Size/lookahead tradeoff for LL(k)-grammars

E. Bertsch?® and M.-J. Nederhof ®!

& Ruhr University, Faculty of Mathematics, Universititsstrafie 150, D-44780
Bochum, Germany

b University of Groningen, Faculty of Arts, P.O. Boz 716, NL-9700 AS
Groningen, The Netherlands

Abstract

For a family of languages a precise tradeoff relationship between the size of LL(k)
grammars and the length k of lookahead is demonstrated.

Keywords: Formal languages, parsing theory.

1 Introduction

This paper provides a solution to an open problem posed in [1]. One of the main
results of that paper was that for certain LR(k) languages a linear decrease of
lookahead length must be paid for by an exponential increase of grammar size.
On a very high level of discussion, this may be seen as an invariance result for
overall algorithmic complexity because lookaheads of k symbols are assumed
to require parsing tables growing exponentially with & [2].

In the final section of [1] the corresponding problem with LL(k) instead of
LR(k) grammars is formulated as a challenge for further studies of similar
languages. The present article contains a comprehensive solution to that prob-
lem. The general structure of the argument displays some similarities to the
proof strategy in [1]. Due to the inherent differences between LL(k) and LR(k)
parsing our reasoning is substantially new, however. In fact, no case distinc-
tions even remotely resembling those in the proof of the final theorem in [1]
are needed here.

1 Supported by the Royal Netherlands Academy of Arts and Sciences. His sec-
ondary affiliation is the German Research Center for Artificial Intelligence (DFKI).

Preprint submitted to Elsevier Science 29 November 2001



2 Preliminaries

We assume the reader is familiar with LL(k) parsing. For thorough treatment
we refer to [3,2].

For a given context-free grammar, let —* denote the derives-relation (using
zero or more nonterminal expansions), and let — denote its sub-relation for
left-most derivations.

The size of a production of a context-free grammar is defined to be 1 plus
the number of symbols in the right-hand side. The size |G| of a grammar G is
defined to be the sum of the sizes of all productions.

3 Upper bounds

Given a natural number n > 1, we define the language L,, C {0,1}* as:

L,={ay...ana,...a1 | a1,...,a, € {0,1}} U

{al...aQnazn...al | al,...,a2n€{0,1}}

A language L,, thus contains all palindromes over {0, 1} that are of length 2n
or of length 4n. Informally, the difficulty of obtaining LL(k) grammars for such
a language consists in allowing a provision in the parser for deterministically
handling the input positions from n + 1 to 2n — k + 1. The string of symbols
beginning at position n+1 may be either the reverse of the string up to position
n, or it may be the reverse of some string yet to be seen, preceding position
3n + 1, and the parser must allow for both possibilities. This uncertainty is
resolved if the input is found not to be a 2n palindrome because of a mismatch
between two individual symbols at either side of positions n and n + 1, or at
the latest after reading the symbol at position 2n —k+ 1, since then the parser
may look ahead far enough to see whether the string is too long to be a 2n
palindrome.

Below we demonstrate that we may construct LL(k) and strong LL(k) gram-
mars for the language L,, in such a way that the choice of a larger k corresponds
to a smaller grammar size.

Theorem 1 For 1 < k < n, there ezxists a (strong) LL(k) grammar G,
generating L, with the number of productions being 2"~ * - (6n — 6k + 20) +
2n + 2k — 3 and the longest production having length 4.

Proof. Let G, be defined as the grammar with start symbol Ay and nonter-



minals A;, for 0 <i < k—1, Bf, for 0 < i < n—k+1and z € {0, 1}, C>*W",
for0<i<n—k+1landz e {0,1}" *!*andy € {0,1}, D;, for 1 <i <m,
and EY, for y a prefix of a string of the form zz®, where z € {0,1}" %+,
and all productions of the following types that can be formed by using the
nonterminals just introduced:

1. A, —aAja,for0<i<k—2andace€{0,1},
2. Ak—l — BS,

3. Bf »aB,for0<i<n—Fkandac{01},
4. B* .., — Cy”°,

5. C7*Y —aCY*, for 0<i<n-—kandac{0,1},
6. C/"Y ->bD; 1 bEY, for 0 <i<n-—kanda,be {0,1} such that a # b,
7. Gy

8. :L’gk+1 — Dn—k+l Ey’

9. D;—»aD;ja,for 1 <i<n-—1andac€{0,1},
10. D,, — €,

11. E¥* — a EY,

12. B¢ — €.

The intuition behind these grammars can best be understood by considering
the behaviour of a top-down parser. Consider input of the form a; ---as, or
ay - -+ G4, While reading the input from a; to ax_1, using nonterminals A;,
the parser pushes the symbols it reads, for future matching at the opposite
side of a 2n or 4n palindrome. From a;, to a,, the nonterminals B} encode
the symbols that are read into the nonterminal name. Starting from a1,
using the nonterminals C;"¥, the parser at the same time treats the string
as a possible 2n palindrome, popping symbols from the stack encoded in =z,
and as a possible 4n palindrome, pushing symbols on the stack encoded in
y. This ends after as,—x41 has been read (7th or 8th clause above), or when,
before reaching as, k11, @ mismatch occurs that excludes the possibility of a
2n palindrome (6th clause).

If as,, g2 is reached without any mismatch, the parser may thereupon expand

.1 according to the 7th clause, which may lead to recognition of a 2n
palindrome: the k& — 1 symbols that were pushed due to nonterminals A; are
matched in reverse to the next k£ — 1 symbols, which should then also be the
last symbols in the input. If however the parser expands C¥, ., according to

the 8th clause, this may lead to recognition of a 4n palindrome.

By the productions from the 6th or 8th clause, the nonterminals D; are in-
troduced, which lead to recognition of a nested palindrome centered around
@2r,02n+1, and then the string that was stacked by means of nonterminals BY
and C;Y is read in reverse by means of the nonterminals EY. Finally, the k — 1
symbols that were pushed due to nonterminals A; are matched in reverse to
the final £ — 1 symbols of the 4n palindrome.



A grammar of the above form is LL(k): for all nonterminals, with the excep-
tion of Cy¥; ., expansion with at most one production is consistent with the
next symbol of the terminal string to be derived. In the case of C;¥, ;, any
derivation of the form Ay —} vCyY,  a is such that a € {0,1}*7, as can
be easily verified. If the production from clause 7 is chosen, exactly &k — 1
symbols remain until the end of the string. If the production from clause 8 is
chosen, at least k symbols remain. Since the potential end of the input after
k — 1 symbols can be detected within the window of k& symbols of lookahead,
a deterministic choice can be made.

The number of productions represented by the 12 clauses is respectively: 2 -
(k _ 1), 1, 2n—k+2’ 2n—k+1’ 2n—k+1 . (’I’L —k + 1)’ 2n—k+1 . (n —k + 1)’ 2n—k+1’
2n=k+tl 9p — 21, 277* . (p — k + 3) — 2, 1, the sum of which is 2" % - (6n —
6k + 20) + 2n + 2k — 3. O

4 Lower bounds

In this section we determine a lower bound on the size of LL(k) and strong
LL(k) grammars that generate the languages L,,.

We will need the following lemma, which formalizes the intuition that a top-
down parser with £ symbols of lookahead will not be influenced in its actions
by input that lies ahead of the reach of its lookahead; given two distinct
strings, a stack that is obtained for one will be identical to a stack obtained
for the other, until the difference between the two strings can be detected by
the lookahead.

Lemma 2 Assume we have an alphabet ¥, a number k > 1, a (strong) LL(k)
grammar over the alphabet that generates a language L, and a pair of strings
of the form zyz,zyz' € L, such that x # € and y € X* 1. There is a unique
string of grammar symbols a such that for some u,u’', A, A", 3,3':

S =7 uAfB = za —* zyz A |ul < |z|

S o7 uA'B = za -y A U] < |z

Proof. We know that (strong) LL(k) grammars are unambiguous, and there-
fore each string in the language has exactly one left-most derivation. In the
left-most derivations for zyz and zyz’, consider the last expansion of a pro-
duction before the last symbol of z becomes part of the longest prefix of the



sentential form that consists only of terminals. We have:

S =7 uAB = xza = zyz A |u| < |z

S oUW AB = xzd =y A U < |z

By induction on the length of the derivations, and making use of the assump-
tion that the grammar is (strong) LL(k), we can show that the derivations
are identical up to the point where the last symbol of x becomes part of the
longest prefix of the sentential form that consists only of terminals, which
implies that u = v, A=A, 6=0F,and a =<d'. O

Theorem 3 For 1 < k < n, any (strong) LL(k) grammar that generates L,
has at least 2" %1 nonterminals.

Proof. For given k and n, assume we have a LL(k) or strong LL(k) grammar
G that generates L,,. Let S be the start symbol.

Choose a string v € {0,1}"**1  and consider the 2n palindrome 0*~!yvF0*-1
and the 4n palindrome 0*lvvR0*-10F-1yvB0*~!. Given these two strings,
Lemma 2 allows us to choose a string of grammar symbols « in a unique
way; z as in the lemma is chosen to be 0*~lvv® and y is chosen to be 0F~!.
For this o we have:

S —=* 0Flyvfa —* 0FlypfQr-1

S —* Ok—l,v,URa —y* Ok—l,U,URok—lok—l,U,URok—l

This implies that o —* 0*! and o —* 0¥ 10 1vvR0*1, and therefore o
must contain a nonterminal A that derives terminal strings of two different
lengths I; and ls; assume without loss of generality that Iy < l5. If A could
also derive a terminal string of a third length, distinct from /; and /5, then the
grammar would generate a terminal string of a length different from 2n and
4n, which is in contradiction with the assumption that the grammar generates
L,,. Similarly, if o were to contain another occurrence of a nonterminal, call it
B, that also derives terminal strings of different lengths, say /3 and l4, where
I3 # ly, then a could derive terminal strings of all lengths from {l +I; + 13,1 +
lo + 13,1411 + 1y, 1 + I3 + I3}, where [ is the length of a terminal string derived
from the string 3, which is constructed from a by omitting A and B. Since
this set of lengths must contain at least 3 elements, this again contradicts the
assumption that G generates L,,.

Thus, A is uniquely determined in «, and must solely account for the dif-
ference in length between 2n and 4n palindromes, which means that [l must
be at least 2n, and in o —* 0¥ 10* 1wvR0* ! A must derive a substring of



0*~10k~1yv®0*~1 that covers at least 0¥ 1vv®, and possibly additional occur-
rences of the symbol 0 on either side. Let us rename A to A,, motivated by
the fact that A was uniquely determined by v.

The above argument can be repeated for a string w € {0,1}" %! distinct
from v, which allows us to determine a nonterminal A,, in a unique way. For
some ' and some numbers p,, Pw, Gv, G < k — 1 we now have:

S —* 0k lyvRa —* 0FLypvRoPr 4,09 —* 0F—1yuR0k—10F—1ypRQk—1

S —* 0k lwwfa' —* 0F lwwfoPe 4,07 —* 0¥ Lwwr0rF 10k Lwwf0k—1

Assume that A, and A, are identical. A third string can now be derived:
S —* 0FLyvRoPe 4,0 —* 0k lyuROPwwr0e

where p > 2k — 2 —p,, > k — 1. Since this third string has length greater than
2n and since it is in L, it must have length 4n. We can therefore write it
as 0¥ lovR0F 107 wwf09, where p' = p — k + 1, and divide it into two halves
0k~1yv0*~! and 0P ww?0?, which must be mirror images of each other since
the language contains only palindromes, or in other words, 0¥~ lvvR0F-1 =
07" wwf01.

If 0% lvvf0* ! = 0P ww?0? consists of only occurrences of 0, then since v and
w have the same length, they must be identical, contrary to the assumption.
If 0F1puR0*—! = 0P wwr0? contains two or more occurrences of 1, then there
is a unique centre around which these occurrences are arranged; since v and
w have the same length, it follows that v and w must be identical, again
contrary to the assumption. Thereby we have contradicted that A, and A,
are identical.

Thus we have shown that, given two different strings v and w of length n —
k + 1, the nonterminals A, and A, are distinct, and therefore the grammar
must contain at least as many nonterminals as there are strings in the set
{0,1}7 %+ vig, 2n—k+1 O

Together with the theorem from the previous section, this leads to an accurate
estimate of the size of smallest (strong) LL(k) grammars for L,:

Corollary 4 Let ¢ be a positive number. Forn > 2 and 1 < k < n — clgn,
the smallest (strong) LL(k) grammar for L, has size 2°™  where m = n — k.

n—=k
c

Proof. Given that £k < n — clgn, we have Ign < . Furthermore, since c



is positive and n > 2, k < n = 28" < 2" . Theorem 1 showed that the size
of the smallest grammar is at most

4-(2" . (6n — 6k +20) +2n + 2k —3) =

4-(2%.(6-(n—k)+20)+2-(n—k)+4k—3) <

4-(27% - (6-(n—k)+20)+2-(n—k)+4-2"
O(2™) - O(m) + O(m) + 200" = 29™)

Theorem 3 showed that the size of the smallest grammar is Q(2" **!) =
Q(2n k) = 2%m) O

Note that if we simplify the condition in the corollary by fixing ¢ = 1, we
restrict the possible combinations of the parameters n and k, but we may then
benefit from a more precise expression for the upper bound, which becomes
O(m-2™), whereas the lower bound remains 2(2™) as before. This shows that
under these more narrow conditions on n and k, the lower and upper bounds
are very close.

Our theorems are about the finite languages L,, but they can be trivially
extended to infinite languages such as (L, #)*, where # is a new symbol.

Since for a given language the minimal size of LC(k) and PLR(k) grammars
[4,2] is polynomially related to the minimal size of LL(k) grammars, the above
result of exponential increase in grammar size for decreasing k carries over to
these classes of grammar as well.

5 Conclusion

In this paper, we have presented a tradeoff result concerning economy of de-
scription of languages using LL(k) grammars when k varies. Our results com-
plement earlier findings of a very similar nature for LR(k) grammars.

A cknowledgments

We thank Hing Leung for correspondence about [1]. One anonymous reviewer
made helpful comments which led to some improvements of the presentation.



References

[1] H. Leung, D. Wotschke, On the size of parsers and LR(k)-grammars, Theoretical
Computer Science 242 (2000) 59-69.

[2] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Vol. II: LR(k) and LL(k) Parsing,
Vol. 20 of EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1990.

[3] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Vol. I: Languages and Parsing,
Vol. 15 of EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1988.

[4] D. Rosenkrantz, P. Lewis II, Deterministic left corner parsing, in: IEEE
Conference Record of the 11th Annual Symposium on Switching and Automata
Theory, 1970, pp. 139-152.



