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We give a pattern-avoidance characterization of a certain set of permutations arising
from Schubert calculus, solving a problem of Weigandt [9]. We begin by introducing
the definitions needed to state our result. Afterwards, we provide context and discuss
our motivation for finding such a characterization.

A bumpless pipe dream (BPD) of size n is a tiling of an n× n grid with tiles of the form

such that n pipes enter from the bottom and exit to the right [3]. Labeling the pipes
in increasing order from left-to-right as the enter, one obtains an associated permutation
by reading the pipe labels from top-to-bottom as they exit, treating multiple crossings
between a pair of pipes as turns if such an occurrence exists. A BPD is reduced if no
two pipes cross more than once and non-reduced otherwise.

1 2 3 4

1
2
4
3

reduced
1 2 3 4

2
1
4
3

non-reduced

Write BPD(w) for the bumpless pipe dreams with associated permutation w. We refer
to the and tiles as elbows. Every BPD is completely determined by the location of
its elbows [8]. Note that BPDs are in bijection with alternating sign matrices (ASM)
by replacing each with a 1, each with a −1, and all other tiles with a 0 [8]. In
recent work, Weigandt defined a co-BPD object corresponding to each BPD.

Definition 1 ([9]). For a given bumpless pipe dream B, its corresponding co-bumpless
pipe dream co(B) is defined by exchanging tiles as follows:

←→ , ←→ , ←→ , ←→ .

In other words, the locations of the elbows are the same, but now pipes enter from the
top instead of the bottom while still exiting to the right. Labeling pipes in increasing
order from left-to-right as they enter, co(B) traces out a permutation by reading the
pipe labels from top-to-bottom as they exit, treating any multiple crossings as turns.
The permutation associated to B may be different from the one co(B) traces out.
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A co-BPD is reduced if no two pipes cross more than once and non-reduced otherwise.
Notice that co(·) does not necessarily preserve reducedness as seen in the example
above. We refer to the set {co(B) : B ∈ BPD(w)} as the co-BPDs for w.

We now state our main result.

Theorem 2. All co-BPDs for a permutation w are reduced if and only if w avoids the seven
patterns 1423, 12543, 13254, 25143, 215643, 216543, and 241653.

Motivation

We now provide context to motivate our result.

Schubert polynomials Sw are a celebrated family of functions indexed by permuta-
tions w ∈ Sn. They generalize Schur functions and represent cohomology classes of
Schubert varieties in the complete flag variety [4]. Grothendieck polynomials Gw are
K-theoretic generalizations of Schubert polynomials [5].

There are several known combinatorial formulas for Sw. One of the earliest is the pipe
dream (PD) model of Billey–Bergeron [1] that extends to Gw by Fomin–Kirillov [2]. A
more recent one is the bumpless pipe dream (BPD) model of Lam–Lee–Shimozono [3]
that was also extended to Gw by Weigandt [8] using the connection to ASMs.

For a permutation w, let bpd(w) ⊆ BPD(w) be the subset of bumpless pipe dreams
for w that are reduced. For B ∈ BPD(w), define blank(B) to be the set of locations of
each tile and jay(B) to be the set of locations of each tile. We can then define Sw
and Gw as sums over bumpless pipe dreams given the following monomial weighting:

Sw = ∑
B∈bpd(w)

∏
(i,j)∈blank(B)

xi ; ([3])

Gw = ∑
B∈BPD(w)

(−1)ℓ(w)

 ∏
(i,j)∈blank(B)

−xi

 ∏
(i,j)∈jay(B)

1− xi

 . ([8])

Both families of polynomials are bases for the polynomial ring Z[x1, . . . , xn]. Their
change of bases formulas have been studied combinatorially by both Lenart [7] and
Lascoux [6] using the pipe dream model. Weigandt introduced these co-BPD objects
to provide analogous formulas using bumpless pipe dreams.

Theorem 3 ([9]). Let aw,v = #{B ∈ BPD(w) : co(B) reduced & traces out v}. Then

Gw = ∑
v
(−1)ℓ(v)−ℓ(w)aw,v ·Sv .

Theorem 4 ([9]). Let bw,v = #{B ∈ bpd(w) : co(B) traces out v}. Then

Sw = ∑
v

bw,v ·Gv .
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Theorem 3 naturally leads to asking which permutations have ∑v aw,v = |BPD(w)|,
which is answered by our main result Theorem 2. It is interesting to note that the
solution in the BPD setting is more complicated than the corresponding one in the
pipe dream setting, where it is simply 132-avoiding (i.e., dominant) permutations.

Future Directions

For a given w, little is known about the possible v that can contribute to aw,v. However,
as a corollary of our main result we can at least say the following.

Corollary 5. If B is a non-reduced BPD, then co(B) traces a permutation containing the
reverse of at least one of the patterns from Theorem 2.

On the other hand, we wonder what one can say about the set of permutations con-
taining one of the patterns 1423, 12543, 13254, 25143, 215643, 216543, or 241653 from
Theorem 2. Notably, is there an alternate description of this set of permutations using
other notions of pattern containment?
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