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Abstract  We present an algorithm for approximating context-free languages with
regular languages. The algorithm is based on a simple transformation
that applies to any context-free grammar and guarantees that the re-
sult can be compiled into a finite automaton. The resulting grammar
contains at most one new nonterminal for any nonterminal symbol of
the input grammar. The result thus remains readable and if neces-
sary modifiable. We extend the approximation algorithm to the case
of weighted context-free grammars. We also report experiments with
several grammars showing that the size of the minimal deterministic
automata accepting the resulting approximations is of practical use for
applications such as speech recognition.

1. INTRODUCTION

Despite the availability of extensive literature on the topic of efficient
context-free parsing, for large and very ambiguous grammars, context-
free parsing poses a serious problem in many practical applications such
as real-time speech recognition. For most grammars used in those ap-
plications, rules are annotated with weights, and efficient processing of
weights forms an additional challenge for the implementation of context-
free parsers.

Much more attractive computational properties can be attributed to
the use of finite (weighted) automata both in theory and in practice.
This communication deals with ideas that allow us to make use of these
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2  ROBUSTNESS IN LANGUAGE AND SPEECH TECHNOLOGY

advantageous properties by approximating context-free languages with
regular languages. Such (weighted) approximations could play a cru-
cial role in constructing robust speech recognition systems because they
are computationally less demanding than context-free grammars and be-
cause in general they can give a more accurate model of the syntactic and
semantic properties of natural languages than classical n-gram language
models.

Several approximations have been described in the existing literature,
among which are (Pereira and Wright, 1997; Grimley Evans, 1997; John-
son, 1998); an extensive bibliography of approximations can be found
in (Nederhof, 2000). None of these approximations however provides
much insight into how the language is changed during the approxima-
tion process, and it is difficult or impossible to influence this process in
order to fine-tune the approximating language to the application.

For example, (Pereira and Wright, 1997) proposes the construction
of a specific kind of pushdown automaton from the grammar, which is
subsequently approximated to be a finite automaton. Since here the
structure of a pushdown automaton is so different from the structure of
the context-free language from which it is constructed, it is close to im-
possible for the grammar writer to predict or influence the approximating
language that will result based on his understanding of the grammar.

Our objective is to solve this problem by defining an approximation
through a simple transformation of the original grammar. The grammar
writer may inspect the transformed grammar, in which the structure of
the original grammar is still visible, and change it in a way suitable for
the application.

Our approximation algorithm applies to any context-free grammar
and guarantees that the result can be compiled into a finite automaton.
The resulting grammar contains at most one new nonterminal for any
nonterminal symbol of the input grammar, and new rules are formed out
of rules from the input grammar by means of a straightforward decom-
position. The result thus remains readable and if necessary modifiable.
We show that the algorithm can be extended to the case of weighted
context-free grammars.

Experiments with several grammars show that the size of the mini-
mal deterministic automata accepting the resulting approximations is of
practical use for applications such as speech recognition.

2. PRELIMINARIES

A contezt-free grammar G is a 4-tuple (X, N, P,S), where ¥ and N
are two finite disjoint sets of terminals and nonterminals, respectively,
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S € N is the start symbol, and P is a finite set of rules. Each rule has
the form A — o with A € N and o € V*, where V denotes N UX. The
relation — on IV X V* is extended to a relation on V* X V* in the usual
way and the transitive and reflexive closure of — is denoted by —». The
language generated by G is given by:

LG)={wez*: 55w}

and is called a context-free language. We denote the empty string by e.
We let |G| denote the number of rules of a grammar G. We also define
the size of G as the total number of occurrences in P of symbols from
V, and denote it by ||G||. We generally use symbols A, B, C, ... to range
over N, symbols a, b, c, ... to range over X, symbols X, Y, Z to range over
V, symbols «a, 3,7, ... to range over V* and symbols v, w, z, ... to range
over ¥*. We further consider regular languages, the class of languages
accepted by finite automata. We assume that the reader is familiar with
these concepts; for more details we refer to (Hopcroft and Ullman, 1979).

3. ALGORITHM
3.1 ANALYSIS AND COMPILATION

Context-free grammars may generate languages that are not regular.
We describe a subclass of grammars, strongly regular grammars, that are
guaranteed to generate regular languages. This class of grammars coin-
cides with that of grammars without self-embedding (Chomsky, 1959).
Furthermore, strongly regular grammars can be mapped into equivalent
finite automata using an efficient algorithm.

We then present our approximation algorithm, which transforms any
grammar into one that is strongly regular. Note that a mapping from
an arbitrary CFG generating a regular language into a corresponding
finite automaton cannot be realized by any algorithm (Ullian, 1967).
Therefore, neither our approximation, nor any other, can guarantee that
the language is preserved when the grammar already generates a regular
language. However, this is guaranteed when the grammar is strongly
regular.

Let R be the relation defined on the set of nonterminals N of G by:

ARB & (Ba,8eV*: A5 aBB)A(Fa,8€V*:BS aldp)

It is not hard to show that R defines an equivalence relation. R parti-
tions N into subsets called sets of mutually recursive nonterminals.

For convenience, we refer to the rules with left-hand side A € N
as the rules of A, and more generally, to the rules with left-hand side
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A e M, for some M C N, as the rules of M. Strongly regular grammars
are grammars in which the rules of each set M of mutually recursive
nonterminals are either all right-linear or all left-linear. !

There exist efficient algorithms for computing a finite automaton ac-
cepting the language generated by a strongly regular grammar. The
finite automaton can be constructed off-line, as shown in (Nederhof,
1997), but as proposed by (Mohri and Pereira, 1998) one may also con-
struct an alternative, compact representation of the regular language,
from which the finite automaton may be computed; this compact repre-
sentation may however also be used on-line for processing of input. The
steps of this construction and the processing of input are sketched as
follows:

1. determine the sets of mutually recursive nonterminals. This can
be done in linear time in the size of the input grammar G by
computing the strongly connected components of the graph of the
grammar. 2

2. construct a finite-state machine K(M) for each set of mutually
recursive nonterminals M following the classical construction of
an automaton from a regular grammar (Aho and Ullman, 1973).
K(M) is in effect a finite automaton for which the initial state (in
the case of a right-linear set M) or the set of final states (in the
case of a left-linear set) have been left unspecified. A finite automa-
ton NV (A) describing the language corresponding to a nonterminal
A € M can be easily derived from IC(M) by specifying the state
corresponding to the non-terminal A as an initial or final state
depending on the type of the set (right-linear or left-linear case).
Thus, (M) combined with the start symbol S of the grammar
now give a compact representation of the approximating language.

3. for each input string w, we first obtain N (S) from the K(M) that
satisfies S € M, and this automaton is then expanded in a lazy
way by substituting other automata N (A) for occurrences of A in
N (S) that are encountered while processing w.

Thus, the states and transitions of the finite automaton for the com-
plete language are constructed on demand, when needed for the recogni-
tion of an actual input string. Moreover, the construction of the compact

1Nonterminals that do not belong to M are considered as terminals here, for determining if
a rule of M is right-linear or left-linear.

2The graph of a grammar has one node for each nonterminal and has an edge from node A
to node B if nonterminal B appears on the right-hand side of a rule with left-hand side A.
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representation is optimal in the sense that it requires work linear in the
size of the input grammar, or formally O(||G||). The compact represen-
tation can be further optimized using e-removal, determinization, and
minimization algorithms, possibly in combination with the substitution
of subautomata.

3.2 TRANSFORMATION

We now describe a grammar transformation that creates strongly reg-
ular grammars. For each set of mutually recursive nonterminals M such
that the corresponding rules are not all right-linear or not all left-linear
with respect to the nonterminals of M, we apply a grammar transfor-
mation defined as follows: 3

1. For each nonterminal A € M, introduce a new nonterminal A’ ¢
N, and add the following rule to the grammar: 4

A > €
2. Consider each rule with left-hand side A € M:
A — Qo Bl a1 32 Qg - Bmam

withm >0, By,...,Bn, € M, ap...amm € (¥ U (N — M))*, and
replace it by the following set of rules:

A — QQ B;
Bi — a1 BQ
Bé — Q9 B3

m—1 — Am—1 Bm
B, — apA

(In the case where m = 0, this set of rules merely contains A —
ag A')

Since the rules of M are replaced by right-linear rules, the resulting
grammar is strongly regular and can be compiled into a finite automaton
as discussed above.

An attractive property of the grammar transformation is that it can be
applied to large grammars: at most one new nonterminal is introduced

30ther rules of the input grammar are left unchanged.
4This can be refined by adding the rule only when A is directly reachable from another
strongly connected component.
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E' — ¢ T — T
E — E+T T — € T — xF )
f’: g*F F' = ¢ F - 71 a .
T - F E - B r - F “@
E' — +T F' - 71 a
F= (FB) p , g F — (E ~
F = a E - T E - )F
T — E' F — aF

(a) (b) (c)

Figure 1.1 Regular approximation of a simple context-free grammar. (a) Grammar
of arithmetic expressions. (b) Transformed grammar. (c) Finite automaton accepting
the language generated by the transformed grammar.

for each nonterminal of the input grammar, and the size of the resulting
grammar is at most twice that of the input grammar.

A further convenient property is that the transformed grammar can
be used for parsing. The nonterminals of the form X and X' correspond
to the beginning and end of recognition of strings generated by X in
the original grammar. This fact can be used to compile the transformed
grammar into a finite-state transducer that outputs bracketed strings
equivalent to parse trees. The resulting parse trees retain much of the
structure of the original grammar. See (Nederhof, 1998) for a related
idea.

The language generated by the transformed grammar is a superset of
that of the original grammar. Indeed, it is clear from the way a rule in
the original grammar is split into several rules, that any string accepted
by a series of derivations in the input grammar is also accepted in the
resulting grammar.

Since the size of the result of the transformation is comparable to that
of the input grammar and since the symbols that are newly introduced
still admit a syntactic interpretation, the resulting grammar remains
readable, and if necessary can be modified by the user. Finally, we shall
see that in several experiments the transformation also leads to automata
of reasonable size and therefore that it is of practical interest.

Our approximation algorithm works in two stages: first the gram-
mar is approximated using the transformation just defined. Then the
resulting grammar is compiled into a finite automaton. As mentioned
before, the compilation can be performed on demand, in which case the
automaton is only constructed and expanded as far as it is required for
the recognition of the input string, or the automaton can be completely
expanded and optimized. Both options can be useful in practice, and
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the choice depends on time and space trade-offs. Note that as long as we
do not substitute or optimize the subautomata, the total construction
comprising the grammar transformation and the compilation is linear in
the size of the grammar.

The grammar transformation is illustrated by figures 1.1-(a) and 1.1-
(b). Figure 1.1-(a) is a simple grammar for well-formed arithmetic ex-
pressions. Figure 1.1-(b) shows the result after transformation. In the
original grammar, the nonterminals E, T', and F' can be interpreted as
corresponding to an expression, a term, or a factor. In the transformed
grammar, F' for example corresponds to a suffix of an expression starting
with a factor, and F' corresponds to a suffix of an expression just after
the end of a factor.

The transformed grammar is strongly regular and can be compiled
into the finite automaton of figure 1.1-(c).

Our grammar transformation bears some similarity to a transforma-
tion from (Nederhof, 1997) (equivalent to the RTN approximation from
(Nederhof, 2000)). In fact, that approximation can be viewed as a more
refined variant of our new transformation. A disadvantage of the old
approximation method is however that it requires a quadratic number
(O(|N|?)) of nonterminals in the resulting grammar, which may be un-
acceptable for some large grammars used in practice.

Nevertheless, in light of the approximation method just presented,
we can give a simpler formulation of the older approximation as fol-
lows. For any set of mutually recursive nonterminals M, the grammar
is transformed in the following steps.

1. Let M' be defined by: A € M’ if and only if A € M and either
A=Sor3(B—aAB)eP:B¢ M.

2. Introduce two new nonterminals A1 and AP for each A € M and
Be M.

3. For each nonterminal A € M' add the following rule to the gram-
mar:

A4t 5 e

4. Consider each rule with left-hand side A € M:

A — aoCl (o5} 02042 Cmam
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withm >0, Cy,...,Cnn € M, ag ..., € (X U (N — M))*, and
replace it by the following set of rules, for each C € M':

AC — BIC
Bft — a; BY
B¢t — ag BY

B¢ [+ — am.1 B¢

BSLT — Qup ACT

5. Replace each occurrence of A € M’ in the old rules of the grammar
by A4,

The subset M’ C M represents the set of nonterminals in M that may
be reached from parts of the grammar that are not involved in recur-
sion in the set M; also the start symbol S can be in this set. Such
nonterminals are at the root of a subtree of the parse tree constructed
from nonterminals in M. These nonterminals are maintained in the su-
perscripts of the new nonterminals, which is needed to ensure that the
approximating grammar commits itself to a single nonterminal at the
root of such a subtree.

Omitting the superscripts in the transformed grammar leads to the
transformation presented before: AP simplifies to A, and AB1 to A/,
irrespective of B.

4. WEIGHTED GRAMMARS

Grammars used in many applications such as those related to speech
processing incorporate weights. These weights, which are often inter-
preted as probabilities, are used to rank different hypotheses for the
purpose of disambiguation.

A weighted context-free grammar is a context-free grammar in which
rules are additionally annotated with weights. The weight set K has
in general the algebraic structure of a semiring (K, ®,®,0,1), with 0
as the identity element of @ and 1 the identity element of ®. Weights
from rules used in a single derivation are combined using the ®-product
and the weights from alternative derivations (in the case of ambiguous
grammars) are combined using the @-sum. We will assume here that
the @-sum of the weights is well-defined and in K in all such cases.

The approximation method through transformation of context-free
grammars can be extended to the weighted case in at least the following
three cases:
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= An unweighted grammar and a corpus are given. The grammar
is transformed and an equivalent finite automaton is constructed
from it. Weights are then assigned to its transitions by applying a
learning algorithm based on the corpus.

m A weighted grammar is given. A corpus is constructed from that
grammar and the weights are removed from the grammar. The
rest of the process is identical to the previous case.

m A weighted grammar is given. The transformation is extended to
assign weights to the output rules in such a way that the weight
of a rule broken up into m rules by the transformation equals the
®-product of those m rules.

Here, we consider this last case and thus extend our transformation
to weighted grammars as follows. For each set of mutually recursive
nonterminals M such that the corresponding rules are not all right-linear
and not all left-linear, the following transformation is applied:

1. For each nonterminal symbol A € M, introduce a new nonterminal
A' ¢ N, and add the following rule with weight 1 to the grammar:

A — e/l
2. Consider each rule with left-hand side A € M and weight =z € K:
A—)ao Bl (e 5] BQ ag - Bm QAm /a:

withm >0, By,...,Bn, € M, ..., € (X U (N — M))*, and
replace it by the following set of rules:

A — Qo Bl /a:o
Bi — a1 Bz /.’L‘l
Bé — Q9 Bg /$2

— Qp—1 Bm /mm—l

m—1
B, = am A /znp
with zg,z1,..., 2 €K, and 20 ® 1 ® - - - Q T,, = .
There exists at least one admissible choice for the values of zg, z1, . .. , Tm
defined by: z9 = z, and z; = --- = z,, = 1 in any semiring, but

in general the weight x can be distributed over the new rules in many
different ways.

Let D be a derivation in the original weighted grammar which derives
string w with weight z. Then there will be a derivation D’ deriving
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Table 1.1 Approximation experiments.

| G| |G| | |Gapp| | |Acapl | |A| | transf. (s) | compil. (s) | opt. (s) |

| G.| 19| 39| 104 | 31| 14 | 11 | 40 |
| Ga | 47| 82| 354 | 95| 15 | 12 | 37 |
| Gs | 516 | 852 | 17121 | 3220 | 24| 23 | B4 |
| G4 | 1434 | 2351 | 141304 | 1828 | 35 41 | 36 |
| Gs | 1641 | 4153 | 6924 | 7467 | 59 | 74 | 54|
| Ge | 846 | 1992 | 55070 | 97 | 38 | 53 | 16 |

w with the same weight = in the transformed grammar. However, the
transformed grammar may additionally admit derivations of strings w
with weights for which no corresponding derivation can be found in
original grammar.

As in the unweighted case, the resulting weighted grammar can be
compiled into a weighted automaton (Mohri and Pereira, 1998).

5. EXPERIMENTS

We have a full implementation of the approximation algorithm pre-
sented in the previous section in the general case of weighted context-free
grammars. The algorithm and the corresponding utilities have been in-
corporated in a set of general-purpose grammar tools, the GRM library
(Mohri, 2000).

Using that implementation, we carried out experiments with gram-
mars of small to large sizes. Grammars G1, G2, G3 and G4 were used in
various experiments by (Nederhof, 2000). Our approximation results in
these experiments exactly coincide with those obtained using the RTN
approximation from (Nederhof, 2000). Grammar G5 was obtained from
(Carroll, 1993), and grammar Gg from (Schoorl and Belder, 1990).

Table 1.1 illustrates our approximation results for each of these gram-
mars. The second column gives the number of rules of each grammar.
The next column gives the number of rules of the transformed grammar.
Column |A¢zp| gives the size (in terms of the number of transitions) of
the expanded automaton A.,, recognizing the transformed grammar, as
produced by our algorithm. The next column gives the size of the min-
imal deterministic automaton A equivalent to A¢zp. The time required
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to apply the grammar transformation is indicated in column transf., the
time to compile that grammar into Az is given in column compil., and
the time needed to compute the minimal deterministic automaton A, by
optimizing the subautomata in combination with expansion, is given in
column opt., using an SGI Origin 2000.

The results show that both the size of the transformed grammar and
the size of the resulting automata are small enough for practical use
for demanding applications such as real-time speech recognition. This
contrasts with other existing approximation methods that were shown
to produce automata of very large size even for small grammars of less
than fifty rules (Nederhof, 2000). The approximation time including the
two stages of transformation and compilation into a finite automaton is
extremely fast and therefore does not present any practical obstacle.

We also applied our approximation algorithm to a weighted grammar
of about 25,000 rules used for translation at AT&T. The transformed
grammar had about 36,000 rules. The whole approximation process
including the creation of a finite automaton accepting that grammar
took about one minute using the same algorithm on the same machine.

6. CONCLUSION

We presented an algorithm for approximating context-free languages
with regular languages. The algorithm was shown to be efficient. Ex-
periments with several grammars showed that the size of the resulting
automata is practical for use in many applications.
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