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1 Introduction

Examples of natural languages are Chinese, English and Italian. They are
called natural as they evolved in a more or less natural way, without too
many deliberate considerations. This sets them apart from formal lan-
guages, amongst which are programming languages, which are designed to
allow easy processing by computer algorithms. Typically, programs in pro-
gramming languages such as C or Java can be processed (compiled) in close
to linear time in their length.

One particular feature that most programming languages have in com-
mon, and that allows for their fast processing, is absence of ambiguity.
That is, only one structure, called a parse or parse tree, can be assigned
to any program, and this parse can have only one meaning. Furthermore, the
design of many programming languages is such that the single parse can be
found deterministically, which means that every parsing step contributes
a fragment of the resulting parse. As parses have a size linear in the length
of the input, this explains why parsing is possible in linear time. Subsequent
processing of the parse, for example in order to compile to machine code, is
also commonly possible in close to linear time.

Natural languages are quite different in this respect. Like programs in
a programming language, sentences in a natural language can be assigned
parses, but often the sentences are ambiguous and allow more than one
parse. Even for a single parse, there may be ambiguity in the meanings
of words or expressions. The existence of ambiguity in natural language
is witnessed by frequent misunderstandings in daily life, but it is also an
essential feature of poetry and puns.
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The field of natural language processing (NLP) studies algorithms,
tools and techniques for automatic processing of natural languages. A re-
lated if not synonymous term is computational linguistics, which stresses
that the field can be seen as a subfield of linguistics, which is the study of
(natural) language.

Language can be investigated from different perspectives. At the lowest
level, phonetics and phonology study the sounds that spoken language
consists of and the rules that govern them. Morphology is the study of
the internal structure of words. How words are combined to form sentences
is the subject of syntax. The meaning and use of language are studied by
semantics and pragmatics, and discourse studies the structure of human
communication.

The problem of parsing, with which we started our exposition, concerns
the syntax of language. Although interesting algorithms exist for the other
levels of language as well, this chapter will concentrate on algorithms related
to syntax, as these form the most mature, and well-understood part of NLP.

Next to parsing, many other tasks studied in NLP are relevant to syntax.
One such task is grammar induction, which involves finding the syntactic
structure of a language on the basis of examples. Another task is machine
translation, which includes transforming syntactic structure from one lan-
guage to that of another. A selection of algorithms that concern these tasks
will be discussed further in the remainder of this chapter.

2 Example

We illustrate the problem of ambiguity by an example. Familiarity with
context-free grammars (Chapter XX [Formal Grammars and Languages])
is assumed.

The sentence:

(1) our company is training workers

has one obvious meaning to most readers. However, at least two other
meanings exist in principle. This becomes clear if we replace some words by
other words of the same type:

(2) our problem is training workers

(3) our company hires training workers

The three readings of (1) correspond to the three parses in Figure 1, assum-
ing the context-free grammar (CFG) below. This grammar is intended for
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Figure 1: Three parses for ‘our company is training workers’.

illustrative purposes, and represents a rough approximation of a tiny part
of English at best. We let S stand for ‘sentence’, NP for ‘noun phrase’, N
for ‘noun’, PosPr for ‘possessive pronoun’, VP for ‘verb phrase’, Aux for
‘auxiliary verb’, V for ‘verb’, and AP for ‘adjective phrase’.

S → NP VP
NP → N
NP → PosPr N
NP → AP N
NP → VP
N → company
N → workers

PosPr → our
VP → Aux VP
VP → V NP
Aux → is
V → training
V → is

AP → training

An important observation is that the number of parses can be exponen-
tial in the length of the sentence. An easy way to illustrate this is to extend
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the above example by conjunction, to allow sentences of the form:

(4) Robin’s company is training workers and Sandy’s company is training
workers and [...]

Such a sentence has at least 3k parses, where k is the number of times the
ambiguous construction from (1) is repeated.

The exponential behaviour entails that in practice it is not feasible to
enumerate all parses of a sentence. Therefore one often represents the set of
all parses by a structure commonly referred to as a parse forest, also called
more explicitly a shared-packed parse forest. The term ‘parse forest’
has become popular since the book by Tomita (1986), but the underlying
concept existed long before that, as we will show in the next section.

Two observations underlie parse forests. The first is that alternative
subparses of a substring with the same nonterminal at the root can be
‘packed’ together, and be treated as one with regard to larger subparses
of larger substrings. In Figure 1, this pertains to the two subparses for
‘training workers’ with NP at the root in parses (b) and (c). The second
observation is that an identical subparse can be ‘shared’ among several larger
subparses. An example in Figure 1 is the subparse of ‘training workers’ with
root labelled VP, which is the same in parses (a) and (b).

A graphical representation of a parse forest is given in Figure 2. Packing
is represented by a rectangle enclosing two or more nodes. We see sharing
where a node has more than one parent.

In the following section, we discuss construction of parse forests. There-
after, we also address the problem of selecting the intended parse tree within
a parse forest.

3 Context-free parsing by intersection

The underlying principle of parse forests was already discovered by Bar-
Hillel et al. (1964), who found a constructive proof that the intersection of
a context-free language and a regular language is again a context-free lan-
guage. The input to this construction is a context-free grammar and a finite
automaton. Instead of a graph representation as in Figure 2, the output is
itself a context-free grammar, which is called the intersection grammar.
In this representation, sharing amounts to multiple occurrences of a nonter-
minal in right-hand sides, and packing amounts to multiple occurrences of
a nonterminal in left-hand sides.

We simplify the discussion here by assuming a special type of finite
automaton that recognizes just one string, say w = a1 · · · an. The states

4



S

NP

PosPr N

our company

VP VP

Aux V

is

NP NP

VP

V AP NP

training N

workers

Figure 2: The three parses in a parse forest.

of the automaton represent the positions between adjacent symbols. In
addition, the initial state 0 and the final state n represent the positions at
the left and right ends of w. By this simplification, nonterminals of the
intersection grammar are triples [i,X, j], where i and j are input positions,
and X is a terminal or nonterminal from the input grammar. For each
subparse with root labelled [i,X, j] (0 ≤ i ≤ j ≤ n) in the intersection
grammar, there is a corresponding subparse of ai+1 · · · aj with root labelled
X in the original grammar. Triples of this form, as well as related objects to
be discussed in the sequel, are also referred to as (parse) items. The start
symbol of the intersection grammar is [0, S, n], where S is the start symbol
of the input grammar.

As an example, Figure 3 shows the parse forest from Figure 2 in the
representation as intersection grammar.

Let G be the input CFG and w the input string of length |w| = n.
An easy way to construct the intersection grammar G∩ is by the algorithm
below.

Intersection(G, w) {let a1 · · · an = w}
1: G∩ ← CFG with start symbol [0,S, n] and empty set of rules
2: for all rules A→ X1 · · ·Xm from G do
3: for all sequences of positions i0, . . . , im (0 ≤ i0 ≤ . . . ≤ im ≤ n) do
4: add the rule [i0, A, im] → [i0, X1, i1] · · · [im−1, Xm, im] to G∩
5: for all i (1 ≤ i ≤ n) do
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[0, S, 5] → [0, NP, 2] [2, VP, 5]
[0, NP, 2] → [0, PosPr, 1] [1, N, 2]
[0, PosPr, 1] → [0, our, 1]
[1, N, 2] → [1, company, 2]
[2, VP, 5] → [2, Aux, 3] [3, VP, 5]
[2, VP, 5] → [2, V, 3] [3, NP, 5]
[2, Aux, 3] → [2, is, 3]
[2, V, 3] → [2, is, 3]
[3, NP, 5] → [3, VP, 5]
[3, NP, 5] → [3, AP, 4] [4, N, 5]
[3, VP, 5] → [3, V, 4] [4, NP, 5]
[3, V, 4] → [3, training, 4]
[3, AP, 4] → [3, training, 4]
[4, NP, 5] → [4, N, 5]
[4, N, 5] → [4, workers, 5]

[0, our, 1] → our
[1, company, 2] → company
[2, is, 3] → is
[3, training, 4] → training
[4, workers, 5] → workers

Figure 3: Parse forest in the representation as intersection grammar.

6: add the rule [i− 1, ai, i]→ ai to G∩
7: return G∩

In general, the above algorithm produces more rules than needed. For-
mally, we say a nonterminal in a CFG is generating if at least one terminal
string can be derived from that nonterminal. We say a nonterminal is reach-
able if a string containing that nonterminal can be derived from the start
symbol. A nonterminal is called useless if it is non-generating or unreach-
able or both. A grammar is called reduced if it does not contain any rules
with useless nonterminals.

In the running example, [0,VP, 2] is non-generating, as ‘our company’
is not a verb phrase. Therefore, the presence of a rule [0,VP, 2] →
[0,Aux, 1] [1,VP, 2] makes the intersection grammar non-reduced.

The set of generating nonterminals can be computed by the algorithm
below. It is applicable to any CFG, not just to those with nontermi-
nals of the form [i, A, j]. We let Σ denote the terminal alphabet, and
Σ∗ the set of strings of terminal symbols, including the empty string
ε.

Generating(G)
1: OLDGEN ← ∅
2: GEN ← {A | A→ v, v ∈ Σ∗}
3: while GEN 6= OLDGEN do
4: OLDGEN ← GEN
5: GEN ← {A | A→ α, α ∈ (Σ ∪OLDGEN )∗}
6: return GEN

This algorithm can be implemented to run in linear time in the number
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of nonterminal occurrences in G, in the following way. For each rule, we
maintain a counter containing the number of nonterminals in the right-hand
side that have not yet been added to GEN . If a nonterminal A is newly
added to GEN , the counters of rules in which A occurs in the right-hand
side are decremented. If a counter of any rule becomes 0, the left-hand side
nonterminal is added to GEN , unless it has already been added. By this
implementation, at most one step is needed for each nonterminal occurrence
in the grammar.

Also the problem of finding the set of reachable nonterminals can be
solved in linear time, by simple reduction to graph-reachability. We con-
clude that a grammar can be reduced in linear time, by computing the
generating and reachable nonterminals, and then eliminating all rules in
which nonterminals occur that are not generating or not reachable.

In practice it is preferable to combine the construction of an intersection
grammar with its reduction, which diminishes the space requirements of
intermediate results. The procedure starts by computing a set of generating
nonterminals. The difference with the procedure above is that this phase
now precedes the explicit construction of rules of the intersection grammar.

The algorithm does however store and return items of the form
[i, A→ α • β, j], where A → αβ is a rule from G and α 6= ε. Informally,
the dot divides the right-hand side into a (non-empty) prefix and a suffix,
and the input positions i and j delimit a substring that can be derived from
the prefix. More precisely, if we assume α = X1 · · ·Xm, then an item of
this form represents that [i0, X1, i1], . . . , [im−1, Xm, im] are all generating
nonterminals, for some choice of i = i0, i1, . . . , im−1, im = j. An item
[i, A→ α • β, j] can thereby be seen as a partial result towards establishing
that [i, A, j′] may be a generating nonterminal, for some j′ ≥ j. Such items
together with the familiar items of the form [i, A, j] are gathered in a single
set GEN .

The algorithm maintains an agenda with newly obtained items
that are still to be put in GEN . New items are also combined
with existing items to derive yet more items, until the agenda is
empty.

GeneratingIntersection(G, w) {let a1 · · · an = w}
1: GEN ← ∅
2: AGENDA← {[i− 1, ai, i] | 1 ≤ i ≤ n} ∪ {[i, A, i] | A→ ε, 0 ≤ i ≤ n}
3: while AGENDA 6= ∅ do
4: remove some ITEM from AGENDA
5: if ITEM /∈ GEN then
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6: GEN ← GEN ∪ {ITEM }
7: if ITEM = [j, X, k] then
8: for all [i, A→ α • Xβ, j] ∈ GEN do
9: AGENDA← AGENDA ∪ {[i, A→ αX • β, k]}

10: for all A→ Xβ do
11: AGENDA← AGENDA ∪ {[j, A→ X • β, k]}
12: if ITEM = [i, A→ α • Xβ, j] then
13: for all [j, X, k] ∈ GEN do
14: AGENDA← AGENDA ∪ {[i, A→ αX • β, k]}
15: if ITEM = [i, A→ α •, j] then
16: GEN ← GEN ∪ {[i, A, j]}
17: return GEN

The rules of the reduced intersection grammar are now constructed in a
top-down manner, which ensures that only reachable nonterminals are con-
sidered. The process is initiated by a call IntersectionFiltered(0, S, n),
where S is the start symbol of the input grammar and n = |w|. A set
DONE , which is initially ∅, is maintained to prevent that rules would be
constructed more than once by repeated calls of IntersectionFiltered
with the same arguments. All new rules are composed of nonterminals that
were found to be generating earlier. This guarantees that the intersection
grammar is reduced.

IntersectionFiltered(i,X, j)
1: if [i,X, j] /∈ DONE then
2: DONE ← DONE ∪ {[i,X, j]}
3: if X is terminal a then
4: add [i, a, j]→ a to G∩
5: else {X is nonterminal A}
6: if i = j and A→ ε then
7: add [i, A, j]→ ε to G∩
8: for all A→ X1 · · ·Xm (m > 0) and sequences

[i0, A→ X1 · · ·Xm−1Xm •, im], [im−1, Xm, im],
[i0, A→ X1 · · ·Xm−1 • Xm, im−1], [im−2, Xm−1, im−1],
. . . ,
[i0, A→ X1 • · · ·Xm−1Xm, i1], [i0, X1, i1] ∈ GEN ,

where i0 = i and im = j do
9: add [i0, A, im]→ [i0, X1, i1] · · · [im−1, Xm, im] to G∩

10: for all k (1 ≤ k ≤ m) do
11: IntersectionFiltered(ik−1, Xk, ik)

If r is the length of the longest right-hand side of a rule from the in-
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put grammar G, then the size |G∩| of G∩ is O(|G| · nr+1). The size of a
context-free grammar is defined as the sum of the number of nonterminal
and terminal occurrences in its rules. Also the time and space complexity
of the intersection process itself are given by O(|G| · nr+1), irrespective of
whether reduction is integrated into the intersection process, or done after-
wards.

If the input grammar is in binary form (that is r = 2), then the
complexity is O(|G| · n3). This is also the time and space complexity of
the best practical recognition and parsing algorithms for CFGs. (See for
example the CYK algorithm discussed in Chapter XX [Formal Grammars
and Languages].) Grammars that are not in binary form can be easily
brought in binary form by a construction that is linear in the size of the
input grammar.

It is also possible to integrate binarization into the construction of the
intersection grammar, by using items of the form [i, A→ α • β, j], α 6= ε,
as nonterminals. The intersection grammar then contains, amongst others,
rules of the form [i, A→ αX • β, k]→ [i, A→ α • Xβ, j] [j, X, k] and of the
form [i, A→ X • β, j]→ [i,X, j].

An important observation is that GeneratingIntersection has time
complexity O(|G| · n3) but its space complexity is only O(|G| · n2). If the
objective is recognition rather than parsing, then it suffices to check whether
[0, S, n] is in GEN and application of IntersectionFiltered is not needed.

Extraction of a single and arbitrary parse from GEN has time com-
plexity O(|G| · n2). This can be explained as follows. There are O(|G| · n)
items of the form [i0, A→ X1 · · ·Xk • · · ·Xm, ik], k ≥ 2, that are con-
sistent with a given parse of the input string. Such items are consid-
ered while we are extracting the parse from GEN in a top-down man-
ner, much as in IntersectionFiltered. For each, we may need to
check at most O(n) values ik−1 between i0 and ik, to determine whether
[i0, A→ X1 · · · • Xk · · ·Xm, ik−1], [ik−1, Xk, ik] ∈ GEN .

One may extend GeneratingIntersection such that it stores a list
of the relevant ik−1 with items [i0, A→ X1 · · ·Xk • · · ·Xm, ik]. This allows
a single parse to be extracted in O(|G| · n) time, but the storage costs then
grow to O(|G| · n3).

Algorithms such as GeneratingIntersection are sometimes pre-
sented in the form of a deduction system. A deduction system consists of
a collection of inference rules, each consisting of a list of antecedents,
which stand for items that we have already derived, and, below a horizontal
line, the consequent, which stands for an item that we derive from the
antecedents. At the right of an inference rule, we may also write a number

9



[i− 1, ai, i]
{
1 ≤ i ≤ n (a)

[i, A, i]

{
A→ ε
0 ≤ i ≤ n

(b)

[i, A→ α •, j]
[i, A, j]

(c)

[j, X, k]
[j, A→ X • β, k]

{
A→ Xβ (d)

[i, A→ α • Xβ, j]
[j, X, k]

[i, A→ αX • β, k]
(e)

Figure 4: The algorithm GeneratingIntersection as deduction system.

of side conditions, which need to be fulfilled for the inference rule to be
applicable. The side conditions here refer to rules from the grammar and
the input string.

A deduction system has a natural interpretation as dynamic program-
ming algorithm, exemplified by our code for GeneratingIntersection, as
realization of the deduction system in Figure 4. An easy way to determine
the time complexity of the dynamic programming algorithm is to look at
the number of possible instantiations of each inference rule. The inference
rule in Figure 4(e) is the most expensive, as it involves three input positions
and one position within a grammar rule. The number of applications is
therefore O(|G| · n3), which confirms our earlier observations about the time
complexity of GeneratingIntersection.

4 Lexicalization

A central issue in modeling the syntax of natural languages is the extreme
sensitivity to the choice of lexical elements, that is, the words of the lan-
guage. Let us return to the example in Section 2. The appropriate parse
of ‘our company is training workers’ is that of Figure 1(a). However, if we
replace the word ‘company’ with the word ‘problem’, the appropriate parse
becomes the structure reflected by Figure 1(b) instead. A CFG of the kind
presented in Section 2 cannot model such effects, as it treats ‘company’ and
‘problem’ uniformly as nouns (strings derived from N).

A solution is to incorporate a terminal symbol (lexical element) in each
nonterminal. This terminal is such that it plays an important role in the
syntactic and semantic content of the derived string. The model we con-
sider here is called bilexical context-free grammar (2-LCFG). In various
guises, this model is used extensively in natural language parsing. It allows
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S[$]

S[training]

NP[company]

PosPr[our]

our

N[company]

company

VP[training]

Aux[is]

is

VP[training]

V[training]

training

NP[workers]

N[workers]

workers

$[$]

$

Figure 5: A parse of ‘our company is training workers’, assuming a bilexical
context-free grammar.

us to write rules of the form S[training]→ NP[company] VP[training], which
expresses that a noun phrase whose main element is ‘company’ can combine
with a verb phrase whose main element is ‘training’. By the same token, one
might exclude a rule of the form S[training] → NP[problem] VP[training],
since, typically, a problem cannot be the subject of training.

More precisely, a 2-LCFG is a CFG with nonterminal symbols of the
form A[a], where a is a terminal symbol and A is a symbol drawn from a
small set of so-called delexicalized nonterminals, which we denote as VD.
Every rule in a 2-LCFG has one of the following forms: A[b] → B[b] C[c],
A[c] → B[b] C[c] or A[a] → a. Note that in binary rules (those with two
members in the right-hand side), the terminal symbol associated with the
left-hand side nonterminal is always inherited from one of the nonterminals
in the right-hand side.

For technical reasons, we assume existence of a dummy terminal $ to the
right of each sentence, and nowhere else. A dummy nonterminal with the
same name allows terminal $ to be derived by $[$] → $. The start symbol
of a 2-LCFG is S[$] and there are rules expanding it to S[a] $[$], where a
is typically the main verb of a sentence to be derived. Figure 5 presents a
possible parse tree for the running example, assuming a 2-LCFG.

Let Σ denote the set of terminal symbols. In the worst case, a 2-LCFG
can have Θ(|VD|3 · |Σ|2) binary rules. Whereas VD is typically small, the
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set Σ can grow very large in practical applications. When parsing with
a 2-LCFG, it is therefore preferable to restrict the grammar to those rules
that contain lexical elements actually occurring within the input sentence w.
Based on the time complexity of general context-free parsing, as discussed in
the previous sections, we then obtain a time complexity of O(|VD|3 · |w|5),
under the assumption that |w| < |Σ|, which always holds in practical ap-
plications. In terms of sentence length, this is much worse than the time
complexity of unlexicalized parsing.

The time complexity can be reduced by a factor of |w| by a recognition
algorithm that was specifically designed for lexicalized grammars. It uses
items of the form [i, A, h, j]. In terms of the items used in Section 3, this
has the same meaning as [i, A[ah], j], which now includes a lexicalized non-
terminal A[ah]. New is that some steps of the algorithm require temporarily
ignoring either i or j, which is indicated by substituting one or the other by
a hyphen.

We also need items of the form [B, h, A, j, k] to indicate that [−, B, h, j]
and [j, C, h′, k] were derived, for some C and h′ such that A[ah] → B[ah]
C[ah′ ] is a rule. This represents an intermediate step in establishing
[i, A, h, k], temporarily ignoring the left boundary i of the substring derived
from the left child B[ah], and forgetting the right child C[ah′ ]. In a following
step, i is reconstituted by access to an original item [i, B, h, j].

Items of the form [i, j, A,C, h] have a symmetrical meaning, that is, they
indicate that [i, B, h′, j] and [j, C, h,−] were derived, for some B and h′ such
that A[ah] → B[ah′ ] C[ah] is a rule.

The algorithm is given in Figure 6 as deduction system, and an illustra-
tion of the use of an important combination of inference rules is given in
Figure 7. The deduction of [i, A, h, k] from [i, B, h, j] and [j, C ′, h, k] via a
grammar rule A[ah]→ B[ah] C[ah′ ] is very similar to a step of the CYK al-
gorithm for general context-free grammars. The current algorithm does the
same in three different steps, represented by inference rules (e), (b) and (f).
Each of these involves no more than four input positions and three delexi-
calized nonterminals. This corresponds to O(|VD|3 · n4) applications of each
inference rule, which is also the total time complexity of the algorithm.

5 Probabilistic parsing

In natural language systems, parsing is commonly one stage of processing
amongst several others. The effectiveness of the stages that follow parsing
generally relies on having obtained a small set of preferred parses, ideally
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[h− 1, A, h, h]

{
A[ah]→ ah

1 ≤ h ≤ n + 1
(a)

[−, B, h, j]
[j, C, h′, k]

[B, h, A, j, k]
{
A[ah]→ B[ah] C[ah′ ] (b)

[i, B, h′, j]
[j, C, h,−]

[i, j, A,C, h]
{
A[ah]→ B[ah′ ] C[ah] (c)

[i, A, h, j]
[i, A, h,−]

(d)

[i, A, h, j]
[−, A, h, j]

(e)

[i, B, h, j]
[B, h, A, j, k]
[i, A, h, k]

(f)

[j, C, h, k]
[i, j, A,C, h]
[i, A, h, k]

(g)

Figure 6: Deduction system for bilexical recognition. We assume w =
a1 · · · an, an+1 = $.

only one, from amongst the full set of parses, represented as a parse forest or
intersection grammar. This is called (syntactic) disambiguation. There
are roughly two ways to achieve this. First, some kind of filter may be
applied to the full set of parses, to reject all but a few. This filter may look
at the meanings of words and phrases, for example, and may be based on
linguistic knowledge that is very different in character from the grammar
that was used for parsing.

A second approach is to augment the parsing process so that probabilities
are attached to parses and subparses. The higher the probability of a parse
or subparse, the more confident we are that it is correct. This is called
probabilistic parsing. The simplest form of probabilistic parsing relies
on an assignment of probabilities to individual rules from a context-free
grammar. These probabilities are then multiplied upon combination of rules
to form parses.

As an example, consider the following probabilistic context-free gram-
mar, which extends the grammar from the running example with the prob-
abilities between parentheses. As before, the example is meant to illustrate
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B[ah]

ai ah aj

(e)

B[ah]

? ah aj

C[ah′ ]

aj ah′ ak

(b)

A[ah]

B[ah]

? ah aj

?

ak

(f)

A[ah]

ai ah ak

Figure 7: Illustration of the use of inference rules (e), (b) and (f) of bilexical
recognition.

technical concepts, but has no linguistic pretences.

S → NP VP (1)
NP → N (0.4)
NP → PosPr N (0.3)
NP → AP N (0.2)
NP → VP (0.1)
N → company (0.6)
N → workers (0.4)

PosPr → our (1)
VP → Aux VP (0.3)
VP → V NP (0.7)
Aux → is (1)
V → training (0.9)
V → is (0.1)

AP → training (1)

In the above grammar, the probabilities of rules with a given nonterminal in
the left-hand side always sum to 1. A probabilistic grammar for which this
holds is called proper. The condition of properness is strongly related to
the fact that context-free grammars are a generative formalism, that is, a
grammar defines a set of objects by offering a number of operations to step-
wise turn (partial) objects into larger objects. In the case of probabilistic
context-free grammars that are proper, the range of applicable operations
at each step of a left-most derivation forms a probability distribution.

With the grammar as above, the most probable parse of ‘our company is
training workers’ is that of Figure 1(a). Its probability is the product of the
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probabilities of all applied rules (or more precisely, rule occurrences). This
is 1 · 0.3 · 1 · 0.6 · 0.3 · 1 · 0.7 · 0.9 · 0.4 · 0.4 = 0.0054432.

With a probabilistic input grammar G, the intersection grammar G∩
constructed for a given input string w is also probabilistic. A rule of the form
[i0, A, im] → [i0, X1, i1] · · · [im−1, Xm, im] is assigned the same probability
as the rule A → X1 · · ·Xm in the input grammar G. Rules of the form
[i− 1, ai, i]→ ai are assigned the probability 1.

The intersection grammar is not proper in general, but it has the at-
tractive feature that parses of w in G have the same probability as the
corresponding parses in G∩. This means that the problem of finding the
most probable parse of w in G can be translated to the problem of find-
ing the most probable parse in G∩. The latter problem is simpler than the
original problem, as the input string no longer needs to be considered explic-
itly. In fact, we investigate this problem below for an arbitrary probabilistic
context-free grammar G, which may or may not be the result of intersection.

The algorithm in Figure 8 is a special case of an algorithm by Knuth,
which generalizes Dijkstra’s algorithm to compute the shortest path in a
weighted graph. It finds the probability pmax (A) of the most probable sub-
parse with root labelled A. The value pmax (S), where S is the start symbol,
then gives us the probability of the most probable parse. The algorithm can
be easily extended to return the parse itself. For notational convenience, we
let pmax (a) = 1 for each terminal a. The set of terminals is here denoted as
Σ.

In each iteration, the value of pmax (A) is established for a nonterminal
A; the set E contains all grammar symbols X for which pmax (X) has already
been established. Initially, this is Σ, as we let pmax (a) = 1 for each a ∈ Σ.
The set F contains those nonterminals not yet in E that are candidates to
be added next. Each nonterminal A in F is such that a subparse with root
labelled A exists consisting of a rule A → X1 · · ·Xm, and subparses with
roots labelled X1, . . . , Xm matching the values of pmax (X1), . . . , pmax (Xm)
found earlier. The nonterminal A for which such a subparse has the highest
probability is then added to E .

In a practical implementation, F and q would not be constructed anew
for each iteration. They would merely be revised every time a nonterminal
A is added to E . This revision consists in removing A from F and finding
new rules whose right-hand side nonterminals are now all in E . This allows
adding new elements to F and/or updating q to assign higher values to
elements in F . Typically, F would be organized as a priority queue.

Knuth’s algorithm can be combined with construction of the intersection
grammar. If the grammar has no cycles, several simplified algorithms exist.
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MostProbableParse(G)
1: E ← Σ
2: repeat
3: F ← {A | A /∈ E ∧ ∃A→ X1 · · ·Xm[X1, . . . , Xm ∈ E ]}
4: if F ← ∅ then
5: report failure and halt
6: for all A ∈ F do
7: q(A)← max

π=(A→X1···Xm):

X1,...,Xm∈E

p(π) · pmax (X1) · . . . · pmax (Xm)

8: choose A ∈ F such that q(A) is maximal
9: pmax (A)← q(A)

10: E ← E ∪ {A}
11: until S ∈ E
12: output pmax (S)

Figure 8: Knuth’s generalization of Dijkstra’s algorithm, applied to finding
the most probable parse in a probabilistic context-free grammar G.

A particularly simple algorithm is an extended form of CYK parsing for
grammars in Chomsky normal form, which computes values pmax ([i, A, j])
after computing all values pmax ([i′, A′, j′]) with i < i′ < j′ ≤ j or i ≤ i′ <
j′ < j.

The probability of an ambiguous string is defined as the sum of the prob-
abilities of all parses of that string. In contrast to finding the most probable
derivation, the problem of finding the most probable string is generally dif-
ficult. The decision version of this problem is NP-complete if there is a
specified bound on the string length, and undecidable otherwise.

Probabilistic parsing is particularly effective for lexicalized grammars,
as it allows fine-grained encoding of dependencies between lexical elements.
For example, the rule S[training] → NP[company] VP[training] could be
given a high probability, whereas S[training] → NP[problem] VP[training]
is given a low probability.

Probabilistic context-free grammars for natural languages are normally
induced on the basis of samples of language use, rather than explicitly writ-
ten by people. The simplest algorithms of grammar induction rely on input
consisting of a multiset of parses, also known as a tree bank. Tree banks
are often the result of manual, or (partially) automated annotation of a
number of texts, for example newspaper articles.
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The nonterminal label of a node in the tree bank together with the label
of its childeren forms a rule. The probability of such a rule, say A→ α, can
be estimated as:

C(A→ α)
C(A)

, (1)

where C(A) is the number of nodes in the input data with label A and
C(A→ α) is the number of occurrences of rule A→ α in the tree bank.

Probabilities of lexicalized rules are often computed as the product of
probabilities of a number of features that together determine the rule. For
example, the probability of A[b] → B[b] C[c] can be expressed as the prob-
ability of B given A and b, times the probability of C as second member in
the right-hand side, given A, b and B, times the probability of c given A, b,
B and C as second member. The last probability can be approximated as,
for example, the probability of c given b and C. Such approximations lead
to a reduced number of parameters, which can be estimated more accurately
if the available tree bank is small.

6 Translation

Automatic translation between natural languages is one of the most chal-
lenging applications in NLP. State-of-the-art approaches to this task are
based on syntactic models, usually enriched with statistical parameters. In
this section we consider one such model, called synchronous context-free
grammar (SCFG), which is a notational variant of the syntax-directed
translation schemata originally developed in the theory of compilers (Aho
and Ullman, 1972).

A SCFG consists of synchronous rules, each obtained by pairing two
CFG rules with the same left-hand side. The right-hand sides of such a pair
of CFG rules must consist of identical multisets of nonterminals, possibly
ordered differently, and possibly combined with different terminal symbols.
Furthermore, there is an explicit bijection that pairs occurrences of identical
nonterminals in the two right-hand sides.

As an example, the synchronous rule
〈VP→ VB 1 PP 2 , VP→ PP 2 VB 1 ga〉 states that an English verb
phrase composed of the two constituents VB (‘verb in base form’) and PP
(‘prepositional phrase’) can be translated into Japanese by swapping the
order of the translations of these constituents and by inserting the word
‘ga’ at the right. Note the use of integers within boxes as superscripts to
indicate a bijection between nonterminal occurrences in the two context-free
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rules.
A SCFG can derive pairs of sentences as follows. Starting with the pair

of nonterminals 〈S 1 , S 1 〉, synchronous rules are applied to rewrite pairs
of nonterminals that have the same index. At the application of a rule, the
indices in the newly added nonterminals are consistently renamed, in order
to avoid clashes with the indices introduced at previous rewriting steps. The
rewriting stops when all nonterminals have been rewritten.

The following toy SCFG will be the running example of this section:

s1 : 〈 S → A 1 C 2 , S → A 1 C 2 〉
s2 : 〈 C → B 1 S 2 , C → B 1 S 2 〉
s3 : 〈 C → B 1 S 2 , C → S 2 B 1 〉
s4 : 〈 C → B 1 , C → B 1 〉
s5 : 〈 A→ a1, A→ a2 〉
s6 : 〈 A→ a1, A→ ε 〉
s7 : 〈 B → b1, B → b2 〉

In the represented translation, nonterminals B and S can be optionally
inverted (rule s2 or rule s3), and the terminal symbol a2, which is the trans-
lation of a1 (by rule s5), can be optionally deleted (rule s6).

An example derivation of the string pair 〈a1b1a1b1, a2b2b2〉 by the above
SCFG is:

〈S 1
, S

1 〉 ⇒s1 〈A 2
C

3
, A

2
C

3 〉
⇒s3 〈A 2

B
4
S

5
, A

2
S

5
B

4 〉
⇒s1 〈A 2

B
4
A

6
C

7
, A

2
A

6
C

7
B

4 〉
⇒s4 〈A 2

B
4
A

6
B

8
, A

2
A

6
B

8
B

4 〉
⇒s5 〈a1B

4
A

6
B

8
, a2A

6
B

8
B

4 〉
⇒s7 〈a1b1A

6
B

8
, a2A

6
B

8
b2〉

⇒s6 〈a1b1a1B
8
, a2B

8
b2〉

⇒s7 〈a1b1a1b1, a2b2b2〉.

In the same way as a derivation in a CFG can be associated with a parse
tree, a derivation in a SCFG can be associated with a pair of parse trees.
These trees differ only in the (terminal) labels of the leaf nodes and in the
ordering of siblings, as illustrated by Figure 9. We will refer to the two trees
in a pair as the input tree and the output tree.

Given a SCFG G and a string w, the expression w ◦ G denotes the set of
all pairs of parse trees associated with derivations in G whose input tree has
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S

A

a1

C

B

b1

S

A

a1

C

B

b1

S

A C

S

A

a2

C

B

b2

B

b2

Figure 9: A pair of trees associated with a derivation in a SCFG. The dotted
lines link pairs of nonterminal occurrences that had the same index during
the rewriting process.

yield w. Note that all the strings that are translations of w under G can be
easily enumerated if we can enumerate the elements of w ◦ G.

The set w◦G can have size exponential in |w|, and the number of possible
translations of w under G can likewise be exponential. (There may even be
an infinite number of translations if there are synchronous rules whose left
components are epsilon rules or unit rules.) In Section 3 we discussed a
compact representation of a large set of parse trees, in the form of a CFG.
Below, this is extended to a construction of a SCFG G′ that represents w ◦G
in a compact way. This construction is called left composition, and in
full generality it can be applied to a finite automaton and a SCFG. As in
Section 3, we simplify the discussion by assuming a special type of finite
automaton that recognizes just one string w = a1 · · · an.

We further assume, without loss of generality, that synchronous rules
from G are either of the form 〈A→ α, A→ α′〉, where α and α′ are
nonempty strings of indexed nonterminals, or of the form 〈A→ x, A→ y〉,
where x and y can each be a terminal symbol or the empty string. In the
former case, we use a permutation π to denote the bijective relation pairing
the nonterminal occurrences in α and α′, and write the synchronous rule as
〈A→ B 1

1 · · ·B
m

m , A→ B
π(1)

π(1) · · ·B
π(m)

π(m) 〉.
The nonterminals of G′ have the form [i, A, j], where i and j denote input

positions within w, and A is a nonterminal from G.
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LeftComposition(w,G) {let a1 · · · an = w}
1: G′ ← SCFG with start nonterminal [0, S, n] and empty set of syn-

chronous rules
2: for all 〈A→ B 1

1 · · ·B
m

m , A→ B
π(1)

π(1) · · ·B
π(m)

π(m) 〉 from G do
3: for all i0, . . . , im (0 ≤ i0 ≤ . . . ≤ im ≤ n) do
4: add to G′ the synchronous rule 〈[i0, A, im] → [i0, B1, i1] 1

· · · [im−1, Bm, im] m , [i0, A, im] → [iπ(1)−1, Bπ(1), iπ(1)]
π(1) · · ·

[iπ(m)−1, Bπ(m), iπ(m)]
π(m) 〉

5: for all i (1 ≤ i ≤ n) and 〈A→ ai, A→ y〉 from G do
6: add to G′ the synchronous rule 〈[i− 1, A, i]→ ai, [i− 1, A, i]→ y〉
7: for all i (0 ≤ i ≤ n) and 〈A→ ε, A→ y〉 from G do
8: add to G′ the synchronous rule 〈[i, A, i]→ ε, [i, A, i]→ y〉
9: return G′

This construction may introduce many nonterminals into G′ that are use-
less in the same way as algorithm Intersection from Section 3 introduces
useless nonterminals. Available techniques to eliminate useless nonterminals
from G′ are very similar to techniques discussed before.

If we remove the left components from synchronous rules of G′, then we
obtain a CFG G′′ that generates parse trees for all possible translations of
w under G. These parse trees differ from the output trees in w ◦ G only in
the labels of nodes. In the former there are labels of the form [i, A, j] where
in the latter there are labels A.

Returning to the running example, consider the input string w =
a1b1a1b1. With the SCFG given above, this string can be translated into the
five strings a2b2a2b2, a2a2b2b2, a2b2b2, b2a2b2, or b2b2. There are eight pairs
of trees in w ◦ G, as there are three derivations with output a2b2b2, and two
derivations with output b2b2. After applying left composition and reduction
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of the grammar, we obtain:

〈 [0, S, 4]→ [0, A, 1] 1 [1, C, 4] 2 , [0, S, 4]→ [0, A, 1] 1 [1, C, 4] 2 〉
〈 [1, C, 4]→ [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4]→ [1, B, 2] 1 [2, S, 4] 2 〉
〈 [1, C, 4]→ [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4]→ [2, S, 4] 2 [1, B, 2] 1 〉
〈 [2, S, 4]→ [2, A, 3] 1 [3, C, 4] 2 , [2, S, 4]→ [2, A, 3] 1 [3, C, 4] 2 〉
〈 [3, C, 4]→ [3, B, 4] 1 , [3, C, 4]→ [3, B, 4] 1 〉
〈 [0, A, 1]→ a1, [0, A, 1]→ a2 〉
〈 [0, A, 1]→ a1, [0, A, 1]→ ε 〉
〈 [1, B, 2]→ b1, [1, B, 2]→ b2 〉
〈 [2, A, 3]→ a1, [2, A, 3]→ a2 〉
〈 [2, A, 3]→ a1, [2, A, 3]→ ε 〉
〈 [3, B, 4]→ b1, [3, B, 4]→ b2 〉

The size of a SCFG G, written as |G|, is defined as the sum of the
number of nonterminal and terminal occurrences in its synchronous rules.
Let r be the length of the longest right-hand side of a context-free rule that
is the input or output component of a synchronous rule. The time and
space complexity of left composition are both O(|G| · nr+1), where n is the
length of the input string. In many practical applications, it is possible to
factorize synchronous rules in such a way that the parameter r is reduced to
a small integer. In the general case however, a SCFG cannot be cast into an
equivalent form with r bounded by some constant. This implies exponential
behaviour in the worst case.

Next to left composition of SCFG G with input string w1 there is right
composition of G with output string w2. The definition of right composi-
tion is the natural mirror image of that of left composition, and it results in
a SCFG G′ that represents a set of tree pairs denoted by G ◦ w2.

Left and right composition may be combined, one after the other in
either order, to construct a SCFG representing a set of tree pairs w1 ◦ G ◦
w2, that is, the set of all derivations of G with input w1 and output w2.
Important applications include inducing machine translation components
from text that was manually translated.

7 Further information

Formal properties of context-free grammars are discussed, amongst others,
by Hopcroft and Ullman (1979) and Sippu and Soisalon-Soininen (1988). In-
teresting observations about the intersection of context-free languages and
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regular languages, as relating to the distinction between parsing and recog-
nition, are due to Lang (1994), which offers a different perspective from that
of, for example, Ruzzo (1979).

The algorithm GeneratingIntersection is close to a bottom-up vari-
ant of the parsing algorithm by Graham et al. (1980). The presentation
of recognition algorithms as deduction systems is commonly identified with
Shieber et al. (1995) and Sikkel (1997). The underlying idea however can
be traced back to Cook (1970). The time complexity of deduction sys-
tems, implemented as dynamic programming algorithms, was discussed by
McAllester (2002).

The algorithm in Figure 6 has been adapted from Eisner and Satta
(1999).

The problem of finding the most probable derivation is discussed by
Knuth (1977) and Nederhof (2003) in the general case, and by Jelinek et al.
(1992) for grammars in Chomsky normal form. The problem of finding the
most probable string is discussed by Paz (1971), Casacuberta and de la
Higuera (2000), Sima’an (2002) and Blondel and Canterini (2003).

The result that general SCFGs cannot be cast in a normal form with
a bound on rule length is from Aho and Ullman (1969). NP-hardness of
problems relating to translation are discussed in Satta and Peserico (2005).

The running example from the beginning of this chapter is adapted from
Manning and Schütze (1999), which is recommended as a good introduction
to statistical natural language processing. A good general textbook on NLP
is Jurafsky and Martin (2000).

The main journal of NLP is Computational Linguistics. Of at least
equal importance are several annual and biennial conferences, among which
are ACL (‘Annual Meeting of the Association for Computational Linguis-
tics’), EACL (’European Chapter of the ACL’), NAACL (’North American
Chapter of the ACL’), COLING (‘International Conference on Computa-
tional Linguistics’), EMNLP (‘Empirical Methods in Natural Language
Processing’) and HLT (‘Human Language Technology’).

8 Defining terms

Ambiguity Existence of more than one interpretation of an element of
language, for example existence of several parses of one sentence, or
several possible meanings of a word.

Disambiguation The process of identifying one preferred interpretation
from a set of interpretations of an ambiguous element of language.
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Formal language Language that is defined with mathematical rigour.

Grammar induction Acquiring a grammar out of a sample of language.

(Parse) item Element stored in the table of a parsing or recognition algo-
rithm, representing existence of certain subparses.

Linguistics The study of natural language.

Machine translation Automated translation between natural languages.

Natural language Language used in human communication that evolved
without too many deliberate considerations.

Natural language processing Automated analysis, generation or trans-
lation of language.

Parse (tree) Structural interpretation of a sentence.

Parse forest Structure containing a number of parses of one sentence.

Syntax The study of the structure of sentences, as composed of words.

Tree bank Multiset of parses, representing an annotation of a sample of
language use.
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