Some integer values in the spectra of the Cayley graphs of colored permutations generated by prefix reversals

Saúl A. Blanco

Indiana University, Bloomington

This talk is based on joint work with Charles Buehrle

If *G* is a graph with adjacency matrix A(G), then we refer to the set of eigenvalues of A(G) along with their respective multiplicities as the *spectrum of G*. Cayley graphs are fundamental structures in algebra, and understanding their spectral properties sheds light on their structure. Some of these graphs have extremely nice spectra. For example, consider the so-called *Transposition graphs*, where two permutations π_1 and π_2 are connected by an edge if and only if there is a transposition *t* such that $t\pi_1 = \pi_2$. The transposition graph is *integral*, meaning that all of its eigenvalues are integers.

Another interesting Cayley graph is the so-called *Pancake Graph* P_n that arises from connecting permutations π_1 and π_2 if and only if there is a prefix reversal r_i such that $r_i\pi_1 = \pi_2$, with $1 < i \le n$. Recall that a prefix-reversal is a permutation that in one-line-notation can be written as $r_i = i (i - 1) \cdots 1 (i + 1) \cdots n$. In other words, r_i reverses the prefix 1 2 3 \cdots *i* and leaves any element j > i fixed. For example, in S_5 , $r_3 = 32145$ and $r_5 = 54321$. The spectrum of P_n has been studied previously. For instance, Dalfó and Fiol [3] showed that the spectrum of P_n contains all elements from the set $[n - 1] \cup \{-1, 0\}$.

Let us use \mathbb{Z}_m to refer to the group of integers modulo m. We refer to the group $\mathbb{Z}_n \wr S_n$, where \wr denotes the standard wreath product, as the group of *colored permutations* (referred to as index permutations by Steingrímsson in [4]). One can write the elements of $\mathbb{Z}_m \wr S_n$ as strings of the form $a_1^{e_1}a_2^{e_2}\cdots a_n^{e_n}$ with $a_i \in [n]$ and $e_i \in \mathbb{Z}_m$ for $1 \le i \le n$.

Consider $\pi_1^{e_1}\pi_2^{e_2}\cdots\pi_n^{e_n}\in\mathbb{Z}_m\wr S_n$ and $1\leq i\leq n$. Then define

$$r_i(\pi_1^{e_1}\pi_2^{e_2}\cdots\pi_n^{e_n})=\pi_i^{a_i}\pi_{i-1}^{a_{i-1}}\cdots\pi_1^{a_1}\pi_{i+1}^{e_{i+1}}\cdots\pi_n^{e_n}$$

where $a_i = e_i + 1 \mod m$. Notice that each r_i has an inverse given by

$$r_i^{-1}(\pi_1^{e_1}\pi_2^{e_2}\cdots\pi_n^{e_n})=\pi_i^{b_i}\pi_{i-1}^{b_{i-1}}\cdots\pi_1^{b_1}\pi_{i+1}^{e_{i+1}}\cdots\pi_n^{e_n}$$

where $b_i = e_i - 1 \mod m$.

We furthermore refer to the set $R_n := \{r_i, r_i^{-1} : 1 \le i \le n\}$ as the set of generalized prefix reversals, or prefix reversals for simplicity.

A natural variation of pancake graphs is to use the colored permutations $\mathbb{Z}_m \wr S_n$ as set of vertices and the set $\{(s\pi_1, \pi_2) \mid s \in R_n \text{ and } \pi_1, \pi_2 \in \mathbb{Z}_m \wr S_n\}$. This graph is called the *prefix-reversal graphs*, which we denote by P(m, n).

The case m = 2 is known as the *Burnt Pancake Graph*, denoted by BP_n . In [1], Blanco and Buehrle proved that the spectrum of BP_n contains all integers in the interval $[0, n] \setminus \{\lfloor n/2 \rfloor\}$.

In this work, the authors extend their result to all prefix reversal graphs with m > 2. More precisely, they establish the following theorem.

Theorem 1. *The spectrum of* P(m, n) *contains all even integers in the set* $[0, 2n] \setminus \{2\lfloor n/2 \rfloor\}$ *.*

Furthermore, one can also consider the *directed prefix-reversal graph* DP(m, n); that is, the graph with vertex set $\mathbb{Z}_m \wr S_n$ and edge set $\{(r_i \pi, \pi) \mid 1 \le i \le n, \pi \in \mathbb{Z}_m \wr S_n\}$. Notice that DP(m, n) is obtained by not considering the inverses r_i^{-1} with $1 \le i \le n$. We prove that the spectrum of DP_n contains all integers from $[0, n] \setminus \{2\lfloor n/2 \rfloor\}$.

In other words, the spectra of all these prefix-reversal graphs contain a range of consecutive integers or even integers, respectively. This is not a common spectral property of a family of graphs.

In the case where m = 4k for some positive integer k, we can prove that the entire range of even integers in [0, 2n] is included in the spectrum of P(m, n) and that all integers in the interval [0, n] are included in the spectrum of DP(m, n).

One of the notions of the *spectral gap* of a graph *G* refers to the difference between the largest and second-largest eigenvalue of A(G). Our results provide a bound for the spectral gap of these prefix reversal graphs, though the true spectral gap remains unknown still. The matter of finding the spectral gap for some of these prefix-reversal graphs was also addressed by Chung and Tobin in [2]. Although they did not provide a bound, they observed that the spectral gap seems to be getting smaller as $n \to \infty$. We are able to observe the same phenomenon in the spectra of P(m, n) and DP(m, n).

References

- [1] Saúl A. Blanco and Charles Buehrle. Some integer values in the spectra of burnt pancake graphs. *Linear Algebra and its Applications*, 703:163–172, 2024.
- [2] Fan Chung and Josh Tobin. The spectral gap of graphs arising from substring reversals. *Electron. J. Comb.*, 24(3), 2017.
- [3] C. Dalfó and M.A. Fiol. Spectra and eigenspaces from regular partitions of cayley (di)graphs of permutation groups. *Linear Algebra and its Applications*, 597:94–112, 2020.
- [4] Einar Steingrímsson. Permutation statistics of indexed permutations. *European Journal of Combinatorics*, 15(2):187–205, 1994.