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Abstract—Host multihoming allows individual hosts to be
multiply connected to the network, e.g. by concurrent use of two
network prefixes, each network prefix tied to a separate network
interface. Such multihoming capability improves the host’s ability
to implement such features as load-balancing, fail-over and multi-
path transport protocols. However, IP does not directly support
host multihoming today. The Identifier / Locator split solution
space is seen as one way for reducing such negative impact.
We present an evaluation of host-multihoming as a prototype
implementation of the Identifier Locator Network Protocol (ILNP)
on FreeBSD, as a superset of IPv6 – called ILNPv6. We demon-
strate load-balancing using ILNPv6 multihoming and compare
performance with IPv6 forwarding at the end host.

I. INTRODUCTION

The growth of the Internet routing table is a significant
problem. It is known that load balancing and multihoming

are the two principal factors involved. Whilst much of this
growth is at the edge [1]–[4] of the network, it impacts upon
the core network: the state required for these functions must
be propagated throughout the routing infrastructure.

There is significant overlap between node identity and
network location as represented by the way IP addresses have
been used for 35 years [5], [6]. Architectures which propose
a separation of location from identity may mitigate the effects
of routing table growth [1]. Whilst IPv6 has expanded the
address space, the routing and addressing architecture has
not changed to reflect location independence. The Identifier-

Locator Network Protocol (ILNP) is a host-based, end-to-end
‘ID/Loc’ architecture. ILNP nodes do not use IP addresses
but instead use Node Identifier and topologically-significant
Locators.

A multihomed host (or site) is connected to more than one
IP network. With IP today, multihoming and load balancing
must be implemented within the routing infrastructure. In
‘ID/Loc’ architectures, these may be realised as a choice
between network locations. ILNP advertises network location
values in the Domain Name System (DNS) [7]. Load balancing
can be viewed as a choice between these locations (based on an
additional policy), and therefore may be implemented without
requiring support from network routers or ‘middleboxes’. It
is, effectively, a policy applied to the forwarding plane.

A. Contribution

While ILNP is a radically different architecture, the claim
is that it can be implemented on the current codebase, rather
than requiring a ‘clean-slate’ approach. We examine how the
FreeBSD stack can be modified to implement ILNPv6 and

demonstrate multihoming and load balancing functions. We
evaluate its performance in comparison to IPv6. We use the
terms Locator and Identifier as defined in RFC6115 [8].

We begin in Section II by describing how an ‘ID/Loc’
split affects routing state for multihomed sites (and hosts).
After presenting some related work in Section III, we describe
how the ILNPv6 host architecture has been implemented in
Section IV, with emphasis on how existing Application Pro-
gramming Interfaces (APIs) are affected. Section V describes
our experimental configuration, method and results. Scalability
and performance is discussed briefly in Section VI, and we
conclude in Section VII.

II. BACKGROUND

The overloaded use of IP addresses today may be under-
stood by considering the bindings of an IP address within the
protocol stack [9], as shown in Table I. The second column
shows that IP addresses are used as both node identifiers and
topological locators. Whilst this table describes these in terms
of ‘names’ we do not discuss this beyond API compatibility.

TABLE I
USE OF NAMES IN IP AND ILNP

Protocol layer IP (v4 and v6) ILNP (ILNPv6)

Application FQDN*, IP address FQDN or app-specific
Transport IP address (node) Identifier (NID), NID
Network IP address Locator (L64), L64
(interface) IP address dynamic binding

* Fully Qualified Domain Name

The IP network layer and routing functions use the IP
address to identify IP sub-networks, i.e. network location.
Such use of IP addresses as locators requires that routers
exchange information about IP address prefixes and the paths
by which they may be reached, e.g. using routing protocols
such as the Border Gateway Protocol (BGP).

Transport layer communication protocols (such as TCP and
UDP) also use the IP address to identify nodes. In conjunction
with port numbers, these are used to uniquely identify sessions
between two hosts. However, as can be seen in Table I, the
overloaded use of the IP address creates an implicit binding.
Transport layer sessions become ‘bound’ to specific interfaces
as they are established, making it difficult to separate location
from identity within the current IP architecture. Host-based
approaches to the ‘ID/Loc’ split aim to disentangle these two
uses, which we discuss further in Subsec. IV-A and IV-J.

Multi-homing may be desirable for hosts, e.g. to achieve
robustness through diverse connectivity. However, it needs
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special treatment for IP [10]. Moreover, it contributes to rout-
ing table growth by requiring routers to advertise additional
prefixes. This can be demonstrated by considering Fig. 1. Here,
a site network uses two prefixes, P1 and P2. These must both
be visible upstream from the two ISPs, ISP1 and ISP2.

Fig. 1. Illustrative scenario for multihoming: a site network, with a site border
router (SBR), connecting to two separate ISPs. We assume that, in this case,
the site network has two routing prefixes, P1 and P2.

We assume that these prefixes are de-aggregated within
the global routing table, i.e. that connectivity to each ISP is
topologically diverse (common practice where BGP is used to
multihome sites). Such prefixes are also known as Provider

Independent (PI) prefixes, allocated to allow the user (the
end site) to maintain use of these prefixes even if their ISP
changes. Therefore, ISP1 and ISP2, as well as upstream routers
must advertise these prefixes separately. This is because they
form part of the IP address, which is used in end-to-end state
(identity) for hosts – see Table I. It follows that the additional
upstream routing state required for NP site prefixes with NI

upstream ISPs is O(NP .NI).
Whilst we have used site multihoming in our example (as

that is the more common case for IP today), a site would
need to support multihoming to allow individual hosts to be
multihomed, and the scalability analysis is the same.

III. RELATED WORK

A excellent summary of approaches to the ‘ID/Loc’ split
is provided in RFC6115 [8]. These may be divided into two
categories: network-based approaches which make the split
a property of the routing infrastructure (leaving IP addresses
unchanged at hosts), and host-based approaches which make it
a property of host address management (possibly introducing
new namespaces or addresses). In line with the IETF’s current
thinking regarding the ‘sunsetting’ of IPv4 [11], many of these
consider only IPv6. So, we constrain ourselves here to consider
three proposals with similar intent and scope to those of ILNP.

The Host Identity Protocol (HIP) [12] supports multihoming
and mobility. The ‘ID/Loc’ split is implemented using an
asymmetric key crypto-system; Host Identifiers (HI) are public
keys, Locators are IP addresses. Whilst a host can have many
HIs, each HI must identify a single host. HIs may exist in
public and private namespaces; they are never directly exposed
to the routing system, nor are they directly represented by
addresses. DNS maps a host name to a HI entry, using the
HIP Resource Record [13]. Modifications are required for
applications and transport protocols, using separate APIs to
expose HIP functionality. Applications must use HIs in place

of network addresses. Compared to ILNPv6, HIP poses an
additional requirement for use of cryptographic identities,
which may not be suited for all uses. Additionally, HIP
requires existing applications to be ported to a new API, while
ILNP can work with the existing sockets API (see later).

Level 3 Multihoming Shim Protocol for IPv6 (SHIM6) [14]
supports multihoming and traffic engineering for IPv6. SHIM6
is host-based and end-systems use two IPv6 address – one
as an Identifier and one as a Locator. It is implemented as
a shim underneath IPv6 transport protocol APIs. A four-way
handshake is used to establish a SHIM6 context (exchange of
Identifier and Locator values), and separate security mecha-
nisms are required to protect its signalling [15], [16].

The Locator/Identifier Separation Protocol (LISP) [17] pro-
poses a complete routing architecture and is not host based.
This has the advantage that end-host stacks do not need to
change. LISP’s Routing Locators (RLOCs) and Endpoint Iden-
tifiers (EIDs) re-use IP address values. LISP requires an in-
network mapping system between the two namespaces. LISP
uses a ‘map-and-encapsulate’ (map-encap) approach to for-
warding (i.e. tunnelling), creating an overlay mesh. Additional
headers are interposed between existing IPv4 header fields,
which are normally visible only to LISP-enabled routers. LISP
may require significant changes to some existing network
routers (perhaps the deployment of new routers). The map-
encap mechanism may impact existing applications, e.g. due
to MTU size issues, and use of tunnels.

HIP, SHIM6 and ILNP are host-based ‘ID/Loc’ architec-
tures. These approaches push deployment costs mainly to
the end-user, though there may be impact to site networks,
e.g. firewall configuration for new extension headers. Whilst
ILNP requires changes to the end-host stack, no shim layer
is required. It does not require additional IPv6 addresses for
signalling its protocol state. ILNP does not use tunnelling.

IV. ILNPV6 OVERVIEW

ILNP defines an ‘ID/Loc’ split architecture with experimen-
tal RFC status [9], [18]. It is specified for both IPv6 [19], [20]
and IPv4 [21]–[23] networks, i.e. ILNPv6 can be engineered as
a set of extensions to IPv6. In this paper, we discuss only those
aspects which apply to IPv6 hosts. As, architecturally, ILNP
is radically different from IP – there are no addresses in ILNP
– our implementation considers (1) what needs to change in
current stack engineering in order to enable ILNPv6; and (2)
what impact this could have on performance. This work has
taken a dual-stack approach to implementation, as described
further in RFC6740 [9] and RFC6741 [18].

Our implementation is based on FreeBSD 8.2, and is a
separate kernel module, ilnp6, with changes to the exist-
ing IPv6 stack. IPv6 applications may use ILNPv6 without
changes (described in Subsec. IV-I). Multihoming, fail-over,
and load- balancing are also transparent to IPv6 applications
(described in Subsec. IV-H).

A. Identifier-Locator Vectors

The term Identifier-Locator Vector (I-LV) [9, Sec. 3.3] refers
to an ID/Loc pairing encoded into an IPv6 packet, as shown



in Fig. 2. This is key to understanding how existing IPv6
functionality may be re-used to implement ILNPv6, including
the address assignment mechanisms. The L64 value is an
existing IPv6 routing prefix and has the same semantics. So,

no changes to core network routers are required to forward

ILNPv6 packets. The NID value is generated as for IPv6, but
interpreted differently in the end-system stack.

IPv6 Address (RFC3571 + RFC4291):

| 64 bits | 64 bits |

+--------------------------------+------------------------------+

| Unicast Routing Prefix | Interface Identifier |

+--------------------------------+------------------------------+

ILNPv6 Identifier-Locator Vector (I-LV) (RFC6741):

| 64 bits | 64 bits |

+--------------------------------+------------------------------+

| Locator (L64) | Node Identifier (NID) |

+--------------------------------+------------------------------+

Fig. 2. IPv6 unicast format with ILNPv6 unicast format. The ILNPv6 Locator
has the same syntax and semantics as that of an IPv6 routing prefix. The
ILNPv6 Identifier has the same syntax as an IPv6 Interface Identifier, but its
semantics are that of node identity and not an interface identity.

One motivation for the re-use of IPv6 address bits is that
no changes are necessary to any IPv6 network elements, other
than those end-hosts which participate directly in the ILNPv6
protocol. For IPv6 hosts, the scope of our changes is limited to
a subset of the networking stack. Therefore, IPv6 and ILNPv6
packets ‘on-the-wire’ are largely identical; we discuss their
differences below in Subsec. IV-F.

B. Local identifiers

Our implementation re-uses the existing IPv6 interface
identifier (IID) mechanism of RFC4291 [24, Sec. 2.5.1]. This
allocates a unique IID for each interface based on hardware
address. ILNPv6 re-uses the IID values as node identifier
(NID) values [9, Sec. 3.1]. A NID value need only be unique
within the scope of its Locator, but using existing IPv6
mechanisms, we achieve the same level of uniqueness for NID

values as for IPv6 IID values. Where such an identifier is not
available, the behaviour is implementation specific, although
the IPv6 address (or I-LV for ILNPv6) must be unique within
a subnet prefix [24, Appendix A].

For convenience (to aid development and debugging), we
modified the FreeBSD kernel to use some bits from an MD5
digest of the host name.1 The same NID value can be used
across all interfaces in ILNPv6.

C. Routing prefixes for locator values

In order to discover local L64 values, ILNPv6 re-uses the
existing IPv6 Router Advertisement (RA) mechanism. The
format of RA messages and their handling by the IPv6 stack
are unchanged, however we have added notifications of prefix-
related events (e.g. advertisements, expiry of existing prefixes,
or explicit withdrawal of a prefix by an on-link IPv6 router).
When the prefix list changes, ilnp6 updates the local list of
L64 values.

1IPv6 stacks derived from KAME ‘fall back’ to this behaviour, where no
hardware-based identifier is available.

D. Locator precedence

Locators have an additional property: precedence. This is
represented by a 16-bit unsigned integer value, with lower
values being preferred. Precedence allows multiple L64 values
to be used simultaneously, and interpreted as local policy
dictates. This property is not native to IPv6, therefore it
must be added to the network stack. During system initial-
isation, default precedence values are loaded from a local
policy table. The table is managed using a new system
command, ilnp6locctl. The implementation was derived
from FreeBSD’s ip6addrctl tool, which manages IPv6
default address selection policies [25].

E. Discovering peer I-LVs

ILNP applications are intended to use names, whereas IP
applications must use addresses. However, a node initiating
an ILNPv6 session must first learn a remote ILNPv6 node’s
L64 and NID values [18, Sec. 6]. In the ILNP architecture,
both may be advertised in the existing Domain Name System
(DNS). Moreover, existing naming APIs may be modified to
support ILNP. New DNS RRs have been defined for ILNP
[7], and commercial DNS implementations now support these
RRs.2 ILNP’s NID and L64 DNS RRs are analogous to the
AAAA resource record (RR) used for IPv6 addresses.

A host’s ‘stub resolver’ may be configured to use the
/etc/hosts file to resolve names. This may be for boot-
strapping or as a fallback measure when DNS is unavailable,
or through explicit configuration by the host’s administrator.
For IP, this file contains a static mapping of names to network
addresses, and is required during system initialisation. We have
extended the /etc/hosts syntax to include a 1:M mapping
of names to I-LVs, and this is summarised in Fig. 3. (Our
evaluation in Section V uses /etc/hosts.)
#

# /etc/hosts file extended syntax for ILNPv6

#

# L64 64-bit Locator value (in IPv6 address format)

# lprec the Locator’s precedence value

# NID 64-bit Node Identifier value (in Canonical EUI64 format)

# hostname a valid hostname value

#

# An entry -- an I-LV record -- has the structure:

#

# L64|lprec,NID hostname

#

# Example entries are:

2001:0db8:d00d:0000|10,02-1f-5b-ff-fe-ff-13-74 foo.yoyodyne.com

2001:0db8:cafe:0000|20,2a-37-37-ff-fe-1c-cf-fe bar.yoyodyne.com

Fig. 3. The extended syntax in /etc/hosts for ILNPv6.

IPv6 applications typically use the portable
getaddrinfo() API to resolve names to addresses; it is
specified in RFC3493 [26] as being protocol independent.3

Backwards compatibility is discussed below in Subsec.
IV-I. The getaddrinfo() API returns a linked-list of
addrinfo{} records, and may sort these records using the
prefix selection criteria in RFC6724 [25]. However, IPv6

2At the time of writing NLNetLabs NSD v3.2.15 and ISC BIND
9.9.3/9.8.5/9.6-ESV-R9 support RFC6742.

3Other naming APIs offer only a subset of getaddrinfo() functionality
(or are platform specific), therefore we do not discuss them here.



applications might discard records beyond the first result,
depending on how they are written. A request for an ILNP
name may return multiple L64 values. We have modified the
API to return all matching values from /etc/hosts in
order of locator precedence (not using RFC6724 criteria).

F. Session initiation and security

Having discovered a peer’s identifier (NID value) and lo-
cator set (L64 values), the node may then initiate an ILNPv6
session with that peer. ILNPv6 defines a new IPv6 destination
option: the Nonce Option [20], Fig. 4. It is defined for use
only by ILNPv6.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Next Header | Hdr Ext Len |Opt. Type 0x8b | Option Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Nonce Value /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 4. IPv6 Destination Option containing ILNPv6 Nonce (RFC6744)

The Nonce Option contains a 32-bit (or 96-bit) value unique
to each session (and peer), derived using the MD5 hash
algorithm. The first packet of an ILNPv6 session must include
this option in its headers. However, it is not required in all
session packets. This option has two roles. It flags a packet as
being an ILNPv6 packet and enables a handshake for ILNP
session initiation. It also protects against off-path attacks on
ILNPv6 sessions. If such basic security is insufficient, then
the use of IPsec is recommended [27, Sec. 4.4], with Identifier
values used as part of the IPsec Security Association in place
of IP addresses.

G. Locator updates

Once an ILNPv6 session has been established, no further
DNS lookups are necessary. Sessions use the ICMPv6 Locator
Update (LU) [21] message to communicate further changes
between peers (e.g. new connectivity, explicit withdrawals, and
changes in locator precedence). LU messages must include
the Nonce Option described above. Events which modify
the Locator set (described in Subsec. IV-C) will cause LU
messages to be sent by the ilnp6 module. Should intermittent
changes occur, these events are filtered within a time window
of 500ms to prevent bursts of redundant LU messages.

H. Locator selection

ILNP nodes may have many L64 values. The protocol does
not impose any defined behaviour on locator selection (i.e.
how a specific I-LV is resolved to the final IPv6 destination
during transmission). This flexibility permits several network
layer functions to be implemented at the host, without requir-
ing ‘middleboxes’ (e.g. multihoming and load-balancing). Site
administrators may define locator selection policies to achieve
the desired behaviour, using the precedence table described in
Subsec. IV-D.

To demonstrate this capability (and how locator selection
is intended to function more generally), we implemented a
simple per-packet volume (load) balancing algorithm (Fig. 5).
Each ILNPv6 packet transmission invokes this procedure. The

L64 values for the packet’s source and destination (s_ilv,
d_ilv) are rewritten [28, Sec. II-G] according to the state of
the locator(s) known to the session S. Whilst IPv6 datagrams
are not affected, the existing IPv6 output path is later re-used
by ILNPv6 transmission.

To re-use existing code, remote and local I-LVs are
‘mapped’ to IPv6 addresses, in ascending order of precedence.
Remote locators reside in a per-session tail queue, as a
Correspondent Cache [18, Sec. 5.4]. This choice was made
for ease of implementation, rather than performance.

Fig. 6 shows a combined call graph for transmit/receive
of ICMPv6 ECHO messages. The locator selection function
ilnp6_sess_select_ilvs() is highlighted in reverse
type, data plane in white, and control plane in yellow. Dashed
lines indicate IPv6 specific code paths. The FreeBSD kernel
function in6_selectsrc() looks up an output interface
and a source address from a provided IPv6 destination (the
host’s Forwarding Information Base (FIB) is used during this
process). Locator selection uses this function to resolve each
candidate I-LV (i.e. up to N+1 times, where N is the number
of active remote L64 values within the session). Unreachable
locators are rejected and are not used for volume balancing.
Finally, the selected L64 value is resolved to the source I-LV.

I. Compatibility with IPv6 applications

It would be desirable to allow IPv6 applications to use
ILNPv6 without changes.4 To do so, we use a lookaside

cache in our implementation. The cache ‘maps’ between the
application’s use of an I-LV (as if it were an IP address
provided to the sockets API), and the I-LV set resolved from a
name corresponding to an ILNP node (discovered within the
naming API).

The naming APIs and sockets APIs are orthogonal to each
other in terms of how they are used (and often their implemen-
tation, also). Consider that a typical IPv6 application (e.g. ssh
or a World Wide Web browser) will resolve a name to an IPv6
address using getaddrinfo(), and establish a connection
to a remote site by using the connect() function from
the sockets API. This function accepts network addresses, not
names, i.e. sockets are not visible to getaddrinfo(), and
names are not visible to connect().

In FreeBSD the socket API is part of the kernel, whereas
the naming API is part of the C runtime library, and cannot
directly manipulate sockets. Therefore, a ‘downcall’ to the
kernel is required. We use the sysctl API [29] to populate
the lookaside cache when an I-LV is resolved from a name.
The calling thread and process ID is recorded with each I-LV

to prevent inadvertent use of ILNPv6 by other applications.

When a socket API is invoked, the lookaside cache is
examined for an I-LV value corresponding to the IPv6 address
passed by the application. If there is a cache ‘hit’, the first
socket API call which matches the I-LV will use an ILNPv6
session (allocated on demand), and the socket will transition

4Backwards compatibility between IPv6 and ILNPv6 hosts is described in
RFC6740 [9, Sec. 8].



Fig. 5. Flowchart for the locator selection procedure (the reverse-type box marked ilnp6_sess_select_ilvs in Fig. 6). The plain (white) boxes steps
are common to all ILNP sessions. The shaded (orange) boxes are specific to volume (load) balancing, where the boolean variable VLB will be set to TRUE.
Parameters s and d denote the packet’s source and destination I-LVs. Each session has a set of locators rls advertised by the remote peer. The set of
candidate local locators clocs is ordered by their precedence prec, each with a count of transmitted packets tx. The variable oif points to the output
interface chosen by the host’s IPv6 source selection function in6_selectsrc(). Calls to this function are shown in slanted rectangles. loc() and nid()
refer to the upper and lower 64 bits of an I-LV. Concatenation of L64 and NID values to form an I-LV is also denoted by the + symbol.



icmp6_input

ilnp6_sess_select_ilvs

selectroute

icmp6_reflect ip6_output

rip6_output

in6_selectsrc in6_selectroute

in6_selectif

Fig. 6. Call graph for ICMPv6 transmit and receive in ILNPv6. The reverse-
type (black) box contains the locator selection procedure (shown in Fig. 5). It
performs control-plane and data-plane functions. The shaded (yellow) boxes
are unmodified IPv6 control-plane functions. The plain (white) boxes are IPv6
data-plane functions. Dashed lines indicate IPv6-only code paths.

to ILNPv6 operation. Entries persist for 1000ms after the last
socket API call, and IPv6 binaries are unchanged.

Alternative approaches (e.g. system call wrappers or
setsockopt() calls) would require changes to the API
(and, by extension, applications). However, such API changes
may be beneficial for new ILNPv6 applications to exploit
enhanced functionality and control in the future.

J. Location-independent sockets

ILNP sockets are independent of network location, and
transport protocols use only identifiers in the binding of their
endpoints. However, in the present IP architecture, sockets may
become bound to specific network locations as a side effect
of how IP addresses are used (Table I shows that it is used as
an identifier). This use is pervasive and historical [30].

Transport protocols (e.g. TCP, UDP) differentiate between
sockets by combining the network address and port number for
both local and remote endpoints, forming the 4-tuple. When
the bind() or connect() APIs are invoked, the host will
look up the interface used to reach the remote peer in the
host’s FIB, and select an appropriate source address.

Whilst the binding is to the IP address only, this implies that
sockets are bound to a specific interface (i.e. the interface used
to reach the next hop to the destination), as the source address
cannot be changed without disrupting existing connection
state. For ILNP sockets, the structure of the 4-tuple does not
change, although each address in the 4-tuple is interpreted as
an I-LV , and L64 values may be rewritten by locator selection
when a packet is transmitted.

Our evaluation in the next section uses ICMPv6, and there-
fore raw IPv6 sockets, which have simpler binding semantics
(they are ‘bound’ only in terms of an IP protocol number).
The changes required for TCP and UDP are for future work.

V. PERFORMANCE EVALUATION

We perform a comparative evaluation against IPv6 and not

an absolute performance evaluation. This is in keeping with
our aim to see how ILNP can be engineered into an existing
codebase. We evaluated our implementation in the VMware
Fusion v5.0.1 virtual machine monitor, running on a MacPro
(2x Quad-Core Xeon, 16GB RAM). Each VM image was

allocated 1 core and 1GB of RAM. This was our development
environment, which was convenient, but, in related work,
we are also interested in looking at ILNPv6 use in data-
centre scenarios [31], [32]. The behaviour of VMware Fusion
itself has not been profiled during this work. Rudimentary
observations of its possible impact on performance were made
using iperf, but are not reported here. Our analysis does not
include DNS lookups, as both ILNPv6 and IPv6 applications
perform these before session initiation.

A. Configuration

We tested the multihoming implementation with two inter-
faces, each with a separate Locator value. Fig. 7 illustrates the
experimental network topology. Each node had multihomed
connectivity to two ‘vmnet’ interfaces, to simulate Ethernet
sub-networks with physical separation.

Fig. 7. ILNPv6 experimental topology. All nodes are VM images running in
VMware Fusion. Node ilnp-ra ran an unmodified installation of FreeBSD
8.2, and was configured as an IPv6 router without forwarding. Its only
role was to advertise the two network prefixes shown (‘cafe’ and ‘d00d’),
using standard IPv6 Router Advertisements (RAs). Nodes ilnp-vm1 and
ilnp-vm2 ran a modified FreeBSD with ILNPv6 enabled. Network prefix
configuration was obtained dynamically from the IPv6 RA.

B. Method

We performed a quantitative performance study of the
ILNPv6 prototype, using bwping6.5 It transmits and receives
ICMPv66 ECHO streams, using a simple timed delay loop
with three parameters: goodput threshold, ICMPv6 ECHO
payload size, and total ICMPv6 traffic volume. Changes were
made to report mean RTT and standard deviation, in a format
suitable for processing by the R statistical software package.
We also verified that locator selection (and volume balancing)
operated correctly by modifying the fping67 utility to output
per-interface (per Locator) statistics. No ILNP-specific code
was added to bwping6 or any external tools.

C. Results

We ran IPv6 streams between unmodified FreeBSD kernels,
the ‘IPv6’ result group, as a benchmark against the ILNPv6
results groups. Measurements were performed for three ex-
perimental factors: Ethernet frame size (128 bytes and 1514
bytes); target goodput (1, 10, 20, 30, 40, 50 and 100 Mbps);
and load (volume) balancing mode (Locator preference values
of: 100/0 i.e. one interface is not used; 50/50 i.e. equal split;
and 80/20 i.e. unequal split). 5 trials were performed for each
factor group with results at 95% confidence (error bars may

5http://bwping.sourceforge.net/
6Two limitations prevent the use of ping6, iperf, and netperf: no

goodput threshold parameter, and no support for ICMPv6 packet generation.
7http://fping.org/



be too small to be visible in some cases), and a minimum trial
duration of 120 seconds. Mean RTT figures for all factors are
illustrated in Fig. 8a and Fig. 8b, with a 1-2-5 log scale. The
dashed lines are a visual aid to show trends in the data. Finite
sample correction was applied at higher data rates.

Volume balancing was evaluated by measuring the dis-
tribution of received ICMPv6 ECHO responses at two in-
terfaces (locators) where ILNPv6 was in use. During each
trial, 1000 ICMPv6 ECHO requests were sent by ilnp-vm1

to ilnp-vm2 over a 100s interval (i.e. a delay of 100ms
between requests). 5 trials were performed for each group,
with results at 95% confidence (loss is not visible at this scale).

The choice of the minimum frame size accounts for the
presence of the 32-bit Nonce Option (8 bytes). Whilst not
required in all packets, our evaluation does so for convenience.
The payload size was held constant within factor groups by
adding 8 bytes to the payload in IPv6 groups. For 128 byte
frames, the graph in Fig. 10 is derived from the group means of
measured goodput across trials, weighted by elapsed wallclock
time, and divided by requested goodput.

TABLE II
EXPERIMENT GROUPS WITH MEAN PACKET LOSS >100PPM

Frame (Bytes) Mbit/s Configuration % Loss
128 100 ILNPv6, 50/50 48.37
128 100 ILNPv6, 80/20 48.37
128 100 ILNPv6, 100/0 48.30
128 100 IPv6 41.79
128 20 ILNPv6, 100/0 0.15
128 20 ILNPv6, 50/50 0.12
128 20 ILNPv6, 80/20 0.02

VI. DISCUSSION

Fig. 9 shows that volume balancing – and therefore, locator
selection – functions as expected. This demonstrates one
application of ILNPv6 (and not IPv6). Responses are dis-
tributed within 0.1% of the requested weighting by precedence
value. However, we would expect a drop in performance
for ILNPv6 compared to IPv6, as additional processing is
required to enable the use of multiple Locator values and load-
balancing. (These are preliminary results from an unoptimized
implementation of ILNPv6.)

Both Fig. 8a and Fig. 8b show a fairly constant increase
in average RTT across ILNPv6 trials. Table II shows that
loss exceeded 48% for 128 byte frames at 100Mbit/s, for all
ILNPv6 factor groups (41% for IPv6). These were excluded
from further analysis. Loss for other factor groups was not
considered significant. We observed the same effect when
running iperf UDP sessions with identically sized frames.
Therefore, we believe that the VMware Fusion software switch
is being saturated at rates exceeding 10K packets-per-second
(pps). This has limited goodput to 18.8Mbit/s in the affected
trials, but impacts IPv6 and ILNPv6 equally.

Measured goodput for 1514 byte frames was not signifi-
cantly affected by ILNPv6. However, an overall reduction in
goodput was observed across all groups for 128 byte frames
beyond 10Mbit/s, as shown in Fig. 10. The volume of traffic
for each rate is fixed, and the load balancing algorithm is a

simple volume balancer. Therefore, the similar goodput we
observed across factor groups is expected.

Qualitatively, we believe that the higher average RTT results
and impeded goodput for 128 byte Ethernet frames are due
to the additional per-packet processing overhead of locator
selection (described in Subsec. IV-H). We reiterate that this
must be performed for each individual packet transmission,
and it is likely that the redundant FIB lookups have degraded
performance. (A detailed systems-level profiling of this be-
haviour is for future work.)

A. Scalability

ILNPv6 may also be used for site multihoming [33]. The
mechanisms for site multihoming are almost identical to those
used for host multihoming: a site border router provides a
convenient management point for optimising the management
of a site-wide function [31]. We have focused on modelling
host behaviour as this allows experiments to be constructed
more readily. However, the scalability analysis of routing state
is the same as for sites.

As discussed in Section II, no additional routing state is
required for ILNPv6. However, the Locator values are stored
in DNS, so there is a state displacement from routing state
to DNS state. The DNS state is O(1) in a single point in the
DNS, compared to O(NP .NI) state for all upstream routers
as is the current situation for IP. Moreover, the DNS lookups
will only be performed during session setup. This behaviour
is independent of the network layer (as is the case with IPv6),
therefore we have not studied it here.

B. Performance

We have identified ways in which performance can be
improved.8 The re-use of IPv6 functions has minimized engi-
neering change, but assumptions about the semantics of IPv6
addresses pervade the networking stack, creating engineering
challenges. For example, the in6_selectsrc() function
is normally used to resolve the source address of a socket
during connect() or bind() operations. These operations
normally take place only once during its lifetime. Each call
to in6_selectsrc() may acquire up to 6 locks (mutexes)
to serialize access to its required data structures. So, whilst
in6_selectsrc() is not the optimal solution, it shows
that existing IPv6 code can adapted for ILNPv6.

Locator selection can be optimised by eliminating redundant
lookups in the node’s FIB. Existing TCP/UDP implementa-
tions, including the BSD networking stack, may cache the
FIB entry used to reach a socket’s destination, and a similar
enhancement could applied to ILNPv6 also.

Two events modify the remote Locator set for a session:
DNS queries and ICMPv6 Locator Update (LU) messages
[19]. LU messages are asynchronous signals from the remote
correspondent node to indicate a change in its Locator set.
The cache may be updated when either the Locator set or
the forwarding entries change [35, Sec. 3.3.1 P2]. Thus,

8‘Premature optimization is the root of all evil.’ [34]
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O(N) lookups for each packet may be substituted with O(N)
advance lookups. For an ILNPv6 host with a single default
Locator, this cost becomes O(1). Moreover, direct access to
the FIB using rtalloc() [36] (not shown in Fig. 6) may
require only 2 mutexes, improving concurrency control.

Our implementation uses the Nonce Option to differentiate
ILNPv6 packets from IPv6 for session initiation. For conve-
nience, we include this option in all ILNPv6 packets, but it
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Fig. 10. Measured ICMPv6 goodput for 128 byte frames

should be possible to use a bit from the IPv6 Flow Label.
This may ease demultiplexing in a dual-stack IPv6/ILNPv6
implementation, especially in site border routers, as they
should not normally examine IPv6 Destination Options.

VII. CONCLUSION AND FUTURE WORK

We have implemented ILNPv6 in FreeBSD to support host
multihoming, showing it is possible to re-use IPv6 protocol
code for ILNPv6. We evaluated relative performance using



ICMPv6 ECHO traffic. We found that the relative performance
of the ILNPv6 implementation is similar to that for unmodified
IPv6. We observe very close performance with large packets
(1514 bytes), but degraded performance for small packets (128
bytes) above 10Mbps (≈50% of IPv6). However, with the op-
timisations discussed in this paper, we expect the performance
gap to narrow. So, we expect that host-based ID/Loc based on
ILNP to have relatively small performance overhead at the
end-systems.

The simple load balancing scheme described in Subsec.
IV-H is intended to demonstrate how network control functions
may be realised at hosts by application of the ‘ID/Loc’ split.
Therefore, we do not examine interoperability with existing
schemes load balancing schemes, e.g. site-based load balanc-
ing. Future work will extend the host-multihoming scenario
to site-multihoming, by modifying the host implementation to
combine with FreeBSD router functions. The address man-
agement mechanisms may be extended to support multi-path
transport protocols, such as MP-TCP [9, Sec. 5.2].

Additionally, ILNP multi-homing could be integrated with
mobility mechanisms based on ILNP [9, Sec. 6], leveraging
new features such as network layer soft hand-off [37].
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