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Abstract—We demonstrate that in a future converged network
scenario, it may be beneficial to allow selection of 802.11 variant
based on application requirements. We analyse traces from the
campus network from the University of Twente, comprising
∼5000 users. We have evaluated a performance envelope derived
from testbed experiments for individual IEEE 802.11 variants
and compare these with the traffic patterns from the campus
network. From our comparison, we find that specific IEEE 802.11
variants (e.g. 802.11g or 802.11n) may be better suited to specific
applications, such as video streaming, rather than using a single
WLAN standard for all traffic.

I. INTRODUCTION

Wireless networks (WLANs) are increasingly used in home
and office environments, and will feature in a Next Generation

Converged Networking context, in which we aim to move
services into IP networks – which may rely heavily on WLAN
for the access network. However, applications, used in such a
context are not often designed or built for use specifically over
WLAN. There is great value in determining the performance
of such applications on real networks from studies of network
traces [1]. In our discussion, we use the term group of appli-

cations (GoA) to refer to several use cases of application flows
with similar application domains. For example, the following
use-cases for a VoIP application would be classed in this paper
as the GoA for real-time audio: one-to-one chats, many-to-
many conference, one-to-many lecture.

In our recent work [2], [3], we have found that traffic
characteristics for individual GoAs, such as data rate and
packet size, have a great effect on the exhibited performance
in WLAN operation for the different 802.11 variants. We find
that the upper and lower bounds of GoA-neutral performance

envelopes can be evaluated, empirically, across a range of
flow constructions by controlled combinations of packet size
and offered load. Depending on their requirements, GoA
traffic profiles will lie somewhere within this envelope. For
instance, to compensate for loss, real-time applications often
use small packets and low data rates (with UDP). This may
in turn be dependent on the use of a specific video or audio
codec. Streamed multimedia flows (non-real-time), however,
can compensate for loss by use of playout buffering and
retransmissions, and so can operate with higher data rates
and packet sizes even if there is some loss (with UDP or
TCP). Bulk data transfers (e.g. file transfers) often just use
as much of the available capacity as possible (using TCP,
or a combination of TCP and UDP as in BitTorrent). Users
currently may roam between WLAN cells without any control
over the selected WLAN variant on a per-client basis without
manual intervention, and certainly have no control of use of

WLAN variant on a per-application basis. Additionally, current
hardware does not support such per-application configuration.
We find that the WLAN variant(s) used in a cell, however,
may impact the performance of flows within a specific GoA.

A. Contribution

Our contributions are to show that:

• different applications on the same client system may
be better served by different WLAN variants matched
to the performance requirements of different groups of
applications (GoA), and so future WLAN systems may
find benefit from using different WLAN variants on a
per-application basis.

• our analyses of the single flow traffic profile on a testbed
is useful in evaluating aggregate traffic patterns, for a
given group of applications (GoA), from a large network.

To investigate behaviour for traffic in different WLAN envi-
ronments, in this paper, we:

• determine performance envelopes for a wide range of
traffic flows in IEEE 802.11g & 802.11n in a testbed.

• use the testbed observations to help analyse the distribu-
tion of traffic profiles from a large WLAN traffic trace,
in the context terms of groups of applications (GoAs) .

We analyse NetFlow traces from the University of Twente
comprising ∼5000 WLAN users of IEEE 802.11n/g radio
cells. We empirically evaluate a range of GoA characteristics.
We then compare these to a performance envelope, based
on the operation of a single client, generated on an IEEE
802.11n/g testbed. While we have constrained ourselves to
802.11g and 802.11n for practical purposes (e.g. the network
configuration of the University of Twente deployment), our
methodology for generating the performance envelopes has
been applied to other IEEE 802.11 variants in our previous
work [2], [3]. The considered GoAs are: real-time audio, real-
time video, streamed (non-real-time) audio, streamed video
and bulk data transfers.

Our work is focussed on use-case (GoA) specific traffic
patterns, extracted from a campus network, with performance
envelopes generated from a WLAN testbed. For the future,
the traffic patterns may vary with applications and protocols
evolving over time. However, we see a trend that multimedia
GoAs prefer network conditions with low loss.

The remainder of this paper is as follows: In Section II
we overview some of the related research. In Section III, we
explain our methodology. Then, we describe our experimental
findings and the extracted traffic characteristics in Section IV.
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We provide concluding remarks and an outline for future work
in Section V.

II. RELATED WORK

Overall, no existing studies examines the performance of
specific IEEE 802.11 variants in the context of their suitability
for application-specific flows.

Henderson et al. [4] provide a rigorous analysis of trends
of the usage in the 802.11b wireless campus network of the
Dartmouth College in the US. Overall they define and consider
the following categories of applications: Bulk, Database, In-
teractive (e.g. IRC, AIM), Mail, P2P (e.g. Gnutella), Services
(e.g. X11, DNS), filesystem (e.g. SMB/CIFS), Streaming (e.g.
RealAudio), VoiP (e.g. Cisco CallManager), WWW, Other (all
named ports that do not fit into the other categories), Unknown
(all unnamed and unidentified ports). Similarly, we also have
groups of applications (GoA) which we analyse.

Fiehe et al. [5] examine performance in 802.11n experi-
mentally, considering signal strength attenuations. They do
not evaluate practical upper and lower bounds of operation
as determined by the flow characteristics. A similar discus-
sion applies to Shrivastava et al. [6], in which the authors
experimentally evaluate the impact on performance of 802.11n
features like MIMO, channel bonding and frame aggregation.
They also consider a scenario in which the presence of a
neighbouring 802.11g cell causes interference, in a specific
office environment and configuration. In [7]–[9] the authors
report on empirical measurements of performance in IEEE
802.11 networks. Their focus was on coverage, RSSI and inter-
ference. The authors provided measurements of performance
using ping to determine loss, and file transfers to determine
throughput, but they do not consider upper and lower bounds
of what is practically achievable. Suong et al. [10] used model-
based analyses to conclude that many small packets will result
in an increased probability of collisions.

As part of our study we also dealt with application/traffic
classification – a commonly used technique, which the re-
search community evolved over time from packet-based [11],
[12] to flow-based. Studies that identify application types and
assign them into specific categories/classes are popular for
network management practises and academic studies [13].

Karagiannis et al. proposed a method that is based on
the transport layer characteristics and therefore does not rely
on user payload inspection [14]. This method makes use of
two heuristics: one examines the source-destination IP pairs
that use both TCP and UDP to transfer data, while the sec-
ond monitors connection patterns of transport endpoints. The
growing applicability of clustering techniques and machine
learning may encourage the research community to consider
their application for the purposes of traffic classification [15],
[16] as well as intrusion and anomaly detection [17], [18].

III. METRICS AND APPROACH

A. Overview

We compared testbed results for a performance envelope,
with analyses of NetFlow data from a campus network. We

used the same testbed and harness as already described in [2],
[3] for our WLAN performance measurements. We extracted
traffic profiles from NetFlow traces comprising a base of
∼5000 users of 802.11n/g wireless networks operating at
2.4GHz at the University of Twente. The NetFlow data was
processed to extract specific traffic profiles (specified by data
rate of the offered load and packet size). The range of the
values for data rate and packet size were manually evaluated
for the individual groups of applications (GoA).

For our testbed, we assumed that most users did not
have the expertise to fine-tune their equipment and that most
deployed systems are used in ‘out-of-the-box’ configurations
(no performance tuning). Specifically:

• Standard WLAN configuration. We used only standard,
un-tuned WLAN setups. While many WLAN NIC drivers
and access points (AP) do permit various controls of the
hardware, this is not easily accessible or comprehensible
for modification by most users.

• Packet flow behaviour. To measure application-specific
performance (throughput and loss) we used a range of
UDP flows specified by packet rate and packet size to
evaluate the upper and lower performance bounds that
define our performance envelope.

B. Traffic Profile extraction from NetFlow Traces

We extract traffic profiles of both real-time and streamed
audio and video applications as well as bulk data transfers
from NetFlow formatted traces from the University of Twente.

1) NetFlow: NetFlow services provide network adminis-
trators with access to IP flow information from their data
networks. Network elements (routers and switches) gather flow
data and export it to collectors. The collected data provides
fine-grained metering for highly flexible and detailed resource
usage accounting. Generally, a flow is a set of packets that
share common properties. In [19], a flow is defined as a
unidirectional stream of packets between a given source and
destination, both specified by network-layer IP addresses and
transport-layer source and destination port numbers. As such,
a NetFlow v5 flow is identified by a combination of seven
connection specific fields (Source IP address & Port number;
Destination IP address & Port number; IP protocol type – e.g.
TCP or UDP; Type of service byte; Input logical interface)

In addition, a flow contains other accounting fields which
may differ slightly depending on the NetFlow version record
format. For instance, suppose that an SSH connection is
established from a client on host 12.14.2.3 port 1234 to a
server on host 13.18.5.6 port 22, and that the traffic passes
through a router that has NetFlow processing enabled. The
initial packet from the client to the server causes the router
to create a flow entry for {TCP, 12.14.2.3, 1234,

13.18.5.6, 22}. The response from the server to the
client causes the router to create a related flow {TCP,
13.18.5.6, 22, 12.14.2.3, 1234}. Data (packet
sizes, number of packets per second, etc.) from subsequent
traffic will be aggregated in these two flow records until one
of the terminating conditions for the flow are met.



2) Trace Description: The NetFlow data was captured at
the central router of the University of Twente in the Nether-
lands. This dataset represents a daily Internet audience of
∼5000 users. Most of these users have static IP addresses,
while the others have them dynamically assigned. A known
fraction of traffic originates from WLANs of the university
facilities, which operates at 802.11n/g at 2.4 GHz. We used
traces of weeks 35-36 in 2010 and weeks 8-9 in 2011. We
compared the statistics for this randomly selected time period
with other weeks and did not find significant differences. The
longest period for which the selected set of flow records can
be considered representative is seven weeks.

3) Traffic Profile Extraction: Since the identified GoAs
represent a general pool of applications and protocols, we have
used a simple approach for their differentiation. We define five
GoAs: (1) real-time audio; (2) real-time video; (3) non-real-
time audio; (4) non-real-time video; (5) bulk data transfers.
In order to assign a NetFlow record into one of these use
cases we first carried out a manual investigation (using tools
such as tcpdump and nfdump to identify traffic parameters
(packet size and data rate) for each class. For instance, in
the case of real-time video, we initialised Skype and Gtalk
Video sessions with different endpoints and monitored the
statistics of the resulting packets and flow records. This was
used to identify upper and lower bounds of expected packet
sizes (bytes) and data rates (Mbps) for the real-time video
use case. A similar procedure was carried out for the other
four GoAs. Real-time audio streams were based on the same
applications as above, and were tested with multiple endpoints.
Streaming video applications included: YouTube streams of
different quality (360p, 480p and 720p); Vimeo streams with
‘HD-off’ and ‘HD-on’, as well as streams from Dailymotion.
For streamed audio we considered a number of on–line music
players, like Last.fm and Grooveshark, as well as several on-
line radio stations and browser radio plugins. For the bulk data
GoA, we considered services like Megaupload and Dropbox
in combination with P2P and torrent clients, by measuring
characteristics of downloads of files of various sizes.

Based on these observations, we formed a set of five filter
rules that were fed into nfdump along with the traffic trace.
The produced output consisted of five NetFlow traces that
included records associated with each of the GoAs.

Next, we used a combination of nfdump and bash scripts
in order to extract the statistics for each traffic class, producing
distributions of packet size values and data rate for each
individual traffic class.

C. Testbed

We have experimentally measured performance in our
WLAN testbed. We generated packet flows of offered loads
with various packets sizes, and measured end-to-end perfor-
mance during the packet transmission. Our testbed (Figure 1)
consisted of a single client host, a host running a wireless
access-point (AP) and experimental control units for moni-
toring the WLAN environment, providing storage for mea-
surement data, ntp services and system configuration. The

WLAN hosts were setup in a teaching lab in the University of
St Andrews with a distance of ∼24±0.5 m between the 2 dBi
antennas. We have conducted our measurements using 11g and
11n at 2.4GHz to match the environment of the Twente trace.

Fig. 1. Schematic of test-bed showing physical connectivity. The testbed was
configured separately for 802.11g and 802.11n (20 MHz – default - channel
width), both with transmission (TX) powers of 17 dBm. The experiment
controller uses Ethernet for control messages and shared file-system access.
The distance between the client and access point antennas is 24±0.5 m. Data
packets generated by iperf were transferred across the WLAN link.

We tested 802.11n and 802.11g at 17 dBm (50 mW, a high
but typical indoor RF power – chosen to avoid measurements
being biased by poor RF conditions, and representing a best-
case scenario), and with a 20 MHz (default) channel width for
11n.This means that all our experimental workloads in Table I
are each executed twice, once with each of these combina-
tions. Our WLAN card uses the popular Atheros chipset. All
machines used Ubuntu 10.04 a minimal server distribution (no
desktop service daemons or GUI overhead), with the default
kernel 2.6.32-24-generic-pae, and updated WLAN modules
(compat-wireless-2011-05-02), which will soon be part of the
standard distribution. We have used hostapd (v. 0.6.9) as the
access point (AP). To avoid overhead and bias due to link
encryption and security mechanisms we disabled encryption
and security. To prevent experiments being disturbed by other
users, our WLAN cell did not broadcast the SSID in the
beacon interval.

D. Experiments

Packet generation and performance measurement for UDP
traffic was conducted using iperf for which the AP was
used as the server. A wrapper script at the client executed
iperf and extracted throughput and loss for individual UDP
flows using iperf server reports. The specific packet sizes
and bit rates of the UDP workload are given in Table I, for
which we choose a range into which most applications fall. We
use UDP as it is popular for Voice and Video over IP (VoIP
and ViIP) applications and because it allows better control of
application-specific offered load bit rates compared to TCP,
which is modulated by its congestion control behaviour.

TABLE I
UDP WORKLOAD.

Packet size 64; 1460 bytes
Bit rate of the 10; 50; 100; 500 Kbps
offered load 1; 5; 10; 15; 20; 25; 30 Mbps

Combination of packet size and bit-rate produces 22 tuples; 5 measurements
for each combination; 11g and 11n with 20MHz (default) channel width; each
flow had a duration of 120 seconds, giving over 7 hours of measurements.
We choose to test both 802.11 variants up to 30Mbps for offered load, for
comparison: this is just above the practical limit we observed for 802.11g.



IV. RESULTS AND DISCUSSION

We present the characterisation of GoAs from the traffic
profiles extracted from our traces by showing the distribution
of packet sizes and data rate for each individual use case i.e.
for each individual GoA. We compare that with the upper
and lower bounds of performance, i.e., with our performance

envelope, measured in our WLAN testbed. In addition to
throughput, we also show measurements for loss, as that is
often ignored in such investigations. In summary, our analyses
allows the identification of GoAs in which the of variation
in the flow characteristics is of such magnitude that users
will experience performance changes when roaming between
WLAN cells of the different 802.11 variants.

A. Use Case Specific Trace Analysis

Packet size distribution is, for each GoA, less skewed than
the corresponding data rate distribution. The latter’s skewness
increases with the average packet size of the specific GoA. In
Table II we summarise packet size and data rate distribution
by presenting the mean and standard deviation for traffic for
a specific GoA. As the data rate distributions are skewed, we
also show the mode value for the data rate distributions. We
see distinct traffic profiles for each GoA. To illustrate this in
more detail we show the cumulative frequency distributions
for all use case specific traffic profiles and flow parameters
in Figures 4–8. For our analysis we have used the trace as
described in section III-B2, i.e. the data is representative of
consecutive seven weeks in our trace. Distributions of traffic

TABLE II
THROUGHPUT AND PACKET SIZE DISTRIBUTION CHARACTERISTICS.

packet size [byte] data rate [Kbps]
GoA (use case) mean std mode mean std
real-time audio 147 42 43 70 26
real-time video 570 96 528 588 186
streamed audio 854 72 86 171 107
streamed video 1079 159 777 1562 1118

bulk data transfer 1434 42 219 688 3429

Mean data rate and packet size of use cases and classes of applications,
captured during one week in 2011, comprising about 1000 unique MAC
addresses – please see Section III-B2 for the trace description.

profiles for each GoA are skewed and have a coefficient vary-
ing from ≈ 0.4 to ≈ 3 (using Pearson’s skewness definition:
3.(mean−mode)/std). This is expected, since each GoA is
biased towards a certain type of flow type.

B. Flow Characteristic Dependent Performance Envelopes

Figures 2 and 3 show the measured average throughput
and loss in a 802.11g and 802.11n WLANs operating at
2.4GHz, with 20MHz channel width. This shows that at a
given data rate of the offered load (i.e. the application’s
data rate) throughput is related to the packet size. This is a
result of the MAC layer overhead (see [2] for more details).
Additionally we also see that loss increases for smaller packets
in 11n. In general we can say – based on these measurements
and our past experience – that a throughput gain comes at
the cost of increased loss. We illustrate that by including loss
plots for 802.11g and 11n in Figure 2 and 3. We see these

as the upper and lower bounds of throughput and loss in the
individual WLAN standards. Performance of real applications
will be somewhere within these performance envelopes.
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Fig. 2. Performance envelopes for 802.11g (17dBm TX power). Each point
is the mean of 5 flows of 120s, same data rate and packet size.
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Fig. 3. Performance envelopes for 802.11n (20MHz, 17dBm TX power).
Each point is the mean of 5 flows of 120s, same data rate and packet size.

C. Comparison of Performance Envelopes and Trace Analysis

When putting the performance envelopes in Figure 2 and 3
in context with our extracted traffic profiles (Table II), we
see that streamed video traffic flows occupy a performance
range where loss is more likely to occur in 11n but not 11g.
This is due to the range of packet sizes for that GoA. Even
though bulk data transfer traffic can have a high data rate it
may not suffer from too much loss as the packet size does
not vary as much as it does for streamed video. In our traffic
analysis we see that bulk data transfer exhibits data rates below
11g’s operational limit which does not result in a difference
in performance in our envelope of different WLAN flavours.
(Note that in Intranet use cases, for example, which are not part
of our analyses, local caches may result in higher data rates
and lower loss, potentially resulting in superior performance
in 11n than in 11g.) Real time applications, however, operate
with flow characteristics such that no significant performance
difference would be observed between 11g and 11n. That is,
from our performance envelopes, we see that at loads below
∼1 Mbps, there is little difference in throughput and loss
comparing 11n and 11g, but above ∼1 Mbps differences start
to appear, and they will impact different GoAs differently.

D. Practical implications of our results

We see from our measurements that with higher offered
load and larger packet sizes (Figure 2 and 3), although higher
throughput is achieved, there is comparatively higher loss for
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Fig. 4. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for real-time audio.
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Fig. 5. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for real-time video.
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Fig. 6. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for streamed audio.
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Fig. 7. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for streamed video.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 250 500 750 1000 1500

packet size [bytes]

 0

 0.2

 0.4

 0.6

 0.8

 1

10K 100K 1M 10M

data rate [bits/s]

Fig. 8. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for bulk data traffic.



802.11n, but not for 802.11g. Such loss is not suitable for real-
time audio and video. Indeed, our characterisation of the traffic
(Figures 4–8) show that real-time audio has smaller packets
sizes – less than 260 bytes – and lower data rates – less than
∼160Kbps. For real-time video, the relevant figures are packet
sizes of less than 700 bytes and data rates of up to ∼1.5Mbps
with the 90th-percentile at ∼880Kbps. For streamed audio and
video, we see higher data rates and higher packet sizes being
used, as these applications can tolerate loss. In 11g, we see
from our testbed that loss is not such a factor at equivalent data
rates of 11n (Figure 2 and 3). So, it is possible that a mixed
802.11 environment might exist in the future. The lower bit-
rate, real-time applications would use 11g to exploit better loss
characteristics, and the higher bit-rate streamed applications
would use 11n to obtain higher data rates. However, the client
systems would need to support simultaneous use of 11g and
11n, something that is not widely supported today (client
interfaces operate in either 11g or 11n, but AP interfaces can
use both). Another factor would be if the loss characteristics
of 11n could be improved at higher data rates.

V. CONCLUSIONS AND FUTURE WORK

From our previous work on WLAN performance [2], [3], we
find that application specific data rates and packet sizes impact
traffic performance. Here, we have characterised traffic from
a campus wireless network running 802.11g and 802.11n, by
extracting traffic profiles of five groups of applications (GoA):
real time audio, real-time video, non-real-time audio, non-real-
time video, and bulk data transfer. The flow characteristics of
the GoA profiles have then been put into context by examining
performance measurements conducted in our local testbed.
We have established performance envelopes which show the
upper and lower bounds of performance. We see that specific
GoA profiles have a greater probability of suffering from loss
in specific WLAN environments. Especially, real-time GoAs
seem to benefit from being used with 802.11g to exploit lower
loss. We compared the distributions of traffic characteristics of
the GoAs to our performance envelope for 11g and 11n. We
found that real-time traffic may be better suited to 11g (lower
loss), not benefiting from the higher rates of 11n (with higher
loss). Non-real-time and bulk data can make better use of 11n.

So, different GoAs may be better served by different 802.11
variants. Future deployments may wish to exploit this through
a parallel deployment of 11g and 11n, allocating these to
different applications, something which is not done today.
Alternatively, applications could be enabled to adapt their flow
characteristics to make best use of the 802.11 variant in use.

Future work items include: use of multiple clients; dual-
mode operation; testing various other 802.11 standards; exam-
ining operation in crowded environments [20]; and an extended
trace analysis for comparisons with other traffic studies.

ACKNOWLEDGEMENTS

We are grateful to our colleagues from Twente University
for access to NetFlow data. The work at St Andrews has been
supported mainly by the EPSRC-funded project IU-ATC.

REFERENCES

[1] V. Perelman, N. Melnikov, and J. Schönwälder, “Flow signatures of
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