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Several methods are discussed that construct a finite automaton given a context-free gram-
mar, including both methods that lead to subsets and those that lead to supersets of the
original context-free language. Some of these methods of regular approximation are
new, and some others are presented here in a more refined form with respect to exist-
ing literature. Practical experiments with the different methods of regular approzrimation
are performed for spoken-language input: hypotheses from a speech recognizer are filtered
through a finite automaton.

1 Introduction

Several methods of regular approximation of context-free languages have been proposed
in the literature. For some, the regular language is a superset of the context-free language,
and for others it is a subset. We have implemented a large number of methods, and where
needed we refined them with an analysis of the grammar. We also propose a number of
new methods.

The analysis is based on a sufficient condition for context-free grammars to generate
regular languages. For an arbitrary grammar, this analysis identifies sets of rules that
need to be processed in a special way in order to obtain a regular language. The nature
of this processing differs for the respective approximation methods. For other parts of
the grammar, no special treatment is needed and the grammar rules are translated to
states and transitions of a finite automaton without affecting the language.

Few of the published articles on regular approximation have discussed the application
in practice. In particular, little attention has been given to the following two questions.
First, what happens when a context-free grammar grows in size? What is then the in-
crease of the sizes of the intermediate results and the obtained minimal deterministic
automaton? Second, how “precise” are the approximations? That is, how much larger
than the original context-free language is the language obtained by a superset approx-
imation, and how much smaller is the language obtained by a subset approximation?
(How we measure the “sizes” of languages in a practical setting will become clear in the
sequel.)

Some considerations with regard to theoretical upper bounds on the sizes of the
intermediate results and the finite automata have already been discussed by Nederhof
(1997). In this article we will try to answer the above two questions in a practical setting,
using practical linguistic grammars and sentences taken from a spoken-language corpus.

The structure of this paper is as follows. In Section 2 we recall some standard defini-
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tions from language theory. Section 3 investigates a sufficient condition for a context-free
grammar to generate a regular language. We also present the construction of a finite
automaton from such a grammar.

In Section 4, we discuss several methods to approximate the language generated by a
grammar if the sufficient condition mentioned above is not satisfied. These methods can
be enhanced by a grammar transformation presented in Section 5. Section 6 compares
the respective methods, which leads to conclusions in Section 7.

2 Preliminaries

Throughout this paper we use standard formal language notation (see e.g. Harrison
(1978)). In this section we recall some basic definitions.

A context-free grammar G is a 4-tuple (¥, N, P, S), where X and N are two finite
disjoint sets of terminals and nonterminals, respectively, S € N is the start symbol, and
P is a finite set of rules. Each rule has the form A — o with A € N and a € V*, where
V denotes N U Y. The relation — on N X V* is extended to a relation on V* x V* as
usual. The transitive and reflexive closure of — is denoted by —*.

The language generated by G is given by the set {w € X¥* | § —»* w}. By defini-
tion, such a set is a context-free language. By reduction of a grammar we mean the
elimination from P of all rules A — « such that S —* aAB — ayB —* w does not hold
for any o, € V* and w € X*.

We generally use symbols A, B,C, ... to range over N, symbols a,b,c,... to range
over X, symbols X, Y, Z to range over V, symbols «, 3,7, . .. to range over V* and symbols
v, W, T, ... to range over X'*. We write € to denote the empty string.

A rule of the form A — B is called a unit rule.

A (nondeterministic) finite automaton F is a 5-tuple (K, ¥, A, s, F'), where K is
a finite set of states, of which s is the initial state and those in F' C K are the final
states, X is the input alphabet, and the transition relation A is a finite subset of
K x X*x K.

We define a configuration to be an element of K x X*. We define the binary relation
F between configurations as: (g,vw) F (¢’,w) if and only if (g,v,q") € A. The transitive
and reflexive closure of |- is denoted by +*.

Some input v is recognized if (s,v) H* (g,¢€), for some g € F. The language ac-
cepted by F is defined to be the set of all strings v that are recognized. By definition,
a language accepted by a finite automaton is called a regular language.

3 Finite Automata in Absence of Self-embedding

We define a spine in a parse tree to be a path that runs from the root down to some leaf.
Our main interest in spines lies in the sequences of grammar symbols at nodes bordering
on spines.

A simple example is the set of parse trees such as the one in Figure 1, for a grammar of
palindromes. It is intuitively clear that the language is not regular: the grammar symbols
to the left of the spine from the root to € “communicate” with those to the right of the
spine. More precisely, the prefix of the input up to the point where it meets the final
node € of the spine determines the suffix after that point, in a way that an unbounded
quantity of symbols from the prefix need to be taken into account.

A formal explanation for why the grammar may not generate a regular language
relies on the following definition (Chomsky, 1959b):

Definition
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Figure 1
Grammar of palindromes, and a parse tree.

A grammar is self~-embedding if there is some A € N such that A —* aAS3, for some

a#eand G #e.

If a grammar is not self-embedding, this means that when a section of a spine in a parse
tree repeats itself, then either no grammar symbols occur to the left of that section of the
spine, or no grammar symbols occur to the right. This prevents the “unbounded com-
munication” between the two sides of the spine exemplified by the palindrome grammar.

We now prove that grammars that are not self-embedding generate regular languages.
For an arbitrary grammar, we define the set of recursive nonterminals as:

N ={A€N |3a,BlA—-"aAp]}

We determine the partition A/ of N consisting of subsets Ny, Na, ..., N, for some k > 0,
of mutually recursive nonterminals:

N ={Ny,Na,...,Ni}
NLUNyU---UN, =N
V’i[Ni #* @] and V’L,][’L #j=N; NN; = 0]
H’L[A e N;ABe€ Nz] -~ 30(1,,81,042,,32[14 —* a1 BB AN B —* a2A,82], for all A,B € N

We now define the function recursive from N to the set {left, right, self, cyclic}. For
0<i<k:

recursive(N;) = left, if - LeftGenerating(N;) A  RightGenerating(N;)
= vright, if  LeftGenerating(N;) A - RightGenerating(N;)
= self, if  LeftGenerating(N;) A  RightGenerating(N;)
= cyclic, if —LeftGenerating(N;) A - RightGenerating(N;)
where
LeftGenerating(N;) = 3I(A— aBB) € P[A€ N;AB € N; Na # €
RightGenerating(N;) = 3(A — aBB) e P[Ae N;AB € N; \( +# €

When recursive(N;) = left, N; consists of only left-recursive nonterminals, which does
not mean it cannot also contain right-recursive nonterminals, but in that case right
recursion amounts to application of unit rules. When recursive(NN;) = cyclic, it is only
such unit rules that take part in the recursion.

That recursive(N;) = self, for some i, is a sufficient and necessary condition for
the grammar to be self-embedding. Therefore, we have to prove that if recursive(lV;) €
{left, right, cyclic}, for all 7, then the grammar generates a regular language. Our proof



Computational Linguistics Volume 26, Number 1

differs from an existing proof (Chomsky, 1959a) in that it is fully constructive: Figure 2
presents an algorithm for creating a finite automaton that accepts the language generated
by the grammar.

The process is initiated at the start symbol, and from there the process descends the
grammar in all ways until terminals are encountered, and then transitions are created
labelled with those terminals. Descending the grammar is straightforward in the case of
rules of which the left-hand side is not a recursive nonterminal: the subautomata found
recursively for members in the right-hand side will be connected. In the case of recursive
nonterminals, the process depends on whether the nonterminals in the corresponding
set from A are mutually left-recursive or right-recursive; if they are both, which means
they are cyclic, then either subprocess can be applied; in the code in Figure 2 cyclic and
right-recursive subsets IV; are treated uniformly.

We discuss the case that the nonterminals are left-recursive. One new state is cre-
ated for each nonterminal in the set. The transitions that are created for terminals and
nonterminals not in IV; are connected in a way that is reminiscent of the construction of
left-corner parsers (Rosenkrantz and Lewis II, 1970), and specifically of one construction
that focuses on sets of mutually recursive nonterminals (Nederhof, 1994, Section 5.8).

An example is given in Figure 3. Four states have been labelled according to the
names they are given in procedure make_fa. There are two states that are labelled gp.
This can be explained by the fact that nonterminal B can be reached by descending the
grammar from S in two essentially distinct ways.

The code in Figure 2 differs from the actual implementation in that sometimes for
a nonterminal a separate finite automaton is constructed, viz. for those nonterminals
that occur as A in the code. A transition in such a subautomaton may be labelled by
another nonterminal B, which then represents the subautomaton corresponding to B.
The resulting representation is similar to extended context-free grammars (Purdom and
Brown, 1981), with the exception that in our case recursion cannot occur, by virtue of
the construction.

The representation for the running example is indicated by Figure 4, which shows
two subautomata, labelled S and B. The one labelled § is the automaton on the top level,
and contains two transitions labelled B, which refer to the other subautomaton. Note
that this representation is more compact than the one from Figure 3, since the transitions
that are involved in representing the sublanguage of strings generated by nonterminal B
are included only once.

The compact representation consisting of subautomata can be turned into a single
finite automaton by substituting subautomata A for transitions labelled A in other au-
tomata. This comes down to regular substitution in the sense of Berstel (1979). The
advantage of this way of obtaining a finite automaton over a direct construction of a
nondeterministic automaton is that subautomata may be determinized and minimized
before they are substituted into larger subautomata. Since in many cases determinized
and minimized automata are much smaller, this process avoids much of the combinato-
rial explosion that takes place upon naive construction of a single nondeterministic finite
automaton.’

Assume we have a list of subautomata A, ..., A,, that is ordered from lower level to
higher level automata,; i.e. if an automaton A, occurs as label of a transition of automaton

1 The representation by Mohri and Pereira (1998) is even more compact than ours for grammars that
are not self-embedding. However, in the sequel we are going to use our representation as
intermediate result in approximating an unrestricted context-free grammar, with the final objective
of obtaining a single minimal deterministic automaton. For this purpose, the representation by
Mohri and Pereira (1998) offers little advantage.
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let K =0, s = fresh_state, f = fresh_state, F = {f};
make_fa(s, S, f).

procedure make_fa(qo, @, q1):
ifa=c¢
then let A = AU {(qo0,€6,91)}
elseif o = a, some g € ¥
then let A = AU {(qg0,a,q1)}
elseif o = X3, some X € V, 8 € V* such that |3| >0
then let q = fresh_state;
make—fa(QO, Xa Q);
make—fa’(qa ﬂa ql)
else let A = o; (* o must consist of a single nonterminal *)
if there exists i such that A € N;
then for each B € N; do let gp = fresh_state end;
if recursive(N;) = left
then for each (C — X;---X,;,) € P such that Ce N; A X1,..., X, ¢ N;
do make_fa(qo, Xy--- Xma qC)
end;
for each (C — DX;---X,,) € P such that
C,DEN;AXy,...,Xm & N;
do make*fa(qDa Xy--- Xma qC’)
end;
let A =AU{(ga,€6,¢q1)}
else (* recursive(N;) € {right, cyclic} *)
for each (C — X;---X,,) € P such that CeN; A X5,..., X, ¢éN;
do make fa(go, X1 -+ Xmya1)
end;
for each (C — X;---X,,D) € P such that
C,De N;ANXq,...,Xm ¢Nz
do make_fa(gc, X1 - Xm,p)

end;
let A = AU{(g0,¢6,44)}
end
else for each (A — 3) € P do make_fa(go,B,¢q1) end (* A is not recursive *)
end
end
end.

procedure fresh_state():
create some object ¢ such that q ¢ K;
let K = KU{q};
return q

end.

Figure 2
Transformation from a grammar G = (¥, N, P, S) that is not self-embedding into an equivalent
finite automaton F = (K, ¥, A, s, F).
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Figure 3
Application of the code from Figure 2 on a small grammar.

Figure 4
The automaton from Figure 3 in a compact representation.

Ag, then p < g; A, must be the start symbol S. This order is a natural result of the way
that subautomata are constructed during our depth-first traversal of the grammar, which
is actually postorder in the sense that a subautomaton is output after all subautomata
occurring at its transitions have been output.

Our implementation constructs a minimal deterministic automaton by repeating the
following for p =1,...,m:

1. Make a copy of A,. Determinize and minimize the copy. If it has fewer
transitions labelled by nonterminals than the original, then replace A, by its

copy.

2. Replace each transition in A, of the form (g, A, q") by (a copy of) automaton
A, in a straightforward way. This means that new e-transitions connect ¢ to
the start state of A, and the final states of A, to q'.

3. Again determinize and minimize A, and store it for later reference.
The automaton obtained for A,, after step 3 is the desired result.
4 Methods of Regular Approximation

This section describes a number of methods for approximating a context-free grammar
by means of a finite automaton. Some published methods did not mention self-embedding
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explicitly as potential source of non-regularity of the language, and suggested that ap-
proximations should be applied globally for the complete grammar. Where this is the
case, we adapt the method so that it is more selective and deals with self-embedding
locally.

The approximations are integrated into the construction of the finite automaton from
the grammar, which was described in the previous section. A separate incarnation of the
approximation process is activated upon finding a nonterminal A such that A € N; and
recursive(N;) = self, for some i. This incarnation then only pertains to the set of rules
of the form B — a, where B € N;. In other words, nonterminals not in INV; are treated
by this incarnation of the approximation process as if they were terminals.

4.1 Superset approximation based on RTNs

The following approximation was proposed by Nederhof (1997). The presentation here
however differs substantially from the earlier publication, which treated the approxima-
tion process entirely on the level of context-free grammars: a self-embedding grammar
was transformed in such a way that it was no longer self-embedding. A finite automata
was then obtained from the grammar by the algorithm discussed above.

The presentation here is based on recursive transition networks (RTNs) (Woods,
1970). We can see a context-free grammar as an RTN as follows. We introduce two
states g4 and ¢/, for each nonterminal A, and m + 1 states qo,...,¢n for each rule
A — X,---X,,. The states for a rule A — X; --- X,,, are connected with each other and
to the states for the left-hand side A by one transition (g4, €, o), a transition (g; 1, X;, ¢;)
for each ¢ such that 1 < ¢ < m, and one transition (gm,¢€,q)). (Actually, some epsilon
transitions are avoided in our implementation, but we will not be concerned with such
optimizations here.)

In this way, we obtain a finite automaton with initial state ¢4 and final state ¢/, for
each nonterminal A and its defining rules A — X - -- X,,,. This automaton can be seen
as one component of the RTN. The complete RTN is obtained by the collection of all
such finite automata for different nonterminals.

An approximation now results if we join all the components in one big automaton,
and if we approximate the usual mechanism of recursion by replacing each transition
(¢,A,q") by two transitions (g,€,94) and (¢4, €,q’). The construction is illustrated in
Figure 5.

In terms of the original grammar, this approximation can be informally explained
as follows. Suppose we have three rules B — aAB3, B’ — o’AB’, and A — ~. Top-down
left-to-right parsing would proceed for example by recognizing « in the first rule; it would
then descend into rule A — +, and recognize «; it would then return to the first rule and
subsequently process (8. In the approximation however, the finite automaton “forgets”
which rule it came from when it starts to recognize -y, so that it may subsequently
recognize (3’ in the second rule.

For the sake of presentational convenience, the above describes a construction work-
ing on the complete grammar. However, our implementation applies the construction
separately for each nonterminal in a set IV; such that recursive(N;) = self, which leads
to a separate subautomaton of the compact representation (Section 3).

See Nederhof (1998) for a variant of this approximation that constructs finite trans-
ducers rather than finite automata.

We have further implemented a parameterized version of the RTN approximation.
A state of the nondeterministic automaton is now also associated to a list H of length
|H| strictly smaller than a number d, which is the parameter to the method. This list
represents a history of rule positions that were encountered in the computation leading
to the present state.
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Application of the RTN method for the grammar at (a). The RTN is given at (b), and (c)
presents the approximating finite automaton. We assume A is the start symbol and therefore
ga becomes initial state and ¢y becomes final state in the approximating automaton.

More precisely, we define an item to be an object of the form [A — o e (], where A —
af is a rule from the grammar. These are the same objects as the “dotted” productions
from Earley (1970). The dot indicates a position in the right-hand side.

The unparameterized RTN method had one state g; for each item I, and two states
ga and ¢/, for each nonterminal A. The parameterized RTN method has one state grg
for each item I and each list of items H that represents a valid history for reaching
I, and two states gag and ¢y for each nonterminal A and each list of items H that
represents a valid history for reaching A. Such a valid history is defined to be a list H
with 0 < |H| < d that represents a series of positions in rules that could have been
invoked before reaching I or A, respectively. More precisely, if we set H = I; - -- I, then
each I, (1 < m < n) should be of the form [4,, = o, ® B8] and for 1 <m < n we
should have A,, = B,,,+1. Furthermore, for a state grg with I = [A — o e 3] we demand
A = Bj if n > 0. For a state g4z we demand A = Bj if n > 0. (Strictly speaking, states
gag and qrg, with |H| <d—1and I = [A — «a e §], will only be needed if Az is the
start symbol in the case |H| > 0, or if A is the start symbol in the case H = e.)

The transitions of the automaton that pertain to terminals in right-hand sides of rules
are very similar to those in the case of the unparameterized method: For a state grg with
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I of the form [A — o e af], we create a transition (¢rm,a,qr'm), with I' = [A — aa e 3].

Similarly, we create epsilon transitions that connect left-hand sides and right-hand
sides of rules: For each state gag there is a transition (gag,e€,qrg) for each item I =
[A — e a], for some a, and for each state of the form g/ g, with I’ = [A — « e], there is
a transition (g1 a, €, ¢4 5)-

For transitions that pertain to nonterminals in the right-hand sides of rules, we need
to manipulate the histories. For a state grg with I of the form [A — o ¢ Bf], we create
two epsilon transitions. One is (qrg, €, gpH"), where H' is defined to be IH if |IH| < d, and
to be the first d — 1 items of IH otherwise. Informally, we extend the history by the item
I representing the rule position that we have just come from, but the oldest information
in the history is discarded if the history becomes too long. The second transition is
(9556 qrm), with I' =[A — aB e [].

If the start symbol is S, the initial state is gg and the final state is g5 (after the
symbol S in the subscripts we find an empty lists of items). Note that the parameterized
method with d = 1 concurs with the unparameterized method, since the lists of items
then remain empty.

An example with parameter d = 2 is given in Figure 6. For the unparameterized
method, each I = [A — « e (3] corresponded to one state (Figure 5). Since reaching A
can have three different histories of length shorter than 2 (the empty history, since A is
start symbol; the history of coming from the rule position given by item [A — c o A]; and,
the history of coming from the rule position given by item [B — d e Ae]), in Figure 6 we
now have three states of the form gy for each I = [A — a e (], as well as three states
of the form gam and ¢/ 5.

The higher we choose d, the more precise the approximation is, since the histories
allow the automaton to simulate part of the mechanism of recursion from the original
grammar, and the maximum length of the histories corresponds to the number of levels
of recursion that can be simulated accurately.

4.2 Refinement of RTN superset approximation

We rephrase the method by Grimley Evans (1997) as follows. First, we construct the
approximating finite automaton according to the unparameterized RTN method above.
Then an additional mechanism is introduced that ensures for each rule A — X;--- X,,,
separately that the list of visits to the states qq, - - ., ¢,, satisfies some reasonable criteria:
a visit to ¢;, with 0 < ¢ < m, should be followed by one to g;1 or go. The latter option
amounts to a nested incarnation of the rule. There is a complementary condition for what
should precede a visit to ¢;, with 0 < ¢ < m.

Since only pairs of consecutive visits to states from the set {qo,...,qm} are consid-
ered, finite-state techniques suffice to implement such conditions. This can be realized
by attaching histories to the states as in the case of the parameterized RTN method
above, but now each history is a set rather than a list, and can contain at most one
item [A — o e 3] for each rule A — af8. As reported by Grimley Evans (1997) and
confirmed by our own experiments, the nondeterministic finite automata resulting from
this method may be quite large, even for small grammars. The explanation is that the
number of such histories is exponential in the number of rules.

We have refined the method with respect to the original publication by applying the
construction separately for each nonterminal in a set N; such that recursive(N;) = self.

4.3 Subset approximation by transforming the grammar

Putting restrictions on spines is another way to obtain a regular language. Several meth-
ods can be defined. The first method we present investigates spines in a very detailed
way. It eliminates from the language only those sentences for which a subderivation is
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Application of the parameterized RTN method with d = 2. We again assume A is the start
symbol. States g7z have not been labelled in order to avoid cluttering the picture.

required of the form B —* aBf3, for some a # € and 3 # €. The motivation is that such
sentences do not occur frequently in practice, since these subderivations make it difficult
for people to comprehend them (Resnik, 1992). Their exclusion will therefore not lead to
much loss of coverage of typical sentences, especially for simple application domains.

We express the method in terms of a grammar transformation in Figure 7. The effect
of this transformation is that a nonterminal A is tagged with a set of pairs (B, @), where
B is a nonterminal occurring higher in the spine; for given B, at most one such pair
(B, Q) can be contained in the set. The set Q may contain the element [ to indicate that
something to the left of the part of the spine from B to A was generated. Similarly, r € @
indicates that something to the right was generated. If Q = {l, 7}, then we have obtained
a derivation B —* a A3, for some a # € and 3 # ¢, and further occurrences of B below
A should be blocked in order to avoid a derivation with self-embedding,.

An example is given in Figure 8. The original grammar is implicit in the depicted
parse tree on the left, and contains at least the rules S -+ A a, A - b B, B —» C
and C — S. This grammar is self-embedding, since we have a subderivation S —* bSa.
We explain how Fg is obtained from Fj4 in the rule A¥4 — b BFB. We first construct
F' ={(S5,{r}),(4,0)} from Fa = {(S,{r})} by adding (A, @), since no other pair of the
form (A, Q) was already present. To the left of the occurrence of B in the original rule

10
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We are given a grammar G = (X, N, P, S). The following is to be performed for each set
N; € N such that recursive(N;) = self.

1. For each A € N; and each F € 2:x2""™) 344 the following nonterminal to N.
o AF.
2. For each A € N;, add the following rule to P.
e A AP
3. For each (A — apAdionAs - am_1Amam) € P such that A, A;,..., A, € N;
and no symbols from ay, ..., o, are members of IV;, and each F' such that

(A,{l,r}) ¢ F, add the following rule to P.

o AF 5 APy --- AFra,,, where, for 1 < j <m,

— F;={(B,QuUQ{uQ)) | (B,Q) € F'};

— F' = FU{(4,0)} if =3Q|(4, Q) € F], and F’ = F otherwise;
— Q] =0 if apAior---Aj 105 1 =€, and @] = {I} otherwise;
— QI =0if ajAj 10541 Amam = € and Qf = {r} otherwise.

4. Remove from P the old rules of the form A — a, where A € N;.

5. Reduce the grammar.

Figure 7
Subset approximation by transforming the grammar.

A — b B we find a non-empty string b. This means that we have to add [ to all second
components of pairs in F’, which gives us Fg = {(S,{l,r}), (4,{(})}.

In the transformed grammar, the lower occurrence of S in the tree is tagged with the
set {(S,{l,7}),(4,{1}),(B,0),(C,0)}. The meaning is that higher up in the spine, we
will find the nonterminals S, A, B and C. The pair (A4, {{}) indicates that since we saw
A on the spine, something to the left has been generated, viz. b. The pair (B, () indicates
that nothing either to the left or to the right has been generated since we saw B. The pair
(S,{l,7}) indicates that both to the left and to the right something has been generated
(viz. b on the left and a on the right). Since this indicates that an offending subderivation
S —* aSp3 has been found, further completion of the parse tree is blocked: the trans-
formed grammar will not have any rules with left-hand side S{(5:{t:r}):(4,{1}).(B.0),(C.0)}
In fact, after the grammar is reduced, any parse tree that is constructed cannot even con-
tain any longer a node labelled by S{(S:{t:r}):(4,{1):(B.0),(C.0)} or gny nodes with labels
of the form AF such that (4, {l,7}) € F.

One could generalize this approximation in such a way that not all self-embedding
is blocked, but only self-embedding occurring, say, twice in a row, in the sense of a
subderivation of the form A —* a3 AB; —* ajasAB:3;. We will not do so here, because
already for the basic case above, the transformed grammar can be huge due to the high
number of nonterminals of the form AF that may result; the number of such nonterminals
is exponential in the size of NV;.

We therefore present, in Figure 9, an alternative approximation that has a lower
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A parse tree in a self-embedding grammar (a), and the corresponding parse tree in the
transformed grammar (b), for the transformation from Figure 7. For the moment we ignore
step 5 of Figure 7, i.e. reduction of the transformed grammar.

c cfe Fo = {(SA{Lr}),(4,{1}),(B,0)}
N

complexity. By parameter d, it restricts the number of rules along a spine that may
generate something to the left and to the right. We do however not restrict pure left
recursion and pure right recursion. Between two occurrences of an arbitrary rule, we
allow left recursion followed by right recursion (which leads to tag r followed by tag 1),
or right recursion followed by left recursion (which leads to tag ! followed by tag Ir).

An example is given in Figure 10. As before, the rules of the grammar are implicit
in the depicted parse tree. At the top of the derivation we find S. In the transformed
grammar, we first have to apply S — S 0. The derivation starts with a rule S — A a,
which generates a string (viz. a) to the right of a nonterminal (viz. A). Before we can
apply zero or more of such rules, we first have to apply a unit rule ST — S™° in
the transformed grammar. For zero or more rules that subsequently generate something
on the left, such as A — b B, we have to obtain a superscript containing 7/, and in
the example this is done by applying A™° — A0, Now we are finished with pure left
recursion and pure right recursion, and apply B™° — B, This allows us to apply one
unconstrained rule, which appears in the transformed grammar as B+° — ¢ ST d.

Now the counter f has been increased from 0 at the start of the subderivation to
1 at the end. Depending on the value d that we choose, we cannot build derivations by
repeating subderivation S —* bc¢ S d a an unlimited number of times: at some point the
counter will exceed d. If we choose d = 0, then already the derivation at Figure 10 (b) is
not possible anymore, since no nonterminal in the transformed grammar would contain
1 in its superscript.

Because of the demonstrated increase of the counter f, this transformation is guar-
anteed to remove self-embedding from the grammar. However, it is not as selective as
the transformation we saw before, in the sense that it may also block subderivations that
are not of the form A —* aA83. Consider for example the subderivation from Figure 10,
but replacing the lower occurrence of S by any other nonterminal C that is mutually
recursive with S, A and B. Such a subderivation S —* b ¢ C d a would also be blocked
by choosing d = 0. In general, increasing d allows more of such derivations that are not
of the form A —* aAB but also allows more derivations that are of that form.

12
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We are given a grammar G = (X, N, P, S). The following is to be performed for each set
N; € N such that recursive(N;) = self. The value d stands for the maximum number of
unconstrained rules along a spine, possibly alternated with a series of left-recursive rules
followed by a series of right-recursive rules, or vice versa.

1. For each A € N;, each Q € {T,l,r,lr,7l, L}, and each f such that 0 < f < d,
add the following nonterminals to N.

o AR,
2. For each A € N;, add the following rule to P.
e A ATO
3. For each A € N; and f such that 0 < f < d, add the following rules to P.

AT 5 ALT,
AT 5 AnT.
AbT 5 Al
AnF  ATLE
At ALS
AThE 5 ALT,

4. For each (A — Ba) € P such that A, B € N; and no symbols from « are
members of N;, each f such that 0 < f <d, and each @ € {r,Ir}, add the
following rule to P.

o AQf s BQq,

5. For each (A — aB) € P such that A, B € N; and no symbols from « are
members of N;, each f such that 0 < f <d, and each Q € {l, rl}, add the
following rule to P.

o AQS 5 oBQS.

6. For each (A — apAdi101As - a1 Amam) € P such that A, Ay,...,A, € N;
and no symbols from «y, ..., a, are members of IV;, and each f such that
0 < f < d, add the following rule to P, provided m =0V f < d.

o ALS ATy AT L,

7. Remove from P the old rules of the form A — o, where A € N;.

8. Reduce the grammar.

Figure 9
A more simple subset approximation by transforming the grammar.

The reason for considering this transformation rather than any other that eliminates
self-embedding is purely pragmatic: of the many variants we have tried that yield non-
trivial subset approximations, this transformation has the lowest complexity in terms of
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A parse tree in a self-embedding grammar (a), and the corresponding parse tree in the
transformed grammar (b), for the simple subset approximation from Figure 9.

the sizes of intermediate structures and of the resulting finite automata.

In the actual implementation, we have integrated the grammar transformation and
the construction of the finite automaton, which avoids re-analysis of the grammar to
determine the partition of mutually recursive nonterminals after transformation. This
integration makes use for example of the fact that for fixed IV; and fixed f, the set of
nonterminals of the form A5/, with A € N;, is (potentially) mutually right-recursive. A
set of such nonterminals can therefore be treated as the corresponding case from Figure 2,
assuming the value right.

The full formulation of the integrated grammar transformation and construction
of the finite automaton is rather long and is therefore not given here. A very similar
formulation, for another grammar transformation, is given by Nederhof (1998).

4.4 Superset approximation through pushdown automata

The distinction between context-free languages and regular languages can be seen in
terms of the distinction between pushdown automata and finite automata. Pushdown
automata maintain a stack that is potentially unbounded in height, which allows more
complex languages to be recognized than in the case of finite automata. Regular approxi-
mation can be achieved by restricting the height of the stack, as we will see in Section 4.5,
or by ignoring the distinction between several stacks when they become too high.

More specifically, the method proposed by Pereira and Wright (1997) first constructs
an LR automaton, which is a special case of a pushdown automaton. Then, stacks that
may be constructed in the course of recognition of a string are computed one by one.
However, stacks that contain two occurrences of a stack symbol are identified with the
shorter stack that results by removing the part of the stack between the two occurrences,
including one of the two occurrences. This process defines a congruence relation on stacks,
with a finite number of congruence classes. This congruence relation directly defines a
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finite automaton: each class is translated to a unique state of the nondeterministic finite
automaton, shift actions are translated to transitions labelled with terminals, and reduce
actions are translated to epsilon transitions.

The method has a high complexity. First, construction of an LR automaton, of which
the size is exponential in the size of the grammar, may be a prohibitively expensive task
(Nederhof and Satta, 1996). This is however only a fraction of the effort needed to
compute the congruence classes, of which the number is in turn exponential in the size
of the LR automaton. If the resulting nondeterministic automaton is determinized, we
obtain a third source of exponential behaviour. The time and space complexity of the
method are thereby bounded by a triple exponential function in the size of the grammar.
This theoretical analysis seems to be in keeping with the high costs of applying this
method in practice, as will be shown later in this article.

As proposed by Pereira and Wright (1997), our implementation applies the approxi-
mation separately for each nonterminal occurring in a set V; that reveals self-embedding.

A different superset approximation based on LR automata was proposed by Baker
(1981) and rediscovered by Heckert (1994). Each individual stack symbol is now trans-
lated to one state of the nondeterministic finite automaton. It can be argued theoretically
that this approximation differs from the unparameterized RTN approximation from Sec-
tion 4.1 only under certain conditions that are not likely to occur very often in practice.
This consideration is confirmed by our experiments to be discussed later. Our implemen-
tation differs from the original algorithm in that the approximation is applied separately
for each nonterminal in a set IV; that reveals self-embedding.

A generalization of this method was suggested by Bermudez and Schimpf (1990).
For a fixed number d > 0 we investigate sequences of d top-most elements of stacks that
may arise in the LR automaton, and we translate these to states of the finite automaton.
More precisely, we define another congruence relation on stacks, such that we have one
congruence class for each sequence of d stack symbols and this class contains all stacks
that have that sequence as d top-most elements; we have a separate class for each stack
that contains less than d elements. As before, each congruence class is translated to one
state of the nondeterministic finite automaton. Note that the case d = 1 is equivalent to
the approximation by Baker (1981).

If we replace the LR automaton by a certain type of automaton that performs top-
down recognition, then the method by Bermudez and Schimpf (1990) amounts to the
parameterized RTN method from Section 4.1; note that the histories from Section 4.1 in
fact function as stacks, the items being the stack symbols.

4.5 Subset approximation through pushdown automata
By restricting the height of the stack of a pushdown automaton, one obstructs recogni-
tion of a set of strings in the context-free language, and therefore a subset approximation
results. This idea was proposed by Krauwer and des Tombe (1981), Langendoen and
Langsam (1987) and Pulman (1986), and was rediscovered by Black (1989) and recently
by Johnson (1998). Since the latest publication in this area is more explicit in its pre-
sentation, we will base our treatment on this, instead of going to the historical roots of
the method.

One first constructs a modified left-corner recognizer from the grammar, in the form
of a pushdown automaton. The stack height is bounded by a low number; Johnson (1998)
claims a suitable number would be 5. The motivation for using the left-corner strategy is
that this bound may not affect the language in case the grammar is not self-embedding,
and thereby the approximation may be exact. The reason for this is that the height of the
stack maintained by a left-corner parser is already bounded by a constant in the absence
of self-embedding.
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Our own implementation is more refined than the published algorithms mentioned
above, in that it defines a separate left-corner recognizer for each nonterminal A such
that A € N; and recursive(N;) = self , some i. In the construction for one such recognizer,
nonterminals that do not belong to NN; are treated as terminals, as in all other methods
discussed here.

4.6 Superset approximation by N-grams
An approximation from Seyfarth and Bermudez (1995) can be explained as follows. Define
the set of all terminals reachable from nonterminal A to be ¥4 = {a | 3o, B[4 —* aaf]}.
We now approximate the set of strings derivable from A by X'}, which is the set of strings
consisting of terminals from X 4. Our implementation is slightly more sophisticated by
taking X4 tobe {X | 3B, o, B[B € N;AB — aXBAX ¢ N;]}, for each A such that A € N;
and recursive(N;) = self, for some i. Le. each X € X4 is a terminal, or a nonterminal
not in the same set N; as A, but immediately reachable from set N;, through B € N;.
This method can be generalized, inspired by Stolcke and Segal (1994), who derive N-
gram probabilities from stochastic context-free grammars. By ignoring the probabilities,
each N = 1,2,3,... gives rise to a superset approximation that can be described as
follows. The set of strings derivable from a nonterminal A is approximated by the set of
strings aj - - - a,, such that

o for each substring v = a;y1---a;4+n (0 <i<n— N) we have A —* wuy, for
some w and y,

o for each prefix v = a3 ---a; (0 <% < n) such that ¢ < N we have A —* vy, for
some y, and

o for each suffix v = a; 41 ---a, (0 < i< n) such that n — i < N we have
A —* wov, for some w.

(Again, the algorithms that we actually implemented are more refined and take into
account the sets IV;.)

The approximation from Seyfarth and Bermudez (1995) can be seen as the case
N =1, which will henceforth be called the unigram method. We have also experimented
with the cases N = 2 and N = 3, which will be called the bigram and trigram methods.

5 Increasing the Precision

The methods of approximation described above take as input the parts of the grammar
that pertain to self-embedding. It is only for those parts that the language is affected.
This leads us to a way to increase the precision: before applying any of the above methods
of regular approximation, we first transform the grammar.

This grammar transformation copies grammar rules containing recursive nontermi-
nals and, in the copies, it replaces these nonterminals by new non-recursive nonterminals.
The new rules take over part of the roles of the old rules, but since the new rules do not
contain recursion and therefore do not pertain to self-embedding, they remain unaffected
by the approximation process.

Consider for example the palindrome grammar from Figure 1. The RTN method will
yield a rather crude approximation, viz. the language {a, b}*. We transform this grammar
in order to keep the approximation process away from the first three levels of recursion.
We achieve this by introducing three new nonterminals S[1], S[2] and S[3], and by adding
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modified copies of the original grammar rules, so that we obtain:

S[1] — aS[2la | bS2]b | €
S2 — aS[3la | bS3]b | €
SB] - aSa | bSb | €

S — aSa | bSb | e

The new start symbol is S[1].

The new grammar generates the same language as before, but the approximation
process leaves unaffected the nonterminals S[1], S[2] and S[3] and the rules defining
them, since these nonterminals are not recursive. These nonterminals amount to the
upper three levels of the parse trees, and therefore the effect of the approximation on
the language is limited to lower levels. If we apply the RTN method then we obtain
the language that consists of (grammatical) palindromes of the form ww®, where w €
{e,a,b}U{a,b}2U{a, b}3, plus (possibly ungrammatical) strings of the form wvw®, where
w € {a,b}? and v € {a,b}*. (w® indicates the mirror image of w.)

The grammar transformation in its full generality is given by the following, which is
to be applied for fixed integer j > 0, which is a parameter of the transformation, and for
each N; such that recursive(N;) = self.

For each nonterminal A € N; we introduce j new nonterminals A[1],..., A[j]. For
each A -+ X;---X,, in P such that A € N;, and h such that 1 < h < 7, we add
Ah] —» X{---X] to P, where for 1 < k < m:

X,’c = Xk[h—i-l], ikaENi/\h<j

= Xk, otherwise

Further, we replace all rules A — X - -- X,,, such that A ¢ N; by A — X1 --- X/, where
for 1 <k<m:

X, = Xi[l], f Xp € N;
= X, otherwise

If the start symbol S was in NV;, we let S[1] be the new start symbol.

A second transformation, which shares some characteristics with the one above, was
presented by Nederhof (1997). One of the earliest papers suggesting such transformations
as a way to increase the precision of approximation is due to Culik IT and Cohen (1973),
who however only discuss examples; no general algorithms were defined.

6 Empirical Results

In this section we investigate empirically how the respective approximation methods be-
have on grammars of different sizes and how much the approximated languages differ
from the original context-free languages. This last question is difficult to answer in a
precise way. Both an original context-free language and an approximating regular lan-
guage generally consist of an infinite number of strings, and the number of strings that
are introduced in a superset approximation or that are excluded in a subset approxima-
tion may also be infinite. This makes it difficult to attach numbers to the “quality” of
approximations.

We have opted for a pragmatic approach which does not require investigation of the
entire infinite languages of the grammar and the finite automata, but that looks at a
certain finite set of strings that we have taken from a corpus, as discussed below. For
this finite set of strings we measure the percentage that overlaps with the investigated
languages.
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Figure 11

The test material. The left-hand curve refers to the construction of the grammar from 332
sentences, the right-hand curve refers to the corpus of 1000 sentences used as input to the
finite automata.

For the experiments we have taken context-free grammars for German, generated
automatically from an HPSG and a spoken-language corpus of 332 sentences. This corpus
consists of sentences possessing grammatical phenomena of interest, manually selected
from a larger corpus of actual dialogues. An HPSG parser was applied on these sentences,
and a form of context-free backbone was selected from the first derivation that was found.
(To take the first derivation is as good as any other strategy, given that we have at present
no mechanisms for relative ranking of derivations.) The label occurring at a node together
with the sequence of labels at the daughter nodes was then taken to be a context-free
rule. The collection of such rules for the complete corpus forms a context-free grammar.
Due to the incremental nature of this construction of the grammar, we can consider the
subgrammars obtained after processing the first p sentences, where p = 1,2,3,...,332.
See Figure 11 (left) for the relation between p and the number of rules of the grammar.
The construction is such that rules have at most two members in the right-hand side.

As input we consider a set of 1000 sentences, obtained independently from the 332
sentences mentioned above. These 1000 sentences were found by having a speech recog-
nizer provide a single hypothesis for each utterance, where utterances come from actual
dialogues. Figure 11 (right) shows how many sentences of different lengths the corpus
contains, up to length 30. Above length 25, this number quickly declines, but still a fair
quantity of longer strings can be found, e.g. 11 strings of a length between 51 and 60
words. In most cases however such long strings are in fact composed of a number of
shorter sentences.

Each of the 1000 sentences were input in their entirety to the automata, although
in practical spoken-language systems, often one is not interested in grammaticality of
complete utterances, but one tries to find substrings that form certain phrases bearing
information relevant to the understanding of the utterance. We will however not be
concerned here with the exact way such recognition of substrings could be realized by
means of finite automata, since this is outside the scope of the present paper.

For the respective methods of approximation we measured the size of the compact
representation of the nondeterministic automaton, the number of states and the number
of transitions of the minimal deterministic automaton, and the percentage of sentences
that were recognized, in comparison to the percentage of grammatical sentences. For the
compact representation, we counted the number of lines, which is roughly the sum of
the numbers of transitions from all subautomata, not considering about three additional
lines per subautomaton for overhead.
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Table 1
Size of the compact representation and number of states and transitions, for the refined RTN
approximation (Grimley Evans, 1997).

grammar size compact repr # states # transitions

10 133 i1 14
12 427 17 26
13 1,139 17 34
14 4,895 17 36
15 16,297 17 40
16 51,493 19 52
17 208,350 19 52
18 409,348 21 59
19 1,326,256 21 61

We have investigated the size of the compact representation because it is reason-
ably implementation independent, barring optimizations of the approximation algorithms
themselves that affect the sizes of the subautomata. Where we show that for some method
there is a sharp increase in the size of the compact representation for a small increase
in the size of the grammar, this gives us a strong indication how difficult it would be to
apply the method to much larger grammars. Note that the size of the compact represen-
tation is a (very) rough indication as to how much effort is involved in determinization,
minimization, and substituting the subautomata into each other. For determinization and
minimization of automata, we have applied programs from the FSM library described
by Mohri, Pereira, and Riley (1998). This library is considered to be competitive with
respect to other tools for processing of finite-state machines, and when the programs
cannot determinize or minimize in reasonable time and space some subautomata con-
structed by a particular method of approximation, then this can be regarded to be an
indication of the impracticality of the method.

We were not able to compute the compact representation for all the methods and
all the grammars. Quite problematic proved to be the refined RTN approximation from
Section 4.2. We were not able to compute the compact representation for any of the au-
tomatically obtained grammars in our collection that were self-embedding. We therefore
eliminated individual rules by hand starting from the smallest self-embedding grammar in
our collection, eventually finding grammars small enough to be handled by this method.
The results are given in Table 1. Note that the size of the compact representation in-
creases significantly for each additional grammar rule. The sizes of the finite automata,
after determinization and minimization, remain relatively small.

Also problematic was the first approximation from Section 4.4, which was based on
LR parsing following Pereira and Wright (1997). Already for the grammar of 50 rules, we
were not able to determinize and minimize one of the subautomata according to step 1 of
Section 3: we stopped the process after it had become over 600 Megabytes large. Results
as far as we could obtain them are given in Table 2. Note the sharp increases in the size
of the compact representation, resulting from small increases, from 44 to 47 and from 47
to 50, in the number of rules, and note an accompanying sharp increase in the size of
the finite automaton. For this method, we see no possibility to accomplish the complete
approximation process, including determinization and minimization, for grammars in our
collection that are substantially larger than 50 rules.

Since no grammars of interest could be handled by them, the above two methods
will be further left out of consideration.

In the sequel, we refer to the unparameterized and parameterized approximations

19



Computational Linguistics Volume 26, Number 1

Table 2
Size of the compact representation and number of states and transitions, for the superset
approximation based on LR automata following Pereira and Wright (1997).

grammar size compact repr # states # transitions

35 15,921 350 2,125
44 24,651 499 4,352
47 151,226 5,112 35,754
50 646,419 ? ?

based on RTNs (Section 4.1) as ‘RTN’ and ‘RTNd,’ respectively, for d = 2,3; to the
subset approximation from Figure 9 as ‘Subd,’ for d = 1,2,3; and to the second and
third methods from Section 4.4, which were based on LR parsing following Baker (1981)
and Bermudez and Schimpf (1990), as ‘LR’ and ‘LRd,’ respectively, for d = 2, 3. We refer
to the subset approximation based on left-corner parsing from Section 4.5 as ‘L.Cd,’ for
the maximal stack height of d = 2, 3,4; and to the methods discussed in Section 4.6 as
‘Unigram,’ ‘Bigram’ and ‘Trigram.’

We first discuss the compact representation of the nondeterministic automata. In
Figure 12 we use two different scales to be able to represent the large variety of values.
For the method Subd, the compact representation is of purely theoretical interest for
grammars larger than 156 rules in the case of Subl, for those larger than 62 rules in the
case of Sub2, and for those larger than 35 rules in the case of Sub3, since the minimal
deterministic automata could thereafter no longer be computed with a reasonable bound
on resources; we stopped the processes after they had consumed over 400 Megabytes. For
LC3, LC4, RTN3, LR2 and LR3, this was also the case for grammars larger than 139,
62, 156, 217 and 156 rules, respectively. The sizes of the compact representation seem to
grow moderately for LR and Bigram, in the upper panel, yet the sizes are much larger
than those for RTN and Unigram, which are indicated in the lower panel.

The numbers of states for the respective methods are given in Figure 13, again using
two very different scales. As in the case of the grammars, the terminals of our finite
automata are parts of speech rather than words. This means that in general there will
be nondeterminism during application of an automaton on an input sentence due to lex-
ical ambiguity. This nondeterminism can be handled efficiently using tabular techniques
provided the number of states is not too high. This consideration favours methods which
produce low numbers of states, such as Trigram, LR, RTN, Bigram and Unigram.

Note that the numbers of states for LR and RTN differ only very little. In fact,
for some of the smallest and for some of the largest grammars in our collection, the
resulting automata were identical. Remark however that the intermediate results for LR
(Figure 12) are much larger. It should therefore be concluded that the “sophistication”
of LR parsing is here merely a source of needless inefficiency.

The numbers of transitions for the respective methods are given in Figure 14. Again
note the different scales used in the two panels. The numbers of transitions roughly
correspond to the storage requirements for the automata. It can be seen that again
Trigram, LR, RTN, Bigram and Unigram perform well.

The precision of the respective approximations is measured in terms of the percent-
ages of sentences in the corpus that are recognized by the automata, in comparison to the
percentage of sentences that are generated by the grammar, as presented by Figure 15.
The lower panel represents an enlargement of a section from the upper panel. Methods
that could only be applied for the smaller grammars are only presented in the lower
panel; LC4 and Sub2 have been omitted entirely.
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Size of the compact representation.

The curve labelled G represents the percentage of sentences that are generated by
the grammar. Note that since all approximation methods compute either supersets or
subsets, it cannot occur that a particular automaton both recognizes some ungrammatical
sentences and rejects some grammatical sentences.
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Number of states of the determinized and minimized automata.

Unigram and Bigram recognize very high percentages of ungrammatical sentences.
Much better results were obtained for RTN. The curve for LR would not be distin-
guishable from that for RTN in the figure, and is therefore omitted. (For only two of the
investigated grammars was there any difference, the largest difference occurring for gram-
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Number of transitions of the determinized and minimized automata.

mar size 217, where 34.1 versus 34.5 percent of sentences were recognized in the cases
of LR and RTN, respectively.) Trigram remains very close to RTN (and LR); for some
grammars a lower percentage is recognized, for others a higher percentage is recognized.
LR2 seems to improve slightly over RTN and Trigram, but only for small grammars is
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Percentage of sentences that are recognized.

data available, due to the difficulty of applying the method to larger grammars. A more
substantial improvement is found for RTN2. Even smaller percentages are recognized by
LR3 and RTN3, but again, only for small grammars is data available.

The subset approximations LC3 and Subl remain very close to G, but also here only
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Number of states and number of transitions of the determinized and minimized automata.

data for small grammars is available, since these two methods could not be applied on
larger grammars. Although application of LC2 on larger grammars required relatively few
resources, the approximation is very crude: only a small percentage of the grammatical
sentences are recognized.

We also performed experiments with the grammar transformation from Section 5,
in combination with the RTN method. We found that for increasing j, the intermediate
automata soon became too large to be determinized and minimized, with a bound on
the memory consumption of 400 Megabytes. The sizes of the automata that we were
able to compute are given in Figure 16. ‘RTN+j,’ for j = 1,2,3,4,5, represents the
(unparameterized) RTN method in combination with the grammar transformation with
parameter j. This is not to be confused with the parameterized ‘RTNd’ method.

Figure 17 indicates the number of sentences in the corpus that are recognized by
an automaton divided by the number of sentences in the corpus that are generated by
the grammar. For comparison, the figure also includes curves for RTNd, where d = 2,3
(cf. Figure 15). We see that j = 1,2 has little effect. For j = 3,4,5, however, the
approximating language becomes substantially smaller than that in the case of RTN, but
at the expense of large automata. In particular, if we compare the sizes of the automata
for RTN+j in Figure 16 with those for RTNd in Figures 13 and 14, then Figure 17
suggests the large sizes of the automata for RTN+j are not compensated adequately by
a reduction of the percentage of sentences that are recognized. RTNd seems therefore
preferable over RTN+j.

7 Conclusions

If we apply the finite automata with the intention of filtering out incorrect sentences,
for example from the output from a speech recognizer, then it is allowed that a certain
percentage of ungrammatical input is recognized, since this merely makes filtering less
effective, but does not affect the functionality of the system as a whole, provided we
assume that the grammar specifies exactly the set of sentences that can be successfully
handled by a subsequent phase of processing. Also allowed is that “pathological” gram-
matical sentences are rejected that seldom occur in practice; an example are sentences
requiring multiple levels of self-embedding.
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Of the methods we considered that may lead to rejection of grammatical sentences,
i.e. the subset approximations, none seems of much practical value. The most serious
problem is the complexity of the construction of automata from the compact representa-
tion for large grammars. Since the tools we used for obtaining the minimal deterministic
automata are considered to be of high quality, I doubt whether alternative implemen-
tations could succeed on much larger grammars, also considering the sharp increases in
the sizes of the automata for small increases in the size of the grammar. Only LC2 could
be applied with relatively few resources, but this is a very crude approximation, which
leads to rejection of many more sentences than just those requiring self-embedding.

Similarly, some of the superset approximations are not applicable to large grammars
because of the high costs of obtaining the minimal deterministic automata. Some oth-
ers provide rather large languages, and therefore do not allow very effective filtering of
ungrammatical input. One method however seems to be excellently suited for large gram-
mars, viz. the RTN method; into consideration come the unparameterized version and
the parameterized version with d = 2. In both cases, the size of the automaton grows
moderately in the grammar size. For the unparameterized version, also the compact
representation grows moderately. Furthermore, the percentage of recognized sentences
remains close to the percentage of grammatical sentences. It seems therefore that, under
the conditions of our experiments, this method is the most suitable regular approximation

that is presently available.
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