AINA2011 - IEEE 25th International Conference on Advanced Information Networking and Applications, Singapore. 22-25 April 2011.

Simple, Weakly-coupled, Invisible Middleware (SWIM)

Martin Bateman
CEPS

University of Central Lancashire

Preston, UK
mbateman @uclan.ac.uk

Abstract

One of the operational goals of a middleware platform
is to provide a mechanism of distributing computation re-
quests in a way that hides from the programmer the com-
plexity of the underlying systems platform. This means that
distribution mechanisms used to harness a set of computer
and network resources should not expose to the programmer
the detailed systems aspects which are unrelated to their ap-
plication. Ideally, the programmer should be left to concen-
trate on the functionality of his/her application without hav-
ing to be concerned with how the distribution is achieved or
how the resources are used. However, this is not true today:
programmers need to be aware of details of the middleware
in use and are constrained by it in the design of their appli-
cation, e.g. API constraints. We present a proof-of-concept
demonstration of a middleware platform that imposes abso-
lutely no constraints on the programmer apart form those
used in the programming language itself. We demonstrate
the efficacy of our approach with a prototype implementa-
tion in Java, running on a cluster of 20 nodes with a perfor-
mance comparison with XML-RPC and Java-RMI.

1 Introduction

We focus on one key role of middleware: use of dis-
tributed services. From a programmer’s perspective, the
distribution of the resources and the mechanisms that enable
the distribution should be invisible. However, middleware
today often lacks this transparency. Indeed, when the pro-
grammer is exposed to some of the underlying middleware
system behaviour s/he may be able to optimise his/her appli-
cation for operation using that middleware, e.g. for perfor-
mance or error reporting. Our approach aims to investigate
the least constraint that we can impose on the programmer
within a middleware system.

In Figure 1, we depict the proof-of-concept which we
wish to demonstrate. We assume that the programmer has

Saleem Bhatti
School of Computer Science
University of St Andrews
St Andrews, UK
saleem@cs.st-andrews.ac.uk

a design which needs to be implemented, and this subject
to constraints from the programming language chosen 1(a).
This is true whether the application will be engineered using
middleware or not. In reality, there are many middleware
technologies which aim to reduce the complexity of creat-
ing distributing applications but these systems typically en-
force some requirements from the middleware platform into
the application design and engineering, i.e. the programmer
is constrained further 1(b). These constraints range from
the types of data that you are able to transmit, as in the case
of XML-RPC, or which components of the system are to be
remotely hosted.

programming

programming .
language language
rules rules
middleware
rules
middleware
confi.& | [consirais
deployment

(b) With middleware

(a) No middleware

programming
ianguage
rules

SWIM
deployment enables /|

(c) The aim of SWIM

Figure 1. A programmer’s perspective

The net result is that the application logic and the distri-
bution logic are entangled within the code design and imple-
mentation. So, the use of middleware has some side-effects:

e The programmer requires some knowledge about the
middleware platform that is chosen.

e There may be design and engineering constraints im-
posed on the programmer by the middleware platform.

e The application becomes dependent upon the middle-
ware platform chosen.

saleem
AINA2011 - IEEE 25th International Conference on Advanced Information Networking and Applications, Singapore. 22-25 April 2011.

saleem

saleem

There could be other side-effects, but these are the ones that
are the focus for the work presented here.

Our aim in this paper is to investigate to what extent it is
possible to allow the programmer to write applications that:

e Do not require the programmer to have knowledge of
the middleware.

e Remain disentangled from the details of the middle-
ware.

e Are not dependent on a particular piece of middleware
to operate.

i.e. the programmer enables distribution of the application,
as required, through our Simple, Weakly-coupled, Invisible,
Middleware (SWIM) (Figure 1(c)).

To demonstrate our proof-of-concept middleware plat-
form, SWIM, we first outline the scenario we have imple-
mented (Section 2). We consider related systems against
which we have tested our implementation and identify in
more detail the constraints that we wish to avoid (Section
3). We describe the architecture for our demonstration of
SWIM (Section 4) and present the testing and evaluation
of SWIM against two popular platforms (Section 5). We
discuss the limitations of the SWIM proof-of-concept, and
possible solutions (Section 6). We then conclude and give a
brief explanation of our plans for future work (Section 7).

2 Requirements and scope

In this paper, we take the position that the programmer
should focus only on his/her application and not be con-
cerned with any issues related to distribution! So, our sce-
nario for this paper is based on the assumption that a pro-
gram can be written as if it was to run on a on a single
machine, but will, through SWIM, run in a distributed man-
ner. Such transparent distribution of an application allows
for minimal programmer effort whilst still gaining the ad-
vantages of distributing an application in this way, for ex-
ample performance increases from parallel processing on
many nodes or increased reliability.

2.1 Scope — a testbed

To provide a tractable scenario for implementation, we
choose a very simple testbed. However, we will discuss in
Section 6 the limitations of this testbed, and how the SWIM
proof-of-concept could be extended to deal with such limi-
tations whilst maintaining the aims listed above.

'Our approach in this paper is deliberately user-centric (programmer-
centric). We leave for another discussion the approach from a systems
engineering viewpoint.

Our testbed consists of a cluster of 20 compute nodes,
all of identical capability. The nodes are all on a single net-
work, managed within a single, trusted administrative do-
main. This might be typical of an in-house compute clus-
ter at an end-site. Two examples are a dedicated computer
cluster for processor intensive tasks at a commercial site,
or the use of a lab/teaching facility with identical desktop
machines.

The intention is to demonstrate the use of a test program
written to run on a single node, and then show how SWIM
allows it to run across all 20 nodes, without changing any
of the code. The program is written in Java, which allows a
comparative test against XML-RPC? and Java-RMI°.

The SWIM proof-of-concept concentrates on how the
distribution of the code can be achieved in a transparent
manner across the cluster:

e Code is written only once as if middleware was not in
use, i.e. using only the code written by the programmer
and any third party libraries required for the applica-
tion logic.

e All Exceptions that are defined are honoured, across
the distributed platform.

e No special design or engineering is included that as-
sumes the program will be run in a distributed manner.

e No special error-handling is required to trap errors that
may result from the application being distributed or
having to communicate over a network.

e No modified or special compiler tools are used: only
standard tools available with the normal distribution of
Java are used.

There are some platform-specific issues we have factored
out in this study for the sake of focusing our analysis on the
feasibility of the approach. We list them now to make clear
the functions that are not considered for the SWIM proof-
of-concept, but these are all issues that would be considered
important for an operational middleware platform.
Security: Effectively, we factor out any security, audit/ac-
cess and authentication issues:

o All the nodes are trusted by the programmer, and the
programmer is ‘trusted’ (has the correct privileges to
use) all the nodes.

e All the code that will be run is ‘trusted’, implicitly: no
checks will be performed (e.g. checking certificates)
for any of the programmer’s own code, or any libraries
used.

Zhttp://www.xmlrpc.com/spec
3http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136424 .html

Fine-grained resource control: there is no constraint on the
way the resources are allocated, though they are allocated
dynamically, rather than as fixed quanta. We will only have
a single user on this cluster for our evaluation, so no sophis-
ticated resource control is required:

e All the programmer’s resource requests will be permit-
ted by any node.

o All the nodes will operate with the same same resource
usage policy.

e The programmer has no capability to optimise from the
user code the use of the resources within the cluster.

Platform-specific error-Handling: there is no specific error
reporting and handling that is related to SWIM:

e Errors related to the operation of SWIM can not be
reported to or handled within the application.

e The semantics and effects of errors arising as the result
of distribution may be lost, especially if the errors are
from faults related to the platform itself, e.g. resource
exhaustion and node failures.

In [8] Spiegal argues that are some solutions to partial
failures, which are able to mask the application logic from
the failure. These solution are independent of the appli-
cations and can be performed by the middleware and are
therefore transparent to the application.

2.2 User (programmer) requirements

From the point of view of the middleware user (program-
mer), there should be benefits compared to a non-distributed
application, but transparency should not be lost, i.e. the use
of the middleware should be invisible to the programmer.
So, we concentrate in this study on benefits to the user, spec-
ified as requirements in such a way that the user is unaware
of how they are implemented or how the operate.

Code usage: Applications are typically a combination of
new and existing code, where the existing code could be
legacy code or it could be software components which pro-
vide specific functionality. It should be possible to include
these software components in the distributed system with
minimal or no modification.

Dynamic resource usage: Many applications are dynamic
in nature, with changing demands not only in the long term,
for example over the life of the application, but also in the
short term. If we take a simple example of a network au-
thentication service, there is a daily cycle of load require-
ments, with a higher load required at the beginning of the
day, when many people are using it to authenticate them-
selves. Traditional systems require provisioning for this

peak demand which is then under utilised for the rest of the
day when there are very few authentication requests. The
system dynamically uses resources from the cluster as re-
quired. Of course, the application domain for which such
distribution is suited is for tasks where the function lends
itself easily to parallelisation.

Distribution without added complexity: A remote call can
behave differently from a local call. Of course, in terms
of the time it takes to make the call a distributed system
may take milliseconds rather than nanoseconds, for exam-
ple. However, remote calls introduce a new set of poten-
tial error conditions which must be handled. There is little
which can be done to reduce the invocation time of a re-
mote call (other than protocol optimisations) but handling
the error conditions to some degree is possible within the
middleware by using object replication, and so not expos-
ing them to the application.

Distribution without code changes: Traditional, existing
middleware systems require explicit distribution points to
be defined, for example using IDLs in CORBA or inter-
faces in RMI. Once defined, these boundary points cannot
be changed without rewriting parts of the application. This
can require that the object to be distributed must subclass
from a specific object, which in the case of an existing ap-
plication may require extensive re-engineering. Then, any-
where in the code that the new remote object is used must
be altered in order to deal with any error conditions relating
to the network. This can require extensive modification of
an existing application since anywhere that the new remote
object is used must be modified.

Fault tolerance: Within a distributed application, it can be
necessary to move objects from one host to another. This
could be for purposes of robustness in the face of failures or
for maintenance. Performance gains could be gained from
moving objects geographically closer to the client, or to a
more resource capable node, or in order to reduce the round
trip time and, therefore, the time it takes to make a remote
call. However, we do not consider such optimisations in
this study. Instead we aim only to make transparent any
maintenance or node failure events: any hosted objects need
to be relocated if the node on which they are running goes
out of service.

3 Related Systems

Traditional middlewares such as XML-RPC, RMI or
CORBA require that the distribution logic and the appli-
cation logic are intertwined. Typically the middleware en-
forces some design requirements, be it restrictions on the
types which can be used, the use of interfaces, or the re-
quirement to subclass from specific superclasses. Each en-
forces a slightly different set of restrictions and requires a
slightly different steps in the development process. As such

these technologies are difficult to use and error prone, whilst
adding little to the application logic but enforcing design de-
cisions. Decisions concerning the distribution points of the
application must be made at design time and are impossible
to change at deployment.

Lee & Morris [7] proposed a system of parallel comput-
ing using the data-flow model [2]. Their system requires a
change to the programming style imposing a set of restric-
tions based on the toolkit. Thiruvathukal et al [9] augment
the Linda [3] and MPI [4] styles of middleware, but again
requires a specific programming style to be adopted.

Dynamic adaption has been proposed by many (for ex-
ample in [1]) as the long lived applications may have to
evolve over time in order for applications to change to
meet the demands of the changing environment. Zhu et
al [11] proposed using lightweight threads for load balanc-
ing. Their solution allows for thread migration at chosen
migration points within a method, requiring both a modified
JVM and the modification of the application to be ported to
their distributed JVM (dJVM).

Dearle et al [5] share the same vision of providing a
transparent distributed platform although they require that
the programmer define distribution points when the appli-
cation components are remotely hosted meaning the pro-
grammer still has to be involved, albeit lightly, with the dis-
tribution process.

Luo et al [6] use a distributed JVM but unlike other sys-
tems [1,2,7,9, 11] there system does not require a modi-
fication to the JVM or a change in programming style and
is therefore able to operate on the standard Sun JDK with
minimal programmer intervention.

Many of these system have similar goals - to decrease
the complexity for the programmer of the system but adopt
different approaches for achieving this goal.

4 SWIM

The SWIM system has three systems, a registry, a num-
ber of SWIM nodes which form the SWIM compute pool
and the client application. When starting up each SWIM
node registers itself with the SWIM registry.

4.1 Architecture

A SWIM node provides the object hosting environment
with the SWIM pool. It consists of a custom classloader
which is able to load classes from across the network using
SWIM as the transport medium. The URLClass loader was
avoided since it would require a web server to be running
on each SWIM node as well as the SWIM server. The con-
nection handler is responsible for taking incoming request
from the network, looking up the hosted object and making
the method call.

The registry within SWIM provides a way for clients to
find the nodes or to find objects which have been specifi-
cally hosted by the application programmer. The only in-
formation stored at the registry is the name of the hosted
object, which classes and interfaces it provides and its ad-
dress.

All SWIM nodes are referenced using a socket address,
a non transport mechanism addressing scheme. This, cou-
pled with the fact that the connection handler uses streams
to communicate means that a SWIM node can be address-
able from a wide range of transport protocol. The default is
a standard network socket, but we also had support for peer-
2-peer sockets [10] and SSL sockets. Each of these three
is designed to provide a specific functionality to the appli-
cation. The use of a peer-2-peer infrastructure allows the
SWIM pool to be distributed across a heterogeneous net-
work but at the expense of execution speed since all mes-
sages are routed around the peer-2-peer overlay.

The SWIM client takes one of several forms. In its sim-
plest incarnation it is a series of APIs which allow the pro-
grammer to host objects within the SWIM pool. These are
used list a traditional middleware platform. The SWIM API
includes methods to host an object within a SWIM node,
as well as method to clone and migrate objects from one
SWIM node to another. When an object is migrated a tomb-
stone is left which redirects any requests to the object to the
new SWIM node.

SWIM Node

Client

Object User

Patched
Object

SMWClassLoader

Hosted
Object

SMWContainer

SMWServer

SMWProxy

SMWSocket

SMWSocket

S o >
(" Network —
—

7
J

Figure 2. The SWIM Architecture

The second form of interaction is via the transparent dis-
tribution classloader, this allows either complete delegation
of hosting decisions to be taken by SWIM or guided de-
cisions where the programmer supplies a configuration file
stating which objects should be hosts. When an application
starts each object is loaded by a custom class loader. If the
object is to be remoted, which is determined by a deny and
allow list, then the objects byte code is cached to later use.
Each method within the object is replaced with a method

which makes a call to the remote object. The constructors
are replaced with code which creates an instance of the lo-
cal object in the remote hosting environment. If an object
of the correct type does not exist within the remote host-
ing environment then the local cached class file is uploaded
to the remote hosting environment and is used. Within the
hosting environment each hosted object is loaded by its own
classloaded, there is one classloader per hosted object. This
means that even if an object with the same name has previ-
ously been uploaded to the hosting environment it will not
be used and the object from the local environment will be
used. This avoids issues relating to different versions of the
same class or the possibility of two different objects having
the same name.

Each hosted object is associated with a classloader,
which is used to maintain a separation between hosted ob-
jects and also allows a fine grain control on which objects
are to be unloaded. Unloading objects is a two stage pro-
cess, each hosted object has a soft and hard time to live.
Each time to live is a wall clock time and each call made
to a method within the object resets the clock. The ttls are
expressed as a time to keep the object alive for, the soft
limit is when to cache the object to disk and remove it from
memory, the hard limit is when to delete the object from the
hosting environment. For example if we have ttls of 5 and
10 minutes for the soft and hard limits respectively, after
five minutes of inactivity the object will be cached to disk
then after a further 10 minutes the object will be deleted. Up
until this point any object reference which pointed to the
hosted object on this server would still resolve to a value
object, but after deletion the object and associated state is
removed from the system.

4.2 Creating Distributed Applications

SWIM provides several forms of distributions, all of
which can play a part in successfully distributing an applica-
tion. The ways of distributing an application within SWIM
are a trade-off between power provided to the programmer
and ease of creating a distributed application. Firstly SWIM
can be used in the traditional role where the application is
built using the middleware, as in the case of RMI, Corba
and Web Services. Secondly it provides support for dis-
tributing application which were not designed with distri-
bution in mind. This could be done for performance or re-
liability reasons. Spreading a compute intensive applica-
tion over several computers allows for a potential increase
in performance. SWIM supports object replication, where
a single object is copied into multiple locations on the net-
work. These replicated objects can then be accessed as if
they are a single object within the client application, if the
connection to a single copy of the object is lost then the ap-
plication transparently continues with the remaining copies

of the object.

SWIM primary design concerns are flexibility and ease
of use. It provides three forms of interaction to the program-
mer. Firstly SWIM can be used as a traditional object based
middleware, such as RMI or CORBA, where the application
is designed and built with distribution in mind. This series
of APIs is the lowest level and gives the programmer full
control on all aspects of the middleware. With these APIs
the programmer can remote arbirtary objects and to clone
and migrate objects during the application runtime.

Secondly, SWIM can be used to manually transform an
application to be distributed. In this case the application
is written without consideration to distribution and with no
specific middlware in mind. When the application is to be
distributed there are two ways in which SWIM and interact
with the application. If the programmer has access to the
source code of the program SWIM can be made part of the
application using the same APIs as before.

If the source code is not available for modification then
SWIM allows the programmer to provide a configuration
file to the SWIM application loader. The SWIM applica-
tion loader uses reflection and introspection to transform an
application for use in a distributed environment. It takes
a simple configuration file similar to an access control list.
The configuration file consists of a list of classes to which
are to be hosted within the SWIM pool and a list of classes
which are explicitly not to be hosted within the SWIM pool.
By default SWIM will host any class and subclass of a any
class which appears in the ’to remote’ list, this can be over-
ridden by using the *not to remote’ list. The combination of
the two lists provides fine grained control of which classes
are to be hosted within the SWIM pool and which classes
should remain local. Each control list allows both abso-
lute class names or just package names. By default all the
SWIM classes and the standard JDK classes are denied be-
ing hosted in the SWIM pool

Finally SWIM can transparently distribute an application
with no programmer intervention. Although this provides
the simplest method for application distribution it comes at
a price. All objects, except the SWIM and standard java
classes are available to be hosted with the SWIM pool.

The flexibility of SWIM means that it is possible to mix
all of these forms within a single application, allowing the
programmer to move from automatic distribution, through
manual augmentation to a designing and implementing as-
pects of the application manually. The programmer is able
to choose which aspects of the application are worth paying
attention to and which can be left to SWIM.

4.3 Reliability

SWIM Objects may be clustered to increase the reliabil-
ity of the system. There are three forms of clustering avail-

able. Firstly, parallel clustering where a number of remote
objects is bound together and referenced as a single object.
The result from the first remote object to return from the
method call is used as the result and is returned to the call-
ing method.

Secondly, a number of remote objects is bound together
but a vote is held on what the return result should be, once
the majority of remote object have returned the same value
the returned value is returned to the local context.

In both of these cases any remote objects which cannot
be contacted are removed from the pool of clustered objects.
Additional objects can be created and added to the cluster
to replace any remote object which is no longer contactable.

The final form is no clustering. This is for each local
reference to and object there is a single remote object.

5 Testing and Evaluation

SWIM was evaluated against two other middleware tech-
nologies, Apache’s XML-RPC and Java RMI. The testing
and evaluation of SWIM is two-fold, firstly it investigates
the call performance overhead that SWIM entails when used
in a number of scenarios ranging from simple methods with
no parameters to parameters which take a custom datatype.

Finally SWIM is used to distribute a simple application
across a pool of machines.

We evaluate SWIM on two accounts firstly there is the
time to perform a remote call and secondly on the amount
of impacts SWIM has had on the design on the system.

5.1 Testbed

The testbed is composed of 20 nodes, each is a Pentium
4 3.0 Ghz with 1 Gigabyte of memory connected via a 1
Gbit/s switch. Each node runs Linux kernel 2.6.9-34 with
Java 1.6.

We examine SWIM’s per method call performance in
comparison to other middleware technologies. For this ex-
periment we used three machines from our testbed pool.
Each of the three machines ran one of: the server process,
the client process and the finally a registry.

RMI and XML-RPC were used to provide a baseline
comparison. We used Apache XML-RPC version 3.1* and
the version of RMI bundled with JDK 1.6. The interface
shown in Listing 1 was implemented in Apache XML-RPC,
RMI and SWIM.

public interface TestCases {
public int noParameters ();
public int primitiveParameters (
boolean aBoolean,
int anlnteger,

“http://ws.apache.org/xmlrpc/

double aDouble);
public int objectParameters (
Boolean aBoolean ,
Integer anlnteger,
Double aDouble);
public int complexParamaters (
ComplexType ct);
}

public class ComplexType {
String aString;

int anlnt;

double aDouble;

byte[] byteArray;

}

Listing 1. Interface used for performance
evaluation

We examine the call performance of RMI, XML-RPC
and SWIM using the method interfaces shown in Figure 2?.
Each of the methods was implemented to return O so that
an evaluation of the communications overhead, without any
processing overhead could be made.

The first test uses a remote method which takes no pa-
rameters. The second method takes 3 primitive types (a
boolean, and integer and a double), the third method takes
the same three types as objects, for the int is passed as an
Integer. The final method takes a user defined object, of
class ComplexType. The string parameter was 25 charac-
ters long and the byte array was set to 128 bytes. In each
case method call was made 100000 times and the minimum,
mean and maximum call times are reported.

XML-RPC | SWIM | RMI
Lowest 1.45 0.57 0.1
Mean 1.68 0.71 0.12
Highest 204.11 5.42 5.65

Table 1. No parameters calls times in ms

XML-RPC | SWIM | RMI
Lowest 1.54 0.69 0.11
Mean 1.79 0.82 0.12
Highest 43.22 3.58 1.95

Table 2. Primitive types call times in ms

SWIM is around seven times slower than RMI for
method with no parameter (Figure 1), or with primitive
types (Figure 2) for the parameter. This gap reduces to
around four time slower for objects from the JDK (Figure

XML-RPC | SWIM | RMI
Lowest 1.53 0.72 0.19
Mean 1.78 0.84 0.20
Highest 43.90 2.30 10.27

Table 3. Object parameters call times in ms

XML-RPC | SWIM | RMI
Lowest 1.64 0.86 0.19
Mean 1.94 0.97 0.20
Highest 201.98 3.85 6.01

Table 4. Complex Types call times in ms

3) and user defined object (Figure 4). In all cases SWIM is
around twice as fast as Apache’s XML-RPC.

5.2 Distributing an example application

We created a simple application which ran on a single
machine. The application simulated a process heavy ap-
plication. We had a single class which had one method
publiccount() which counts from —23' to 23! — 1 in in-
crements of one. The test application creates twenty of
threads with each thread running the count method. The
application was run 50 times and the mean and 95% confi-
dence interval were calculated and are shown on in figure 3.
The number of SWIM nodes was 0, 2, 4, 8 and 16. In the
case of zero SWIM nodes the SWIM middleware was not
used an the application is running locally, in all other cases
the SWIM middleware was used and all invocations of the
count method are remote.

Task time to completion
90000 £ T T T T T T T

80000
70000
60000
50000
40000
30000
20000 1
10000 R

Time (ms)

0 2 4 6 8 10 12 14 16
Number of Swim nodes

Figure 3. Task completion times vs number of
SWIM nodes

Figure 3 shows the mean time to complete the compute
task over 50 runs. The application was unmodified in all
cases and the only change was the size of the SWIM pool.

Figure 3 shows that SWIM can be used to increase the pro-
cessing power available to an application, even if the appli-
cation has not been written with distribution in mind.

6 Limitations

SWIM does not have a serious form of security and au-
thentication for the SWIM pool. The closest it has are the
use of SSL sockets. Although these provide an encrypted
communications channel they do not stop any node from
making a connection to a SWIM node and attempting to
execute methods in any hosted object.

7 Conclusions and Future work

We have presented a motivation for dynamic and flexible
middleware which can be used in a number of scenarios and
which can easily change as the application evolves. Allow-
ing the programmer to decide how dependent he/she wishes
to be on the middleware at any given time.

We have presented SWIM and compared its overheads,
both programmer time and remote call time. Although it is
slower to execute than RMI the time taken to create a so-
lution using SWIM is much lower than when using RMI.
It was faster than XML-RPC in all cases and required sig-
nificantly lower programmer time. XML-RPC required the
implementation of a custom parser and serialiser before it
was able to pass ComplexType object from the client to the
server. RMI required that the ComplextType object imple-
mented the Serializable interface whereas SWIM imposed
no such requirement.

SWIM is rather simplistic when it comes to the auto-
matic distribution of objects with a SWIM pool. Once an
application has been distributed with the pool there is no au-
tomatic object migration so that objects are located to hosts
which are more suitable for them, such as collocating ob-
jects which communicate a lot or moving a process inten-
sive object to a SWIM pool node which is lightly loaded.

7.1 Further work

We envision a system which could be used to provide
increase processing capabilities to the application program-
mer with minimal effort on the programmer’s part. We wish
to remove the complication of dealing with a distributed
system from the application programmer whilst still hav-
ing the advantages of increased processor power to perform
scientific calculations. The components of the system can
be chosen as run-time and distributed across the available
computing resources with the trade-offs of several aspects
in mind, mainly performance and reliability.

The requirements of an application are expected to
evolve and change over time. As such each aspect of the

application can be expected to change, including how the
application is distributed. We propose a system which pro-
vides a range of APIs to the application programming, rang-
ing from transparent distribution of an application, through
guided distribution, to a standard API where objects are de-
signed and locations are assigned. This allows the program-
mer to make decision concerning how the application is to
be distributed only if they wish to do so and only if it would
be beneficially to the application. Providing a separation of
concerns of the application logic and the distribution logic
allows the programmer to concentrate on the application
logic.

References

[1] W. Cazzola, A. Ghoneim, and G. Saake. Ramses: a reflec-
tion middleware for software evolution. In n Proc. of the
35th Annual Meeting of the ACL and the 8th Conf. of the EA
CL (A CL/EA CL ’97, pages 56—63, 2004.

[2] J.B. Dennis. First version of a data flow prodecure language.
In Programming Symposium: Proceedings, Colloque sur la
Programmation (LNCS, vol 19), pages 362-376, 1974.

[3] D. Gelernter. Generative communication in linda. ACM

Trans. Program. Lang. Syst., 7(1):80-112, 1985.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable

Parallel Programming with the Message-Passing Interface.

The MIT Press, 1994.

G. Kirby, S. Walker, S. Norcross, and A. Dearle. A method-

ology for developing and deploying distributed applications.

Component Deployment, ser. Lecture Notes in Computer

Science, 3798:37-51, 2005.

[6] K. T. Lam, Y. Luo, and C.-L. Wang. Adaptive sampling-

based profiling techniques for optimizing the distributed jvm

runtime. In 2010 IEEE International Symposium on Parallel
and Distributed Processing (IPDPS), pages 1-11, 19th-23rd

April 2010.

G. Lee and J. Morris. Dataflow java: Implicitly parallel java.

In Computer Architecture Conference, 2000, ACAC 2000,

pages 42-50, 31 Jan - 03 Feb 2000.

A. Spiegel. Automatic Distribution of Object-Oriented Pro-

grams. PhD thesis, FB Mathematik und Informatik, Freie

Universitat Berlin, August 2002.

[9] G. K. Thiruvathukal, P. M. Dickens, and S. Bhatti. Java on
networks of workstations (javanow): A parallel computing
framework inspired by linda and the message passing inter-
face (mpi). In Concurrency: Practice and Experience Spe-
cial Issue: Message passing interface-based parallel pro-
gramming with Java, volume 12, pages 1093-1116, 2000.

[10] I. Wang. P2PS (Peer-to-Peer Simplified). In Proceedings of
13th Annual Mardi Gras Conference - Frontiers of Grid Ap-
plications and Technologies, pages 54-59. Louisiana State
University, February 2005.

[11] W. Zhu, C.-L. Wang, and F. C. M. Lau. Lightweight trans-
parent java thread migration for distributed jvm. In Interna-
tional Conference on Parallel Processing, pages 465-472.
IEEE, 2003.

4

—

[5

—

[7

—

(8

—

