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Abstract

The notion of infix probability has been intro-
duced in the literature as a generalization of
the notion of prefix (or initial substring) prob-
ability, motivated by applications in speech
recognition and word error correction. For the
case where a probabilistic context-free gram-
mar is used as language model, methods for
the computation of infix probabilities have
been presented in the literature, based on vari-
ous simplifying assumptions. Here we present
a solution that applies to the problem in its full
generality.

1 Introduction

Probabilistic context-free grammars (PCFGs for
short) are a statistical model widely used in natural
language processing. Several computational prob-
lems related to PCFGs have been investigated in
the literature, motivated by applications in model-
ing of natural language syntax. One such problem is
the computation of prefix probabilities for PCFGs,
where we are given as input a PCFG G and a string
w, and we are asked to compute the probability that
a sentence generated by G starts with w, that is, has
w as a prefix. This quantity is defined as the possi-
bly infinite sum of the probabilities of all strings of
the form wx, for any string x over the alphabet of G.

The problem of computation of prefix probabili-
ties for PCFGs was first formulated by Persoon and
Fu (1975). Efficient algorithms for its solution have
been proposed by Jelinek and Lafferty (1991) and
Stolcke (1995). Prefix probabilities can be used to
compute probability distributions for the next word

or part-of-speech, when a prefix of the input has al-
ready been processed, as discussed by Jelinek and
Lafferty (1991). Such distributions are useful for
speech recognition, where the result of the acous-
tic processor is represented as a lattice, and local
choices must be made for a next transition. In ad-
dition, distributions for the next word are also useful
for applications of word error correction, when one
is processing ‘noisy’ text and the parser recognizes
an error that must be recovered by operations of in-
sertion, replacement or deletion.

Motivated by the above applications, the problem
of the computation of infix probabilities for PCFGs
has been introduced in the literature as a generaliza-
tion of the prefix probability problem. We are now
given a PCFG G and a string w, and we are asked
to compute the probability that a sentence generated
by G has w as an infix. This probability is defined
as the possibly infinite sum of the probabilities of
all strings of the form xwy, for any pair of strings x
and y over the alphabet of G. Besides applications
in computation of the probability distribution for the
next word token and in word error correction, in-
fix probabilities can also be exploited in speech un-
derstanding systems to score partial hypotheses in
algorithms based on beam search, as discussed by
Corazza et al. (1991).

Corazza et al. (1991) have pointed out that the
computation of infix probabilities is more difficult
than the computation of prefix probabilities, due to
the added ambiguity that several occurrences of the
given infix can be found in a single string generated
by the PCFG. The authors developed solutions for
the case where some distribution can be defined on



the distance of the infix from the sentence bound-
aries, which is a simplifying assumption. The prob-
lem is also considered by Fred (2000), which pro-
vides algorithms for the case where the language
model is a probabilistic regular grammar. However,
the algorithm in (Fred, 2000) does not apply to cases
with multiple occurrences of the given infix within
a string in the language, which is what was pointed
out to be the problematic case.

In this paper we adopt a novel approach to the
problem of computation of infix probabilities, by re-
moving the ambiguity that would be caused by mul-
tiple occurrences of the given infix. Although our
result is obtained by a combination of well-known
techniques from the literature on PCFG parsing and
pattern matching, as far as we know this is the first
algorithm for the computation of infix probabilities
that works for general PCFG models without any re-
strictive assumption.

The remainder of this paper is structured as fol-
lows. In Section 2 we explain how the sum of the
probabilities of all trees generated by a PCFG can
be computed as the least fixed-point solution of a
non-linear system of equations. In Section 3 we re-
call the construction of a new PCFG out of a given
PCFG and a given finite automaton, such that the
language generated by the new grammar is the in-
tersection of the languages generated by the given
PCFG and the automaton, and the probabilities of
the generated strings are preserved. In Section 4
we show how one can efficiently construct an un-
ambiguous finite automaton that accepts all strings
with a given infix. The material from these three
sections is combined into a new algorithm in Sec-
tion 5, which allows computation of the infix prob-
ability for PCFGs. This is the main result of this
paper. Several extensions of the basic technique are
discussed in Section 6. Section 7 discusses imple-
mentation and some experiments.

2 Sum of probabilities of all derivations

Assume a probabilistic context-free grammar G, rep-
resented by a 5-tuple (Σ, N, S, R, p), where Σ and
N are two finite disjoint sets of terminals and non-
terminals, respectively, S ∈ N is the start symbol,
R is a finite set of rules, each of the form A → α,
where A ∈ N and α ∈ (Σ∪N)∗, and p is a function

from rules in R to real numbers in the interval [0, 1].
The concept of left-most derivation in one step is

represented by the notation α
π⇒G β, which means

that the left-most occurrence of any nonterminal in
α ∈ (Σ ∪ N)∗ is rewritten by means of some rule
π ∈ R. If the rewritten nonterminal is A, then π
must be of the form (A → γ) and β is the result
of replacing the occurrence of A in α by γ. A left-
most derivation with any number of steps, using a
sequence d of rules, is denoted as α

d⇒G β. We omit
the subscript G when the PCFG is understood. We
also write α

∗⇒ β when the involved sequence of
rules is of no relevance. Henceforth, all derivations
we discuss are implicitly left-most.

A complete derivation is either the empty se-
quence of rules, or a sequence d = π1 · · ·πm, m ≥
1, of rules such that A

d⇒ w for some A ∈ N and
w ∈ Σ∗. In the latter case, we say the complete
derivation starts with A, and in the former case, with
d an empty sequence of rules, we assume the com-
plete derivation starts and ends with a single termi-
nal, which is left unspecified. It is well-known that
there exists a bijective correspondence between left-
most complete derivations starting with nonterminal
A and parse trees derived by the grammar with root
A and a yield composed of terminal symbols only.

The depth of a complete derivation d is the length
of the longest path from the root to a leaf in the parse
tree associated with d. The length of a path is de-
fined as the number of nodes it visits. Thus if d = π
for some rule π = (A → w) with w ∈ Σ∗, then the
depth of d is 2.

The probability p(d) of a complete derivation d =
π1 · · ·πm, m ≥ 1, is:

p(d) =
m∏

i=1

p(πi).

We also assume that p(d) = 1 when d is an empty
sequence of rules. The probability p(w) of a string
w is the sum of all complete derivations deriving that
string from the start symbol:

p(w) =
∑

d: S
d⇒w

p(d).

With this notation, consistency of a PCFG is de-



fined as the condition:∑
d,w: S

d⇒w

p(d) = 1.

In other words, a PCFG is consistent if the sum
of probabilities of all complete derivations starting
with S is 1. An equivalent definition of consistency
considers the sum of probabilities of all strings:∑

w

p(w) = 1.

See (Booth and Thompson, 1973) for further discus-
sion.

In practice, PCFGs are often required to satisfy
the additional condition:∑

π=(A→α)

p(π) = 1,

for each A ∈ N . This condition is called proper-
ness. PCFGs that naturally arise by parameter es-
timation from corpora are generally consistent; see
(Sánchez and Benedı́, 1997; Chi and Geman, 1998).
However, in what follows, neither properness nor
consistency is guaranteed.

We define the partition function of G as the func-
tion Z that assigns to each A ∈ N the value

Z(A) =
∑
d,w

p(A d⇒ w). (1)

Note that Z(S) = 1 means that G is consistent.
More generally, in later sections we will need to
compute the partition function for non-consistent
PCFGs.

We can characterize the partition function of a
PCFG as a solution of a specific system of equa-
tions. Following the approach in (Harris, 1963; Chi,
1999), we introduce generating functions associated
with the nonterminals of the grammar. For A ∈ N
and α ∈ (N ∪ Σ)∗, we write f(A,α) to denote the
number of occurrences of symbol A within string α.
Let N = {A1, A2, . . . , A|N |}. For each Ak ∈ N , let
mk be the number of rules in R with left-hand side
Ak, and assume some fixed order for these rules. For
each i with 1 ≤ i ≤ mk, let Ak → αk,i be the i-th
rule with left-hand side Ak.

For each k with 1 ≤ k ≤ |N |, the generating
function associated with Ak is defined as

gAk
(z1, z2, . . . , z|N |) =

mk∑
i=1

(
p(Ak → αk,i) ·

|N |∏
j=1

z
f(Aj ,αk,i)
j

)
. (2)

Furthermore, for each i ≥ 1 we recursively define
functions g

(i)
Ak

(z1, z2, . . . , z|N |) by

g
(1)
Ak

(z1, z2, . . . , z|N |) = gAk
(z1, z2, . . . , z|N |), (3)

and, for i ≥ 2, by

g
(i)
Ak

(z1, z2, . . . , z|N |) = (4)

gAk
( g

(i−1)
A1

(z1, z2, . . . , z|N |),
g
(i−1)
A2

(z1, z2, . . . , z|N |), . . . ,
g
(i−1)
A|N|

(z1, z2, . . . , z|N |) ).

Using induction it is not difficult to show that, for
each k and i as above, g

(i)
Ak

(0, 0, . . . , 0) is the sum of
the probabilities of all complete derivations from Ak

having depth not exceeding i. This implies that, for
i = 0, 1, 2, . . ., the sequence of the g

(i)
Ak

(0, 0, . . . , 0)
monotonically converges to Z(Ak).

For each k with 1 ≤ k ≤ |N | we can now write

Z(Ak) =

= lim
i→∞

g
(i)
Ak

(0, . . . , 0)

= lim
i→∞

gAk
( g

(i−1)
A1

(0, 0, . . . , 0), . . . ,
g
(i−1)
A|N|

(0, 0, . . . , 0) )

= gAk
( limi→∞ g

(i−1)
A1

(0, 0, . . . , 0), . . . ,
limi→∞ g

(i−1)
A|N|

(0, 0, . . . , 0) )

= gAk
(Z(A1), . . . , Z(A|N |)).

The above shows that the values of the partition
function provide a solution to the system of the fol-
lowing equations, for 1 ≤ k ≤ |N |:

zk = gAk
(z1, z2, . . . , z|N |). (5)

In the case of a general PCFG, the above equa-
tions are non-linear polynomials with positive (real)
coefficients. We can represent the resulting system
in vector form and write X = g(X). These systems



are called monotone systems of polynomial equa-
tions and have been investigated by Etessami and
Yannakakis (2009) and Kiefer et al. (2007). The
sought solution, that is, the partition function, is the
least fixed point solution of X = g(X).

For practical reasons, the set of nonterminals of
a grammar is usually divided into maximal subsets
of mutually recursive nonterminals, that is, for each
A and B in such a subset, we have A

∗⇒ uBα
and B

∗⇒ vAβ, for some u, v, α, β. This corre-
sponds to a strongly connected component if we
see the connection between the left-hand side of a
rule and a nonterminal member in its right-hand side
as an edge in a directed graph. For each strongly
connected component, there is a separate system of
equations of the form X = g(X). Such systems can
be solved one by one, in a bottom-up order. That
is, if one strongly connected component contains
nonterminal A, and another contains nonterminal B,
where A

∗⇒ uBα for some u, α, then the system for
the latter component must be solved first.

The solution for a system of equations such as
those described above can be irrational and non-
expressible by radicals, even if we assume that all
the probabilities of the rules in the input PCFG are
rational numbers, as observed by Etessami and Yan-
nakakis (2009). Nonetheless, the partition function
can still be approximated to any degree of preci-
sion by iterative computation of the relation in (4),
as done for instance by Stolcke (1995) and by Ab-
ney et al. (1999). This corresponds to the so-called
fixed-point iteration method, which is well-known
in the numerical calculus literature and is frequently
applied to systems of non-linear equations because
it can be easily implemented.

When a number of standard conditions are met,
each iteration of (4) adds a fixed number of bits
to the precision of the solution; see Kelley (1995,
Chapter 4). Since each iteration can easily be im-
plemented to run in polynomial time, this means
that we can approximate the partition function of a
PCFG in polynomial time in the size of the PCFG
itself and in the number of bits of the desired preci-
sion.

In practical applications where large PCFGs are
empirically estimated from data sets, the standard
conditions mentioned above for the polynomial time
approximation of the partition function are usually

met. However, there are some degenerate cases for
which these standard conditions do not hold, result-
ing in exponential time behaviour of the fixed-point
iteration method. This has been firstly observed
in (Etessami and Yannakakis, 2005).

An alternative iterative algorithm for the approx-
imation of the partition function has been proposed
by Etessami and Yannakakis (2009), based on New-
ton’s method for the solution of non-linear systems
of equations. From a theoretical perspective, Kiefer
et al. (2007) have shown that, after a certain number
of initial iterations, Newton’s method adds a fixed
number of bits to the precision of the approximated
solution, even in the above mentioned cases in which
the fixed-point iteration method shows exponential
time behaviour. However, these authors also show
that, in some degenerate cases, the number of itera-
tions needed to compute the first bit of the solution
can be at least exponential in the size of the system.

Experiments with Newton’s method for the ap-
proximation of the partition functions of PCFGs
have been carried out in several application-oriented
settings, by Wojtczak and Etessami (2007) and by
Nederhof and Satta (2008), showing considerable
improvements over the fixed-point iteration method.

3 Intersection of PCFG and FA

It was shown by Bar-Hillel et al. (1964) that context-
free languages are closed under intersection with
regular languages. Their proof relied on the con-
struction of a new CFG out of an input CFG and
an input finite automaton. Here we extend that con-
struction by letting the input grammar be a proba-
bilistic CFG. We refer the reader to (Nederhof and
Satta, 2003) for more details.

To avoid a number of technical complications, we
assume the finite automaton has no epsilon transi-
tions, and has only one final state. In the context
of our use of this construction in the following sec-
tions, these restrictions are without loss of general-
ity. Thus, a finite automaton (FA) M is represented
by a 5-tuple (Σ, Q, q0, qf , ∆), where Σ and Q are
two finite sets of terminals and states, respectively,
q0 is the initial state, qf is the final state, and ∆ is
a finite set of transitions, each of the form s

a7→ t,
where s, t ∈ Q and a ∈ Σ.

A complete computation of M accepting string



w = a1 · · · an is a sequence c = τ1 · · · τn of tran-
sitions such that τi = (si−1

ai7→ si) for each i (1 ≤
i ≤ n), for some s0, s1, . . . , sn with s0 = q0 and
sn = qf . The language of all strings accepted byM
is denoted by L(M). A FA is unambiguous if at
most one complete computation exists for each ac-
cepted string. A FA is deterministic if there is at
most one transition s

a7→ t for each s and a.
For a FA M as above and a PCFG G = (Σ, N, S,

R, p) with the same set of terminals, we construct
a new PCFG G′ = (Σ, N ′, S′, R′, p′), where N ′ =
Q× (Σ∪N)×Q, S′ = (q0, S, qf ), and R′ is the set
of rules that is obtained as follows.

• For each A → X1 · · ·Xm in R and each se-
quence s0, . . . , sm with si ∈ Q, 0 ≤ i ≤ m,
and m ≥ 0, let (s0, A, sm) → (s0, X1, s1) · · ·
(sm−1, Xm, sm) be in R′; if m = 0, the new
rule is of the form (s0, A, s0) → ε. Function p′

assigns the same probability to the new rule as
p assigned to the original rule.

• For each s
a7→ t in ∆, let (s, a, t) → a be in R′.

Function p′ assigns probability 1 to this rule.

Intuitively, a rule of G′ is either constructed out of
a rule of G or out of a transition of M. On the basis
of this correspondence between rules and transitions
of G′, G and M, it is not difficult to see that each
derivation d′ in G′ deriving string w corresponds to a
unique derivation d in G deriving the same string and
a unique computation c in M accepting the same
string. Conversely, if there is a derivation d in G
deriving string w, and some computation c in M
accepting the same string, then the pair of d and c
corresponds to a unique derivation d′ in G′ deriving
the same string w. Furthermore, the probabilities of
d and d′ are equal, by definition of p′.

Let us now assume that each string w is accepted
by at most one computation, i.e. M is unambigu-
ous. If a string w is accepted by M, then there are
as many derivations deriving w in G′ as there are in
G. If w is not accepted by M, then there are zero
derivations deriving w in G′. Consequently:∑

d′,w:

S′ d′⇒G′w

p′(d′) =
∑
d,w:

S
d⇒Gw∧w∈L(M)

p(d),

or more succinctly:∑
w

p′(w) =
∑

w∈L(M)

p(w).

Note that the above construction of G′ is exponen-
tial in the largest value of m in any rule from G. For
this reason, G is usually brought in binary form be-
fore the intersection, i.e. the input grammar is trans-
formed to let each right-hand side have at most two
members. Such a transformation can be realized in
linear time in the size of the grammar. We will return
to this issue in Section 7.

4 Obtaining unambiguous FAs

In the previous section, we explained that unambigu-
ous finite automata have special properties with re-
spect to the grammar G′ that we may construct out
of a FA M and a PCFG G. In this section we dis-
cuss how unambiguity can be obtained for the spe-
cial case of finite automata accepting the language
of all strings with given infix w ∈ Σ∗:

Linfix (w) = {xwy | x, y ∈ Σ∗}.

Any deterministic automaton is also unambigu-
ous. Furthermore, there seem to be no practical al-
gorithms that turn FAs into equivalent unambiguous
FAs other than the algorithms that also determinize
them. Therefore, we will henceforth concentrate on
deterministic rather than unambiguous automata.

Given a string w = a1 · · · an, a finite automaton
accepting Linfix (w) can be straightforwardly con-
structed. This automaton has states s0, . . . , sn, tran-
sitions s0

a7→ s0 and sn
a7→ sn for each a ∈ Σ, and

transition si−1
ai7→ si for each i (1 ≤ i ≤ n). The

initial state is s0 and the final state is sn. Clearly,
there is nondeterminism in state s0.

One way to make this automaton deterministic is
to apply the general algorithm of determinization of
finite automata; see e.g. (Aho and Ullman, 1972).
This algorithm is exponential for general FAs. An
alternative approach is to construct a deterministic
finite automaton directly from w, in line with the
Knuth-Morris-Pratt algorithm (Knuth et al., 1977;
Gusfield, 1997). Both approaches result in the same
deterministic FA, which we denote by Iw. However,
the latter approach is easier to implement in such a



way that the time complexity of constructing the au-
tomaton is linear in |w|.

The automaton Iw is described as follows. There
are n + 1 states t0, . . . , tn, where as before n is
the length of w. The initial state is t0 and the final
state is tn. The intuition is that Iw reads a string
x = b1 · · · bm from left to right, and when it has
read the prefix b1 · · · bj (0 ≤ j ≤ m), it is in state
ti (0 ≤ i < n) if and only if a1 · · · ai is the longest
prefix of w that is also a suffix of b1 · · · bj . If the
automaton is in state tn, then this means that w is an
infix of b1 · · · bj .

In more detail, for each i (1 ≤ i ≤ n) and each
a ∈ Σ, there is a transition ti−1

a7→ tj , where j is
the length of the longest string that is both a prefix
of w and a suffix of a1 · · · ai−1a. If a = ai, then
clearly j = i, and otherwise j < i. To ensure that we
remain in the final state once an occurrence of infix
w has been found, we also add transitions tn

a7→ tn
for each a ∈ Σ. This construction is illustrated in
Figure 1.

5 Infix probability

With the material developed in the previous sections,
the problem of computing the infix probabilities can
be effectively solved. Our goal is to compute for
given infix w ∈ Σ∗ and PCFG G = (Σ, N, S, R,
p):

σinfix (w,G) =
∑

z∈Linfix (w)

p(z).

In Section 4 we have shown the construction of finite
automaton Iw accepting Linfix (w), by which we ob-
tain:

σinfix (w,G) =
∑

z∈L(Iw)

p(z).

As Iw is deterministic and therefore unambiguous,
the results from Section 3 apply and if G′ = (Σ, N ′,
S′, R′, p′) is the PCFG constructed out of G and Iw

then:

σinfix (w,G) =
∑

z

p′(z).

Finally, we can compute the above sum by applying
the iterative method discussed in Section 2.

6 Extensions

The approach discussed above allows for a number
of generalizations. First, we can replace the infix w
by a sequence of infixes w1, . . . , wm, which have to
occur in the given order, one strictly after the other,
with arbitrary infixes in between:

σisland (w1, . . . , wm,G) =∑
x0,...,xm∈Σ∗

p(x0w1x1 · · ·wmxm).

This problem was discussed before by (Corazza et
al., 1991), who mentioned applications in speech
recognition. Further applications are found in com-
putational biology, but their discussion is beyond the
scope of this paper; see for instance (Apostolico et
al., 2005) and references therein. In order to solve
the problem, we only need a small addition to the
procedures we discussed before. First we construct
separate automata Iwj (1 ≤ j ≤ m) as explained in
Section 4. These automata are then composed into
a single automaton I(w1,...,wm). In this composition,
the outgoing transitions of the final state of Iwj , for
each j (1 ≤ j < m), are removed and that final state
is merged with the initial state of the next automaton
Iwj+1 . The initial state of the composed automaton
is the initial state of Iw1 , and the final state is the
final state of Iwm . The time costs of constructing
I(w1,...,wm) are linear in the sum of the lengths of the
strings wj .

Another way to generalize the problem is to re-
place w by a finite set L = {w1, . . . , wm}. The ob-
jective is to compute:

σinfix (L,G) =
∑

w∈L,x,y∈Σ∗

p(xwy)

Again, this can be solved by first constructing a de-
terministic FA, which is then intersected with G.
This FA can be obtained by determinizing a straight-
forward nondeterministic FA accepting L, or by di-
rectly constructing a deterministic FA along the lines
of the Aho-Corasick algorithm (Aho and Corasick,
1975). Construction of the automaton with the latter
approach takes linear time.

Further straightforward generalizations involve
formalisms such as probabilistic tree adjoining
grammars (Schabes, 1992; Resnik, 1992). The tech-
nique from Section 3 is also applicable in this case,



t0 t1 t2 t3 t4
a b a c

b, c a
a, b, cc

b, c a

b

Figure 1: Deterministic automaton that accepts all strings over alphabet {a, b, c} with infix abac.

as the construction from Bar-Hillel et al. (1964) car-
ries over from context-free grammars to tree ad-
joining grammars, and more generally to the linear
context-free rewriting systems of Vijay-Shanker et
al. (1987).

7 Implementation

We have conducted experiments with the computa-
tion of infix probabilities. The objective was to iden-
tify parts of the computation that have a high time
or space demand, and that might be improved. The
experiments were run on a desktop with a 3.0 GHz
Pentium 4 processor. The implementation language
is C++.

The set-up of the experiments is similar to that in
(Nederhof and Satta, 2008). A probabilistic context-
free grammar was extracted from sections 2-21 of
the Penn Treebank version II. Subtrees that gener-
ated the empty string were systematically removed.
The result was a CFG with 10,035 rules, 28 nonter-
minals and 36 parts-of-speech. The rule probabili-
ties were determined by maximum likelihood esti-
mation. The grammar was subsequently binarized,
to avoid exponential behaviour, as explained in Sec-
tion 3.

We have considered 10 strings of length 7, ran-
domly generated, assuming each of the parts-of-
speech has the same probability. For all prefixes of
those strings from length 2 to length 7, we then com-
puted the infix probability. The duration of the full
computation, averaged over the 10 strings of length
7, is given in the first row of Table 1.

In order to solve the non-linear systems of equa-
tions, we used Broyden’s method. It can be seen
as an approximation of Newton’s method. It re-
quires more iterations, but seems to be faster over-
all, and more scalable to large problem sizes, due to

the avoidance of matrix inversion, which sometimes
makes Newton’s method prohibitively expensive. In
our experiments, Broyden’s method was generally
faster than Newton’s method and much faster than
the simple iteration method by the relation in (4).
For further details on Broyden’s method, we refer
the reader to (Kelley, 1995).

The main obstacle to computation for infixes sub-
stantially longer than 7 symbols is the memory con-
sumption rather than the running time. This is due
to the required square matrices, the dimension of
which is the number of nonterminals. The number
of nonterminals (of the intersection grammar) natu-
rally grows as the infix becomes longer.

As explained in Section 2, the problem is divided
into smaller problems by isolating disjoint sets of
mutually recursive nonterminals, or strongly con-
nected components. We found that for the applica-
tion to the automata discussed in Section 4, there
were exactly three strongly connected components
that contained more than one element, throughout
the experiments. For an infix of length n, these com-
ponents are:

• C1, which consists of nonterminals of the form
(ti, A, tj), where i < n and j < n,

• C2, which consists of nonterminals of the form
(ti, A, tj), where i = j = n, and

• C3, which consists of nonterminals of the form
(ti, A, tj), where i < j = n.

This can be easily explained by looking at the struc-
ture of our automata. See for example Figure 1, with
cycles running through states t0, . . . , tn−1, and cy-
cles through state tn. Furthermore, the grammar ex-
tracted from the Penn Treebank is heavily recursive,



infix length 2 3 4 5 6 7
total running time 1.07 1.95 5.84 11.38 23.93 45.91
Broyden’s method for C1 0.46 0.90 3.42 6.63 12.91 24.38
Broyden’s method for C2 0.08 0.04 0.07 0.04 0.03 0.09
Broyden’s method for C3 0.20 0.36 0.81 1.74 5.30 9.02

Table 1: Running time for infixes from length 2 to length 7. The infixes are prefixes of 10 random strings of length 7,
and reported CPU times (in seconds) are averaged over the 10 strings.

so that almost every nonterminal can directly or in-
directly call any other.

The strongly connected component C2 is always
the same, consisting of 2402 nonterminals, for each
infix of any length. (Note that binarization of the
grammar introduced artificial nonterminals.) The
last three rows of Table 1 present the time costs of
Broyden’s method, for the three strongly connected
components.

The strongly connected component C3 happens to
correspond to a linear system of equations. This is
because a rule in the intersection grammar with a
left-hand side (ti, A, tj), where i < j = n, must
have a right-hand side of the form (ti, A′, tj), or of
the form (ti, A1, tk) (tk, A2, tj), with k ≤ n. If k <
n, then only the second member can be in C3. If
k = n, only first member can be in C3. Hence,
such a rule corresponds to a linear equation within
the system of equations for the entire grammar.

A linear system of equations can be solved an-
alytically, for example by Gaussian elimination,
rather than approximated through Newton’s method
or Broyden’s method. This means that the running
times in the last row of Table 1 can be reduced by
treating C3 differently from the other strongly con-
nected components. However, the running time for
C1 dominates the total time consumption.

The above investigations were motivated by two
questions, namely whether any part of the computa-
tion can be precomputed, and second, whether infix
probabilities can be computed incrementally, for in-
fixes that are extended to the left or to the right. The
first question can be answered affirmatively for C2,
as it is always the same. However, as we can see in
Table 1, the computation of C2 amounts to a small
portion of the total time consumption.

The second question can be rephrased more pre-
cisely as follows. Suppose we have computed the

infix probability of a string w and have kept inter-
mediate results in memory. Can the computation of
the infix probability of a string of the form aw or wa,
a ∈ Σ, be computed by relying on the existing re-
sults, so that the computation is substantially faster
than if the computation were done from scratch?

Our investigations so far have not found a posi-
tive answer to this second question. In particular,
the systems of equations for C1 and C3 change fun-
damentally if the infix is extended by one more sym-
bol, which seems to at least make incremental com-
putation very difficult, if not impossible. Note that
the algorithms for the computation of prefix prob-
abilities by Jelinek and Lafferty (1991) and Stolcke
(1995) do allow incrementality, which contributes to
their practical usefulness for speech recognition.

8 Conclusions

We have shown that the problem of infix probabili-
ties for PCFGs can be solved by a construction that
intersects a context-free language with a regular lan-
guage. An important constraint is that the finite
automaton that is input to this construction be un-
ambiguous. We have shown that such an automa-
ton can be efficiently constructed. Once the input
probabilistic PCFG and the FA have been combined
into a new probabilistic CFG, the infix probability
can be straightforwardly solved by iterative algo-
rithms. Such algorithms include Newton’s method,
and Broyden’s method, which was used in our exper-
iments. Our discussion ended with an open question
about the possibility of incremental computation of
infix probabilities.
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