Preprocessing for Unification Parsing
of Spoken Language

Mark-Jan Nederhof

DFXKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany,
nederhof@dfki.de

Abstract. Wordgraphs are structures that may be output by speech
recognizers. We discuss various methods for turning wordgraphs into
smaller structures. One of these methods is novel; this method relies
on a new kind of determinization of acyclic weighted finite automata
that is language-preserving but not fully weight-preserving, and results
in smaller automata than in the case of traditional determinization of
weighted finite automata. We present empirical data comparing the re-
spective methods.

The methods are relevant for systems in which wordgraphs form the
input to kinds of syntactic analysis that are very time consuming, such
as unification parsing.

1 Introduction

Wordgraphs are weighted, labelled, directed, acyclic graphs that form the output
of a certain type of speech recognizer [2]; they are also called word lattices. The
nodes in a wordgraph roughly correspond to points in time during an utterance
from the user. An edge connecting two nodes is labelled by a word which the
speech recognizer proposes may have been uttered between the corresponding
points in time.

The weight attached to an edge indicates a measure of confidence that the
edge and its label participate in a path in the graph that corresponds to the
string of words that were actually uttered. For many speech recognizers, this
weight is the negative logarithm of the probability, according to some appropriate
probabilistic model. This means that for combining edges into paths (see below),
one should apply addition on the weights of the constituent edges in order to
determine the weights of the paths. Further, lower weights indicate higher levels
of confidence.

An edge may also be labelled by a symbol indicating that no word may have
been uttered between the corresponding points in time. This symbol we will
write as €.

The wordgraphs involved in our experiments are connected and have exactly
one initial node, i.e. a node without incoming edges, and exactly one final node,
i.e. a node without outgoing edges. The initial and final nodes correspond to the
points in time at the beginning and end, respectively, of the utterance. We will
refer to a path from the initial node to the final node as a complete path.

Wordgraphs may serve as input to syntactic analysis. In the VERBMOBIL
project, deep syntactic analysis is performed on the basis of the grammatical
formalism HPSG, which requires expensive unification [11]. Parsing is tabulated,
which allows sharing of the computation for a parse of a subpath in the graph
when the subpath is extended to several larger paths, or when the parse is
extended to several larger parses. Furthermore, when between two nodes several
parses are found that are similar, in some appropriate sense, then the parses
may be packed together, in order to save duplicated efforts when the parses are
further extended to cover larger paths in the wordgraph. (The issues of “sharing”
and “packing” are discussed by [5]. For packing in the context of unification, we
refer to the literature on “subsumption” [14,4].)

Since a wordgraph may consist of many nodes and many edges connecting
them, the number of complete paths may be quite large. To some extent, tabula-
tion in the parser may prevent duplicated effort for subpaths, avoiding treatment
for each complete path individually. However, in practice many subpaths in the
wordgraph involving distinct nodes have identical labels attached to the edges,
and in such a case, tabulation cannot avoid duplicated effort, since sharing and
packing are only effective with regard to parses between an identical pair of
nodes.

In this paper we will discuss methods to turn wordgraphs into simpler struc-
tures, in which fewer distinct subpaths have identical labels, so that tabular
parsing will lead to less duplicated effort. None of these methods eliminate any
string of labels, contrary to some well-known techniques as described for exam-
ple in [13]. The motivation is that the weights of edges should merely direct the
search for grammatical phrases, in the sense that the lowest-weighted paths are
to be investigated first, but high weights should not lead to a path being taken
out of consideration; a path with a relatively high weight is still considered to be
preferable if the HPSG parser is less successful in finding grammatical phrases
for all alternative paths with lower weights.

The theory of parsing of wordgraphs is well-developed, for simple formalisms
such as context-free grammars (cf. [3]) as well as for unification grammars. Yet in
practice, it is often too expensive to apply unification parsing to spoken language.
This research is intended to reduce the gap between theory and practice.

2 Investigated Methods

For all of the five investigated methods, the resulting structure does not satisfy
the restriction that there should be a unique final node in the wordgraph. This
is related to the elimination of edges labelled by ¢, following the first method.
This first method is also an implicit first phase of the remaining four methods.
In the fifth method furthermore, a different concept for edges is introduced.

2.1 Elimination of Epsilon Edges

Edges labelled by ¢, henceforth called epsilon edges, represent intervals when
no word may have been uttered. In our parsers, such edges themselves are not

treated as meaningful for the purpose of e.g. segmentation (i.e. dividing an ut-
terance into consecutive sentences or phrases), and therefore they may be safely
eliminated from the wordgraph without affecting the functionality of the system
as a whole. Also edges labelled by interjections indicating hesitation (e.g. “h’m”
can be treated in this way.

Elimination of epsilon transitions as known in the area of finite automata can
be straightforwardly applied here (see e.g. [12,15]). Our implementation investi-
gates paths consisting of zero or more epsilon edges followed by an edge labelled
a # €. Such a path in the old wordgraph is replaced in the new wordgraph by
an edge labelled a connecting the two nodes at the beginning and end of the old
path. The weight of the new edge is the sum of those of the old edges.

For paths in the old wordgraph that consist of epsilon edges and that end on
the former final node, we need an extension of the concept of wordgraph. In the
new data structure, nodes are themselves labelled by weights. A finite weight
attached to a node indicates that the node is final, and the utterance of the user
may end there with a level of confidence indicated by the weight. There may be
one or more of such final nodes, and a final node may have outgoing edges. For
a complete path through the wordgraph starting from the (still unique) initial
node and ending in a final node n, the total weight is given by the sum of the
weights of the edges plus the weight of n. For a related type of finite automaton,
see [12].

During epsilon edge elimination, the weight of a path consisting of epsilon
edges starting in node 7 in the old wordgraph and ending in the old final node is
translated to a weight for n in the new wordgraph. If more than one such weight
is found for n, we choose the lowest.

Elimination of epsilon edges preserves strings of labels and their weights.
For example, if we choose a path in the old wordgraph such that its weight
is minimal, and do the same for the new wordgraph, then the corresponding
weights will be identical, and the strings of (non-epsilon) labels of the paths are
identical.!

In some cases, for a given pair of nodes n; and ny and a label a, the new word-
graph contains more than one edge between n; and ns labelled by a. Then, only
the one with the lowest weight needs to be preserved. However, such edges are
found too seldom in the cases we have investigated to warrant the computational
overhead of finding them.

2.2 Automaton Minimization

Apart from the weights, a wordgraph can be seen as a nondeterministic finite
automaton accepting a set of strings. Finding an alternative automaton for the

! For the minimal weight (modulo a small factor to allow for inaccuracies coming from
floating-point operations), there may be more than one path. In this case, in the two
wordgraphs two corresponding sets of strings of labels are found to be identical. In
the experiments reported in Sect. 3, we determined a unique lowest-weighted string
of labels by means of the lexicographical ordering.

same set of strings having a minimal number of nodes is prohibitively expensive
[10], but we can effectively compute a new automaton for the same language
that is deterministic and minimal in the number of nodes. One such method
for computing minimal deterministic automata was proposed by [6]: the source
automaton is made deterministic, first from right to left, considering the reversed
automaton, then from left to right. For each pass of determinization, the powerset
construction can be applied. This can be generalized to weighted automata, as
demonstrated in [12].

In the two applications of determinization, subsets of states from the input
automaton are turned into states of the determinized automaton. In order to
preserve the weights that the automata assign to strings, one needs to associate
the states in a subset with “residual weights” that need to be taken into ac-
count at a later transition or at the weight of a final node. When we encounter
several subsets with identical states, but distinct associated weights, then most
published determinization algorithms (e.g. [12]) would produce distinct states
in the determinized automaton, one for each occurrence of the subset with a
distinct assignment of residual weights, or at least for each assignment of which
the distance to any other assignment for the same subset exceeds a certain fixed
number ¢, as was made explicit in [8]. This means the resulting automaton may
have significantly more states than in the unweighted case. (It has been demon-
strated by [7] in the case of wordgraphs that it may be the assignment of weights,
rather than the topology of the automaton, that is mostly responsible for growth
of the determinized and minimized automaton.) Since our objective is to obtain
small wordgraphs, this kind of determinization may be undesirable.

We have therefore investigated an alternative kind of determinization for
(acyclic) weighted automata, which is presented in Fig. 1, combined with reversal
of the automaton. For an edge e labelled a, leading from node n; to ns, and with
weight w, we write label(e) = a, from(e) = nq, to(e) = na, and weight(e) = w.
For a final node n, weight(n) denotes its weight. We assume there is a topological
sort that assigns a number number(n) to each node n [9]; commonly, the output
of a speech recognizer already incorporates a topological sort of the nodes.

The algorithm uses an agenda () of nodes of the new graph that are as yet
unprocessed; nodes of the new graph are, as before, sets of nodes of the old
graph. The initial node of the new graph is the set of final nodes in the old
graph (lines 1 and 3). Line 6 selects a node g to be processed. The topological
sort and the condition in line 7 ensure that after processing of ¢, no nodes will
be processed from which edges ensue that lead to g. The reason this needs to be
ensured is that, upon processing of g, we need access to the value Ws(q), which
is the set of all assignments of residual weights to nodes in g, which means we
do not want any assignments to be added to Ws(q) after ¢ is processed. (By
indexing elements ¢ in @ by the nodes n € ¢ that are maximal with regard to
the topological sort, lines 6 and 7 can be realised with low costs.)

The first value of the form Ws(g) is determined in line 2, where the residual
weights of nodes are their weights as final nodes in the old graph; where this is

(0) initialize the new graph to be empty;
(1) let go = {n | weight(n) < co};
(2) let Ws(go) = {{(n,w) | n € go A w = weight(n)}};

(3) make go to be the initial node in the new graph;

(1) let Q = {go};

(5) while Q#0

(6) do remove an element g from @ which is such that

(7 -3¢’ € Q[max, ¢y number(n') > max,ecq number(n)];
(8) letW:{(n,w)|n€q/\w:2W6|"VW’s—(W};

(9) let E = {e| to(e) € q};

(10) let A = {a | Je € E[label(e) = al]};

(11) foreach a € A

(12) do let E' = {e € E | label(e) = a};

(13) let ¢ = {n | e € E'[from(e) = n]};

(14) let W' ={(n,w) [n€qd Aw=_ cE S.tl:n;rI;m(e) _ ,weight(e)+W (to(e)};
(15) let z = E"%}/lv(n);

(16) let W' ={(n,w—2)| (n,w) € W'}

(17) create an edge €' in the new graph with

(18) from(e') = q, to(e') = ¢, label(e') = a, weight(e') = z;
(19) if set ¢’ had not yet been seen

(20) then add ¢' as node in the new graph;

(21) let Q = QU {¢'}; let Ws(g) = (W"}

(22) else let Ws(q') = Ws(¢') U{W"}

(23) end

(24) end;

(25) if g contains initial node ng in old graph

(26) then make g to be a final node with weight(q) = W (no)

(27) end

(28) end

Fig. 1. Reversal and determinization of a wordgraph.

more convenient, we represent functions from nodes to residual weights as pairs
of nodes and weights.

In line 8 we see that if Ws(q) for some node ¢ contains several assignments,
then to each node n € g we assign the average weight. To an edge e’ in the
new graph that leads from g to node ¢, line 15 assigns the weight z, which is
chosen such that the residual weights in W that we compute for ¢’ average to
0. This will allow a fair combination, in line 8 for a future iteration of the loop,
of W" with assignments in Ws(q') that originate in some other (past or future)
iteration.

The algorithm differs from traditional determinization of weighted automata
in that only one node is created for each set g, as opposed to one node for
each g and each assignment of residual weights separately. Note further that
our algorithm cannot guarantee that weight(q) > 0 for all newly created final
nodes g, nor that weight(e’) > 0 for all newly created edges €’. If this would pose

a problem to algorithms that process wordgraphs (e.g. the syntactic analysis),
then the idea of “pushing” [12] can be used to remove the negative weights.

This method preserves the set of strings of labels for complete paths, but
unlike epsilon edge elimination, there is a loss of accuracy of the associated
weights, due to the treatment of the Ws(q) that contain more than one element.
In the sequel, we will refer to this method as the fa-method, and to the more
traditional determinization and minimization of weighted finite automata, by
means of two non-approximating passes of reversal/determinization, as the wfa-
method. We did however not implement the minimization proposed in Section 3.7
of [12], which gives the same end result as the wfa-method, but may be faster in
some practical cases.

2.3 Node Merging

The wordgraphs found in practice contain many edges with identical labels that
overlap in the time interval they cover. A simple heuristics to simplify a word-
graph is to merge a pair of nodes if they are both at the beginning or at the end of
a pair of such overlapping edges. A node ns is merged into node n; by changing
the incoming and outgoing edges of ny to be new incoming and outgoing edges
of ny, respectively; node ny is thereafter eliminated from the graph. If this leads
to two edges with the same label and between the same pair of nodes, one of
them is eliminated. (Some kind of merging of nodes is often already performed
by speech recognizers, before they output the wordgraphs that are the subject
of this paper.)

That our realization of this heuristics cannot introduce cycles is ensured
by abstaining from merging a node n, into a node n; if a fixed topological sort
‘number’ of nodes in the graph would be violated afterwards; that the topological
sort is preserved is a sufficient, though not necessary, condition for the graph to
remain free of cycles. Specifically, for the case that number(n;) < number(nz),
we check whether all the begin nodes of incoming edges of ns precede n;:

Vn[3e[from(e) = n A to(e) = na] = number(n) < number(ny)]

If this holds, then ny can be safely merged into n1. In the case that number(ng) <
number(n), we check whether:

Vn[3e[from(e) = na A to(e) = n] = number(ni) < number(n)]

If this holds, then ny can be safely merged into n;.

In more detail, the method can be described as follows. We treat nodes one
by one starting at the initial node, following the topological sort. For each node
n, we investigate the set of outgoing edges twice. In the first phase, for each
edge e; we try to find an overlapping edge e; with the same label seen before
(when there is more than one such edge, we take the one most recently seen),
and we consider n; = to(e1) and ny = to(ez). Provided the topological sort can
be preserved, we merge n; into ns, or otherwise, provided the topological sort

can be preserved in this alternative way, we merge ns into n;. If in neither case
the topological sort can be preserved, the nodes are not merged.

If a node n' is merged into n'/, this means that each edge e with from(e) = n’
is changed such that from(e) = n'; if there already is an edge €' such that
from(e') = n” and furthermore to(e’) = to(e) and label(e’) = label(e), then
only the edge that has the better weight of the two is retained (see below for
what it means for an edge to have a better weight). Similarly, each edge e with
to(e) = n' is changed such that to(e) = n'’; again, if this leads to a pair of edges
that are identical in ‘from’, ‘to’, and ‘label’, then the one with the better weight
is retained.

In the second phase, we do the same for each outgoing edge of the current
node n, except that now the begin nodes of the overlapping edges may be merged.

When a node n; is merged into a node nq, then the edges connected to n;
are made longer or shorter in terms of the time interval they cover. We should
adjust the weight of such an edge in proportion to the change in the amount of
time that is covered, under the assumption that for the speech recognizer the
average weight assigned to an edge is linear to the time interval that is covered.
We further assume that the speech recognizer provides an assignment from nodes
n to discrete points in time denoted as time(n). This assignment may or may
not be equal to the topological sort ‘number’.

To simplify the algorithm, we first replace each weight w of an edge e by
the “weight per time unit”. This new value determines

time(to(e))7?ime(from(e)) ’
which edge to preserve if two edges result that are identical in ‘from’, ‘to’ and
‘label’; the lower value indicates the better edge. After nodes have been merged
where possible, each “weight per time unit” for an edge e is translated back to
an actual weight by multiplying by time(to(e)) — time(from(e)). Similar read-
justments of weights for another method are discussed in the following section.

2.4 Hypergraphs

The use of hypergraphs for representing the result of simplifying wordgraphs has
been proposed by [1]. As in the method of node merging above, edges overlapping
in time and with identical labels are merged. Here however, the data structure
differs substantially from the wordgraphs we have discussed in previous sections.
In hypergraphs, edges can have several begin nodes and several end nodes. For
example, for a pair of overlapping edges in the original wordgraph, the resulting
hypergraph may contain a single edge, with two begin nodes and two end nodes.

Some degree of accuracy is lost when transforming a wordgraph into a hyper-
graph. First, for a certain edge in the hypergraph (henceforth called a hyperedge),
the information which individual begin node connects to which individual end
node in the original wordgraph is no longer available. Thereby, new strings of
labels for complete paths may be introduced. Secondly, weights from the origi-
nal wordgraph are preserved in a merely simplified form in the hypergraph by
attaching a single weight to each hyperedge. This weight is the lowest weight per
time unit for each of the corresponding edges in the original wordgraph, much
as in the previous section.

Finding paths in a hypergraph involves combining pairs of adjacent hyper-
edges, where a pair of hyperedges is defined to be adjacent if at least one end
node of the first hyperedge is also a begin node of the second. The structure
representing the combination of adjacent hyperedges can itself be seen as a hy-
peredge, of which the begin nodes are the begin nodes of the first hyperedge in
the pair, and the end node are those in the second hyperedge. Henceforth we
will refer to a hyperedge constructed from hyperedges in the hypergraph as a
parse edge.

The weight of a parse edge is computed from the weights of the two hyper-
edges it is constructed from, according to somewhat involved formulae presented
by [1]; weights for parse edges, like weights for hyperedges in the hypergraph,
represent weights per time unit with respect to the paths that would be found
in the original wordgraph.

In the experiments to be discussed shortly, we assume that paths are con-
structed strictly from left to right, as follows. First we consider hyperedges that
have the initial node among the begin nodes. These edges are then combined to
the right with edges from the hypergraph. This is repeated until no more new
parse edges can be found. That paths are formed in this way is a reasonable
assumption, although for an actual parsing algorithm this may lead to a slightly
different computation of paths and consequently to different weights.

For the weight of a complete path we select a parse edge that has the initial
node among the begin nodes and a final node among the end nodes; we multiply
its value, which is a “weight per time unit”, with the number of time units
between this pair of nodes and add to this the weight of the final node. (In case
there are several final nodes among the end nodes we take the one resulting in
the lowest weight.)

3 Empirical Results

The effectiveness of hypergraphs in reducing the number of edges and thereby
the decrease in time and space requirements for exhaustive parsing has been
shown by [1]. From our perspective however, the data presented there does not
show unequivocally that hypergraphs are suitable in general for spoken-language
systems, for a number of reasons. First, the average size of the investigated
wordgraphs is very large, viz. 1828 edges per graph. Such large wordgraphs are
untypical for the speech recognizers available to us.

Secondly, the quality of the paths in the hypergraphs was not discussed. In
particular, it is unclear how many strings of labels with low weights may be
introduced in the hypergraphs that were not in the original wordgraphs. Such
strings may increase the frequency that a spoken-language system misinterprets
an utterance from the user.

Thirdly, the number of parse edges constructed by exhaustive parsing may
far exceed the number that is investigated in practice. Often parsers stop in-
vestigating the search space once an acceptable parse for some path has been
found, making use of a strategy of first investigating paths with lowest weights.

Furthermore, for unification parsing, often only a few paths can be investigated
before a time-out is reached. Therefore, what one is interested in is foremost how
many distinct strings of labels can be investigated in a given amount of time,
rather than how much time is consumed by investigating all paths.

We conclude that an appropriate wordgraph would offer many different
strings of labels among the lowest-weighted paths, and these strings should be
close to the actual utterance. In light of the discussion in Sect. 1, we would also
prefer wordgraphs in which paths that share substrings in their strings of labels
often also share corresponding subpaths, which improves sharing of computation.
Further, small numbers of nodes benefit packing of subparses.

In this section, we present the results of a new set of experiments that inves-
tigate the appropriateness for our purposes of the five methods for reducing the
size of wordgraphs. The experiments were performed on a set of 1717 wordgraphs,
with an average of 74 edges per graph. The average width, i.e. the number of
edges divided by the length in words of the manually transcribed utterance, was
4.5. On the average, 21 % of all edges were epsilon edges, and the number of
non-epsilon edges divided by the number of distinct non-epsilon labels was 1.9,
which means that each label occurred almost twice, on the average.

We will first consider a property that is independent from any particular
parsing algorithm, viz. the word accuracy of the string for the best complete
path through a preprocessed wordgraph with respect to that in the original
wordgraph.

Commonly, word accuracy is defined as follows. For a pair of strings, we
defined the distance as the minimum number of substitutions, insertions and
deletions needed to turn one string into the other. This quantity can be effectively
computed along the lines of [16]. The word accuracy of a string = with regard to
a string y is defined to be 1 — %, where d is the distance between z and y and
n is the length of y. This implies that the accuracy is undefined when y is the
empty string, and therefore excluded from consideration would be wordgraphs
that contain a path from the initial node to the final node consisting of epsilon
edges. We therefore redefine the accuracy for a pair of strings = and y as 1 if
both z and y are the empty string, and otherwise as 1 — %, where n is now the
average of the lengths of z and y.

Apart from epsilon edge elimination and wfa, which by nature do not affect
word accuracy, accuracy decreases for all methods of preprocessing, as shown in
the second column of Tab. 1. The strongest decrease of accuracy is observed for
hypergraphs, and the weakest decrease for fa. The word accuracy of the best
path relative to the manually transcribed utterance was also measured, but this
did not result in any significant differences between the respective methods; it
seems that the original wordgraphs were of too poor quality to reliably measure
the impact of the methods on the word accuracy relative to the transcribed
utterance, which was around 0.41 for the epsilon method.

Further, we counted the number of nodes in a wordgraph and the number
of edges, which correlate roughly to the amount of packing and sharing, respec-
tively, that can be applied in the case of tabular parsing. As can be seen in the

factor factor

increase increase time # distinct
method accuracy # nodes # edges (msec) # parses strings
epsilon 1.00 0.90 0.89 357 15.3 9.4
fa 0.98 0.78 0.76 817 30.2 11.0
wfa 1.00 0.94 1.12 1839 14.5 9.0
merge 0.92 0.72 0.67 480 15.1 9.3
hyper 0.74 1.05 0.51 418 - .

Table 1. Behaviour of the respective methods.

third column of Tab. 1, the number of nodes decreases by 10 % after elimina-
tion of epsilon edges. A further reduction is achieved by fa and merge, but a
subsequent increase results from wfa. (Remember that epsilon is an implicit
first phase of the other methods.) In terms of the number of nodes, the size of
a hypergraph is by nature identical to that of the wordgraph from which it is
constructed, which is in this case the wordgraph as it results from elimination of
epsilon edges. For parsing a hypergraph however, we are more interested in the
number of sets of nodes that may occur as the set of begin nodes or the set of
end nodes at hyperedges, since each parse edge is associated with a pair of such
sets, rather than a pair of nodes as in the case of conventional wordgraphs. For
hypergraphs, this number of distinct sets is the quantity that is indicated in the
table. We see that it is higher than the number of nodes for the other methods.

A different situation is found with regard to the number of edges, in the fourth
column. Here, the smallest average size resulted in the case of hypergraphs, and
the largest in the case of wfa, which far exceeded even the size of the original
graph, on the average.

We also measured the average time needed for applying the methods to the
wordgraphs. The results are given in the fifth column, in msec. The time con-
sumption in relation to the size of a wordgraph (rounded off to the nearest
multiple of 10) is presented in Fig. 2. That the time consumption for all of the
methods seems rather high is due to the fact that the implementation is merely
a prototype, and the load on the machine was particularly high at the time the
experiments were performed. However, since the implementations of wfa and fa
share almost all of their code, we can be confident that the comparison between
at least these two methods is fair, and this comparison shows that wfa is much
more sensitive to an increase in the size of wordgraphs than fa.

For the first 500 of the 1717 wordgraphs, we have performed experiments on
an HPSG parser [11], with a grammar for German. The parser is driven by an
agenda that gives priority to paths with low weights. A realistic time-bound is
set. When this bound is reached, the (partial) parses that have been found are
retrieved.

Each of the 500 wordgraphs was processed by means of each of the first four
methods. We had to leave the method hyper out of consideration, since the
HPSG parser itself would have had to be altered in order to handle hypergraphs,
which was not within our reach. We measured the number of parses that were

T T T T HIRY 3
[wha o
10000 |- [oX fake
| merge -
! hyper —m= —‘l
! epsilpn —
) \ X
—~ 8000 | X X A A
O / AR
Q ! A
2 ! VA
E / ¥ o
c '1’ \ y’
S 6000 |- / T
£ A &
=1 ! X
2 o
S 4000 | .
2 X K
= SN HkR KX
2000
o x
0 50 100 150 200 250 300

old wordgraph size (# edges)

Fig. 2. Time consumption, against the size of wordgraphs.

found, and the number of distinct strings of labels that corresponded to these
parses. The results are reported in the two right-most columns of Tab. 1.
Regrettably, the results do not match our expectations that more distinct
strings of labels would be found among the computed parses in the case of more
compact wordgraphs. Although we do find more distinct strings for fa than
for wfa, the ratio to the total number of computed parses is much smaller.
Furthermore, although the size of wordgraphs in the case of merge is much
smaller than in the case of wfa, about the same number of parses is found, and
these correspond to a comparable number of distinct strings. At this point it
is difficult to provide an explanation. This is partly due to the fact that the
HPSG parser consists of a number of distinct components that cooperate in a
subtle way to divide the available time over the different tasks that have to be
performed. Further investigation is needed to determine e.g. what properties of
the wordgraphs in the case of fa interact with which components from the parser
to cause the substantial increase in the number of computed parses.

Acknowledgements

Bernd Kiefer provided much help in performing the experiments with the HPSG
parser. I gratefully acknowledge fruitful discussions with Hans-Ulrich Krieger,
Mehryar Mohri, Jakub Piskorski, Michael Riley, and Thomas Schaaf.

This work was funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the VERBMOBIL
Project under Grant 01 IV 701 V0. The author was employed at AT&T Shannon

Laboratory during a part of the period this paper was written.

References

1.

10.

11.

12.

13.

14.

15.

16.

J.W. Amtrup and V. Weber. Time mapping with hypergraphs. In 86th Annual
Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, volume 1, pages 5561, Montreal, Que-
bec, Canada, August 1998.

H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The Philips automatic train
timetable information system. Speech Communication, 17:249-262, 1995.

Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase
structure grammars. In Y. Bar-Hillel, editor, Language and Information: Selected
Essays on their Theory and Application, chapter 9, pages 116—150. Addison-Wesley,
1964.

F. Barthélemy and E. Villemonte de la Clergerie. Subsumption-oriented push-down
automata. In Programming Language Implementation and Logic Programming, 4th
International Symposium, volume 631 of Lecture Notes in Computer Science, pages
100-114, Leuven, Belgium, August 1992. Springer-Verlag.

S. Billot and B. Lang. The structure of shared forests in ambiguous parsing. In 27th
Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, pages 143-151, Vancouver, British Columbia, Canada, June 1989.
J.A. Brzozowski. Canonical regular expressions and minimal state graphs for def-
inite events. Mathematical Theory of Automata, 12:529-561, 1962.

A.L. Buchsbaum, R. Giancarlo, and J.R. Westbrook. On the determinization of
weighted finite automata. In Automata, Languages and Programming, 25th Inter-
national Colloguium, volume 1443 of Lecture Notes in Computer Science, pages
482-493, Aalborg, Denmark, 1998. Springer-Verlag.

A.L. Buchsbaum, R. Giancarlo, and J.R. Westbrook. Shrinking language models
by robust approximation. In JCASSP ’98, volume II, pages 685—688, 1998.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on
Computing, 22(6):1117-1141, 1993.

B. Kiefer, H.-U. Krieger, J. Carroll, and R. Malouf. A bag of useful techniques
for efficient and robust parsing. In 37th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, Maryland, June 1999.
M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23(2):269-311, 1997.

H. Murveit et al. Large-vocabulary dictation using SRI’s DECIPHER™ speech
recognition system: progressive search techniques. In ICASSP-93, volume 11, pages
319-322, 1993.

S.M. Shieber. Using restriction to extend parsing algorithms for complex-feature-
based formalisms. In 23rd Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages 145-152, Chicago, Illinois, USA,
July 1985.

G. van Noord. Treatment of e-moves in subset construction. In Proceedings of the
International Workshop on Finite State Methods in Natural Language Processing,
pages 57-68, Ankara, Turkey, June—July 1998.

R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168-173, 1974.

