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The (monotone) grid class Grid(M) is a permutation class defined by a gridding matrix
M whose entries are drawn from { , , }. This matrix specifies the permitted
shape for plots of permutations in the class. Each entry of M corresponds to a cell in
an M-gridding of a permutation. If the entry is , any points in the cell must form an
increasing sequence; if the entry is , any points in the cell must form a decreasing
sequence; if the entry is , then the cell must be empty. With a minor abuse of
terminology, we often refer to the matrix entries themselves as cells, calling entries
blank cells, and and entries non-blank cells. A permutation can have more than
one M-gridding. See Figure 1 for an example.

Figure 1: The five -griddings of 879614235

In this talk, we will consider the following questions:

• What does a typical large permutation in a given monotone grid class look like?
That is, what is the limit shape of the class?

• What is known (and what is not known) about the enumeration (exact and
asymptotic) of monotone grid classes?

The presentation will include several open questions, of varying perceived difficulty.

The Distribution of Points between Cells

The gridded class, consisting of all M-gridded permutations, is denoted by Grid#(M).
If σ# ∈ Grid#(M) then σ#

(i,j) denotes the number of points of σ# in cell (i, j).

A grid class Grid(M) is connected if it has a connected cell graph, which is the graph
whose vertices are the non-blank cells of M, and in which two vertices are adjacent if
they share a row or column and every cell between them is blank. For example, the

(connected) cell graph of is .

Key to our results is determining the proportion of points that occur in each cell in a
typical large M-gridded permutation. If Grid(M) is connected, then there is a unique,
explicitly computable, real M-distribution matrix ΓM = (γi,j) such that for any ε > 0,

lim
n→∞

P
[

max
i,j

∣∣σ#
(i,j)/n − γi,j

∣∣ ⩽ ε
]
= 1,

where, for each n, the gridded permutation σ# is drawn uniformly from Grid#
n(M).
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For example, if MT = , then ΓMT
=

( 1
6

1
3

1
6

0 1
6 0

0 1
6 0

)
.

Limit Shapes

Given a permutation class, it may be that almost all large permutations in the class
have the “same shape”. To formalise this idea, we make use of certain probability
measures which act as analytic limits of sequences of permutations. A permuton is
a probability measure µ on the unit square [0, 1]2 with uniform marginals. That is,
µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b − a, for every 0 ⩽ a ⩽ b ⩽ 1. There is a natural
topology on the space of permutons obtained by restricting the weak topology on
probability measures.

A permuton µσ can be associated with an n-permutation σ by taking its plot, scaling
it into the unit square, and replacing each point with a square of area 1/n2 and
density n, as illustrated in Figure 2.

Figure 2: A plot of the permutation π = 314592687, and a picture of the permuton µπ

Given a permutation class C, let σn be an n-permutation drawn uniformly at random
from Cn. If the sequence of random permutons (µσn)n⩾1 converges in distribution for
the weak topology to some (possibly random) permuton µ, then we say that µ is the
limit shape of C.

Every connected grid class has a deterministic limit shape whose support consists of
oblique line segments. For example, the limit shape for Grid(MT) is shown in Figure 3,
the top row and central column both having width 2

3 .

Figure 3: Plots of permutations of length 60, 120, 180 and 240 in Grid(MT), and the
limit shape of the class

Enumeration

Any monotone grid class whose cell graph is acyclic has a rational generating func-
tion. However, this result is nonconstructive, and no effective procedure is known
to establish the generating function of an arbitrary acyclic class. On the other hand,
acyclic gridded classes also have rational generating functions, which are straightfor-
ward to compute. This provides us with a strategy for determining the asymptotic
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enumeration of a connected acyclic grid class Grid(M):

1. Find ΓM, as described above.

2. For each ℓ ⩾ 1, determine how a typical large M-gridded permutation σ# must
be structured so that its underlying permutation σ has ℓ distinct M-griddings.
(Rare atypical structures can be ignored.) This involves analysing how the row
and column dividers may move, as in Figure 1.

3. Let σ#
n be a gridded permutation drawn uniformly at random from Grid#

n(M),
and let σn be its underlying permutation. By combining steps 1 and 2, calculate,
for each ℓ ⩾ 1, the asymptotic probability

Pℓ := lim
n→∞

P
[
σn has exactly ℓ distinct M-griddings

]
.

4. From its generating function, determine the asymptotic enumeration of the cor-
responding gridded class:

∣∣Grid#
n(M)

∣∣ ∼ θ# gn, where g is the exponential growth
rate of the class, and θ# is a constant.

5. Let κM := ∑
ℓ⩾1

Pℓ/ℓ = lim
n→∞

∣∣Gridn(M)|∣∣Grid#
n(M)|

. Then
∣∣Gridn(M)

∣∣ ∼ κM θ# gn.

For example, we have the following for Grid(MT):

1. ΓMT
is given at the top of the previous page.

2. Depending on the position of points relative to the row and column dividers,
a typical large MT-gridded permutation σ# may be such that its underlying
permutation σ has either 1, 2 or 4 distinct griddings.

3. The asymptotic probabilities are P1 = 1
9 , P2 = 4

9 and P4 = 4
9 .

4. The gridded class has generating function

F#
MT

(z) := ∑
n⩾0

∣∣Grid#
n(MT)

∣∣ zn =
1

1 − 5z + 4z2 .

Thus,
∣∣Grid#

n(MT)
∣∣ ∼ 4

3 × 4n.

5. The correction factor κMT
= 4

9 . Therefore, |Gridn(MT)| ∼ 16
27 × 4n.
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