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Abstract

We compare the asymptotic time complexity of
left-to-right and bidirectional parsing techniques for
bilexical context-free grammars, a grammar formal-
ism that is an abstraction of language models used in
several state-of-the-art real-world parsers. We pro-
vide evidence that left-to-right parsing cannot be re-
alised within acceptable time-bounds if the so called
correct-prefix property is to be ensured. Our evi-
dence is based on complexity results for the repre-
sentation of regular languages.

1 Introduction

Traditionally, algorithms for natural language pars-
ing process the input string strictly from left to right.
In contrast, several algorithms have been proposed
in the literature that process the input in a bidi-
rectional fashion; see (van Noord, 1997; Satta and
Stock, 1994) and references therein. The issue of
parsing efficiency for left-to-right vs. bidirectional
methods has longly been debated. On the basis of
experimental results, it has been argued that the
choice of the most favourable strategy should depend
on the grammar at hand. With respect to grammar
formalisms based upon context-free grammars, and
when the rules of these formalisms strongly depend
on lexical information, (van Noord, 1997) shows that
bidirectional strategies are more efficient than left-
to-right strategies. This is because bidirectional
strategies are most effective in reducing the parsing
search space, by activating as early as possible the
maximum number of lexical constraints available in
the grammar.

In this paper we present mathematical arguments
in support of the above empirically motivated the-
sis. We investigate a class of lexicalized grammars
that, in their probabilistic versions, have been widely
adopted as language models in state-of-the-art real-
world parsers. The size of these grammars usually
grows with the square of the size of the working lex-
icon, and thus can be very large. In these cases, the
primary goal in the design of a parsing algorithm
is to achieve asymptotic time performance sublinear
in the size of the working grammar and indepen-
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dent of the size of the lexicon. These desiderata are
met by existing bidirectional algorithms (Alshawi,
1996; Eisner, 1997; Eisner and Satta, 1999). In con-
trast, we show the following two main results for
the asymptotic time performance of left-to-right al-
gorithms satisfying the so called correct-prefix prop-
erty.

e In case off-line compilation of the working gram-
mar is not allowed, left-to-right parsing cannot
be realised within time bounds independent of
the size of the lexicon.

e In case polynomial-time, off-line compilation of
the working grammar is allowed, left-to-right
parsing cannot be realised in polynomial time,
and independently of the size of the lexicon, un-
less a strong conjecture based on complexity re-
sults for the representation of regular languages
is falsified.

The first result implies that the well known Earley
algorithm and related standard parsing techniques
that do not require grammar precompilation can-
not be directly extended to process the above men-
tioned grammars (resp. language models) within an
acceptable time bound. The second result provides
evidence that well known parsing techniques as left-
corner parsing, requiring polynomial-time prepro-
cessing of the grammar, also cannot be directly ex-
tended to process these formalisms within an accept-
able time bound.

The grammar formalisms we investigate are based
upon context-free grammars and are called bilex-
ical context-free grammars. Bilexical context-free
grammars have been presented in (Eisner and Satta,
1999) as an abstraction of language models that have
been adopted in several recent real-world parsers,
improving state-of-the-art parsing accuracy (Al-
shawi, 1996; Eisner, 1996; Charniak, 1997; Collins,
1997). Our results directly transfer to all these lan-
guage models. In a bilexical context-free grammar,
possible arguments of a word are always specified
along with possible head words for those arguments.
Therefore a bilexical grammar requires the grammar
writer to make stipulations about the compatibil-



ity of particular pairs of words in particular roles,
something that was not necessarily true of general
context-free grammars.

The remainder of this paper is organized as fol-
lows. We introduce bilexical context-free grammars
in Section 2, and discuss parsing with the correct-
prefix property in Section 3. Our results for parsing
with on-line and off-line grammar compilation are
presented in Sections 4 and 5, respectively. To com-
plete the presentation, Appendix A shows that left-
to-right parsing in time independent of the size of
the lexicon is indeed possible when an off-line com-
pilation of the working grammar is allowed that has
an exponential time complexity.

2 Bilexical context-free grammars

In this section we introduce the grammar formalism
we investigate in this paper. This formalism, origi-
nally presented in (Eisner and Satta, 1999), is an ab-
straction of the language models adopted by several
state-of-the-art real-world parsers (see Section 1).
We specify a non-stochastic version of the formal-
ism, noting that probabilities may be attached to
the rewrite rules exactly as in stochastic CFG (Gon-
zales and Thomason, 1978; Wetherell, 1980). We
assume that the reader is familiar with context-free
grammars. Here we follow the notation of (Harrison,
1978; Hopcroft and Ullman, 1979).

A context-free grammar (CFG) is a tuple G =
(W, Vr, P, S), where Vi and Vi are finite, disjoint
sets of nonterminal and terminal symbols, respec-
tively, S € Vx is the start symbol, and P is a finite
set of productions having the form A — «, where
A€ Vyand a € (VWU Vrp)*. A “derives” relation,
written =, is associated with a CFG as usual. We
use the reflexive and transitive closure of =, writ-
ten =*, and define L(G) accordingly. The size of a
CFG G is defined as |G| = X(4_,q)cp |Aa|. If every
production in P has the form A — BC or A — a,
for A,B,C € Vn,a € Vg, then G is said to be in
Chomsky Normal Form (CNF).

A CFG G = (W, V1, P,S[$]) in CNF is called a
bilexical context-free grammar if there exists a
set Vp, called the set of delexicalized nontermi-
nals, such that nonterminals from Vy are of the form
Alal, consisting of A € Vp and a € Vr, and every
production in P has one of the following two forms:

(i) Ala] — B[b] Clc], a € {b,c};
(i) Ala] — a.

A nonterminal Afa] is said to have terminal symbol
a as its lexical head. Note that in a parse tree for
G, the lexical head of a nonterminal is always “in-
herited” from some daughter symbol (i.e., from some
symbol in the right-hand side of a production). In
the sequel, we also refer to the set Vr as the lexicon

of the grammar.

A bilexical CFG can encode lexically specific pref-
erences in the form of binary relations on lexi-
cal items. For instance, one might specify P as
to contain the production VP[solve] — V][solve]
NP[puzzles] but not the production VP[eat] —
V[eat] NP[puzzles]. This will allow derivation of
some VP constituents such as “solve two puzzles”,
while forbidding “eat two puzzles”. See (Eisner and
Satta, 1999) for further discussion.

The cost of this expressiveness is a very large
grammar. Indeed, we have |G| = O(|Vo|° - [Vr|?),
and in practical applications |Vr| > [Vp| > 1. Thus,
the grammar size is dominated in its growth by the
square of the size of the working lexicon. Even if we
conveniently group lexical items with distributional
similarities into the same category, in practical ap-
plications the resulting grammar might have several
thousand productions. Parsing strategies that can-
not work in sublinear time with respect to the size of
the lexicon and with respect to the size of the whole
input grammar are very inefficient in these cases.

3 Correct-prefix property

So called left-to-right strategies are standardly
adopted in algorithms for natural language pars-
ing. Although intuitive, the notion of left-to-right
parsing is a concept with no precise mathematical
meaning. Note that in fact, in a pathological way,
one could read the input string from left-to-right,
storing it into some data structure, and then per-
form syntactic analysis with a non-left-to-right strat-
egy. In this paper we focus on a precise definition
of left-to-right parsing, known in the literature as
correct-prefix property parsing (Sippu and Soisalon-
Soininen, 1990). Several algorithms commonly used
in natural language parsing satisfy this property, as
for instance Earley’s algorithm (Earley, 1970), tab-
ular left-corner and PLR parsing (Nederhof, 1994)
and tabular LR parsing (Tomita, 1986).

Let V1 be some alphabet. A generic string over Vr
is denoted as w = a1 -+ - a,, withn > 0 and a; € Vi
(1 <4 < n); in case n = 0, w equals the empty
string €. For integers 7 and j with 1 < ¢ < 7 < n, we
write w(i, j| to denote string a;a;;1---a;; if ¢ > j,
we define wli, j] = e.

Let G = (W, V1, P,S) be a CFG and let w =
aj - - - ap with n > 0 be some string over V. A rec-
ognizer for the CFG class is an algorithm R that,
on input (G,w), decides whether w € L(G). We
say that R satisfies the correct-prefix property
(CPP) if the following condition holds. Algorithm
R processes the input string from left-to-right, “con-
suming” one symbol a; at a time. If for some ¢,
0 < i < n, the set of derivations in G having the
form S =* w[1,1]y, v € (Vny U V)*, is empty, then
R rejects and halts, and it does so before consuming
symbol a;41, if ¢ < n. In this case, we say that R



has detected an error at position 7 in w. Note that
the above property forces the recognizer to do rele-
vant computation for each terminal symbol that is
consumed.

We say that w[1,i] is a correct-prefix for a lan-
guage L if there exists a string z such that w([1,3]z €
L. In the natural language parsing literature, the
CPP is sometimes defined with the following condi-
tion in place of the above. If for some 7, 0 < i < n,
wl1,14] is not a correct prefix for L(G), then R rejects
and halts, and it does so before consuming symbol
a;+1, if i < n. Note that the latter definition asks
for a stronger condition, and the two definitions are
equivalent only in case the input grammar G is re-
duced.! While the above mentioned parsing algo-
rithms satisfy the former definition of CPP, they do
not satisfy the latter. Actually, we are not aware of
any practically used parsing algorithm that satisfies
the latter definition of CPP.

One needs to distinguish CPP parsing from some
well known parsing algorithms in the literature that
process symbols in the right-hand sides of each gram-
mar production from left to right, but that do not
exhibit any left-to-right dependency between differ-
ent productions. In particular, processing of the
right-hand side of some production may be initi-
ated at some input position without consultation of
productions or parts of productions that may have
been found to cover parts of the input to the left
of that position. These algorithms may also consult
input symbols from left to right, but the processing
that takes place to the right of some position ¢ does
not strictly depend on the processing that has taken
place to the left of i. Examples are pure bottom-up
methods, such as left-corner parsing without top-
down filtering (Wiren, 1987).

Algorithms that do satisfy the CPP make use of
some form of top-down prediction. Top-down pre-
diction can be implemented at parse-time as in the
case of Earley’s algorithm by means of the “predic-
tor” step, or can be precompiled, as in the case of
left-corner parsing (Rosenkrantz and Lewis, 1970),
by means of the left-corner relation, or as in the case
of LR parsers (Sippu and Soisalon-Soininen, 1990),
through the closure function used in the construc-
tion of LR states.

4 Recognition without
precompilation

In this section we consider recognition algorithms
that do not require off-line compilation of the input
grammar. Among algorithms that satisfy the CPP,
the most popular example of a recognizer that does

1A context-free grammar G is reduced if every nonterminal
of G can be part of at least one derivation that rewrites the
start symbol into some string of terminal symbols.

not require grammar precompilation is perhaps Ear-
ley’s algorithm (Earley, 1970). We show here that
methods in this family cannot be extended to work
in time independent of the size of the lexicon, in
contrast with bidirectional recognition algorithms.

The result presented below rests on the follow-
ing, quite obvious, assumption. There exists a con-
stant ¢, depending on the underlying computation
model, such that in £ > 0 elementary computation
steps any recognizer can only read up to c - k pro-
ductions from set P. In what follows, and without
any loss of generality, we assume ¢ = 1. Apart from
this assumption, no other restriction is imposed on
the representation of the input grammar or on the
access to the elements of sets V, Vr and P.

Theorem 1 Let f be any function of two variables
defined on natural numbers. No recognizer for bilexi-
cal context-free grammars that satisfies the CPP can
run on input (G,w) in an amount of time bounded
by f(|Vb|,|w|), where Vp is the set of delezicalized
nonterminals of G.

Proof. Assume the existence of a recognizer R sat-
isfying the CPP and running in f(|Vp|, |w|) steps or
less. We show how to derive a contradiction.

Let ¢ > 1 be an integer. Define a bilexical CFG
Gy = (V,VE, P9, Alby]) where Vi{ contains g + 2
distinct symbols {b1,...,bg42} and
Vi = {Ab] | 1<i<q+1}U{TP] | be Vi},
and where set P? contains all and only the following
productions:

(1) Albi] = Albia] T[bs], 1<i<g;
(i) A[bgt1] = T[bg42] Tlbg+1];
(iii) T[b] = b, be VL

Productions in (i) are called bridging productions.
Note that there are g bridging productions in Gj.
Also, note that Vi = {A,T} does not depend on
the choice of q. Thus, we will simply write Vp.
Choose ¢ > max{f(|Wp],2),1}. On input
(Gq,bg+2bg+1), R does not detect any error at posi-
tion 1, that is after having read the first symbol b4 2
of the input string. This is because A[b1] =* bgy27y
with v = T[bgt1] T[bg] T[bg—1]---T[b1] is a valid
derivation in G. Since R executes no more than
f(IVb|,2) steps, from our assumption that reading
a production takes unit time it follows that there
must be an integer k, 1 < k < g, such that bridging
production A[bg] — A[bg+1] T'[bx] is not read from
G,- Construct then a new grammar G, by replacing
in G, the production A[by] — A[bg+1] T[bx] with
the new production A[bgy] — T'[bx] Al[bg+1], leaving
everything else unchanged. It follows that, on in-
put (G7,bg2bg11), R behaves exactly as before and
does not detect any error at position 1. But this is



a contradiction, since there is no derivation in G; of
the form A[b1] =* bgt27, v € (Vn U V)*, as can be
easily verified. m

We can use the above result in the comparison
of left-to-right and bidirectional recognizers. The
recognition of bilexical context-free languages can
be carried out by existing bidirectional algorithms
in time independent of the size of the lexicon and
without any precompilation of the input bilexical
grammar. For instance, the algorithms presented
in (Eisner and Satta, 1999) allow recognition in time
O(Vo|* |w|*)2 Theorem 1 states that this time
bound cannot be met if we require the CPP and if
the input grammar is not precompiled. In the next
section, we will consider the possibility that the in-
put grammar is in a precompiled form.

5 Recognition with precompilation

In this section we consider recognition algorithms
that satisfy the CPP and allow off-line, polynomial-
time compilation of the working grammar. We focus
on a class of bilexical context-free grammars where
recognition requires the stacking of a number of un-
resolved lexical dependencies that is proportional to
the length of the input string. We provide evidence
that the above class of recognizers perform much less
efficiently for these grammars than existing bidirec-
tional recognizers.

We assume that the reader is familiar with the
notions of deterministic and nondeterministic finite
automata. We follow here the notation in (Hopcroft
and Ullman, 1979). A nondeterministic finite au-
tomaton (FA) is a tuple M = (Q, X%, d, go, F'), where
Q@ and X are finite, disjoint sets of state and alphabet
symbols, respectively, go € @ and F' C @ are the ini-
tial state and the set of final states, respectively, and
§ is a total function mapping Q x X to 29, the power-
set of Q. Function J represents the transitions of the
automaton. Given a string w = a; ---a,, n > 0, an
accepting computation in M for w is a sequence
0,a1,41,02,92, - - - ,an, gn Such that ¢; € d(g;1,0a;)
for 1 <i < m, and ¢, € F. The language L(M) is
the set of all strings in ¥* that admit at least one
accepting computation in M. The size of M is de-
fined as [M| = X4c0,0ex|6(q,a)|. The automaton
M is deterministic if, for every ¢ € Q and a € X, we
have |6(g,a)| = 1.

We call quasi-determinizer any algorithm A
that satisfies the following two conditions:

1. A takes as input a nondeterministic FA M =
(@,%,6,q0, F) and produces as output a device
Dy, that, when given a string w as input, de-
cides whether w € L(M); and

2More precisely, the running time for these algorithms is
O(|Vp|? |w|® min{|Vr|, |w|}). In cases of practical interest,
we always have |w| < |Vr|.

2. there exists a polynomial ps such that every
Djs runs in an amount of time bounded by

pa(lw))-

We remark that, given a nondeterministic FA M
specified as above, known algorithms allow simula-
tion of M on an input string w in time O(|M||w|)
(see for instance (Aho et al., 1974, Thm. 9.5)
or (Sippu and Soisalon-Soininen, 1988, Thm. 3.38)).
In contrast, a quasi-determinizer produces a device
that simulates M in an amount of time independent
of the size of M itself.

A standard example of a quasi-determinizer is the
so called power-set construction, used to convert
a nondeterministic FA into a language-equivalent
deterministic FA (see for instance (Hopcroft and
Ullman, 1979, Thm. 2.1) or (Sippu and Soisalon-
Soininen, 1988, Thm. 3.30)). In fact, there exist
constants ¢ and ¢’ such that any deterministic FA
can be simulated on input string w in an amount of
time bounded by ¢ |w| + ¢'. This requires function §
to be stored as a |@Q| X |X|, 2-dimensional array with
values in ). This is a standard representation for
automata-like structures; see (Gusfield, 1997, Sect.
6.5) for discussion.

We now pose the question of the time efficiency
of a quasi-determinizer, and consider the amount of
time needed in the construction of Djs. In (Meyer
and Fisher, 1971; Stearns and Hunt, 1981) it is
shown that there exist (infinitely many) nonde-
terministic FAs with state set @, such that any
language-equivalent deterministic FA must have at
least 2/<| states. This means that the power-set con-
struction cannot work in polynomial time in the size
of the input FA. Despite of much effort, no algo-
rithm has been found, up to the authors’ knowledge,
that can simulate a nondeterministic FA on an input
string w in linear time in |w| and independently of
|M]|, if only polynomial-time precompilation of M
is allowed. Even in case we relax the linear-time re-
striction and consider recognition of w in polynomial
time, for some fixed polynomial, it seems unlikely
that the problem can be solved if only polynomial-
time precompilation of M is allowed. Furthermore,
if we consider precompilation of nondeterministic
FAs into “partially determinized” FAs that would
allow recognition in polynomial (or even exponen-
tial) time in |w|, it seems unlikely that the analysis
required for this precompilation could consider less
than exponentially many combinations of states that
may be active at the same time for the original non-
deterministic FA. Finally, although more powerful
formalisms have been shown to represent some regu-
lar languages much more succinctly than FAs (Meyer
and Fisher, 1971), while allowing polynomial-time
parsing, it seem unlikely that this could hold for reg-
ular languages in general.



Conjecture There is no quasi-determinizer that
works in polynomial time in the size of the input
automaton.

Before turning to our main result, we need to
develop some additional machinery. Let M =
(@,%,6,q90, F) be a nondeterministic FA and let
w = aj--ra, € L(M), where n > 0. Let
q0,Q1,91, - - - , An, ¢n, b€ an accepting computation for
w in M, and choose some symbol $§ ¢ X. We can
now encode the accepting computation as

($,90)(a1,q1) - (@n, qn)

where we pair alphabet symbols to states, prepend-
ing $ to make up for the difference in the number
of alphabet symbols and states. We now provide
a construction that associates M with a bilexical
CFG G- Strings in L(G ) are obtained by pair-
ing strings in L(M) with encodings of their accepting
computations (see below for an example).

Definition 1 Let M = (Q, 3,0, qo, F) be a nonde-
terministic FA. Choose two symbols $,# ¢ %, and
let A = {(a,q) | a € ZU{S$}, ¢ € Q}. A bilexi-
cal CFG Gy = (W, Vi, P, C[(8, q0)]) is specified as
follows:

(i) W =A{Tlo] | 0 € Vr} U{C[o],C'[0] | 0 € A};
(i) Vo = AU U {#);

(iii) P contains all and only the following produc-
tions:

(a) for each o € V,
T[o] — o;
(b) for each (a,q),(a’,q') € A such that ¢’ €
(g,a'),
Cl(a,q)] = C'[(a’,¢)] T(a, 9)];
(c) for each (a,q) € A,
C'[(a,q)] = T[a] C[(a, q)];
(d) for each (a,q) € A such that q € F,
Cl(a,q)] = T[#] T((a, q)]-

We give an example of the above construc-
tion. Consider an automaton M and a string
w = ajazaz such that w € L(M). Let
($,0)(01,41)(a3,42)(as, gs) be the encoding of an
accepting computation in M for w. Then the
string ajaza3#(as,g3)(az,92)(a1,4q1)($,q) belongs
to L(Gpr). The tree depicted in Figure 1 represents
a derivation in Gps of such a string.
The following fact will be used below.

Lemma 1 For each w € ¥*, w# is a correct-prefic
for L(G ) if and only if w € L(M).

QOutline of the proof. We claim the following
fact. For each & > 0, ai,as,...,ar € ¥ and
q0,41,---,qx € Q we have

q; € 5(qi_1,ai), for all i (1 << k),

C[(%, )]

C'[(a1, ¢1)] T(($, 90)]
Tlas] Cllas,q1)]  ($,9)
a1 C'[(az,q)] T((a1,q1)]
Tlas] Cl(az; g2)]  (a1,41)
az  C'[(as, q3)] T((az, q2)]
Tlas] Cl(as,g3)]  (a2,92)
as T[#]/\T[(as,%)]
i (a3 g3)

Figure 1: A derivation in Gp for string

aiaza3#(as, g3)(az,92)(a1,41)($, )

if and only if

Cl(8, )] =*
a1 -+ axCl(ak, gr)l(ak—1,9k-1) - - - (8, 90)-

The claim can be proved by induction on k, using
productions (a) to (c) from Definition 1.

Let R denote the reverse operator on strings.?
From the above claim and using production (d) from
Definition 1, one can easily show that

L(Gy) = {wH#u | w € L(M), u® encodes an
accepting computation for w}.

The lemma directly follows from this relation. =

We can now provide the main result of this sec-
tion. To this end, we refine the definition of rec-
ognizer presented in Section 3. A recognizer for the
CFG class is an algorithm R that has random access
to some data structure C(G) obtained by means of
some off-line precompilation of a CFG G. On in-
put w, which is a string on the terminal symbols of
G, R decides whether w € L(G). The definition of
the CPP extends in the obvious way to recognizers
working with precompiled grammars.

Theorem 2 Let p be any polynomial in two vari-
ables. If the conjecture about quasi-determinizers
holds true, then no recognizer exists that

3Note that R does not affect individual symbols in a string.
Thus (a,q)® = (a, ).



(i) has random access to data structure C(G) pre-
compiled from a bilezical CFG G in polynomial
time in |G|,

(ii) runs in an amount of time bounded by
p(IVb|,|w|), where Vp is the set of delexicalized
nonterminals of G and w is the input string,
and

(iii) satisfies the CPP.

Proof. Assume there exists a recognizer R that sat-
isfies conditions (i) to (iii) in the statement of the
theorem. We show how this entails that the conjec-
ture about quasi-determinizers is false.

We wuse algorithm R to specify a quasi-
determinizer A. Given a nondeterministic FA M,
A goes through the following steps.

1. A constructs grammar Gjs as in Definition 1.

2. A precompiles Gy as required by R, producing
data structure C(Gyy).

3. A returns a device Dy, specified as follows.
Given a string w as input, Djs runs R on string
w#. If R detects an error at any position 4,
0 < ¢ < |w#|, then Dy rejects and halts, oth-
erwise Djs accepts and halts.

From Lemma 1 we have that Dj; accepts w if and
only if w € L(M). Since R runs in time p(|Vp|, |wl|)
and since G s has a set of delexicalized nonterminals
independent of M, we have that there exists a poly-
nomial p4 such that every Dy, works in an amount
of time bounded by p4(|w|). We therefore conclude
that A is a quasi-determinizer.

It remains to be shown that A works in polyno-
mial time in |M]|. Step 1 can be carried out in time
O(|M|). The compilation at Step 2 takes polynomial
time in |G|, following our hypotheses on R, and
hence polynomial time in |M]|, since |Gu| = O(|M]).
Finally, the construction of Djs at Step 3 can easily
be carried out in time O(|M|) as well. =

In addition to Theorem 1, Theorem 2 states that,
even in case the input grammar is compiled off-
line and in polynomial time, we cannot perform
CPP recognition for bilexical context-free grammars
in time polynomial in the grammar and the input
string but independent of the lexicon size. This
is true with at least the same evidence that sup-
ports the conjecture on quasi-determinizers. Again,
this should be contrasted with the time performance
of existing bidirectional algorithms, allowing recog-
nition for bilexical context-free grammars in time
(Vo [w]*).

In order to complete our investigation of the above
problem, in Appendix A we show that, when we drop
the polynomial-time restriction on the grammar pre-
compilation, it is indeed possible to get rid of any
|Vir| factor from the running time of the recognizer.

6 Conclusion

Empirical results presented in the literature show
that bidirectional parsing strategies can be more
time efficient in cases of grammar formalisms whose
rules are specialized for one or more lexical items.
In this paper we have provided an original mathe-
matical argument in favour of this thesis. Our re-
sults hold for bilexical context-free grammars and
directly transfer to several language models that can
be seen as stochastic versions of this formalism (see
Section 1). We perceive that these results can be ex-
tended to other language models that properly em-
bed bilexical context-free grammars, as for instance
the more general history-based models used in (Rat-
naparkhi, 1997) and (Chelba and Jelinek, 1998). We
leave this for future work.
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A Recognition in time independent
of the lexicon

In Section 5 we have shown that it is unlikely that
correct-prefix property parsing for a bilexical CFG
can be carried out in polynomial time and indepen-
dently of the lexicon size, when only polynomial-
time off-line compilation of the grammar is allowed.
To complete our presentation, we show here that
correct-prefix property parsing in time independent
of the lexicon size is indeed possible if we spend ex-
ponential time on grammar precompilation.

We first consider tabular LR parsing (Tomita,
1986), a technique which satisfies the correct-prefix
property, and apply it to bilexical CFGs. Our pre-
sentation relies on definitions from (Nederhof and
Satta, 1996). Let w € V! be some input string. A
property of LR parsing is that any state that can be
reached after reading prefix w[1, 5], j < |w|, must be
of the form

goto(goto(. .. (goto(gin, X1),---)y Xm—-1), Xm)

where g;,, is the initial LR state, and X3, ..., X,, are
terminals or nonterminals such that X;---X,, =*
w(1, j]. For a bilexical CFG, each Xj is of the form b,
or of the form B;[b;], where by, .. ., by, is some subse-
quence of w[1, j]. This means that there are at most
(2+|Vp|)™ distinct states that can be reached by the
recognizer, apart from g¢;,,. In the algorithm, the tab-
ulation prevents repeated manipulation of states for
a triple of input positions, leading to a time complex-
ity of O(n® |Vp|"™), where n = |w|. Hence, when we
apply precompilation of the grammar, we can carry
out recognition in time exponential in the length of
the input string, yet independent of the lexicon size.
Note however that the precompilation for LR pars-
ing takes exponential time.

The second algorithm with the CPP we will con-
sider can be derived from Earley’s algorithm (Ear-
ley, 1970). For this new recognizer, we achieve a
time complexity completely independent of the size
of the whole grammar, not merely independent of
the size of the lexicon as in the case of tabular LR
parsing. Furthermore, the input grammar can be
any general CFG, not necessarily a bilexical one. In
terms of the length of the input, the complexity is
polynomial rather than exponential.

Earley’s algorithm is outlined in what follows,
with minor modifications with respect to its origi-
nal presentation. An item is an object of the form



[A — a e 3], where A — af is a production from
the grammar. The recognition algorithm consists in
an incremental construction of a (n + 1) X (n + 1),
2-dimensional table 7', where n is the length of the
input string. At each stage, each entry T7¢,j] in
the table contains a set of items, which is initially
the empty set. After an initial item is added to en-
try T'[0,0] in the table, other items in other entries
are derived from it, directly or indirectly, using three
steps called predictor, scanner and completer. When
no more new items can be derived, the presence of
a final item in entry 7°[0,n] indicates whether the
input is recognized.

The recognition process can be precompiled,
based on the observation that for any grammar the
set of all possible items is finite, and thereby all po-
tential contents of T’s entries can be enumerated.
Furthermore, the dependence of entries on one an-
other is not cyclic; one item in T'[¢, j] may be derived
from a second item in the same entry, but it is not
possible that, for example, an item in T'[i, 7] is de-
rived from an item in T'[¢, j'], with (¢,5) # (¢,7'),
which is in turn derived from an item in Tz, j].

A consequence is that entries can be computed
in a strict order, and an operation that involves the
combination of, say, the items from two entries T'[¢, 5]
and T7j, k] by means of the completer step can be
implemented by a simple table lookup. More pre-
cisely, each set of items is represented by an atomic
state, and combining two sets of items according
to the completer step is implemented by indexing
a 2-dimensional array by the two states representing
those two sets, yielding a third state representing
the resulting set of items. Similarly, the scanner
and predictor steps and the union operation on sets
of items can all be implemented by table lookup.

The time complexity of recognition can straight-
forwardly be shown to be O(n?®), independent of
the size of the grammar. However, massive pre-
compilation is involved in enumerating all possi-
ble sets of items and precomputing the operations
on them. The motivation for discussing this algo-
rithm is therefore purely theoretical: it illustrates
the unfavourable complexity properties that The-
orem 2, together with the conjecture about quasi-
determinizers, attributes to the recognition problem
if the correct-prefix property is to be ensured.



