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Abstract

Ž .We present a network model that allows processing of QoS quality of service information about media flows to enable
applications to make adaptation decisions. Our model is based around a multi-dimensional spatial representation that allows
QoS information describing the flow constructions and QoS parameters – flow-states – to interact with a representation of
the network QoS. The model produces reports about the compatibility between the flow-states and the network QoS,
indicating which flow-states the network can currently support. The simple nature of the reports allows the application to
make decisions, dynamically, on which flow-state it should use. The model is relatively lightweight and scaleable. We
demonstrate the use of the model by simulation of a dynamically adaptive audio tool. Our work is ongoing. q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In a best-effort network such as the Internet, there
is no guarantee of the network QoS that a particular
application instance might receive. The QoS may
fluctuate due to routing effects or traffic interactions

w xin the network 1,2 , or the application may be
w xresident on a mobile host 3 . There is currently great

interest in making applications adaptable to changes
in network QoS. This is of particular importance for
real-time media flows or flows that are sensitive to
QoS fluctuations. Much of the attention for this work
has focused on mechanisms that allow adaptability

Žof the media flow construction by scaling e.g. Ref.
w x. Ž w x.4 , filtering e.g. Ref. 5 or encoding techniques
Ž w x.e.g. 6,7 . An area that has received little attention
is how applications can dynamically select the cor-

) Corresponding author. Tel.: q44-171-4193249; E-mail:
s.bhatti@cs.ucl.ac.uk.

rect flow construction to match the available network
QoS. The application must currently rely on the user
to set the correct preferences to allow operation in a
particular QoS regime. Although application-specific
mechanisms exist to allow some automatic adapta-

Žtion e.g. elastic buffering to combat jitter in audio
.tools , we would like to offer a more general model

to allow applications to dynamically adjust their flow
construction.
In this paper, we start by considering the interac-

tions required between the user, the application and
the network in deciding how flows should adapt
Ž . Ž .Section 2 and consider existing work Section 3 .
We then present our model and a short analysis of its

Ž .function Section 4 followed by simulation of three
scenarios showing an audio tool that uses our model
Ž .Section 5 . This is followed by a discussion of the
key observations and insights we have gained from

Ž .this work, so far Section 6 . We end with some
Ž .short concluding remarks Section 7 .

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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2. The user, the application and the network

To allow adaptation, there must be interaction
between the user, the application and the network.
The network must supply information about the QoS
that is being provided to the flow. The user must
specify preferences that govern the behaviour of the
application. It is then up to the application to decide
how adaptation should take place based on both of
these pieces of information. Our area of interest is
shown by the dashed box in Fig. 1. We think of the
application as having well-defined modes that repre-
sent operating conditions for the application. Associ-
ated with the applications modes are media flow-
states, QoSStates, that represent the operating condi-
tions for flows. The QoSSpace is our network model
and the QoSStates conceptually exist within the

ŽQoSSpace. The QoSEngine maps network state de-
rived from real QoS parameter measurements for the

. Žflow into the QoSSpace. We do not consider the
QoSEngine in detail in this paper, but it does form

.part of our work. The QoSSpace issues QoSReports

Ž .that contain a state compatibility value SCV for
each flow-state from the application. The application
then combines the SCVs with other application-
specific information to make an adaptation decision

Ž .using an application adaptation function AAF . We
say more about QoSStates, QoSSpace, QoSReports
and SCVs in Section 4, and show an example of an
AAF in Section 5. In Fig. 1, we show only one flow
but many are possible. The definition of a flow is
application-specific.
Our goal is to allow the application to make

adaptation decisions in response to fluctuations in
QoS seen by a flow, but the adaptation process
should be under the control of the user.

2.1. Interactions between the user and the applica-
tion

We do not consider in detail the mechanisms for
interactions with the user but we discuss the require-
ments of the user in allowing the application to make
adaptation decisions dynamically.

Fig. 1. Interaction between the user, the application and the network.
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There may be many instances of an application
used by many different users. Each of the users will
have their own preferences for the application. Any
decision-making process for adaptation must allow
the application to apply user preferences to the infor-
mation about QoS being experienced by the flow.
For example, with an audio tool with numerous
encoding schemes, one user may specify that the tool
‘‘always uses the best audio quality possible’’ while
another user may specify that the tool aims to ‘‘re-
tain stability’’ in the face of network QoS fluctua-
tions. The application may interpret these prefer-
ences as meaning the ‘‘encoding with the highest
data rate requirement whenever possible’’ and ‘‘do
not change flow-state too often’’, respectively. So
the adaptation decision is not only application spe-
cific but also application instance specific, and con-
trolled by user preferences.
Typically, we would like user preferences to re-

flect the fact that users may have minimum technical
knowledge. User QoS preferences may be expressed
as an application-specific enumeration such as
‘‘high’’, ‘‘medium’’ or ‘‘low’’ quality. As the appli-
cation will be making flow-state changes, the user
may wish to specify QoS stability criterion, e.g. ‘‘do
not change flow-state more than once every minute’’.
Note that the this last criterion is the user’s request
for the application not to change to a ‘‘better’’

Ž .quality flow-state too often i.e. avoid state-flapping ,
but if the QoS degrades, then we would expect the
application to adapt as required.
Such heterogeneity means that the adaptation de-

cision information reflects a per-instance view. So
the information used by the application to make
adaptation decisions should:
Ø Not unduly constrain the QoS mapping from user
requirements to application capabilities.

Ø Be amenable to the mapping of the user QoS
preferences and QoS stability criterion on a per
application instance basis.

2.2. Interactions between the application and the
network

Before an application instance can make decisions
about any changes in its behaviour, it needs to know
what is ‘‘sensible’’ for its flows, i.e. what its current

network connectivity can support. This requires some
information from the network. Information about the
network is typically expressed as values of QoS
parameters such as delay, jitter, available capacity,
loss, etc. This information may be received in a
number of ways:
Ø Via local mechanisms, e.g. from the communica-
tion stack on the host.

Ø Via application-specific mechanisms, e.g. via pro-
prietary signalling.

Ø As control messages from the remote receivers of
w xthe flow, e.g. using RTPrRTCP 8 .

Ø From network management tools, e.g. using
w xSNMP 9 .

If we consider that ‘‘the application knows best’’,
then we must appreciate that there is likely to be no
single ‘‘best’’ ubiquitous solution for getting infor-
mation about the resources within the network. The
‘‘best’’ mechanism may depend on the network en-
vironment or the application’s function or both, but

Ž .only the application application designer is in a
position to make that assessment.
The application must also have some way of

expressing its functional capability in terms of the
construction of its flows, i.e. which flow-states its
flows can use. Typically, these will be performance
bounds defined in terms of QoS parameter values for
the flow-states, e.g. minimum data rate required,
maximum delay, etc. Note that as a definition of a
flow is application-specific, so is the timescale over
which measurements of such performance bounds
are measured. This means that our model must be
capable of working in whatever timescales are speci-
fied by the application.

Ž .QoS parameters may include local end-system
resources, not just network QoS measurements. For
example, on mobile systems, measurements of bat-

w xtery power or host load 10,11 may also be used for
making adaptation decisions.
So, our network model should be able to process

information about QoS parameters, but:
Ø Should not put any constraints on where that

Ž .information measurements should come from.
Ø Should be able to accept a wide range of QoS
parameters, whether end-system specific or net-
work specific.

Ø Be able to cope with any timescale over which
that information is measured.
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2.3. Making adaptation decisions

In Section 2.1, we saw that the user preferences
introduce heterogeneity and that the information re-
quired to make an adaptation decision may reflect a
per-application instance view of QoS. A mechanism
is required that can give an indication of the ability
of the network to support any of a number of flow-
states that an application instance might take. In a
distributed application, there may be other applica-
tion-level signalling involved before adaptation can
take place. Also, the application modes may be
functions of other application-specific information,
so our model can not make a decision for the
application, but offer QoS summaries – QoSReports
– that represent a view of the relative compatibility
of the network QoS and the application’s flow capa-
bility. However, in general we are not aware of the
following application-specific details:
Ø The nature in which information from a current
QoSReport must be evaluated with information
from previous QoSReports in order to make
flow-state change decisions.

Ø The nature in which QoSReports must be evalu-
Ž .ated with other application-specific information

in order to make flow-state change decisions.
There may be a statistical or temporal sense in

which our QoSReports have meaning to the applica-
tion with respect to its current mode or flow-states.
The application may have synchronisation con-
straints between its application flows. Such matters
can only be assessed by the application. So, we
chose to separate the network-related flow-state in-
formation from other application-specific informa-
tion. We chose that the flow-states be expressed as
QoSStates, flow-state information that is specific
only to the QoS requirements and constraints of the
individual application traffic flows. For example, an
audio application may have several different audio
encoding techniques and each would be a separate
QoSState for that audio flow. Furthermore, as we do
not know how the application will use the QoSRe-
ports from our model, we should simply issue QoS-
Reports that are based on an assessment of the
instantaneous QoS of the network – a snapshot in
time. This is also consistent with our requirement for
our model to work within the timescale constraints
of the application.

Additionally, our model should aim to relieve the
application from having to deal with raw QoS pa-
rameter measurements 1. Our aim is to offer the
application a method of assessing the need to make
flow-state changes, so the granularity at which we
report information from our model should be per-
flow. The report of the per-flow state information
needs to be a suitable summary of the QoS parame-
ter measurements for a flow. In producing the sum-
mary, we must be careful not to lose the significance
of any single QoS parameter that defines the flow

Žstate e.g. a mean might ‘‘smooth out’’ a low or high
.QoS parameter value .

So, the QoSReports our model offers to the appli-
cation are per-flow QoS summaries that:
Ø Should be in a form that can be easily interpreted
by a distributed application if required.

Ø Are derived form QoS parameter values, indicat-
Žing the relative compatibility between the in-

.stantaneous network QoS and of an application’s
QoSStates.

3. QoS assurance and dynamic adaptation

For the provisioning of end-to-end QoS, the
userrapplication is telling the network what is re-
quired and asks that the network should adaptrcon-
figure itself to comply to the application’s require-
ments, i.e. static adaptability. In enabling dynamic

Žadaptability, the application is constantly i.e. within
.application-specific time scales receiving informa-

tion about the QoS that the network can offer, and
then changing its flow-state to comply with the
network capabilities.

3.1. QoS assurance

w xIn Ref. 12 , there is an excellent description of
the elements of a general QoS architecture for assur-

1 This does not preclude the use of such measurements for
fine-tuning if mechanisms such as elastic buffering are in use, but
we are working at a coarser level of flow granularity and over
different timescales. Indeed, the value of the QoSParams produced
by our QoSEngine back-end may be more suitable for such use
than raw values.
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ing QoS. With QoS assurance mechanisms, applica-
tions have to specify what they want the network to
do for them, and the network tries to honour this
request. The network itself may provide adaptability

w xmechanisms 13 to cope with fluctuating QoS or
w xheterogeneity due to network architecture 12 . sug-

Ž .gests that among other things the application should
be in control of the following information that passes

Žto the network: QoS service-level e.g. guaranteed-
.service, controlled-load service and QoS manage-

Žment policy how adaptation should take place when
.there are QoS fluctuations . These affect the way

Žthe application is integrated with the network the
separation of functionality between the network

.and the application , and how heterogeneity is sup-
Žported at the user, application and network access

.level .
QoS assurance mechanisms are based around the

use of resource reservation and QoS re-negotiation to
achieve the desired QoS for the application. Mecha-

w xnisms such as RSVP 14 are designed to provide
resource reservations in the Internet. However, RSVP

w xcan fail 15 , and adaptability mechanisms in the
network become impracticable and increasingly dif-
ficult to support in ad hoc or mobile network archi-
tectures. Additionally, where resource reservation and
QoS re-negotiation are used, they should be available
end-to-end for maximum utility. In today’s Internet
there is very little resource reservation support and
network components lack the programmability re-
quired to enable adaptability in the network. Further-
more, as such mechanisms do become available, they
will not be deployed uniformly, and this will further
compound the heterogeneity in the Internet. For many
applications, such QoS assurance or adaptability
mechanisms within the network may only be useful
if they are available end-to-end. Where these mecha-
nisms do exist, there is great value in being able to
use them, but in the ‘‘standard’’ best-effort Internet,
other mechanisms are required to address adaptabil-
ity.
The QoS service-level required may be important

to the individual users and may determine the cost of
the service, e.g. guaranteed-load is a ‘‘better’’ ser-
vice than controlled-load so may cost more. We
argue that the service-level should not be specified
by the application. The application should be pre-
pared to be more flexible in its adaptation capability,

leaving service-level selection to the user. Three
reasons for this are:
1. The service-level may determine the cost of the
service and users usually wish to control how
much they pay.

2. Network heterogeneity, lack of resource reserva-
tion or network element failure may mean that a
particular service-level is not available at a given
time at a given point in the network.

3. New, additional service-level definitions may be
Žintroduced that are more suitable in terms of

.functionality or cost for use in a given situation
Že.g. there are two relatively recent descriptions

w x.of adaptiÕe service-level 16,17 , and differenti-
ated services may be set up that are domainrad-

w xministration specific 18 .
Additionally, if cost-based feedback is available

from the network, then cost could be treated as a
QoS parameter – although not related to the perfor-
mance of the flow it acts as a defining constraint in
the same way as, say, defining minimum data rate or
maximum jitter for a flow. The value of making the
cost explicit, as a QoS parameter, is that it highlights
the importance of cost as a feedback control mecha-

w xnism in future services 19 .

3.2. Dynamic adaptation

QoS management policy will be subject to user
preferences and application-specific behaviour. Ap-
plications may find it useful to have a specification
of the QoS management policy before the applica-
tion starts operating. This would certainly be of
value to the network for controlled allocation of
resources, and makes sense in the context of trying
to assure end-to-end to QoS. However, in our con-
sideration of dynamic adaptability, the use of the
application typically requires interaction with the
user in order to determine its adaptation require-
ments, and these may not be known until after the

w xapplication is running. In Ref. 12 , the QoS manage-
ment policy: captures the degree of QoS adaptation
( )continuous or discrete that the flow can tolerate
and the scaling actions to be taken in the eÕent of

w xÕiolations to the contracted QoS 20 .
We chose to make a separation between what

‘‘the flow can tolerate’’ and the ‘‘scaling actions to
be taken’’. We argue that the former is a property of



( )S.N. Bhatti, G. KnightrComputer Networks 31 1999 669–692674

the media and the latter is an application-specific
requirement that includes interaction with the user.
Flow performance specifications can be used to indi-
cate the flow-states that are possible for a flow and
can be determined by the application designer. The

Ž .action to be taken on fluctuations ‘‘Õiolations’’ of
QoS is a dynamic adaptation decision and cannot be
determined by the application designer a priori. It is
the difference between the application designer say-
ing, ‘‘I know what is sensible for the application’’,
and the user saying, ‘‘I know what is sensible for the
application to do for me’’. Ultimately the applica-
tion’s functional constraints have the final say on

Ž . Ž .which flow-state s is are functionally possible, but
this should not dictate how the user would like the
application to behave, i.e. how adaptation should

w xtake place. Ref. 21 points out that the user require-
ments and the network QoS may change throughout
the session and proposes that the user should be
given the opportunity to make informed decisions
about application adaptation. As an example, con-
sider a remote teaching scenario and the require-
ments of the audio and video flows. When operating

Ž .in lecture mode main part of the teaching session ,
the conferencing application may tolerate relatively
high delay and throughput is asymmetric, but during

Ža question and answer session at the end of the
.teaching session , low delay and jitter are required

with symmetric throughput for flows.
The application must be able to assess the user

preferences and available network QoS in order to
make automatic and dynamic adaptation decisions.

4. The QoSSpace

Our concern is that we try and assess the overall
relative compatibility between the flow QoSStates
and the network QoS rather than try to evaluate the

Ž .equality or otherwise of the absolute values of the
QoS parameters for a flow-state and the measure-
ments taken from the network. We would like our
model to indicate how well the network QoS matches
the requirements for any of an application’s flow-
states.

4.1. QoSSpace, QoSParams and QoSStates

The QoSSpace is a multi-dimensional space in
which flows conceptually exist, and into which the
network QoS is mapped. Flows are represented by
QoSStates, and each flow may have a set of
QoSStates. The dimensions of the QoSSpace are
represented by a set of QoSParams. This is depicted

Ž .in Fig. 2 a , which shows only three QoSParams, but
any number of QoSParams are possible.
The QoSParams are variables that are representa-

tions of real QoS parameters, such as throughput,
delay, jitter, etc. These are chosen to suit the applica-
tion, i.e. the dimensions of the QoSSpace are appli-
cation-specific. QoSSpace effectively gives a snap-
shot in time, and the interval over which measure-
ments are taken will be application-specific. The
network QoS is evaluated and mapped into the
QoSSpace by some appropriate, application-specific
mechanism. We chose to separate the abstraction of
the QoSSpace from the mechanisms performing the

Ž . Ž . Ž .Fig. 2. QoSSpace; a example with 3 QoSParams; b example QoSState; c a single QoSState for an audio tool.
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mapping of the network QoS 2. An example
Ž .QoSState is shown in Fig. 2 b . This spatial descrip-

tion effectively defines a region in QoSSpace in
which the flow can operate. We define a QoSState
for a fictitious flow in terms of the QoSParams P ,1
P and P . We use simple rectilinear boundaries,2 3
which we call _____hi and _____lo:

² :qs1s P , p _lo, p _lo, p _qlo, p _qhi ,# 1 1 1 1 1

² :P , p _lo, p _lo, p _qlo, p _qhi ,2 2 2 2 2

² :P , p _lo, p _lo, p _qlo, p _qhi .43 3 3 3 3

This statement identifies a QoSState called qs1,
defined by tuples for the QoSParams P , P and P .1 2 3
qs1 consists of a set of tuples, each of which has the
structure:
² :id ,_lo,_hi ,_qlo,_qhi
where id a name identifying the QoSParam, _lo low
threshold value of the QoSParam, _hi high threshold
value of the QoSParam, _qlo QoSiState low thresh-
old, _qhi QoSiState high threshold.

ŽWe defer a description of QoSiStates until Sec-
.tion 4.7. For any application flow:

Ø QoSStates for a flow need not be specified with
the same number of QoSParams.

Ø For any QoSParam tuple, either _hi or _lo
threshold may be left undefined, but one must be
present.

Ø QoSStates may overlap.
Ž .As an example of a QoSState for an imaginary

audio tool, consider the definition of the QoSState
Ž .pcm in Fig. 2 c :

² :#pcms throughput ,64,y,y,y ,
² :delay ,y,500,y,y ,
² :4jitter ,y,500,y,y .

This says that the state pcm requires a minimum
of 64 Kbrs throughput, and can tolerate a maximum
of 500 ms delay and a maximum of 500 ms jitter.
Other QoSStates may be possible. Note that the

2 In our work, the QoSParam values for the network QoS,
Ž .NetQoSState see Section 4.2 , are generated by the QoSEngine

back-end, but we do not describe this in detail here. Indeed, other
application-specific mechanisms may be used in place of the
QoSEngine back-end.

model is not concerned with the semantics of the
QoSParams, or any relationships between them –
this is left for the application to control. Also, differ-
ent QoSParams may exhibit strong correlation from

Žthe QoS parameters that they are derived from e.g.
on some networks, delay and throughput may be

.related – as delay goes up throughput goes down ,
and so it may be possible to reduce the number of
dimensions. This, again, is an application level issue.
The application may choose the complexity of the
definition of the QoSStates, as required. However,
the QoSSpace must be defined by the set of
QoSParams that are the union of all the QoSParams
for all the QoSStates for that flow.

4.2. NetQoSState

We now need a mapping of the network QoS into
the QoSSpace. We achieve this by using QoSParams
to describe the network QoS, NetQoSState. The
NetQoSState will have the same dimensions as the
QoSSpace. QoSParam values are estimates of the
current value of the QoS parameter, based on real
network measurements of QoS parameters for a flow.
A simple interpretation of the NetQoSSpace would
be to use the values of the QoSParams. This would
translate to a point within the QoSSpace:

# 4qs p ;ns1, . . . ,N , p gP ,n n n

# 4 # 4i.e. p are the values of the set of QoSParams Pn n
that define the QoSSpace However, delay and noise
effects mean that associated with the QoSParams is
an uncertainty in our QoSParam values. As the
network QoS fluctuates we may have different de-
grees of uncertainty. If the network is in a steady
state, we may have a lesser degree of uncertainty
than if the network is currently showing fluctuations
in the QoS offered. Measures such as standard devia-
tion are normally used to indicate such uncertainty.
However such measures only have meaning in a
statistical sense when we have some knowledge of
the model of our traffic andror the network. What
we are actually after is an indication of the current
Õariability, Õ_ p, of the QoSParam. We discuss how
we estimate a value for Õ_ p later, but for now we
see that in terms of our QoSSpace, we chose the
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mapping of the NetQoSState to be expressed as
follows:

² :qs P , p _lo , p _hi ,# 1 1 1

² : ² :P , p _lo, p _hi , P , p _lo, p _hi 42 2 2 3 3 3

where the _lo and _hi thresholds indicate the limits
of our estimate of variability of the QoSParam. Note
that this is a similar format as our expression for the
QoSStates. However, the NetQoSState, must have
both a _lo and _hi component for each QoSParam
tuple.

4.3. Assessing compatibility between a QoSState and
NetQoSState

In terms of the QoSSpace, a description of the
task for our model is relatively straightforward: we
need to find when the region defined by the
NetQoSState intersects with a region defined by a
QoSState. If we can assign a meaningful value to
this intersection, we can offer the application a state

Ž .compatibility value SCV , a measure of the how
well the current network QoS might support a partic-
ular QoSState. This compatibility value is a unitless
number that is easy to use in other parts of the
application.
Note that the definition of the QoSState and that

for the NetQoSState suggest that we may be able to
treat these state definitions as hyper-volumes. For
example, we may chose to use the ratio:

volume of overlap of NetQoSState with QoSState
volume of NetQoSState

to evaluate a SCV for each QoSState. However, we
choose not to do this. In definitions of QoSStates,
our model allows use of different numbers of
QoSParams in defining QoSStates for the same flow,
resulting in different shaped volumes. In the evalua-
tion of a volume, relative scaling by multiplication of
values of N QoSParams may lead to a distortion
when some values are particularly high or particu-
larly low. Indeed, we need to process each QoSParam
individually, and then offer some sensible summary
to the application. So, we must first consider how we
process individual QoSParam values.

( )4.4. The parameter compatibility Õalue PCV

For each QoSParam tuple, we can derive a param-
Ž .eter compatibility value PCV , that expresses the

amount by which the value of a certain QoSParam
from the NetQoSState falls within the operating re-
gion given by a particular tuple for a given QoSState.
So, for a given tuple, T , from a QoSState, and thep
corresponding tuple, T , from the NetQoSState, forq
the same type of QoSParam, P:

² :T s P , p _lo, p _hi ,p p p

² :T s P , p _lo, p _hi ,q q q

PCVsPCVF T ,TŽ .q p

where PCVF is the parameter compatibility value
function. The operation of this function is to assess
the following statement:

PCVF T ,T sT WITHIN TŽ .q p q p

where WITHIN is an operator that evaluates to a
w xsingle number in the range 0, 1 , for the ratio:

intersection of length of T and length of Tq p .
length of Tq

The description of WITHIN is explained with the
help of Fig. 3. This shows the possible scenarios for
evaluating WITHIN when T and T overlap. I isq p
the length of the intersection of T with T . It isq p
clear that the omission of either p _lo or p _hi fromp p

Ž .T form the QoSState poses no problem.p
The PCVF has a simple algorithm:

L sp _hi , p _lo,q q q

IsMIN p _hi , p _hiŽ .q p

yMAX p _lo, p _lo ,Ž .q p

PCVsMAX 0, IrL .Ž .q
The MIN and MAX functions in line 2 perform

their usual operations, except that if either p _hi orp
p _lo are not defined, then p _hi or p _lo are used,p q q

wrespectively, as required. I takes the range y`,
xL . When there is no intersection, I is negative, andf

we choose that PCVs0, indicating ‘‘no compatibil-
ity’’ between QoSState and NetQoSState, while PCV
s1 indicates ‘‘full compatibility’’. The final line of

w xthe PCVF ensures that PCV is in the range 0, 1 .
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Fig. 3. Scenarios for the evaluation of WITHIN.

This normalised value is a uniform, consistent and
scaleable way of representing PCVs. The algorithm
for the PCVF is also computationally simple. We see

Žthat as the variability of the QoSParam i.e. the QoS
.fluctuation increases, so L increases. Unless theq

fluctuations are completely contained within the re-
Žgion defined by _lo and _hi tuple thresholds Fig.

Ž ..3 a , as L increases, we have decreasing compati-q
bility between the QoSState and NetQoSState with

Ž Ž .respect to that particular QoSParam Fig. 3 b and
Ž ..c .

4.5. The Õariability of QoSParam Õalues

We choose a very simple measure for variability,
Õ_ p, to allow us to evaluate p _lo and p _hi: weq q
chose Õ_p to be the difference between the current
Ž . Ž .p and previous p QoSParam values:t ty1

Õ_ psABS p yp ,Ž .t ty1

p _losp y Õ_ pr2 ,Ž .q t

p _hisp q Õ_ pr2 .Ž .q t

If we were to use p and p to produce ant ty1
instantaneous estimate of the standard deviation, s ,
of P, we would have

p qpt ty1
ms ,

2
.2 2p ym p ymŽ . Ž .t ty12s s

2

Some manipulation gives

p ypt ty1
ss .

2

So, our measure of variability, Õ_ p, can be seen
w x Ž w x.as a range of ys , qs given by p _lo, p _hiq q

about our current value, p .t

( )4.6. The state compatibility Õalue SCV

( )The state compatibility value function SCVF
must take the PCVs for all the QoSParams in the
QoSState and transform them into a SCV. Any of the
usual arithmetic summarisation functions that com-

Ž .bine the values such as a mean , will provide an
incorrect PCV due to relative scaling. For example,
consider five QoSParams, that give rise to the set of

# 4PCVs, S s 1.0, 1.0, 1.0, 1.0, 0.0 . The applicationA
may decide that it is likely to take a SCV of 0.8 to
consider that a flow-state is useable. This may seem
reasonable, but we can see that the mean of S isA
0.8, yet clearly one of the parameter conditions

Ž .cannot be supported hence the PCV of 0.0 . The
application would make an incorrect decision and
this could lead to application andror network insta-
bility.

Ž .Looking at it another way, we have seen, in 4.4
that the PCVF evaluates the function WITHIN. For
N QoSParams and a QoSState with tuples T andpn

Ž .NetQoSState with tuples T ;ns1, . . . ,N , weqn

saleem
Please note a correction for the equation at http://goo.gl/5h9YoThere should be a '+' sign between the two expressions inbrackets in the numerator of the right hand side.
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base a SCVF algorithm on the following statement
from:

if
T WITHIN T andq1 p1

T WITHIN Tp and . . .q2 2

T WITHIN TqN pN

then SCV is HIGH
This reasoning makes linguistic sense. We see

Ž .that if the QoSParam values the NetQoSState all
fall WITHIN the thresholds defined in the tuples for
the corresponding QoSStates, then the degree to

which the T tuples are WITHIN their correspond-qn
ing T tuples is the degree to which the SCV ispn
HIGH. The key to this assessment is how to evaluate
and so generate a value for HIGH.
Fuzzy logic provides a suitable interpretation of

and as the MIN function. So, we can modify our
statement to say:

SCV s PCVF T ,T andŽ .q1 p1 F

PCVF T ,T and . . .Ž .q2 p2 F

PCVF T ,TŽ .qN pN

Fig. 4. Comparison of Boolean thresholding and PCVs.
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Ž .where and is the fuzzy AND operator MIN . WeF
see from our example for the set of SCVs, S ,A
Ž .above that we would now have the correct be-

Ž .haviour. The use of and MIN means that the SCVF
w xis in the range 0, 1 , and is also computationally

simple to evaluate.
Where a QoSState does not have a tuple defined

for a particular QoSParam, then for the purposes of
Žthe SCVF, this is ignored. Equivalently, the PCVF

can evaluate a PCVs1.0 for that QoSParam. This is
also correct because it means that the QoSState is
not dependent on that particular QoSParam, so it
always has maximum compatibility with respect to

.that QoSParam.
The effect of the using the PCV instead of just

Žsimple thresholding to generate Boolean truerfalse
indications of whether p_ p is within p_lo andror

.p_hi boundaries is shown in Fig. 4. We define three
simple QoSStates, each with a single tuple:

² :# 4qs3s P ,10,y,y,y ,
² :# 4qs2s P ,6,y,y,y ,
² :# 4qs1s P ,4,y,y,y

which are shown marked as horizontal lines at Ps
Ž .10, Ps6 and Ps4, respectively, in Fig. 4 a . The

area of interest is between times ts3 and ts5.
Here we see a sudden drop in P, from a point where
it can support all three QoSStates to a point where it
can only support qs1. In the Boolean thresholds

Ž .shown in Fig. 4 b , we see that we have high
confidence for qs2 at ts4 even though we know
that the variability of P is high at that point. In
contrast, at ts4, the PCV for qs2 is not high, as

Ž .shown in Fig. 4 c . At ts5, both the Boolean
threshold and the PCV converge, but we see that the
use of the PCV may help the application to avoid

Žstate-flapping unnecessarily going into a transient
.state .

4.7. QoSiStates

Although our model can detect large, sudden
changes close to QoSState boundaries, it can not spot
slow gradual changes until they cross a boundary
Žthis behaviour arises from our chosen definition of

.Õ_ p . The application may like to have an indication
when a QoSParam value in the NetQoSState is near-

ing a corresponding QoSState tuple _lo or _hi
threshold. This would mean that the application is

Žoperating near a QoSState boundary and so may
.soon need to change state . We can detect this

through the use of QoS intermediate states or Qo-
SiStates. These are quasi-states that do not represent
a flow state as a QoSState does, but are an indication
of the proximity of the QoSParam value to the _lo
or _hi threshold of a QoSState. The QoSiState only
exists within a QoSState, and is an optional part of
the QoSState definition. A QoSiState is also speci-
fied by use of a boundary, _qlo or _qhi. The rela-
tionship of the QoSiState to the QoSState with re-
spect to a single QoSParam, P, is depicted in Fig. 5.
A QoSiState can only exist if it has a corresponding
_lo or _hi defined in the QoSState.
There are parameter compatibility values, PCV_hi

and PCV_lo, associated with the _hi and lo QoSiS-
tates, respectively, for each QoSState tuple. These
are evaluated in exactly the same way as a PCV for
the QoSParam but using the QoSiState tuple, T sqq
² : ² :P,p_qhi,p_hi or T s P,p_qlo,p_qlo in placeqq

² :of the QoSState tuple, T s P,p_lo,p_hi . The _qhip
and _qlo boundaries are specified by the application,
and can be left undefined.
The QoSiStates also have a state compatibility

value, SCV_I, which is evaluated in a different
manner to that of the SCV for the QoSState. Con-
sider a QoSState defined using N QoSParams. If
any of the N QoSParams tuples, T , in the NetQoS-qn
State suggest that the corresponding QoSParam
value might be WITHIN a QoSiState tuple, T ,qqn
then we know that the whole QoSState is operating
close to one of its boundaries. The application may
be cautious and conclude from this that the state may
soon not be supported, but this is an application-level

Fig. 5. QoSiStates.
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decision. So, our reasoning for evaluating the SCV_I
is:
if
T WITHIN T orq1 qq1

T WITHIN T or . . .q2 qq2

T WITHIN TqN qqN

then SCV is HIGH.I

In similarity with the evaluation of the SCV, we
Ž .see that this makes linguistic sense. We need an

interpretation for or that lets us assign a value to
SCV_I. Again, fuzzy logic offers us an interpretation
of or as the MAX function. So, we have

SCV_I s PCVF T ,T orŽ .q1 qq1 F

PCVF T ,T or . . .Ž .q2 qq2 F

PCVF T ,TŽ .qN qqN

where or is the fuzzy OR operator. The or opera-F F
Ž .tor MAX makes sense: it only needs one QoSParam

to enter a QoSiState to indicate that the QoSState is
operating near a boundary.
In Fig. 6 we demonstrate the use of QoSiStates.

We use a _lo QoSiState for qs3 with p_qlo s10.5,
Ž .marked as a horizontal line at Ps10.5 in Fig. 6 a .

Ž .We can see in the lower graph of Fig. 6 b how the
value of PCV_lo shows that qs3 is in the region of
the QoSiState, ‘‘forewarning’’ of a possible state
change.

Notice the spike at ts50 in the PCV and PCV_lo
Ž .graph of Fig. 6 b . This may seem to be ‘‘incorrect’’

behaviour as we can see that the value of P at that
time is within the operating region for qs1. How-
ever, we only know it is ‘‘correct’’ because we can
see what happens at ts51. At ts50, all that we
can see is that there is a downwards change in the
value of P very close to its boundary. We do not
know at ts50 what will happen at ts51 so our
model assumes that the variability in the value of P
will remain high. There is no reason why we can not
assume that the value at ts51 will be the same as

Ž .at ts50, but we choose to side with inertia ! and
offer the counter example in Section 4.3 and Fig. 4.
We will see how the spike at ts50 can be removed

Ž .by the application if required in Section 5.

5. Dynamic adaptation

In this section, we describe how our model is
used to enable dynamically adaptable applications.
To demonstrate the use of the QoSSpace, we de-
scribe a fictitious audio tool that can adapt its audio
flow data rate in response to information about data
rate availability for that flow. It does this by chang-
ing the audio encoding it uses. We will refer to our

(example audio tool as daat dynamically adaptable
)audio tool . daat is modelled on information pre-

w xsented in Ref. 22 for an audio tool developed at

Fig. 6. Using QoSiStates to detect operation close to a QoSState boundary.
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Table 1
Flow-state information for daat
Encoding name Data rate of Relative Power cost

w xflow Kbrs CPU cost

PCM 64.0 1 0.00001
ADM6 48.0 13 0.00014
ADM4 32.0 11 0.00011
ADM2 16.0 9 0.00009
GSM 13.0 1200 0.01250
LPC 4.8 110 0.00114

w x w xUCL 23 . Ref. 6 shows that mixing audio encod-
ings in an audio flow provides usable quality audio
streams for Internet wide use. daat is capable of the
voice encoding schemes shown in Table 1, where the

w xfirst three columns are taken from 22 . The fourth
column is generated from the third column by divid-

Ž .ing by 96000, and presents artificial power con-
sumption 3 per time unit, for each encoding scheme.
We will assume that an instance of daat is run-

ning on a mobile host and consider this daat in-
stance in isolation. We define two QoSParams, R,
the data-rate available to the flow in bitsrs, and B,
the battery power available on the host. B takes

w xvalues in the range 0, 1 , 1 indicating that the
battery on the mobile host is fully charged or that the
mobile host is operating on mains power, and 0
indicating that there is no power. We also use the
third column of the table to generate some _lo
thresholds for B by dividing by 2400. We generate
_qlo thresholds for R by adding 10% to the corre-
sponding _lo threshold value. We choose to produce
the following QoSStates for daat 4:
² ² ::pcm , R ,64.0,y,y,y
² ² : ² ::adm6, R ,48.0,y,52.8,y , B ,0.0054,y,y,y
² ² : ² ::adm4, R ,32.0,y,35.2,y , B ,0.0046,y,y,y
² ² : ² ::adm2, R ,16.0,y,17.6,y , B ,0.0038,y,y,y
² ² : ² ::gsm R ,13.0,y,14.3,y , B ,0.5,y,y,y
² ² ::lpc, R ,4.8,y,y,y
We will consider three scenarios for daat:

1. Audio rate adaptation.

3 These artificial values have been generated only for the
purposes of our simulation.

4 We choose to show that the QoSSpace can cope with hetero-
geneous definitions of QoSStates.

2. Audio rate adaptation and power conservation.
3. Helping to prevent state-flapping.

w xRef. 22 presents a combined error and rate con-
trol mechanism, and we chose only to demonstrate
a rate control feature. If we use an additional
QoSParam based on packet loss figures we could
produce a suitable demonstration of combined error
and rate control. We chose to demonstrate only the
rate control to simplify our presentation so that the
dynamics of our model can be observed.
We first introduce the application adaptation func-
Ž .tion AAF for daat. The AAF is based around a

threshold value to apply to SCVs, called q_____compati-
bility, and a stability time that governs the rate of
QoSState changes to a ‘‘better quality’’ QoSState,
called q_____time. We set q_compatibilitys0.8 and
q_times60 s. These values are taken as a user
policy that says, ‘‘do not change to a better state
unless you have 80% compatibility over a one minute
period for a better state’’. Here, ‘‘better’’ is defined
by numbering the QoSStates with the values 1–6,
with 6 representing the QoSState with the highest

Ž .data rate requirement pcm and 1 representing the
Ž .QoSState with the lowest data rate requirement lpc .

We then use the definitions and the AAF shown in
pseudo-code in Fig. 7.
In our example, AAF we have chosen to use a

very simple mechanism for evaluating the SCVs
form the QoSReports. We chose to evaluate mean
SCV and SCV_I values for each QoSState over a 60
s time window. These mean values are called the
Q_SCORE and the Q_ISCORE for SCVs and
SCV_Is, respectively. The AAF performs the follow-
ing function:

Ž .Ø If the application has just started n-q_n_time ,
Žthen choose the highest quality highest num-

.bered QoSState with the highest Q_SCORE.
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Fig. 7. AAF for daat: definitions and pseudo-code.

Ø If the application has been underway for some-
Ž .time nGq_n_time :

Ž .Ø If we are within one minute q_n_time of the
Ž .last QoSState change q_epoch , do not change

QoSState unless the current QoSState is no
longer usable.

Ž .Ø If we are over one minute q_n_time since
Ž .the last QoSState change q_epoch , check if

it is possible to move to another QoSState.
The Q_SCORE and Q_ISCORE are mean values,

and this helps to smooth small disturbances in the
SCV and SCV_I respectively, e.g. due to residual

noise from the QoS parameter measurements that has
passed through the PCVF.

5.1. Audio rate adaptation for daat

Here we use measurements captured from the
w x 5Internet using ICMP ECHO ICMPv4 probes that

have been processed by the QoSEngine to produce

5 This produces particularly noisy measurements to demonstrate
the robustness of our QoSEngine–QoSSpace system. The values
of R that we use were created by processing the raw measure-
ments with our QoSEngine.
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values for R. For this scenario, we ignore the QoS
tuples defined in terms of B as we assume that the

Žmobile host is operating on mains power. For these
data sets, the values of R are such that the
Q_ISCORE has no significance on the flow-state

.change, so we ignore this, too .
We use two data sets, each with probes at 1-s

intervals, between the following hosts:
Ø Darhu–theakston: darhu is a Sun SPARCClassic
running SunOS4.1.3 at UCL and theakston is a
WinNT4.0 workstation connected to UCL via a

Ž .single BR-ISDN Basic Rate ISDN channel at 64
Kbrs.

Ø Waffle–tmnserver: waffle is a Sun4 running
SunOS4.1.3 at UCL and tmnserver.misa.ch is an
IBM server running AIX at IBM Laboratories,
Zurich.

Ž .In Fig. 8 and Fig. 9: a shows the SCV values for
Ž .the QoSStates. b shows the QoSState selected by

Ž .the AAF. c shows the value of R and also the data
rate of the audio flow using the AAF.
We see how the audio flow rate is fairly well

Žmatched to the available data rate i.e. the white-space
Ž . Ž ..under the line in Fig. 8 a and Fig. 9 a , even

though R fluctuates considerably. We see from Fig.
Ž . Ž .9 c 600- time-800 , how changes to better qual-
ity QoSStates are controlled to the q_times60 s
time period, but how changes to lower quality
QoSStates occur as soon as an inadequate QoS pro-
vision is detected. Increasing the value of q_time
acts to further smooth the data-rate fluctuations, as
the Q_SCORE is a mean of the SCV values. The
effects of using q_times90 s, q_times120 s and
q_times180 s for R is shown in Fig. 10. However,
increasing q_time may make the application slug-
gish in response to QoS fluctuations. The value of
q_time could be application-specific, user defined,

Žor its value could also be dynamically adaptable an
.issue for further study .

As the value of q_compatibility approaches 1.0,
this makes a good Q_SCORE harder to achieve.
This will make it harder for the application to move

Ž .into and stay in better quality states, as shown in
Fig. 11. We have found that q_compatibilitys0.8
appears to provide a reasonable threshold, but the
exact value chosen may depend on the flow, e.g.
video may require a higher q_compatibility value
than audio.

5.2. Audio rate adaptation and power conserÕation
for daat

We now use artificial values of R and B to
Ž .demonstrate a naıve power conservation policy on¨

the mobile host using daat. Here we consider that
the mobile host moves from the user’s home to the
user’s place of work. A battery powers the mobile
host until reaching work, when mains operation is
possible. During battery operation, we wish to con-
serve power. We use a naıve scheme in which the¨
_lo thresholds for each QoSState in the tuples of B
mark the lowest battery power charge that is allowed
before that audio encoding can be used 6. The simu-

Žlation of this scenario is shown in Fig. 12. For
clarity, in the values of R and B, we have not

.simulated any noise.
ŽAt home our user connects via ISDN 64 Kbrs,

. Žtime-20 , then by GSM 13 Kbrs, 20F time-
.120 on the way to work, and finally by Ethernet at

work. The user starts with a fully charged battery
Ž .times0 and is not connected to the mains power

Ž .until time )200. We see in Fig. 12 a and Fig.
Ž .12 c how the daat switches from the GSM encod-

Žing to the LPC encoding even though the GSM rate
.is still achievable when the battery power, shown in

Ž . Ž .Fig. 12 b , goes down to 0.5 times80 . We have
used q_times1 and q_compatibilitys0.8.
This example shows that the battery power takes

precedence in the adaptation policy only when its
role becomes significant, i.e. when a QoSState for a
boundary defined by QoSParam B is reached. This
nature of the QoSState definitions means that we do
not need to use relative-scaling or weighting-factors
for the PCVFs for individual QoSParams. As long as
the QoSState boundaries are defined with appropri-
ate values then the model treats a PCVF threshold as
a limit for the QoSState as a whole, and not just a
limit for the one QoSParam for which the PCVF
generates a low value.

6 A better scheme might be for the application to perform a
calibration when it is first started, by using each encoding scheme
to encode a buffer of data. This would measure the rate at which
each encoding drains the battery power and then set these values
as _lo thresholds for a QoSParam that is the rate of change in B
rather than the absolute value of B itself. We chose our naıve¨
approach in order to demonstrate better the dynamics of the AAF.
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Ž .Fig. 8. daat with the darhu–theakson data q_compatibilitys0.8, q_times60 s .

Ž .Fig. 9. daat with the waffle–tmnserver data q_compatibilitys0.8, q_times60 s .
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Ž Ž . Ž . Ž .Fig. 10. daat with the waffle–tmnserver data q_compatibilitys0.8 and a q_times90 s b q_times120 s c q_times180 s.

Ž Ž . Ž . Ž .Fig. 11. daat with the waffle–tmnserver data q_times60 and a q_compatibilitys0.85 b q_compatibilitys0.90 c q_compatibilitys0.95.
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Fig. 12. Artificial rate adaptation and power conservation scenario for daat.

Fig. 13. daat with state-flapping.
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5.3. Helping to preÕent state-flapping

We now use new artificial values of R in order to
show how the QoSiStates are used to counter a
possible state-flapping scenario. First we generate a
scenario where there is state-flapping, as shown Fig.

Ž .13 q_times1, q_compatibilitys0.8 . Here, Qo-
Ž .SiStates are not used. We see in Fig. 13 b and Fig.

Ž .13 c how the value of R wavers around the adm6
_lo boundary causing the daat to see-saw between

Žadm4 and adm6. Again, for clarity we have chosen
.not to simulate noise for R.

We now chose to employ a policy where if the
NetQoSState is such that the QoSState would be
operating very close to its boundaries, we chose not
to use that QoSState. For the daat, this would help
to avoid state-flapping when one of the QoSParams
in the QoSState was wavering around a p_lo bound-
ary of one of the QoSStates. This makes sense for
the daat as all its QoSStates have boundaries that
Ž .effectively border on each other so it is possible to
use a lower quality QoSState to avoid state-flapping.
ŽIn Fig. 14, we see how the use of QoSiStates

. Ž .removes state-flapping. Fig. 13 a shows the values
of the SCVs, which are identical in both cases while,

Ž .while Fig. 14 a shows the additional _lo QoSiState
SCV_I values used only in the scenario of Fig.
14.
The QoSiStates are effectively indicators that a

QoSState is operating very close to one of its bound-
aries, so they may be interpreted as indicators of

Ž‘‘negative compatibility’’. However their exact use
.and interpretation will be application specific. We

show the use of the same q_compatibility and q_time
values for the Q_ISCORE as that for Q_SCORE, but
different values could be used. Setting lower values
for the q_compatibility and q_time for Q_ISCORE
would make the AAF more sensitive to operation of
a QoSState close to its boundary. This difference
between thresholds and timescales between
Q_SCORE and Q_ISCORE could, for example, be
used to allow fast detection of operation close to
QoSState boundaries, while still maintain flow stabil-
ity when operation is well within QoSState bound-
aries. Similar application-level smoothing may be
achievable by using a large enough value for q_time,
but this would then result in lack of responsiveness
in adaptability.

6. Discussion

The AAF is the key to the operation of the
application. It is the gateway for interaction between
the user and the adaptation process of the applica-
tion. The AAF presented in this paper is mainly to
show the use of the SCVrSCV_I information and
demonstrate the usefulness of the QoSSpace and
QoSState abstractions.

6.1. The QoSStates and QoSSpace

The use of QoSStates simply extends the general
information model currently used in methods of de-
scribing flow requirements. Flow requirements are
often described with performance parameters that
must be met in order for the flow to be functional.
This is typical for description of resource reservation
requirements. However, our treatment assumes that
the dynamics, semantics and relationships of

Ž .QoSStates inter-flow and intra-flow are known only
to the application. The QoSSpace needs very little
semantic knowledge of the QoSStates, and the main
requirement is for ‘‘low’’ and ‘‘high’’ to having
meaning for QoSParams.
The QoSSpace treats all QoSParams as orthogo-

nal. Each QoSParam is evaluated individually, in the
PCVF, and only then is the SCVF for each QoSState
evaluated. So, effectively, the treatment of any one
of the QoSParams is identical to the treatment of just
a single QoSParam. Although in some cases there
may be correlation between QoSParams, this is for
the application designer to resolve and define
QoSStates appropriately, if required. The general
model of the QoSState allows the QoSSpace to be
applied in a more diverse manner than just in the use
of ‘‘traditional’’ QoS parameters. For example, pa-
rameters such as battery life, host load and cost
could also be used.
The QoSSpace is presented as an abstraction that

requires only two pieces of information per
QoSParam per flow: an estimate of the current value,
p_ p, and an estimate of the current variability in
that value, Õ_ p. Our simple definition of Õ_ p means
that the QoSEngine needs to hold very little historic
information for a flow. Additionally, the QoSEngine
is separated from the mechanism that is used to
provide the values of p_ p and Õ_ p. This means that
the implementation of the QoSSpace is not con-
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strained. It could, for example, be tightly coupled
Ž .with the application embedded , implemented as a

kernel module or daemon on a host, or implemented
as part of a distributed system using middleware.
Also, the nature of this model is such that even if
dynamic adaptation is not goal, the use of the
QoSStates and QoSSpace may be useful in order to
detect per-flow QoS violations from QoS parameter
measurements.

6.2. Interaction with the user

The QoS assessment capability offered by the
QoSSpace allows daat to adapt to fluctuating net-
work QoS. The decision is made by the AAF and the

Ž .daat application automatically, but includes static
user preferences. Another application may be more
interactive, letting the user make the decision manu-
ally but present the user with a list of options based
on the Q_SCORErQ_ISCORE values or SCVs, al-
lowing the user to make an informed decision.
The AAF is a simple algorithm. The main control

issue is the interpretation of the user’s wishes, via
the user preferences. We have already seen that the
QoSSpace has very little semantic knowledge of the
flows. Notice that the AAF also has very simple
semantic knowledge of the flows in daat. The QoS
mapping from the user is simple; better quality
QoSStates have higher numbers than lower quality
QoSStates. The suitability of use of any particular
QoSState is evaluated with Q_SCORES and
Q_ISCORES for which ‘‘high’’ and ‘‘low’’ also
have meaning. These are the only semantics that the
AAF is aware of, making it a simple and easily
implemented algorithm. Such simple QoS mapping
between user, application and network, coupled with
the simple nature of SCVs makes for easy decision-
making and easy programmability in real applica-
tions. The main aim of the daat examples is to show
that the SCVs provided in the QoSReport ease the
decision-making process. If simple relationships can
be found between user preferences and application-

Ž .modes and QoSRegions as in our daat examples ,
the AAF has quite a simple task to perform.
The exact use of the adaptation capability will

ultimately depend on the user and the application.
We have modelled the daat AAF to automatically
adjust its flow rate by changing the flow encoding

and this is reasonable because studies show that such
behaviour in an audio flow does not adversely affect

w xusers’ perception of quality 24 . This may not be
true for all media types and for all users, even if the

Ž .media is scaleable e.g. video . In our examples, we
have let the user choose how and when adaptation
occurs, mapping values from the user directly to
q_time and q_compatibility. However, this does not
preclude these values from being determined by the
application through a different interaction with the
user.

6.3. The responsibilities of the AAF

The QoSSpace does not attempt to deal with
distributed application issues. Decision-making algo-
rithms in a distributed environment could be cen-
tralised or distributed. We have shown a simple AAF
algorithm that bases decisions about adaptability on
information seen by a single daat instance, i.e. local
information. If daat were used in a conferencing
scenario, there may be a need to build in
application-level signalling into the AAF. However,

Žthere is much heterogeneity network QoS and user
.preferences in multicast scenarios. So, even if the

adaptation decisions are not made on a local, per-in-
stance basis, there will need to be feedback of local
information from the application sites to any cen-
tralisedrdistributed decision-making mechanism.

ŽThis may have effects on the value of q_time to
account for time required for application-level sig-

.nalling , and so the application may also wish to
have some control over its value. So, both q_time
and q_compatibility could be totally under applica-
tion control. However, it could also be argued that
allowing user dissatisfaction to be expressed as an

Žinput to the application to adjust q_time and
.q_compatbility values could also result in a similar

w xeffect but under user control 21 .
In a multicast scenario, the decision-making pro-

cess may make use of localised mechanisms, allow-
ing closely located receivers to make adaptation
decisions by exchanging QoSReports. Such self-
organised, receiver-driven schemes are currently of
great importance for scaleable Internet multicast
w x25,26 , and one key element of their success is
being able to share information about the QoS that
the application instances experience.
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We would expect that application specific adapta-
tion functions would be developed as required. The
daat simulations indicate it is possible for a single
flow to adapt to changes in the QoS available to the
flow. Where multiple flows share resources with
other flows in a best-effort network, we must be
conscious of how the flows affect the network and
the application behaviour. We must emphasise that
the QoSSpace is a system for providing QoS infor-
mation summaries to aid the process of making
adaptation decisions. Ultimately, the AAF must make
the adaptation decision by selecting a QoSState and
is responsible for implementing the adaptation. So,
we would expect the AAF to include mechanisms for
ensuring:
Ø Fairness: with respect to the resources available
to other flows.

Ø Stability: in considering how the adaptation pol-
icy affects the network.

Ø Scalability: in order to allow the decision making
process to be amenable for use in distributed
applications.
A multicast application might achieve fair-share

and congestion control by use of schemes such as
w x27 that allow multicast traffic to share capacity
fairly with TCP traffic. Again, such mechanisms
need information about flow and network compati-
bility, which may be provided by the QoSSpace.
Such mechanisms would also need to cater for con-
gestion due to synchronisation effects in QoSRegion

Ž .changes e.g. the ‘‘9.00 am effect’’ by use of heuris-
tic mechanisms such as slow-start. In our daat AAF,
this might be by insisting that all daat instances
must use the lpc QoSRegion while n-q_time.

7. Summary and further work

We have shown how it is possible to allow appli-
cations to make adaptation decisions automatically
and dynamically from measured QoS parameter val-
ues. We have considered:
Ø The QoSSpace: a model of the network that
allows application flow-states and network QoS
to interact. The QoSSpace can produce QoSRe-
ports that give an assessment of the relative com-
patibility of the network QoS and the application’s
flow-states. The QoSSpace is intended to for

general-purpose use. The reports it produces con-
( )tain state compatibility values SCVs which are

scaleable, simple in nature and easy to understand
and manipulate. QoSStates are descriptions of the
application’s flow requirements using QoSParam
boundaries, providing a simple and adequate QoS
mapping between application and network. The
QoSSpace does not unduly constrain the design,
construction or operation of the application.
QoSParams can be used to model quantities other
than network QoS parameters, such as batterry
power, host load, cost, etc.

Ø That dynamic adaptation is possible: we have
used simulations of a dynamically adaptable au-

Ž .dio tool daat to show how the SCVs from the
QoSSpace can be used. A simple algorithm, the

Ž .application adaptation function AAF for the
daat, was used to incorporate user preferences
and application requirements into an automatic
adaptation policy that controls the operation of
the daat application. The AAF uses a SCV
threshold, q_compatibility, and a stability time,
q_time, to produce an evaluation, the Q_SCOREr
Q_ISCORE, of the suitability of a QoSState for
use by the application. We have showed how it is
possible for the daat to adapt the rate of its audio
flow by changing audio encoding.

Ø The QoSSpace is designed to be easily integrated
into applications. The QoSStates specify the re-
quirements of a flow but the definition of a flow
is not constrained and remains application-
specific.
The work on the QoSSpace is ongoing. We need

to investigate further:
Ø Integrated QoS architecture: we would like to
investigate how dynamic adaptability fits into an
integrated QoS architecture with other Internet
QoS mechanisms, e.g. resource reservation
schemes and differentiated services.

Ø Interaction with the user: as we have noted in
this dissertation, consideration of the user prefer-
ences and requirements is important. We need to
investigate how the use of dynamic adaptability
changes the way the user and the application must
interact. Is it possible to have totally automatic
dynamically adaptable applications or must there
be some interaction with the user during the
execution of an application, rather than just the
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use of static user preferences? This would involve
an investigation of the interface I that we haveaq
not considered in detail in this work.

Ø Distributed applications: the following issues
need to be addressed:
Ø When an application does have the ability to
make adaptation decisions, what are the inter-
actions between instances that affect applica-
tion mode changes and flow-requirement
changes?

Ø How does the local interaction with the user
affect the decision-making process in dis-
tributed instances?

Ø What is the interaction of the architectural
components to support receiver heterogeneity

Žin the decision making-process? For example,
how might the decision-making process inter-
act with the filtering mechanisms in the appli-

.cation level gateways or in the network?
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