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Abstract

We present new results on the relation between purely symbolic context-
free parsing strategies and their probabilistic counter-parts. Such parsing
strategies are seen as constructions of push-down devices from grammars.
We show that preservation of probability distribution is possible under two
conditions, viz. the correct-prefix property and the property of strong pre-
dictiveness. We improve existing results on the size of probabilistic parsers,
and present a negative result on LR parsing.

1 Introduction

Context-free grammars and push-down automata are two equivalent formalisms
to describe context-free languages. While a context-free grammar can be thought
of as a purely declarative specification, a push-down automaton is considered to
be an operational specification that determines which steps are performed for a
given string in the process of deciding its membership of the language. By a
parsing strategy we mean a particular mapping from context-free grammars to
equivalent push-down automata. Different parsing strategies may have different
space and time complexities, usually expressed in terms of the size of the resulting
push-down automata, and in terms of the time complexity of recognition in the
case of tabular simulation of nondeterminism, following the work by [10] and [2].
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This paper deals with the probabilistic extensions of context-free grammars
and push-down automata, i.e. probabilistic context-free grammars, discussed by
[3], and probabilistic push-down automata, discussed by [18] and [1]. These
formalisms are obtained by adding probabilities to the rules and transitions of
context-free grammars and push-down automata, respectively. More specifically,
we will investigate the problem of “extending” parsing strategies to probabilistic
parsing strategies. These are mappings from probabilistic context-free grammars
to probabilistic push-down automata that preserve the induced probability dis-
tributions on the generated/accepted languages. We will show that

e no parsing strategy that lacks the correct-prefix property (CPP) can be
extended to become a probabilistic parsing strategy;

e all parsing strategies that possess the correct-prefix property and the strong
predictiveness property (SPP) can be extended to become probabilistic
parsing strategies.

The above results generalize previous findings reported in [1], where only a few
specific parsing strategies were considered in isolation. Our findings have im-
portant implications for well-known parsing strategies such as generalized LR
parsing, henceforth simply called ‘LR parsing’.! LR parsing has the CPP, but
lacks the SPP, and as we will show, LR parsing cannot be extended to become a
probabilistic parsing strategy.

Our findings also require revision of a conjecture by [1] concerning the suc-
cinctness of so-called shift-reduce parsing strategies. We show that, contrary
to this conjecture, probabilistic push-down automata need not be any larger
than their non-probabilistic counter-parts, provided the automata are obtained
by strategies possessing both CPP and SPP.

In this paper we will consider push-down transducers instead of push-down
automata. This means that the devices not only compute derivations of the
grammar while processing an input string, but they also explicitly produce out-
put strings from which these derivations can be obtained. We use transducers
for two reasons. First, constraints on the output strings allow us to restrict our
attention to “reasonable” parsing strategies. Those strategies that cannot be for-
malized within these constraints are unlikely to be of practical interest. Secondly,
mappings from input strings to derivations, as those realized by push-down de-
vices, turn out to be a very powerful abstraction and allow direct proofs of several
general results.

Our work is motivated by the widespread interest in probabilistic parsing
techniques that has arisen in the last decade in the area of natural language
processing; see e.g. [5].

The paper is organized as follows. After giving standard definitions in Sec-
tion 2, we give our formal definition of ‘parsing strategy’ in Section 3. The CPP

! Generalized (or nondeterministic) LR, parsing allows for more than one action for a given
LR state and input symbol.



and the SPP are discussed in Sections 4 and 5. Sections 6 and 7 provide ex-
amples of parsing strategies with and without the SPP. We end this paper with
conclusions.

2 Preliminaries

In this section we briefly recall some standard notions from formal language
theory. For more details we refer the reader to standard textbooks, as e.g. [8].

A context-free grammar (CFG) G is a 4-tuple (¥, N, S, R), where X is a finite
set of terminals, called the alphabet, N is a finite set of nonterminals, including
the start symbol S, and R is a finite set of rules, each of the form A — «, where
A € N and a € (YUN)*. Without loss of generality, we assume that there is only
one rule S — ¢ with the start symbol in the left-hand side, and that furthermore
o # €, where € denotes the empty string.

For a fixed CFG G, we define the relation = on triples consisting of two
strings a,3 € (Y UN)* and a rule 7 € R by: a = 3 if and only if « is of the
form wA$ and S is of the form w~d, for some w € ¥* and § € (¥ U N)*, and
m = (A — ) € R. A partial left-most derivation is a string d = 71 - - - T, m > 0,
such that § B ... ™ q, for some o € (Y UN)*. A left-most derivation of a string
w € X* is a partial left-most derivation d = =y - - - T, such that S ...
We will identify a (partial) left-most derivation with the sequence of strings over
YU N that arise in that derivation.

For a CFG G we define the language L(G) it generates as the set of strings of
which there is a left-most derivation. We say a CFG is reduced if for each rule
7 € R there is a left-most derivation in which it occurs.

A probabilistic context-free grammar (PCFG) is a pair (G,p) consisting of a
CFG G = (XY, N, S, R) and a probability function p from R to real numbers in
the interval [0,1]. We say a PCFG is proper if £,_(4_,,)cr p(7) = 1 for each
A€eN.

For a PCFG (G,p), we define the probability p(d) of a (partial) left-most
derivation d = 7y - -y as II™; p(m;). The probability p(w) of a string w as
defined by (G, p) is the sum of the probabilities of all left-most derivations of that
string. We say a PCFG (G, p) is consistent if Lye 5+ p(w) = 1.

A push-down transducer (PDT) A is a 6-tuple (X, X5, Q, Xinit, Xfinal, 4),
where Y, is the input alphabet, X/, is the output alphabet, @ is a finite set of stack
symbols including the initial stack symbol Xin;; and the final stack symbol X grq1,
and A is the set of transitions. Each transition can have one of the following three
forms: X — XY (a push transition), YX — Z (a pop transition), or X ¥ Y (a
swap transition); here X, Y, Z € Q, z € ¥, U{e} and y € X, U {e}. Note that in
our notation, stacks grow from left to right, i.e. the top-most stack symbol will
be found at the right end.

Without loss of generality, we assume that any PDT is such that for a given
stack symbol X # X1, there are either one or more push transitions X — XY,

oy . o . x
or one or more pop transitions YX +— Z, or one or more swap transitions X oy Y,



but no combinations of different types of transition. If a PDT does not satisfy
this normal form, it can easily be brought in this form by introducing for each
stack symbol X three new stack symbols X s, Xpop and Xgyep and new swap
transitions X &5 Xpush, X 25 Xpop and X 25 X swap- 1IN each existing transition
that operates on top-of-stack X, we then replace X by one from X, Xpop or
Xswap, depending on the type of that transition. We also assume that Xg,,; does
not occur in the left-hand side of a transition, again without loss of generality.
A configuration of a PDT is a triple (o, w,v), where a € Q* is a stack, w € X7
is the remaining input, and v € X7} is the output generated so far. For a fixed
PDT A, we define the relation F on triples consisting of two configurations and

a transition 7 by: (ya,zw,v) b (y8,w,vy) if and only if 7 is of the form a — £,

where z = y = ¢, or of the form « ¥ 3. A computation on an input string w is a
T1

string ¢ = 71 -+ - T, m > 0, such that (Xpi, w,€) b --- 7-Iin (o, w',v). A complete
computation on a string w is a computation with w’ = € and a = Xfna- The
string v is called the output of the computation.

We will identify a computation with the sequence of configurations that
arise in that computation. We also write (o, w,v) F* (8,w’,v') or (o, w,v) o
(B,w',0"), for a, B € Q*, w,w' € X} and v,v' € X%, to indicate that (3,w’,v') can
be obtained from («, w,v) by applying a sequence c of zero or more transitions;
we refer to such a sequence c as a subcomputation.

For a PDT A, we define the language L(.A) it accepts as the set of strings
on which there is a complete computation. We say a PDT is reduced if each
transition 7 € A occurs in some complete computation.

A probabilistic push-down transducer (PPDT) is a pair (A, p) consisting of a
PDT A and a probability function p from the set A of transitions of A to real
numbers in the interval [0,1]. We say a PPDT (A, p) is proper if

® ¥ _(xoxy)ea (1) = 1 for each X € Q such that there is at least one
transition X — XY, Y € Q;

° ET:(XT”—’?Y)G A p(t) = 1 for each X € @ such that there is at least one
transition X ¥ Y, z € X, U {e},y € L, U {e},Y € Q; and

® X _(vxz)ea P(T) = 1, for each X,Y € Q such that there is at least one
transition YX — Z, Z € Q.

For a PPDT (A,p), we define the probability p(c) of a (sub)computation
¢ =Ti - Tm as II""; p(7;). The probability p(w) of a string w as defined by
(A, p) is the sum of the probabilities of all complete computations on that string.
We say a PPDT (A, p) is consistent if Xyex+ p(w) = 1.

3 Parsing strategies

We define a parsing strategy to be a function S that maps a reduced CFG G = (X,
N, S, R) to a pair §(G) = (A, f) consisting of a reduced PDT A = (X,, X,, Q,



Xinity Xfinal, 4), and a function f that maps a subset of X} to a subset of R*,
with the following properties:

e RCJX,.

e For each string w € X} and each complete computation ¢ on w with output
v € X, f(v) = d is a left-most derivation of w. Furthermore, each symbol
from R occurs as often in v as it occurs in d.

e Conversely, for each string w € X7 and each left-most derivation d of w,
there is precisely one complete computation on w with output v such that

f(v) =d.

If ¢ is a complete computation with output v, we will write f(c) to denote f(v).
The conditions above then imply that f is a bijection from complete computations
to left-most derivations.

Note that output strings of (complete) computations may contain symbols
that are not in R, and the symbols that are in R may occur in a different order in
v than in f(v) = d. The purpose of the symbols in X, — R is to help this process
of reordering of symbols in R.

For a string v € X we let v refer to the maximal subsequence of symbols
from v that belong to R, or in other words, symbols from X, — R are removed.

A probabilistic parsing strategy is defined to be a function & that maps a
reduced, proper and consistent PCFG (G, pg) to a triple S(G,pg) = (A, pa, f),
where (A, p_4) is a reduced, proper and consistent PPDT, with the same properties
as a (non-probabilistic) parsing strategy, and in addition:

e For each left-most derivation d and each complete computation ¢ such that
f(e) =d, pg(d) equals p(c).

In other words, a complete computation has the same probability as the left-most
derivation that it is mapped to by function f. An implication of this property is
that for each string w € X7, the probabilities assigned to that string by (G, pg)
and (A, pa), respectively, are equal.

We say that probabilistic parsing strategy S’ is an extension of parsing
strategy S if for each reduced CFG G and probability function pg we have
8(9) = (A, f) if and only if §'(G,pg) = (A, pa, f) for some p4.

In the following sections we will investigate which parsing strategies can be
extended to become probabilistic parsing strategies.

4 Correct-prefix property

For a given PDT, we say a computation c is dead if (Xnit, w1, €) I—c* (a, €,v1), for
some a € Q*, w; € X7 and v1 € X%, and there are no we € X7 and vy € X such
that (o, we,€) F* (Xfnai, €,v2). Informally, a dead computation is a computation
that cannot be continued to become a complete computation.



We say that a PDT has the correct-prefiz property (CPP) if it does not allow
any dead computations. We say that a parsing strategy has the CPP if it maps
each reduced CFG to a PDT that has the CPP.

In this section we show that the correct-prefix property is a necessary condi-
tion for extending a parsing strategy to a probabilistic parsing strategy. For this
we need two lemmas.

Lemma 1 For each reduced CFG G, there is a probability function pg such that

PCFG (G, pg) is proper and consistent, and pg(d) > 0 for all left-most derivations
d.

Proof. Since G is reduced, there is a finite set L consisting of left-most deriva-
tions d, such that for each rule 7w in G there is at least one d € L in which =
occurs. Let n, 4 be the number of occurrences of rule 7 in derivation d € L, and
let nr be Y4cr, x4, the total number of occurrences of  in L. Let n4 be the sum
of n, for all rules m with A in the left-hand side. A probability function pg can
be defined through ‘maximum-likelihood estimation’ to be such that pg(r) = =
for each rule 7 = A — a.

For all nonterminals A, ¥;-4 4 pg(7) = Er=A—a Z_‘::% = 1, which means
that the PCFG (G,pg) is proper. Furthermore, [6] has shown that a PCFG
(G,pg) that is such that pg was obtained by maximum-likelihood estimation is
consistent. Finally, since ny > 0 for each =, also pg(mw) > 0 for each m, and
pg(d) > 0 for all left-most derivations d. m

We say a computation is a shortest dead computation if it is dead and none
of its proper prefixes is dead. Note that each dead computation has a prefix that
is a shortest dead computation. For a PDT A, let T4 be the union of the set of
all complete computations and the set of all shortest dead computations.

Lemma 2 For each proper PPDT (A,p4), YceT, pa(c) < 1.

Proof. The proof is a trivial variant of the proof that for a proper PCFG (G, pg),
the sum of pg(d) for all derivations d cannot exceed 1, which is shown by [3]. =
From this, the main result of this section follows.

Theorem 3 No parsing strategy that does not have the CPP can be extended to
become a probabilistic parsing strategy.

Proof. Take a parsing strategy S that does not have the CPP. Then there is a
reduced CFG G = (¥,, N, S, R), with §(G) = (A, f) for some A and f, and a
shortest dead computation ¢ allowed by A.

It follows from Lemma 1 that there is a probability function pg such that
(G, pg) is a proper and consistent PCFG and pg(d) > 0 for all left-most derivations
d. Assume we also have a probability function p4 such that (A,p4) is a proper
and consistent PPDT that assigns the same probabilities to strings over ¥; as
(G,pg). Since A is reduced, each transition 7 must occur in some complete



computation ¢/. Furthermore, for each complete computation ¢’ there is a left-
most derivation d such that f(¢) = d, and pa(c’) = pg(d) > 0. Therefore,
pA(7T) > 0 for each transition 7, and p4(c) > 0, where c is the above-mentioned
dead computation.

Due to Lemma 2, 1 > Xycr, pa(d) > Zuez: pa(w) + palc) >
Ywezr pa(w) = Byesr pg(w). This is in contradiction with the consistency of
(G,pg). Hence, a probability function pg with the properties we required above
cannot exist, and therefore S cannot be extended to become a probabilistic pars-
ing strategy. m

5 Strong predictiveness

We say that a PDT has the strong predictiveness property (SPP) if the existence
of two transitions XY — Z and XY’ — Z' implies Z = Z'. Informally this
means that no information can flow from higher stack elements to lower stack
elements; the stack symbol Z = Z’ resulting from some pop transition may reflect
which stack symbol X it replaced, but the elements that have been located on
top of X are forgotten.?

We say that a parsing strategy has the SPP if it maps each reduced CFG to
a PDT with the SPP.

In the previous section it was shown that we may restrict ourselves to parsing
strategies that have the CPP. Here we show that if, in addition, a parsing strategy
has the SPP, then it can always be extended to become a probabilistic parsing
strategy.

Theorem 4 Any parsing strategy that has the CPP and the SPP can be extended
to become a probabilistic parsing strategy.

Proof. Take a parsing strategy S that has the CPP and the SPP, and take a
reduced PCFG (G, pg), where G = (X,, N, S, R), and let S(G) = (A, f), for some
PDT A and function f. We will show that there is a probability function p 4 such
that PPDT (A, p4) assigns the same probabilities to strings over X, as (G, pg).

For each stack symbol X, consider the set of transitions that are applicable
with top-of-stack X. Remember that our normal form ensures that all such
transitions are of the same type. Suppose this set consists of m swap transitions
=X g Y;, 1 < i < m. For each i, consider all subcomputations of the form
(X, zjw,€) 7IZ (Y;,w,y;) F* (Y',€,v) such that there is at least one pop transition
of the form ZY' — Z' or Y' = Xf,q, and define L, as the set of strings v
output by these subcomputations. We also define Lx = Uity L., the set of all
strings output by subcomputations starting with top-of-stack X, and ending just

>There is a property of push-down devices called faiblement prédictif (weakly predictive)
[20]. Contrary to what this name may suggest however, this property is incomparable with the
complement of our notion of SPP.



before a pop transition that decreases the height of the stack below that at the
beginning, or ending with the final stack symbol Xg4;.
Now define for each 7 (1 < i < m):

Z’UEL‘,-,L. pg (1_))
p.A(Tz) EUELX pg(ﬁ) (1)
In other words, the probability of a transition is the normalized probability of the
set of subcomputations starting with that transition, seen as parts of derivations
of the PCFG.

These definitions are well-defined. Since A is reduced and has the CPP, the
sets L,, are non-empty and thereby the denominator in the definition of p(7;)
is non-zero. Furthermore, ¥7*; p4(7;) is clearly 1.

Now suppose the set of transitions for X consists of m push transitions 7; =
X — XY;, 1 <i < m. For each %, consider all subcomputations of the form

Ti

(X,w,€e) b (XY;,w,€) F* (X', €,v) such that there is at least one pop transition
of the form ZX' — Z' or X' = X4, and define L, Lx and p(7;) as we have
done above for the swap transitions.

Finally, suppose the set of transitions for X consists of m pop transitions
7= Y; X — Z;; 1 <i<m. Define Lx = {e}, and pa(7;) = 1 for each i. Note
that if Y; = Y; (1 <4,j < m) then Z; = Z; and therefore i = j, due to the SPP.
We also define Lx,,,, = {€}-

c
Take a subcomputation (X,w,€) F* (Y,€,v) such that there is at least one
pop transition of the form ZY — Y’ or Y = Xj,,. Below we will prove by
induction on the length that:

bg (6) (2)

pA(C) YveLx Pg (E)

Since a complete computation ¢ with output v is of this form, with X = X,;;
and Y = Xgnq, we obtain the following, where D denotes the set of all left-most
derivations of CFG G:

pale) = % (3)
B pg(f(c))
= Svix.. po(F) @)
_ pg(f(e)
"~ X4ep pg(d) (5)
= pg(f(c)) (6)

We have used two properties of f here. The first is that it preserves the frequencies
of symbols from R, if considered as a mapping from output strings to derivations.
The second property is that it can be considered as bijection from complete



computations to derivations. Lastly we have used consistency of PCFG (G, pg),
meaning that X;cp pg(d) = 1. It follows that pa(w) = pg(w) for all w € X7.
For the proof by induction, we distinguish between three cases.
Case 1: Consider a subcomputation ¢ with output v = € consisting of zero
transitions, with only configuration (X,e¢,¢€), where there is at least one pop
transition of the form ZX — Z’ or X = Xjpq. We trivially have p4(c) = 1 and

pg (v) _ pg (€) _
Yvery Pg(v) Yve{e} Pg(v) :

Ti

Case 2: Consider a subcomputation ¢ = 7;¢, where (X, z;w,€) F (Yi, w,y;)

cl
F* (Y', €, yiv), such that there is at least one pop transition of the form ZY’ — Z’
or Y' = X4 The induction hypothesis states that:

pald) = #(Ep)g(v_) (7)

If we combine this with the definition of p 4, we obtain:

pa(c) = pa(n) - palc) (8)
Sver,, (V)  pg(v)
YverLx PG(V) TveLy, Pg(V)
pg(¥:) - ZveLy, Pg(V) ~__pg(v)
Z‘UGLX bg (ﬁ) Z‘UGLYi pg(ﬁ)
pg(¥i) - pg(v)
YveLx pg(ﬁ)
pg(%:v)
Yvely pg(ﬁ)

i

Case 3: Consider a subcomputation ¢ of the form (X, w,e€) b (XY;,w,€) H*
(X", €,v) such that there is at least one pop transition of the form ZX" — Z’
or X" = Xfnqa. We may write this as the subcomputation ¢ = 7;¢/7¢” consist-
ing of an application of a push transition 7; = X — XY;, a subcomputation

C
(Yi,wi1,€) F* (Y], €,v1), an application of a pop transition 7 = XY, — X', and

C
a subcomputation (X', wa, €) H* (X", €,v2), where w = wiws and v = vivs.
We can now use the induction hypothesis twice, resulting in:

pa(c) —szﬁ;(m (13)
and
pA(C”) Dbg (”_2) (14)

E’Uz GLXI pg (@)



If we combine this with the definition of p 4, we obtain:

palc) = pa(n) pald) pa(r) pal) (15)
_ ZDer, pg(®)  pg(m) . pg(va)
Z’UELX pg(ﬁ) ZvleLYi pg(U_l) EUZeLxl pg(@)

(16)

Since A has the SPP, X’ is unique to X and the output strings in L., are
precisely those that can be obtained by concatenating an output string in Ly;
and an output string in Lx. Therefore Lycr,, pg(V) = TuieLy, BuseLy Pg(V102)
= ZvleLYi pg(v_l) ' E1J2€LXI pg(ﬁL and

pg (V1) - pg(v2)

palc) = m (17)
pg(viv2)

EvELX pg(ﬁ) (18)

o pg(ﬁ) (19)

EvELX bg (ﬁ)

This concludes the proof. =

It has been shown by [7] that there is a family of languages that is such that the
sizes of the smallest CFGs generating those languages are at least quadratically
larger than the sizes of the smallest equivalent push-down automata. (A push-
down automaton (PDA) is like a PDT, except that no output is generated.) This
result depends on the push-down automata mnot having the SPP. In fact, push-
down automata with both CPP and SPP can be transformed to equivalent CFGs
of linear size.

This construction is as follows. Let A = (¥, Q, Xinit, Xfinai, 4) be a PDA
with both CPP and SPP, where X' is the input alphabet, and Q, X;nit, Xfnq and
A are as in the case of PDTs. Now construct the CFG G = (X, Q, Xinit, R),
where R contains the following rules.

e X — YZ for each transition X — XY, where Z is the unique stack symbol
such that there is at least one transition XY' — Z;

e X — zY for each transition X +5 Y;

e Y — € for each stack symbol Y such that there is at least one transition
XY — Z or such that Y = Xjzpq.

It is easy to see that there exists a bijection from complete computations of A
to left-most derivations of G. Apart from an additional derivation step by rule
Xfinal — €, the left-most derivations also have the same length as the correspond-
ing complete computations.

This construction can straightforwardly be extended to probabilistic PDAs
(PPDAs). Let (A, p4) be a PPDA with both CPP and SPP. Then we construct G
as above, and further define pg such that pg(m) = pa(7) for rulesm = X — YZ or



m = X — zY that we construct out of transitions 7 =X — XY or7 =X 5 Y,
respectively, in the first two items above. We also define pg(Y — €) = 1 for
rules Y — € obtained in the third item above. If (A,p4) is reduced, proper and
consistent then so is (G, pg).

This shows that parsing strategies with the CPP and the SPP as well as their
probabilistic counter-parts can also be described as grammar transformations.
This is closely connected to the work on covers by [13, 11].

It is always possible to transform a PDA with the CPP but without the SPP
to an equivalent PDA with both CPP and SPP, by a construction that increases
the size of the description considerably (at least quadratically, in the light of the
above construction and [7]). However, the new PDA can lead to a very different
time complexity of recognition, or in other words, such transformations in general
do not preserve parsing strategies and therefore are of minor interest to the issues
discussed in this paper.

6 Example of strategy with SPP

Many well-known parsing strategies with the CPP also have the SPP, such as top-
down parsing, left-corner parsing [14] and PLR parsing [16]. For space reasons
we can only give detailed treatment of left-corner parsing.

In order to simplify the presentation, we allow a new type of transition, with-
out increasing the power of PDTs, viz. a combined swap/push transition of the
form X ¥¥ ZY. Such a transition can be seen as short-hand for two transitions,
the first of the form X ¥¥ Zy, where Zy is a new symbol not already in Q, and
the second of the form Zy — ZyY. We also assume the existence of a transition
ZyY' — X' for each transition ZY' — X' that is actually specified.

For a fixed CFG G = (¥, N, S, R), we define the binary relation / over YUN
by: X /A if and only if there is an a € (¥ UN)* such that (A — Xa) € R, where
X € Y UN. We define the binary relation /* to be the reflexive and transitive
closure of /. This implies that a/*a for all a € X.

We now define Sp,c(G) = (A, f). Here A= (X, R, Q, [S > o 0], [S = 0 ],
A), where Q contains stack symbols of the form [A — « o 3] where (A — af8) € R
such that a # e V A = S, and stack symbols of the form [A — a e Y3; X] where
(A— aYB) € Rand X,Y € ¥ UN such that « # eV A= S and X/*Y. The
latter type of stack symbol indicates that left-corner X of goal Y in the right-hand
side of rule A — Y3 has just been recognized. The transitions in A are:

e [A—> aeYB ¥ [A— aeYp;a] for each rule A — oY and a € ¥ such
that « #eV A= S and a/*Y;

e [A— aeBf] &5 [A— ae Bj;C| for each pair of rules A — aBf and
m=C — esuchthat a 2#eVA =S and C/*B;

€,

e [A>aeBp;X] v [A— aeBj;C| [C - X e+] for each pair of rules
A — aBf and 1 = C — X such that o« eV A= S and C/*B;



o [A—>aeBp;C|[C — ve|— [A— aeBg;(C] for each pair of rules A —
aBB and C — ysuchthat a #eVA=S,v#e¢and C/*B;

e [A—aeYB;Y]| — [A— aY e[| for each rule A — aYf such that a #
eVA=2S.

The function f has to rearrange the output string to obtain a left-most derivation;
this issue is discussed in [13].

It can be easily seen that the PDTs that result from the above construction
have both CPP and SPP, and therefore left-corner parsing can be extended to
become a probabilistic parsing strategy. A direct construction of probabilistic
left-corner parsers from PCFGs has been presented by [18].

Since at most two rules occur in each of the items above, the size of a (prob-
abilistic) left-corner parser is O(|G|?). This is in contrast to a construction of
‘shift-reduce’ PPDAs out of PCFGs from [1], which were of size O(|G|?). Our
findings require a revision of the “conjecture that there is no concise translation
of PCFGs into shift-reduce PPDAs” from [1]. It must be noted however that the
‘shift-reduce’ model adhered to by [1] is more restrictive than our PDT model,
which we feel is more natural.

7 Example of strategy without SPP

In this section we show that the absence of the strong predictiveness property
may mean that a parsing strategy with the CPP cannot be extended to become a
probabilistic parsing strategy. We illustrate this for LR(0) parsing, formalized as
a parsing strategy Spg, which has the CPP but not the SPP. (Related difficulties
with probabilistic ELR parsing have been pointed out before by [19].) We assume
the reader is familiar with LR parsing; see [15].

We take a PCFG (G, pg) defined by:

wg =8 — AB, pg(ng) =1
71'A1=A—>G,C, g(ﬂ'Al):%
w4, = A — aD, pg(mwa,) = 1%
Bl=B—)bC, g(’frBl)=%
mg, = B = bD, pg(np,) = 15
e =C = zc, pg(meg)=1
mp =D — zd, pg(np)=1

Because of space limitations, we cannot present the entire LR automaton
A, with Spgr(G) = (A, f) for some f, but we merely mention two of its key
transitions, which represent shift actions over ¢ and d:

Te={C >zec,D s zed} S {C > zec,D—zed {C— xce}
Td={C—).’I)OC,D—)LL’Od}Pd—’i{C—)aIOC,D—).’B.d} {D — zd e}

(We denote LR states by their sets of kernel items, as usual.)



Take a probability function p 4 such that (A, p4) is a proper PPDT. It can be
easily seen that p4 must assign 1 to all transitions except 7. and 74, since that
is the only pair of distinct transitions that can be applied for one and the same
top-of-stack symbol, viz. {C — z e c¢,D — z e d}.

However, pglazcbed) _ Pg(ma;)Pg(tBy) _ fori5 % but Palazcbzd)

pg(azdbzc) —  pg(ma,)pg(mB;) %% - p.a(azdbzc)

%:—;% = 1 # 5. This shows that there is no p4 such that (A,p4) as-

signs the same probabilities to strings over X' as (G,pg). It follows that the LR
strategy cannot be extended to become a probabilistic parsing strategy.

Note that for G above, pg(ma,) and pg(wp,) can be freely chosen, and this
choice determines the other values of pg, so we have two free parameters. For A
however, there is only one free parameter in the choice of p4. This is in conflict
with an underlying assumption of existing work on probabilistic LR parsing, by
e.g. [4] and [9], viz. that LR parsers would allow more fine-grained probability
distributions than CFGs. For practical cases however, [17] has shown that LR
parsers do allow more accurate probability distributions than the CFGs from
which they were constructed, if probability functions are estimated from corpora.

There is a construction proposed by [22, 21, 12] of probabilistic LR parsers
with the same probability distribution as given PCFGs. Such an LR parser in
general cannot have the same structure as the LR parser that would be con-
structed in the non-probabilistic case, as we have shown above. Instead, the
probabilistic LR parser may contain several copies of one and the same state
from the non-probabilistic LR parser. These different copies allow the probabil-
ity function on transitions to distinguish cases that would normally be treated
as identical. A serious problem with this approach is however that the required
number of copies of each LR state is potentially infinite.

E

8 Conclusions

We have formalized the notion of parsing strategy as a mapping from context-
free grammars to push-down transducers, and have investigated the extension
to probabilities. We have shown that the question of which strategies can be
extended to become probabilistic heavily relies on two properties, the correct-
prefix property and the strong predictiveness property. The CPP is a necessary
condition for extending a strategy to become a probabilistic strategy. The CPP
and SPP together form a sufficient condition. Furthermore, if a strategy has both
CPP and SPP then the resulting probabilistic automata have the same sizes as
their non-probabilistic counter-parts. Finally, we have shown that there is at
least one strategy of practical interest with the CPP but without the SPP that
cannot be extended to become a probabilistic strategy.
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