This
requires a fairly deep discussion of individual pushing and popping moves. In essence,
automata are changed in such a way that the stack contents after certain moves must
reflect the amount of processed input. Using tabulation, the transformed pushdown
automata can be simulated at all input positions in linear time. This result is part of
a proof of the fact that languages in the regular closure of the deterministic languages
can be recognized in linear time, by means of a two-level device, to be defined in
Section 5.

Section 6 deals with various syntheses and applications of the obtained results. In
particular, “on-line” and “off-line” variants of the two-level device are presented and
compared. The difference between these notions is rather similar to the one between
Earley’s recognition algorithm [7] and the Cocke-Kasami-Younger technique [8]. With
the latter approach, partial recognition results are collected without reference to their
left context.

Although the concept of parse tree is less immediate for the new kind of language
description than for ordinary grammars, we are able to sketch an efficient trans-
duction procedure yielding representations of the syntactic structure of given inputs
(Section 7).

Two applications are presented in Section 8. First we prove that suffix recognition
is possible in linear time. This new proof is much shorter than recently published
proofs of this fact. We then describe an application in pattern matching.

2. Notation. A finite automaton F is a 5-tuple (S, Q, gs, F, T'), where S and
Q are finite sets of input symbols and states, respectively; g, € Q is the initial state,
F C @ is the set of final states; the transition relation T is a subset of Q x S X Q.

An input by - - - b, € S*, is recognized by the finite automaton if there is a sequence
of states o, g1, - - - , ¢m such that go = ¢s, (qk—1,bk,qx) € T for 1 <k < m, and g, € F.
For a certain finite automaton F, the set of all such strings w is called the language
accepted by F, denoted L(F). The languages accepted by finite automata are called
the regular languages.

In the following, we describe a type of pushdown automaton without internal
states and with very simple kinds of transition. This is a departure from the stan-
dard literature (e.g. [9]), but considerably simplifies our definitions and proofs in the
remainder of the paper. That the generative capacity of this type of pushdown au-
tomaton is not affected with respect to any of the more traditional types can be
argued by the fact that every context-free language is accepted by a nondeterministic
LR recognizer of a form very similar to our type of pushdown automaton [14]. See
also [13].

Thus, we define a pushdown automaton (PDA) A to be a 5-tuple (X, A, X;nitials
F,T), where X, A and T are finite sets of input symbols, stack symbols and transitions,
respectively; X, .11 € A is the initial stack symbol, F' C A is the set of final stack
symbols.

We consider a fixed input string a; - - -a, € £*. A configuration of the automaton
is a pair (4,v) consisting of a stack § € A* and the remaining input v, which is a
suffix of the original input string a; - - - ay.

The initial configuration is of the form (Xjpitial, @1 - an), Where the stack is
formed by the initial stack symbol X;,;;isi- A final configuration is of the form
(6X, €), where the element on top of the stack is some final stack symbol X € F.

The transitions in 7" are of the form X ©» XY, where z = € or z = a, or of the

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 3

form XY 5 Z.

The application of such a transition §; > §5 is described as follows. If the top-
most symbols on the stack are d;, then these may be replaced by §s, provided either
z =€ or z = a and a is the first symbol of the remaining input. If z = a then
furthermore a is removed from the remaining input.

Formally, for a fixed PDA we define the binary relation - on configurations as
the least relation satisfying (661,v) - (082,v) if there is a transition &; +> &, and
(8081,av) I (682,v) if there is a transition &§; + J,.

In the case that we consider more than one PDA at the same time, we use symbols
> 4 and F 4 instead of > and I if these refer to one particular PDA A.

The recognition of a certain input v is obtained if starting from the initial con-
figuration for that input we can reach a final configuration by repeated application
of transitions, or, formally, if (X;ntia,v) H* (6X,€), with some § € A* and X € F,
where -* denotes the reflexive and transitive closure of - (and " denotes the tran-
sitive closure of). For a certain PDA A, the set of all such strings v which are
recognized is called the language accepted by A, denoted L(A). A PDA is called
deterministic if for all possible configurations at most one transition is applicable.
The languages accepted by deterministic PDAs (DPDAs) are called deterministic
languages.

We may restrict deterministic PDAs such that no transitions apply to final con-
figurations, by imposing X ¢ F' if there is a transition X s XY, and Y ¢ F if there
is a transition XY > Z. We call such a DPDA prefiz-free. The languages accepted by
such deterministic PDAs are obviously prefiz-free, which means that no string in the
language is a prefix of any other string in the language. Conversely, any prefix-free
deterministic language is accepted by some prefix-free DPDA, the proof being that in
a deterministic DPDA, all transitions of the form X v XY, X € F, and XY > Z,
Y € F, can be removed without consequence to the accepted language if this language
is prefix-free.

In compiler design, the deterministic languages are better known as LR(k) lan-
guages, and the prefix-free deterministic languages as LR(0) languages [9].

A prefix-free DPDA is in normal form if, for all input v, (X;nizal, v) F* (6X,€),
with X € F, implies § = ¢, and furthermore F' is a singleton { X4 }. Any prefix-free
DPDA can be put into normal form. (See [9, Theorem 5.1] for a proof of a related
result.) We define a normal PDA (NPDA) to be a prefix-free deterministic PDA in
normal form.

We define a subrelation =" of T as: (§,vw) =T (§6’,w) if and only if (6, vw) =
(86,2120 zmw) F (881,22 - zmw) F ... & (86m,w) = (68',w), for some m > 1,
where |6x] > 0 for all k£, 1 < k < m. Informally, we have (6,vw) 1 (6',w) if
configuration (§6’,w) can be reached from (4, vw) without the bottom-most part §
of the intermediate stacks being affected by any of the transitions; furthermore, at
least one element is pushed on top of §. Note that (§;X,vw) T (61Xd’,w) implies
(62X, vw') ET (62X d',w') for any Jy and any w’, since the transitions do not address
the part of the stack below X, nor read the input following v.

3. Meta-deterministic languages. In this section we define a new sub-class
of the context-free languages, which results from combining deterministic languages
by the operations used to specify regular languages.

We first define the concept of regular closure of a class of languages.® Let £ be a

1 This notion was called rational closure in [3].

4 E. BERTSCH AND M. J. NEDERHOF

class of languages. The regular closure of £, denoted C(L), is defined as the smallest
class of languages such that:
(i) 0 € C(£),

(ii) if € L then Il € C(L),

(lll) if li,1 € C(L) then [115 € C(L‘,),

(iv) if l3,lp € C(L) then I, Ul, € C(L), and

(v) ifl € C(L) then I* € C(L).
Note that a language in C'(£) may be described by a regular expression over symbols
representing languages in L.

Let D denote the class of deterministic languages. Then the class of meta-
deterministic languages is defined to be its regular closure, C(D). This class is ob-
viously a subset of the class of context-free languages, since the class of context-free
languages is closed under concatenation, union and Kleene star, and it is a proper
subset, since, for example, the context-free language {ww® | w € {a,b}*} is not in
C(D). (w® denotes the mirror image of w.)

Finite automata constitute a computational representation for regular languages;
DPDAs constitute a computational representation for deterministic languages. By
combining these two mechanisms we obtain the meta-deterministic automata, which
constitute a computational representation for the meta-deterministic languages.

Formally, a meta-deterministic automaton M is a triple (F, A, u), where F =
(S,Q,qs,F,T) is a finite automaton, A is a finite set of deterministic PDAs with
identical alphabets ¥, and p is a mapping from S to A.

The language accepted by such a device is composed of languages accepted by the
DPDAs in A according to the transitions of the finite automaton F. Formally, a string
v is recognized by automaton M if there is some string b; ---b,,, € S*, a sequence of
PDAs A;, As, ..., Ay, € A, and a sequence of strings v, . ..,v,, € X* such that

(i) by ---bm € L(F),

(ii) Ak = /,l,(bk), for 1 < k < m,
(iii) vg € L(Ag), for 1 <k <m, and
(iv) v =v1 - U

The set of all strings recognized by automaton M is called the language accepted
by M, denoted L(M).

ExAMPLE 3.1. As a simple example of a language accepted by a meta-determin-
istic automaton, consider L = Ly U Ly, where L; = {a™b"c" | n,m € {0,1,...}} and
Ly = {a™b™c™ | n,m € {0,1,...}}. It is well-established that L is not a deterministic
language [9, Example 10.1]. However, it is the union of two languages L; and Ly, which
are by themselves deterministic. Therefore, L is accepted by a meta-deterministic
automaton M which uses two DPDAs A; and A;, accepting L; and Lo, respectively.

We may for example define M as (F,{A;,A2},p) with F = (S,Q,¢s, F,T),
where

1) S = {bl,bz},

(-1) Q = {Qsan},

(iii) F = {qr},

(iV T= {(qsa blan)a (an b2an)}a and

(v) p(b1) = A; and p(b2) = As.
A graphical representation for M is given in Figure 3.1. States g € @) are represented
by vertices labelled by g, triples (g, b,p) € T by arrows from ¢ to p labelled by u(b).
O

That the meta-deterministic automata precisely accept the meta-deterministic

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 5

A

as @ ay

.

F1G. 3.1. A meta-deterministic automaton.

languages is reflected by the following equation.
C(D) = {L(M) | M is a meta-deterministic automaton}

This equation straightforwardly follows from the equivalence of finite automata and
regular expressions, and the equivalence of deterministic pushdown automata and
deterministic languages.

Let A denote the class of prefix-free deterministic languages. In the same vein,
we have

CN) ={L(M) | M = (F, A, p) is a meta-deterministic automaton where
A is a set of normal PDAs}

In the sequel, we set out to prove a number of properties of languages in C(D),
represented by their meta-deterministic automata (i.e. their corresponding recognition
devices). The DPDAs in an arbitrary such device cause some technical difficulties
which may be avoided if we restrict ourselves to meta-deterministic automata which
use only normal PDAs, as opposed to arbitrary deterministic PDAs. Fortunately, this
restriction does not reduce the class of languages that can be described, or in other
words, C(N') = C(D). We prove this equality below.

Since C(N) C C(D) is vacuously true, it is sufficient to argue that D C C(N),
from which C(D) C C(C(NV)) = C(N) follows using the closure properties of C, in
particular monotonicity and idempotence.

We prove that D C C(N') by showing how for each DPDA A a meta-deterministic
automaton p(A) = (F, A, 1) may be constructed such that A consists only of prefix-
free deterministic PDAs, and L(p(A)) = L(.A). This construction is given by:

CONSTRUCTION 1 (DPDA to meta-deterministic automaton). Let A = (X, A,
Xinitial, 4, Ta) be a deterministic PDA. Construct the meta-deterministic automa-
ton p(.A) = (‘7:’ Aa /‘l')a with F = (Sa Qa ds, F}'a T.’F)a where

(i) S = {bX,Y | X,Y € A} U{CX’Y | X, Y € A},

@ Q2.
(iii) gs = Xinitials
(iv) Fr = Fy,

(V) Tr = {(X, bxiy,Y) | X,Y € A} U {(X, CX,y,Y) | XY € A}
The set A consists of (prefix-free deterministic) PDAs Bx y and Cx,y, for all X,Y €
A, defined as follows.
Each By y is defined to be (X, {X*™,Y°*}, X** {Y°%} T), where X*" and Y °**
are fresh symbols, and where the transitions in 7" are

X" Spey XMYou forall X ©y XY, some z

6 E. BERTSCH AND M. J. NEDERHOF

Each Cx,y is defined to be (X,A U {X™, Y°u} X" {Y°“} T), where X" and
Y °ut are fresh symbols, and where the transitions in 7" are those in T4 plus the extra
transitions

Xm Be,, X™"Z forall X 5y XZ, some z and Z
X7 Sexy YO forall XZ54Y, some Z

The function © maps the symbols bx y to automata Bx y and the symbols cx v
to automata Cxy.

Each automaton Bx y mimics a single transition of A of the form X N 4 XY.
Formally, Bx,y recognizes a string z if and only if (X, z) F 4 (XY, ¢).

Each automaton Cx y mimics a computation of A that replaces stack element X
by stack element Y. Formally, Cx,y recognizes a string v if and only if (X,v) ¥}
(XZ,e) Fa (Y,e), for some Z € A.

For the proof, consider that recognition of v by Cx y means that (X, v) Izé—x,v

(X™Z,€) Fexy (Y, €), some Z, due to the nature of its transitions. This is equiv-
alent to (X™,2) Fey, (X"W,e), (W,v') Fexy (Z56), (X™"Z,€) Fexy (YU €),
and v = 20/, some 2, v' and W, due to the definition of =". This is again equiv-
alent to (X,2) Fa (XW,e), (W,v") % (Z,¢), (XZ,€) Fa (Y,€), and v = 2v', by
virtue of the construction of Cx y from A. Finally, this conjunction is equivalent to
(X,v) EL (XZ,€) b4 (Yse).

Note that the languages recognized by some of the Bx y and Cxy may be the
empty set.

That all Bx,y and Cx,y are deterministic follows from the fact that by assumption
A is deterministic. That all Bx y and Cx,y are prefix-free follows from the fact that
no transitions apply when a final stack symbol is on top of the stack.

To prove that L(p(.A)) = L(A) we have to show that

1. any sequence of transitions of the form (X;p;sia1, 01+ an) F% (0X,€), with
X € F4, can be decomposed into a list of m sequences of transitions (X ,ﬁ"_l, V) F4s
(0 X2ut€), 1 < k < m, Xog = Xipitiqg and X,, = X, using a list of m automata
Ai,..., A € A that recognize strings vy,...,v,, respectively, where a;---a, =
v1 -+ vy, and such that the string by ---b,, with u(by) = Ag, for 1 < k < m, is
recognized by F.

2. Conversely, if we have a string b; - - - b, recognized by F, then we must show
that any list of m sequences of transitions (X;™ ,vg) F%, (0¥, €) for automata
A = p(br), 1 < k < m, can be composed into a single sequence (Xo,v1-:-vpm) F¥
(5Ym, E), with Xo = Xim'tial and Y,, € F_A, 'llSiIlg Xy = Yk, 1<k<m.

The intuition behind decomposing a sequence of transitions for DPDA A is con-
veyed by Figure 3.2. We see the development of the stack, of which the height alter-
nately increases and decreases during performance of the transitions. We assume the
input is recognized at t9, where some final stack symbol Xy is on top of the stack. We
now locate the point in time t8 where the stack was of the same height for the last
time before t9. Assume that at t8 some stack symbol Xg is on top of the stack. The
sequence of transitions from t8 to t9 is of the form (Xs,v) =4 (XsZ,€) Fa (Xo,€), for
some Z € A, which means that the stack development can be mimicked by the PDA
Cx,,x,- In Figure 3.2 the step between t7 and t8 is of the form (X7, 2) F4 (X7 X3, €),
which is mimicked by the PDA Bx, x,-

This can be continued until the complete sequence of transitions has been decom-
posed into a list of 9 sequences which are mimicked by PDAs of the form Bx, , x, or
Cx,_.,x,- The corresponding string b, - - - bg, where by = bx,_, x, or by = cx,_,,x4»

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 7

stack height

{0 t1 2 13 t4 15 6 (718 t9

time

Fi1c. 3.2. A stack development of a DPDA A on input vi ---vg.

1 <k <9, then allows state Xg € Fr = F 4 to be reached from state g,, or in other
words, this string is recognized by finite automaton F.

The proof of the general case uses induction on t. We show that if we have a
sequence of transitions

(Xo,zlzz ot 'Zt) Fa (51X1,Z2 : "Zt) Fa...Fa (5t—1Xt—1,Zt) Fa (5tXt,€)

then for some m there are
(i) alist Yo, ..., Y, € A, with Yy = X, and V;, = X,
(ii) alist by,..., by, € S, such that (Yp,b1,Y1), (Y1,02,Y2), -, (Yim—1,bm,¥Ym) €
T, and
(iii) a list vy,...,vm € *, such that vy - - - vy, = 21 - - - 2; and vy is recognized by
PDA u(by), for 1 < k < m.

The case that ¢ = 0 can trivially be solved with m = 0; for ¢ > 0 we distinguish
between two cases:

(i) |0t—1Xt—1| < |6:X¢|, or in other words, the last step used a pushing transi-
tion, or

(ii) |6¢—1X¢—1| > |6:X¢|, or in other words, the last step used a popping transi-
tion.

In the first case we may assume by definition that the automaton Bx,_, x, rec-
ognizes z;. The induction hypothesis for ¢ — 1, applied to (Xo,z122---2—1) F)
(6¢—1X¢—1,€), provides the required 3 lists with some m—1 instead of m. We set Y,,, =
X4, by, = bx,_,.x, (so that u(by) = Bx,_,,x,), Ym = 2, which gives us the required
3 lists for ¢. Note that (Xo,zl . 'Zt—l) l_.tl (5t—1Xt—1,€) and (Xo,zl . -zt_lzt) |‘j4
(6¢—1X¢_1,2¢) are equivalent.

In the second case we may assume that there is a maximal ¢ < ¢ such that
|0y Xr| = |0:X¢|- Note that then |6y Xyn| > |0:X:|, for ¢ < ¢ < ¢, which means
we have (0 Xy, 2p41 -+ 2t) |:ji (6p Xy X¢—1,€) Fa (8¢ Xy, €), which is equivalent
to (Xp,ze41-+-2t) E4 (X Xi—1,€) Fa (Xi,€). By definition we get that the au-
tomaton Cx,, x, recognizes zy ;- --2;. The induction hypothesis for ¢, applied to
(Xo,2122 -+~ 2¢) % (8¢ X, €), provides the required 3 lists with some m — 1 instead
of m. We set Y, = Xy, by, = cx,,,x, (so that u(by) = Cx,, x,), Um = 241" 2,
which gives us the required 3 lists for ¢. Note that (Xo, 21 ---2¢) F% (64 Xy, €) and
(Xo, 21+ -2pzpq1- - 2e) Fly (09 Xyr, 2041 - - -) are equivalent.

We now give a proof of the converse, viz. that if we have a string b; - - - b, € L(F),

8 E. BERTSCH AND M. J. NEDERHOF

then a list of m sequences of transitions for automata Ay, = u(by) recognizing strings
vk, 1 < k < m, can be composed into a single sequence for A recognizing vy - - - vp,.

Because of the definition of p(.A), this list of m sequences consists of sequences
of the form (X", vg) Fos (0, X2 €), k = 1,2,...,m, where §;, = X" if A is
of the form Bx,_, x,., and 6, = € if A is of the form Cx,_, x,. The existence of
these sequences implies the existence of sequences (Xjx_1,vx) F¥% (0xXk,€), where
0k = Xp—1 if Ay, is of the form Bx, , x,, and d; = € if Ay is of the form Cx,_, x,.

We can place these m sequences after one another to obtain (Xo,v1 - vm) F
(01 0mXm,€), making use of the fact that (Xp_i,vx) K% (6xXk,€) implies
(01 0k 1 Xk 1,V6Vk 41 V) Fly (61--- 0k 10k X, Vky1 - k). Since by---by €
L(F) and therefore Xo = qs = X;pitiar and X,, € Fr = F 4, this sequence recog-
nizes vq - - - Vg.

From the above we conclude

THEOREM 3.2. C(N) = C(D)

This theorem can be paraphrased as “The class of LR(k) languages is contained
in the regular closure of the class of LR(0) languages”.2

ExXAMPLE 3.3. We demonstrate Construction 1 by means of an example. Con-
sider the language Lpy = {wcw® | w € {a,b}*}, where wF denotes the mirror image
of string w. This language consists of palindromes in which a symbol ¢ occurs as the
center of each palindrome.

Now consider the language Lp,opg = {v | Jw[vw € Lpgy|}, consisting of all pre-
fixes of palindromes. This language, which is obviously not prefix-free, is accepted by
the PDA Ap,epq = (£,A,1,F,T), with £ = {a,b,c}, A = {I,A,B,C,A, A, B,B},
F ={I,A,B,C}, and T consists of the following transitions:

X & XA for X €{I,A B}
X & XB forXe{l A B}
X % XC for X € {I,A, B}
C = CA
CA % A
AA S C
c & CB
CB % B
BB & C

The automaton operates by pushing each a or b it reads onto the stack in the form of A
or B, until it reads ¢, and then the symbols read are matched against the occurrences
of A and B on the stack. Note that F' is {I, A, B, C'}, which means that a recognized
string may be the prefix of a palindrome instead of being a palindrome itself.

The upper level of the meta-deterministic automaton p(Appepy;) is shown in Fig-
ure 3.3. (Automata accepting the empty language have been omitted from this repre-
sentation, as well as vertices which after this omission do not occur on any path from
I to any other final state.)

2Not all definitions of LR(0) in the literature are equivalent. E.g. [8] allows some LR(0) languages
that are not prefix-free. Theorem 13.3.1 of that book implies that the alternative class of LR(0)
languages is contained in the regular closure of the class of what we call LR(0) languages.

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 9

Ba,c

Cac

C
Cs,c
Bg,c
Br,c

F1G. 3.3. Meta-deterministic automaton p(Appepal)-

The automaton B4 p accepts the language {b}, since the only pushing transition
of Ap,epq which places B on top of A reads b. As another example of a lower level
automaton, automaton C4,c accepts the language {wa | w € Lpy}, since (4,v) X
(AZ,€) F4 (C,€), some Z, only holds for v of the form wa, with w € Lp,;; for example
(A,bcba) 4 (AB,cha) 4 (ABC,ba) -4 (ABCB,a) -4 (ABB,a) k4 (AC,a) F4
(ACZ, 6) }_.A (AZ, 6) l_.A (C, 6).

Note that Construction 1 together with a mechanical transformation from finite
automata to regular expressions (e.g. [9, Theorem 2.4]) gives us a method for obtaining
a regular expression over LR(0) languages, given an LR(k) language. For example,

the equation L p,.pg; = {a,b}*(eULp,) may be derived from investigating Figure 3.3.
a

4. Recognizing fragments of a string. In this section we investigate the fol-
lowing problem. Given an input string a; - - - a,, and an NPDA A4, find all pairs of input
positions (j,) such that substring a;; ---a; is recognized by Aj; or in other words,
such that (Xjpitial, @jt1---a:) F* (Xfnals €)- It will be proved that this problem can
be solved in linear time.

For technical reasons we have to assume that the stack always consists of at
least two elements. This is accomplished by assuming that a fresh stack symbol L
occurs below the bottom of the actual stack, and by assuming that the actual initial
configuration is created by an imaginary extra step (L, v) F (L X;nita1,v)-

The original problem stated above is now generalized to finding all 4-tuples
(X,5,Y,4), with X, Y € A and 0 < j <4 < n, such that (X,aj11---a;) ET (XY,e).
In words, this condition states that if a stack has an element labelled X on top then
the pushdown automaton can, by reading the input between j and ¢ and without ever
popping X, obtain a stack with one more element, labelled Y, which is on top of X.
Such 4-tuples are henceforth called items.

The items are computed by a dynamic programming algorithm based on work
from [1, 11, 6, 12].

ALGORITHM 1 (Dynamic programming). Consider an NPDA and an input string
ai-:Qn.

1. Let the set U be {(L,%, Xinitiar;2) | 0 < i < n}.

10 E. BERTSCH AND M. J. NEDERHOF

2. Perform one of the following two steps as long as one of them is applicable.
push 1. Choose a pair, not considered before, consisting of a transition X +» XY
and an input position j, such that z = eV 2z = a;j11.
2. If z=c then let i = j, else let : = j + 1.
Add item (X, j,Y,4) to U.
pop 1. Choose a triple, not considered before, consisting of a transition XY + Z
and items (W, h, X, j),(X,7,Y,i) € U.
2. Add item (W, h, Z,1) to U.
3. Finally, define the set V to be {(4,%) | (L, J, Xfina1,%) € U}.

It can be proved [1, 11] that Algorithm 1 eventually adds an item (X, 4,Y, ¢) to U if
and only if (X,a;41---a;) =1 (XY, €). Specifically, (L, j, Xfinal, 1) € U is equivalent
to (L, ajy1---ai) b (L Xsnitialr @j+1 -+~ @i) H* (LX fnar, €). Therefore, the existence of
such an item (L, j, Xfnqi,4) € U, or equivalently, the existence of (j,7) € V, indicates
that substring a;1 - - - a; is recognized by A, which solves the original problem stated
at the beginning of this section.

If no restrictions apply, the number of 4-tuples computed in &/ can be quadratic
in the length of the input. The central observation is this: It is possible that items
(X,J,Y,1) € U are added for several (possibly linearly many) ¢, with fixed X, j and Y.
This may happen if (L,ap---aj---a;,) F* (6X,aj41--a;,,) F" (6XY,a5,41---a;,,)
and (Y, ai41---ai,) F* (Y0541 -0 03,) 7 o B (Yai,iq100ai,) BT (Ye),
which leads to m items (X,7,Y,41), ..., (X,5,Y,%m). Such a situation can in the
most trivial case be caused by a pair of transitions X > XY and XY 5 X; the
general case is more complex however.

On the other hand, whenever it can be established that for all X, 7 and Y there is
at most one ¢ with (X, j,Y, %) being constructed, then the number of entries computed
in U/ is linear in the length of the input string, and we get a linear time bound by the
reasoning presented at the end of this section.

The following definition identifies the intermediate objective for obtaining a linear
complexity. We define a PDA to be loop-free if (X,v) -1 (X, €) does not hold for any
X and v. The intuition is that reading some input must be reflected by a change in
the stack.

Our solution to linear-time recognition for automata which are not loop-free is the
following: We define a language-preserving transformation from an arbitrary NDPA to
a loop-free NDPA. (A similar transformation for the purpose of recognizing suffixes of
strings in linear time was described in [13].) Intuitively, this is done by pushing extra
elements X on the stack so that we have (X, v) F* (XX, €) instead of (X,v) F+ (X, ¢),
where X is a special stack symbol to be defined shortly.

As a first step we remark that for a normal PDA we can divide the stack symbols
into two sets PUSH and POP, defined by

b

PUSH = {X | there is a transition X +>> XY}
POP = {Y | there is a transition XY v Z} U {Xfnq}

It is straightforward to see that determinism of the PDA requires that PUSH and
POP are disjoint. We may further assume that each stack symbol belongs to either
PUSH or POP, provided we assume that the PDA is reduced, meaning that there are
no transitions or stack symbols which are useless for obtaining the final configuration
from an initial configuration.?

3Note that each PDA may be turned into a reduced PDA accepting the same language by just

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 11

CONSTRUCTION 2 (NPDA transformation). Consider an NPDA A = (X, A,
Xinitials {X final}, T) of which the set of stack symbols A is partitioned into PUSH
and POP, as explained above. From this NPDA a new PDA 7(A) = (X,A', X ... 1,
{X}inal},T’) is constructed, X; ... and X}inal being fresh symbols, where A’ =

Au{X: X)I‘inal} U{X | X € PUSH}, X being fresh symbols, and the transitions

initial’
in T' are given by

XY pu Z for XY v 4 Z with Z € POP
XY S, Z for XY 54 Z with Z € PUSH
X ’i)T(A) XX for X € PUSH

XY S, Y for X € PUSH,Y € POP

X Sy XY for X Hu XY

oy € €
and the two transitions X =>4y Xi i1 Xinitiat and XG0 X gnal —r(a) X],‘inal'

To provide an intuitive explanation of this construction, we observe that the
unwanted sequences of transitions have the property of replacing a push symbol X
by itself without affecting the part of the stack under it in the course of doing so.
The transformation has the effect that instead of X, a padded form of it consisting
of two symbols XX is produced by the corresponding new transition sequence. So
for example, a sequence (X,v1v2) T (XY1,v2) b (X,v2) ET (XY3,¢€) F (X,€) in
the original automaton, is turned into a sequence (X,v1vs) =1 (XY1,v2) F (X, v2) F
(XX,v2) T (XXYs,¢e) F (X X,€) F (X XX, e¢) in the transformed automaton.

The padding has to be gotten rid of later on, viz. when some genuine pop symbol
is on top of it. We could for example obtain (X XX,z2)F (X XXY,¢e) - (X XZ,¢) F
(XZ,e) - (Z,€), where the original automaton would do (X,z2) F (XY,¢) F (Z,¢),
assuming Z € POP.

ExaMPLE 4.1. We demonstrate this construction further by means of a more
elaborate example.

Consider the NPDA A = ({a,b},{X,Y, Z, P}, X,{P},T), where T contains the
transitions given in the left half of Figure 4.1. It is clear that A is not loop-free:
we have (X,a) F (XY,€) b (X,e). If the input a; ---a, to Algorithm 1 is a™, then
(L,aj41---a;) ET (LX,¢€) and therefore (L,j,X,i) € U, for 0 < j < i < n. This
explains why the time complexity is quadratic.

We divide the stack symbols into PUSH = {X} and POP = {Y,Z,P}. Of
the transformed automaton 7(A) = ({a,b},{X,Y,Z,P,X',P', X}, X',{P'},T"), the
transitions are given in the right half of Figure 4.1. That the complexity of Algorithm 1
is no longer quadratic but linear for the transformed PDA is proved in the remainder
of this section.

The recognition of aab by A and 7(A) is compared in Figure 4.2. O

We now set out to prove that 7 has the required properties.

LEMMA 4.2. If A is an NPDA, then 7(A) is an NPDA.

Proof.

To check the NPDA property, we must establish that 7(.A) is deterministic, prefix-
free, and in normal form. We discuss these points in sequence.

Determinism in the case of X .. . is obvious since only one transition applies.
This also holds for X4, for which there were no applicable transitions in A due to

omitting the useless transitions.

12 E. BERTSCH AND M. J. NEDERHOF

A 7(A)
X S XX
X & XY|XxX S XYy
Xy © X |Xy oS X
X S XX
x & xz|x & xz
XZ S P |XZ S P
XP +5 P (Some other transitions of this
form have been omitted,
because they are useless.)
X'P & P

Fi1G. 4.1. The transformation T applied to a NPDA A.

A 7(A)
stack | input stack input
X aab || X' aab
X'X aab
XY ab | X'XY ab
X ab || X'X ab
X'XX ab
XY bl X' XXY b
X bi| X'XX b
X'X XX b
XZ X'XXXZ
P X'XXP
X'XP
X'P
PI

F1G. 4.2. The sequences of configurations recognizing aab, using A and T(A).

it being prefix-free by assumption. No transitions apply when X% . is on top of the
stack.

For each symbol X on top of the stack exactly one pushing transition may be
applied, while for each pair of symbols XY on top of the stack, with Y € POP,
exactly one popping transition may be applied.

The other cases of XY on top with pop symbol Y produce either Z or Z deter-
ministically, depending on whether Z is a push or pop symbol.

For push symbols X € A on top of the stack, the unique push move also available
in A is the only possibility.

Prefix-freeness follows from the fact that no transitions with a final stack symbol
on top of the stack are possible. On the same line, the property of being in normal
form means that the unique final stack symbol can only be at the bottom. This
is guaranteed by producing it only from the initial stack symbol which is itself not
produced by any transition. d

LeEMMA 4.3. If A is an NPDA, then A and 7(.A) accept the same language.

Proof. We first prove that for all stack symbols Xi,...,X,, from A we have

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 13

(Xinitialav) l_jtt (Xl e Xm, 6) lf and only lf (Xinitialav) l_:(.A) (aleag e ame, 6)
where for all ¢, 1 < ¢ <m, we have o; =Y;1Y;2--Y;,, for some r; > 0.
“only if””’: The proof is given by induction on the number of steps used in

(Xinitial, v) Fa (X1--- X, €).

1. If zero steps are involved then we have (X;pitial,€) F% (Xinitials €)- By defi-
nition we have also (Xinitial; €) 74y (Xinitial, €)-

2. Suppose that the last step is a push, then we have (X;pisa,v) Fi
(X1 Xm_1,2) Fa (X1---Xpm,€), where the last transition used is X,,_; >4
Xm—1Xm. The induction hypothesis informs us that (X;uita1,v) Fr (a1 X109 -+

Qm-1Xm_1,2). Because also X 1 Yr(4) Xm_1Xm we have (Xpitia1,v) Fra
(a1 X109 am-1Xm—1Xm, €)-

3. Suppose that the last step is a pop, then we have (Xjnitial,v)
Foy (X1 Xmo1 X, Xmt1,€) Fa (X1 -+ Xpm—1Xpm, €), where the last transition used
is X!, X;ni1 >4 Xpm- The induction hypothesis informs us that (X;pnitia,v) e
(01 X1 - M X! ami1Xmai1,€), With appy1 = Yy ---Y,, for some r > 0. We first
have (aleaz ce amX;n?l e ?er—l-la 6) I_T(.A) (a1X1a2 s aerln?l tee K‘lem+17
E) l_-r(A) ce l_-r(.A) (aleaz ce amX;nXm+1, E), using the transitions ?ij—Fl li).,-(_A)
Xm+1, 1 < j < r, which exist since X,,11 € POP. Subsequently, there are two
possibilities:

(i) If X,, € PUSH then X X, 11 éT(A) X,, and (a1 X102 - 0 X! Xpni1,€)
Fra) (aX1az - amXm,€) Fra) (@1X102 - 0 XmXm,€). In the last configura-

tion, a,, X is a sequence of “barred” symbols as desired.

(ii) If X, € POP then X} Xpmi1 ~rr(4) Xm and (a1 X102 am X}, Ximyi1,€)
l_-r(.A) (a1X1a2 s Oéme, 6).

“if”: Analogously to the “only if” part, the proof is given by induction on the
number of steps used in (X;ptiq1, V) Fra (a1 X102« - - @mXom, €). The following cases
are possible.

1. Suppose the last transition used was X,, |i>T(A) XX, then we have
(Xinitial>) I—:‘_(A) (a1 X1az - X 105, XY€) bFray (1 Xiap--- Xpmo1al, Xy €)
Fra) (aX10z - Xm—100, X;n Xm, €), Where am = o, X;m, and the second-last tran-
sition used was XY @T(A) X, for some X and Y. The induction hypothesis informs
us that (Xinitiar,v) F% (X1 Xm—1XY,€). From XY 5,4y X, we conclude the
existence of XY +3 4 X,,,. Therefore (X1 -+ X, 1XY,€) Fa (X1 X 1Xpm, €)-

2. Suppose the last transition used was X X,, @T(A) Xm, then we have (X;n;t501,

v) l—:_(A) (a1 X1+ Ay Xy Xom, €) Fry (1 Xiaz - @mXm,€). Since @y, Xy, is a
sequence of barred symbols, the induction hypothesis informs us that (X541, v) Fy
(X1 Xm,€).

3. Suppose the last transition used was XY |i>T(A) Xm for X and Y from
A. Then we have (Xinitialav) F:(A) (O£1X1a2 e Xm_lamXY, 6) l_‘r(A) (041X10£2 e
Xm-10mXm, €). From the induction hypothesis, (X;nitial, v) F¥ (X1 Xm—1XY€).
The transition XY 54 X,, is identically available in A, thus providing the desired
sequence of transitions.

4. The argument for a transition X ¥, (4) XY, X € A, is analogous to case 3
because again the transition is also available in the old automaton.

From the definition of 7 it is clear that (X, v) F7(4) (X }inal’ €) is only possible

if (Xinitial> V) F (Xfinais €)- From the “if” part we conclude that (X;pn;siar,v) Fra

14 E. BERTSCH AND M. J. NEDERHOF

(Xﬁnala €) implies (Xinitial, v) Fy (Xﬁnala €)-

From the “only if” part we conclude that (Xpitial;v) 7 (Xfnal,€) implies
(Xinitiat> ©) Fr(4) Kinitiar Xmitial>) 7 4) Kinitiar X finat> €) Fra) (Xinitiar X finats €)
Fra) (leinal’ €), for some a = Y; - -+ Y;, using the transitions Y; X 01 ~r(4) Xfinal>
1 <j <r, which exist since Xp,, € POP.

This proves the equivalence of the two accepted languages. a

LEMMA 4.4. If A is an NPDA, then 7(A) is loop-free.

Proof. Consider the set of stack symbols of 7(.A). We define a partial ordering <
on these symbols as the least ordering satisfying:

X)I‘inal < {'zm'tial
X <Y forall X € POP,Y € PUSH
Y < Z forallY,Z c PUSH
X < Z forall X € POP,Z € PUSH

Note that this relation is transitive and irreflexive. Below we prove that if (X, v) l—j(4)
(Z,€) then Z < X. This is sufficient to prove that 7(A) is loop-free, since < is
irreflexive.

Consider (X, v) Izj_'(A) (XY,€) Fr(a) (Z,€), using some transition XY 5, (4) Z
for the last step. It is obvious that X ¢ POP since otherwise Y could not have been
on top of X. There are three remaining cases:

(i) f X = X ..., then Z must be le'inal' Therefore Z < X.

(ii) If X € PUSH then either Z € POP or Z is of the form Z’, with Z’ € PUSH,
according to the definition of 7. Therefore in either case Z < X.

(iii) If X is of the form X', with X’ € PUSH, then the transition XY ni}.,.(A) Z

must be of the form X'Y +5,(4) Y, with Y = Z € POP. Therefore Z < X.
Since each sequence (X,v) l—j(A) (Z,€) can be split up into smaller sequences (in
this case at most two, leading from a symbol in PUSH to a barred symbol and then
to a symbol in POP) of the form (X,v) j(A) (XY,€) Fr(a) (Z,€), and since < is
transitive, the required result follows. d

‘We now return to the issue of the time complexity of Algorithm 1. We start with
a minor result.

LEMMA 4.5. Let U be computed using Algorithm 1, for a loop-free NPDA and
certain input. There can be at most one item of the form (X, j,Y,i) € U for each X,
Y and j.

Proof. The existence of an item (X, j,Y,i) € U requires that (X,a;41---a;) E+
(XY,e). Because the NPDA is (by definition) deterministic, the existence of two
items (X,7,Y,i1),(X,5,Y,i2) € U (say i1 < i) requires that (X,aji1---a;y) ET
(XY,¢) and (Y,a;,41---a;,) 7 (Y,€), because of the definition of . However,
(Y,ai,+1---a;,) FT (Y, €) is not possible if the NPDA is loop-free. a

THEOREM 4.6. For a loop-free NPDA, Algorithm 1 has linear time demand,
measured in the length of the input.

Proof. Let the input be a; ---a,. Let |A| denote the number of stack symbols.
We investigate how many steps are applied in the process of computing U.
push Since the PDA is deterministic, there are O(|A| - n) combinations of a stack

symbol X and an input position ¢ such that there is a transition X < XY
with z = € V z = a;. Therefore, the pushing step is applied O(JA| - n) times.
pop There are O(|A|? - n) items of the form (W, h, X, j) € U, because of Lemma 4.5.
For each of these, there are O(|A|) items of the form (X, 5,Y,%) € U, again

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 15

because of Lemma 4.5. The popping step is therefore applied O(|A[? - n)
times.
Together, this yields O(|A|®-n) steps. Computing V from U can straightforwardly be
done within |A|%-n steps, since there are at worst that many elements in I/, according
to Lemma 4.5. a
COROLLARY 4.7. For any NPDA A and input ay - - - an, the set {(4,7) | aj41---a;
€ L(A)} can be computed in linear time.
Proof. From Lemmas 4.2 and 4.4 and Theorem 4.6 we conclude that {(j,?) |
ajy1---a; € L(T(A))} can be computed in linear time. According to Lemma 4.3, this
is the same set as {(j,%) | aj4+1---a; € L(A)}. O

5. Meta-deterministic recognition. With the results from the previous sec-
tion we can prove that the recognition problem for meta-deterministic languages can
be solved in linear time, by giving a tabular algorithm simulating meta-deterministic
automata.

Consider a meta-deterministic automaton M = (F, A,u). Because of Theo-
rem 3.2 we may assume without loss of generality that the DPDAs in A are all normal
PDAs. Because of the existence of transformation 7, we may furthermore assume that
those NPDAs are all loop-free.

For deciding whether some input string a; ---a, is recognized by M we first
determine which substrings of the input are recognized by which NPDAs in A. Then,
we traverse the finite automaton, identifying the input symbols of F with automata
which recognize consecutive substrings of the input string. In order to obtain linear
time complexity, we again use tabulation, this time by means of pairs (g,%), which
indicate that state ¢ has been reached at input position i.

The complete algorithm is given by

ALGORITHM 2 (Meta-dynamic programming). Consider a meta-deterministic
automaton M = (F, A, p), where F = (5, @, ¢s, F,T) and A is a finite set of loop-free
NPDAs, and consider an input string a; - - - a,.

1. Construct the tables V4 as the sets V in Algorithm 1, for the respective A € A
and input a; - - - @y
2. Let the set W be {(gs,0)}. Perform the following as long as it is applicable.
1. Choose a quadruple not considered before, consisting of
(i) a pair (g,5) € W,
(ii) a PDA A€ A,
(iii) a pair (j,4) € V4, and
(iv) a state p € Q,
such that (g,b,p) € T for some b with pu(b) = A.
2. Add (p,7) to W.
3. Recognize the input when (g,n) € W, for some g € F.

THEOREM 5.1. Algorithm 2 recognizes a; - - - an, if and only if a1 - - - an € L(M).

Proof. First we prove that Algorithm 2 eventually adds an item (g,) to W if and
only if there is some string b1bs - - - b,, € S*, a sequence of states qg,...,qn € @, a
sequence of PDAs A;, As,..., A, € A, and a sequence of strings wy,...,w,, € X*
such that

(i) 90 = 4s; (Qkflabkaqk) €T, for 1<k < m, and gm = g,
(1) Ag = p(bg), for 1 <k < m,

(iii) wg € L(Ag), for 1 < k < m, and

(iv) a1+ a; = w1 - - Wy
The “if” part of the proof is by induction on m: Suppose that the above 4 conditions

16 E. BERTSCH AND M. J. NEDERHOF

hold, then in particular (gm—1,bm,qm) € T, Am = p(bm), and wy, = aj11---a; €
L(A,,), some j. This last condition is equivalent to (j,i) € V4,,. The above 4
conditions for m imply the same conditions for m — 1 with j instead of ¢, and therefore
we may use the induction hypothesis to derive that (¢n_1,7) is added to W. We
conclude that the conditions are fulfilled under which the algorithm adds (gm,?) to
W.

The “only if” part of the proof is very similar. Proof by induction can be applied
here if we assume each item is given a “time stamp” identifying the point in time
when that item is (first) added to W.

From the above characterization, the correctness of (g,n) € W as criterion for
recognition of the input immediately follows. A similar property is proved in full
detail in [4]. O

We now get the main theorem of this paper.

THEOREM 5.2. Recognition can be performed in linear time for all meta-deter-
ministic languages.

Proof. 1t is sufficient to prove that Algorithm 2 operates in linear time. Because
of Theorem 4.6 and since there is a finite number of NPDAs in A, the tables Vg4,
A € A, can be constructed in linear time.

Further, the table W is constructed in a linear number of steps, since each step
corresponds with one quadruple ((q,j), A, (4,%), p), with (4,7) € V4, of which there
are at most |Q|? - |A| - n. Note that prefix-freeness of each A implies that for any j
there is at most one 7 such that (j,7) € V4. O

6. On-line simulation. The nature of Algorithm 2 as simulation of meta-
deterministic automata is such that it could be called an off-line algorithm. A case
in point is that it simulates steps of PDAs at certain input positions where this can
never be useful for recognition of the input if the preceding input were taken into
account. By processing the input strictly from left to right and by computing the
table elements in a demand-driven way, an on-line algorithm is obtained, which leads
to fewer table elements, although the order of the time complexity is not reduced.

The realisation of this on-line algorithm consists of two steps: first we adapt the
pushing step so that the PDAs by themselves are simulated on-line, and second, we
merge Algorithm 1 and Algorithm 2 such that they cooperate by passing control back
and forth concerning (1) where a PDA should start to try to recognize a subsequent
substring according to the finite automaton, and (2) at what input position a PDA
has succeeded in recognizing a substring. Conceptually, the finite automaton and the
PDAs operate in a routine-subroutine relation.

ALGORITEHM 3 (On-line meta-dynamic programming). Consider a meta-deter-
ministic automaton M = (F, 4, u), with F = (5,Q, ¢s, F,T) and A is a finite set of
loop-free NPDAs, and consider an input string a; - - - a,,.

1. Let the set W be {(gs,0)}.
2. Let the sets U4 be 0 for all A € A.
3. Perform one of the following four steps as long as one of them is applicable.
down 1. Choose a pair, not considered before, consisting of

(i) a pair (¢g,%) € W and

(ii) a PDA A € A4,

such that (q,b,p) € T for some b with u(b) = A and some p.
2. Add (L, 1, Xinitia,) to Ua.

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 17

push 1. For some PDA A € A, choose a pair, not considered before, consisting
of a transition X >4 XY and an input position j, such that there is an
item (W, h, X, j) € Uy, for some W and h, and such that z = eVz = a;j41.

2. If z=c then let i = j, else let : = j + 1.

3. Add item (X, 4,Y,1) to U4.
pPop 1. For some PDA A € A, choose a triple, not considered before, consisting
of a transition XY +3 4 Z and items (W, h, X, 5), (X, 5,Y,i) € Ua.
2. Add item (W, h, Z,1) to Ua.
up 1. Choose a quadruple, not considered before, consisting of

(i) a pair (¢,5) € W,
(ii) a PDA A € 4,
(iii) an item (L, j, Xfnal, %) € Ua, and
(iv) a state p € Q,
such that (q,b,p) € T for some b with u(b) = A.
2. Add (p,i) to W.
4. The input is recognized when (¢,n) € W, for some g € F.

The popping and pushing steps, simulating the PDA steps, operate much as in
Algorithm 1. An important difference is that the pushing step no longer operates
irrespective of preceding input: it only simulates a push on some stack element X, if
it has been established with regard to previously processed input that such an element
may indeed appear on top of the stack.

A second difference is that the PDA steps are simulated by starting at input
positions computed by the “down” step, which adds (L,%, X;ptia1,%) to U4 only if
recognition of a substring recognized by A is needed from position ¢ in order to
enable a transition to a next state in the finite automaton.

The “up” step constitutes a shift of control back to the finite automaton after
some PDA has succeeded in recognizing a substring.*

The characterization of the elements in W we gave after Algorithm 2 is still valid
for the above on-line algorithm. The characterization of the elements in the sets U 4 is
more restricted than before, however. Relying on a standard result for on-line tabular
simulation of PDAs [11], one can prove that Algorithm 3 eventually adds an item
(X,5,Y,%) to U, for some A € A, if and only if there is some & < j and some state
q such that

1. (g,h) € W, for some g with (g,b,p) € T, some b with p(b) = A and some p,

2. (L,apt1.-.a;5) F% (0X,€), for some J, and

3. (X,aj41...a) F4 (XY,e).
The first condition states that the finite automaton is in need of a substring recog-
nized by PDA A starting from position h. The second condition states that some
configuration can be reached from an initial configuration by reading the input from
position A up to position j, and in this configuration, an element labelled X is on top
of the stack. The third condition is as before.

A device which recognizes some language by reading input strings from left to right
is said to satisfy the correct-prefix property if it cannot read past the first incorrect
symbol in an incorrect input string. A different way of expressing this is that if it has

41f u is bijective, and if (g,b,p) € T is unique for each b, then the condition (L, 7, Xﬁnal,i) €U
may be replaced by (Y, j, X,%) € U4 with X final in A, and mention of (g,j) € W may be omitted.
This generalization allows arbitrary PDAs as opposed to NPDAs. In particular, nondeterministic
PDAs may be used. For deterministic, loop-free (but not necessarily normal or prefix-free) PDAs
the on-line algorithm then still has a linear time complexity. We do not pursue this option because
the resulting recognition algorithm cannot be turned into a parsing algorithm; see also Section 7.

18 E. BERTSCH AND M. J. NEDERHOF

succeeded in processing a prefix w of some input string wv, then w is a prefix of some
input string wv’ which can be recognized.

A consequence of the on-line property of Algorithm 3 is that it satisfies the correct-
prefix property, provided that both the finite automaton F and the PDAs in A satisfy
the correct-prefix property. A straightforward proof can be obtained from the char-
acterizations of the elements in W and U4, A € A, given above.

7. Producing parse trees. We have shown that meta-deterministic recognition
can be done efficiently. The next step is to investigate how the recognition algorithms
can be extended to be parsing algorithms.

The approach to tabular context-free parsing in [11, 6] is to start with pushdown
transducers. A pushdown transducer can be seen as a PDA of which the transitions
produce certain output symbols when they are applied. The output string, which is a
list of all output symbols which are produced while successfully recognizing an input,
is then seen as a representation of the parse.

If the pushdown transducers are to be realized using a tabular algorithm such as
Algorithm 1 then we may apply the following to compute all output strings without
deteriorating the time complexity of the recognition algorithm. The idea is that a
context-free grammar, the output grammar, is constructed as a side-effect of recogni-
tion. For each item (X, j,Y, %) added to the table, the grammar contains a nonterminal
A(x,j,v,i)- This nonterminal is to generate all lists of output symbols which the push-
down transducer produces while computing (X,a;j4+1---a;) " (XY, €). The rules of
the output grammar are created when items are computed from others. For example,
if we compute an item (W, h, Z,1) from two items (W, h, X, 7),(X,4,Y,%) € U, using
a popping transition XY +% Z which produces output symbol a, then the output
grammar is extended with rule A(W,h,Z,i) — A(W,h,X,j) A(X,j,Y,i) a.

The start symbol of the output grammar is A o, X final™)’ for recognition of

the complete input. For Algorithm 1 however, which recognizes fragments of the
input, we have several output grammars, of which the start symbols are of the form
ALix finalsd)" The sets of rules of these grammars may overlap.

The languages generated by output grammars consist of all output strings which
may be produced by the pushdown transducer while successfully recognizing the cor-
responding substrings. In the case of deterministic PDAs, these are of course singleton
languages.

In a straightforward way this method may be extended to off-line simulation of
a meta-deterministic automaton M = (F, A, u), where A is now a set of push-down
transducers:

1. We create subgrammars for v and the respective automata in A separately,
following the ideas above.

2. We merge all grammar rules constructed for the different automata A €
A. We assume the sets of stack symbols from the respective automata are pairwise
disjoint, in order to avoid name clashes.

3. For each automaton A € A we add rules A4 ;) — A(L’j’Xﬁnal’i)’ if

AL i) is a nonterminal found while constructing U 4.

’j’Xﬁnal’
4. While constructing table W the output grammar may be extended with a
rule A, iy — A(q,j) A(a,j,i)» When a pair (p,i) is derived from a pair (g,j) € W and
a pair (j,7) € V4.
5. We extend the output grammar with all rules of the form S — (g,n), where
q € F. S is the start symbol of the grammar.

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 19

(For on-line processing similar considerations apply.)
In this way, we may produce a context-free grammar reflecting the structure of the
input string, without deteriorating the time complexity of the recognition algorithm.

8. Applications.

8.1. Suffix recognition. For a language L we define the language suffiz(L) =
{v | Fw[wv € L]}. A member of suffiz(L) will be called a suffiz. In this section we
will assume that L is a deterministic language.

Only recently [2] has it been shown that suffixes can be recognized in linear time.
In [13] it was shown that furthermore parsing of suffixes is possible in linear time. Here
we give an alternative proof of this result as a corollary to the previous sections. This
we do by providing a transformation from a deterministic language L, specified in the
form of a deterministic PDA A, to a meta-deterministic automaton o (A) recognizing
suffixes.

For technical reasons, we assume that the PDA A satisfies a property called pop-
realistic, which means that if it can pop a number of elements off a stack, then those
elements may indeed occur on top of a stack in a configuration reachable from an
initial configuration. Formally, we say that a PDA is pop-realistic if (§,v) H* (X, ¢),
some 4, v, X, implies (X;nizial, w) H* (8’6, €) for some w and §'.

The assumption that A is pop-realistic is not a theoretical restriction, since any
PDA can be mechanically transformed into one that is pop-realistic and that accepts
the same language [5]; nor is it a practical restriction since many naturally occurring
PDAs realizing e.g. top-down or LR recognition already satisfy this property.

CONSTRUCTION 3 (Suffix recognition). Let A = (X, A, X;nitial, Fa,T4) be a de-
terministic PDA which is pop-realistic. Construct the meta-deterministic automaton
o(A) = (F, A, pn), with F = (5,Q, gs,{gr}, Tx), where

(1) S = {B}U{bx,y | X,Y S A}U{CX | X € A},
(11) Q=AU {qsaqf}a
(iii) gs and gy are fresh symbols,
} (iv) Tr ={(gs,e; X) | X € AJU{(X,bx,v,Y) | X, Y € A}U{(X,cx,q95) | X €
A}.
As set of PDAs we take A = {£}U{Bx,y | X,Y € A}U{Cx | X € A}. These PDAs
are defined as follows.®

£ is defined to be (X, {0}, ©,{¢},0), where © is a fresh symbol.

Each Bxy is defined to be (X, AU {X™, X%} X" {X°“} T), where X** and
XUt are fresh symbols, and where the transitions in 7' are those in T4 plus the extra
transitions

Xm o Spy, XX
XX Spyy, X% forall ZX'+54Y, some X' and Z

Each Cx is defined to be (£, A, X, F4,T4).

The function 4 maps the symbol e to automaton £, the symbols bx y to automata
Bx,y, and the symbols cx to automata Cx.

The automaton £ accepts the singleton language containing the empty string.
Its use at a transition (gs,e,X) € Tx is to mimic an arbitrary computation of 4
leading to a configuration where X is on top of the stack. During this computation
an unknown input string is read, and the rest of the stack is composed of an unknown
combination of stack symbols.

5Note that the languages recognized by some of these automata may be the empty set.

20 E. BERTSCH AND M. J. NEDERHOF

stack height

0 1 2 3 t4

time

F1G. 8.1. A stack development of a DPDA A, divided into recognition of a prefiz and recognition
of the remaining suffiz.

Each automaton Bx y mimics all computations beginning with X on top of the
stack and ending with the first configuration where the stack shrinks to below the
original height; at that point Y is on top. Formally, Bx y recognizes a string v if and
only if there are X’ and Z such that (X,v) F* (X', €) and (ZX',€) - (Y, €); first, the
stack may grow and shrink while reading v, replacing X by some element X', and
then X’ and an element Z beneath it in the stack are replaced by Y.

Each automaton Cx mimics all computations of A that start with X on top of
the stack and eventually reach a final configuration without ever having a stack of
which the height is one less than that of the original stack. Formally, Cx recognizes
a string v if and only if (X,v) F% (dY,€) for some Y € F 4.

For a complete proof that L(o(A)) = suffiz(L(.A)), which is similar to the proof
in Section 3, we refer to [5]. In the present paper we merely convey the intuition.

Figure 8.1 suggests how the stack may alternately grow and shrink while A rec-
ognizes some input. From t0 to t1 some prefix of the input is read. Acceptance of
the remainder of the input, the suffix, is achieved between t1 and t4. Suppose that
the stack shrinks to maximally two elements below the height it had at t1: at t2 the
stack shrinks to one element below the original height, and at t3 the stack shrinks one
element further. The stack development between t1 and t2 is mimicked by automaton
Bx, x,, where we assume X; and X, are on top of the stack at t1 and t2 respectively.
Similarly, the development between t2 and t3 is mimicked by Bx, x,. The final part,
between t3 and t4, is mimicked by Cx,.

Conversely, if we have consecutive segments of the input recognized by a sequence
of automata Bx, x,, Bx, x,; and Cx,, then composition of the three sequences of
transitions leads to a development of the stack as suggested between t1 and t4 in
Figure 8.1. The existence of the required sequence of transitions between t0 and t1
follows from the assumption that 4 is pop-realistic.

The above and Theorem 5.2 together imply

COROLLARY 8.1. Recognition of suffizes can be performed in linear time for all
deterministic languages.

8.2. Generalized pattern matching. In [10] the following problem is treated.
Given are a finite set of input symbols ¥, an input string a; - - - a, € ¥* and a pattern
by---b, € ¥*. To be decided is whether a; - --a,, = vb; - - - b, w, some v,w € ¥*, or
in words, whether b; - - - by, is a substring of a; - - - a,,.

This problem can also be stated as follows. To be decided is whether a; - --a, is
a member of the language ¥*{b; - - - b,,, }¥*. This language is described as a regular

REGULAR CLOSURE OF DETERMINISTIC LANGUAGES 21

expression over deterministic languages, i.e. ¥ and {b;---by,}, and therefore this
language is meta-deterministic. Consequently, the algorithms in this paper apply.

The time demand can then be shown to be O(n - m), which is, of course, O(n)
if n is taken as sole parameter. This is in contrast to the algorithm in [10], which
provides a complexity of O(n + m). This seems a stronger result if time complexity
is the only matter of consideration. From a broader perspective however, one finds
that our approach allows a larger class of problems to be solved.

For example, the substring problem can be generalized as follows. Given are
a finite set of input symbols ¥, an input string a; ---a, € X* and a deterministic
language L C X*. To be decided is whether a; ---a, = uvw, some u,w € X* and
v € L, or in words, whether some substring of a; - - - a,, is in L. As before, the problem
can be translated into a membership problem of some string in a meta-deterministic
language, and therefore our approach allows this problem to be solved in O(n) time.

9. Conclusions. We have introduced a new subclass of the context-free lan-
guages, the meta-deterministic languages, which include the deterministic languages
properly. We have given recognition algorithms for this class, and have shown that
they have a linear time complexity. Our results are non-trivial since this class contains
inherently ambiguous languages. It is still an open problem whether a constructive
definition exists for all context-free languages which can be recognized in linear time.

Acknowledgements. The second author has had fruitful discussions with Joop
Leo about linear-time recognizability of subclasses of context-free languages.

The authors acknowledge help from two referees. The presentation of several
proofs was improved due to their suggestions.

REFERENCES

[1] A. AHO, J. HOPCROFT, AND J. ULLMAN, Time and tape complezity of pushdown automaton
languages, Information and Control, 13 (1968), pp. 186-206.

[2] J. BATES AND A. LAVIE, Recognizing substrings of LR (k) languages in linear time, ACM Trans-
actions on Programming Languages and Systems, 16 (1994), pp. 1051-1077.

[3] J. BERSTEL, Transductions and Contexzt-Free Languages, B.G. Teubner, Stuttgart, 1979.

[4] E. BERTSCH, An asymptotically optimal algorithm for mon-correcting LL(1) error recovery,
Bericht Nr. 176, Fakultat fir Mathematik, Ruhr-Universitdt Bochum, Apr. 1994.

[5] E. BERTSCH AND M. NEDERHOF, Regular closure of deterministic languages, Bericht Nr. 186,
Fakultit fiir Mathematik, Ruhr-Universitdt Bochum, Aug. 1995.

[6] S. BiLLoT AND B. LANG, The structure of shared forests in ambiguous parsing, in 27th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference,
Vancouver, British Columbia, Canada, June 1989, pp. 143-151.

[7] J. EARLEY, An efficient context-free parsing algorithm, Communications of the ACM, 13 (1970),
pp- 94-102.

[8] M. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, 1978.

[9] J. HoPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

[10] D. KnuTH, J. MORRIS, JR., AND V. PRATT, Fast pattern matching in strings, SIAM Journal
on Computing, 6 (1977), pp. 323-350.

[11] B. LANG, Deterministic techniques for efficient non-deterministic parsers, in Automata, Lan-
guages and Programming, 2nd Colloquium, Saarbriicken, vol. 14 of Lecture Notes in Com-
puter Science, 1974, Springer-Verlag, pp. 255-269.

[12] M. NEDERHOF, Linguistic Parsing and Program Transformations, PhD thesis, University of
Nijmegen, 1994.

[13] M. NEDERHOF AND E. BERTSCH, Linear-time suffiz parsing for deterministic languages, Journal
of the ACM, 43 (1996), pp. 524-554.

22 E. BERTSCH AND M. J. NEDERHOF

[14] M. NEDERHOF AND G. SATTA, Efficient tabular LR parsing, in 34th Annual Meeting of the
Association for Computational Linguistics, Proceedings of the Conference, Santa Cruz,
California, USA, June 1996, pp. 239-246.

[15] H. RICHTER, Noncorrecting syntaz error recovery, ACM Transactions on Programming Lan-
guages and Systems, 7 (1985), pp. 478-489.

[16] L. VALIANT, General contezt-free recognition in less than cubic time, Journal of Computer and
System Sciences, 10 (1975), pp. 308-315.

