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Consider the following parking scenario. There are n cars attempting to park in n
spots on a one way street, and their preferred parking spot of each car is recorded as
a tuple α = (a1, a2, . . . , an) ∈ [n]n. As each car parks, it drives to its preferred spot and
parks there if it is available. If that spot is not available, the car continues driving and
parks in the next available spot. If all the cars are able to park in their preferred spot,
or at most ℓ away from that spot, we call α an ℓ-interval parking function. Let IPFn(ℓ)
denote the class of ℓ-interval parking functions of length n. These were introduced by
Aguilar-Fraga et al. [1] generalizing work of Colaric et al. in [6].

Enumerative results on ℓ-interval parking functions with ℓ ≥ 1 also give connections
between this set of parking functions and Dyck paths with restricted height and to
preferential arrangements [1]. However, one aspect that is not well understood is the
discrete statistics of these combinatorial objects. In this talk, we study inversion, major
index and area statistics on the set of ℓ-interval parking functions.

We start with a natural question: Are inversion and major index equidistributed on
the set of ℓ-interval parking functions? Clearly, the answer is “yes” for ℓ = 0, n − 1
since these are permutations and parking functions, respectively. But what about the
ℓ in between? We provide a complete answer: first, recall the classical Foata transform
on words turns a word w into a word w′ such that inv(w) = maj(w′).

Theorem 1. Let 1 ≤ ℓ ≤ n − 2.

1. If ℓ ∈ {1, 2, n− 2}, then the Foata transform restricts to a bijection IPFn(ℓ) → IPFn(ℓ).

2. If ℓ ̸∈ {1, 2, n − 2}, then inversion and major index are not equidistributed on IPFn(ℓ).

The ℓ = 1 in fact follows from the existence of Sn-action on IPFn(1) [5]. Interestingly,
there does not appear to be any Sn-action for ℓ = 2, n − 2.

Next, we use area to give enumerative formulas for ℓ-interval parking functions. For
a permutation σ = σ1σ2 · · · σn ∈ Sn and index i ∈ [n], define

Lℓ(i; σ) = min(ℓ+ 1, i − t + 1) (1)

where σt, σt+1, . . . , σi is the longest contiguous subsequence of σ such that σk ≤ σi for
all k ∈ [t, i]. The case ℓ = n − 1 (which includes all parking functions, without the
ℓ-interval restriction) was studied in [7]. Recall that the area of a parking function
α ∈ PFn is the quantity area(α) = ∑n

i=1 i − αi.
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Proposition 2 ([7] ℓ = n − 1). Let 0 ≤ ℓ ≤ n − 1. For all σ ∈ Sn, we have

∑
α∈IPFn(ℓ)

qarea(α) = ∑
σ∈Sn

n

∏
i=1

[Lℓ(i; σ)]q.

We call a 1-interval parking function a unit interval parking function and denote
UPFn = IPFn(1). This set is enumerated by the Fubini numbers [4, 10] and unit
interval parking functions has been shown to be connected to many other famous
combinatorial objects such as the combinatorial game of the Tower of Hanoi [2], the
facets of the permutahedron [5], and Boolean intervals in the weak Bruhat order of
the symmetric group [9] to name a few. We can refine our results for unit interval
parking functions by considering are and inversions simulateously.

Corollary 3. For all n ≥ 1, ∑α∈UPFn
qarea(α)tinv(α) = ∑σ∈Sn

(1 + q)asc(σ)tinv(σ).

Let X be a finite set, let X(q) be a polynomial in q such that X(1) = |X|, let C = ⟨g⟩
be a cyclic group of order n acting on X, and let ω be a primitive complex nth root of
unity. The triple (X, X(q), C) is said to exhibit the cyclic sieving phenomenon (CSP) [11]
if X(ω j) = |{x ∈ X : cj(x) = x}| for every c ∈ C.

As shown in [5, Lemma 3.12, Proposition 3.13, Corollary 3.14], there is an Sn-action
on UPFn that fixes area. The cyclic subgroup Cn of Sn generated by the cycle g =
(1, 2, . . . , n) ∈ Sn acts on UPFn by restricting the Sn-action on UPFn to Cn. For k ∈ N,
let UPFn,k be the set of unit interval parking functions with area k and set

fn,k(t) = ∑
α∈UPFn,k

tinv(α).

Theorem 4. The triple (UPFn,k, fn,k(t), Cn) exhibits CSP for each n and k.

Finally, the Lehmer code of a permutation σ is the sequence L(σ) = (a1, . . . , an) so that
ai = #{j < i | σ−1(i) > σ−1(j)}. The map σ 7→ L(σ) defines a bijection between
Sn and the set En := ∏n−1

i=0 [0, i]. Unit interval parking functions also have a notion
of Lehmer code: a cipher is a pair (w, I) of w ∈ En and a selection of positions I =
{i1, . . . , ik} such that Asc(w) ⊆ I, viewing w as a word. Let Gn denote the set of
ciphers of length n. The following theorem is a consequence of work by Avalos and
Bly [3].

Theorem 5. There is a bijection ψ : UPFn → Gn such that for each α ∈ UPFn, if ψ(α) =
(w, I), then inv(α) = ∑n

i=1 wi, |I| = area(α) and if σi is the car parking in spot i, then
L(σ1 · · · σn) = w.

Ciphers are a great way of understanding unit interval parking functions. For in-
stance, they can very quickly allow you to derive a new proof of the following.

Corollary 6 ([9, Theorem 1.2]). Unit interval park functions with j inversions and n − k
blocks all of size 1 or 2 are in bijection with rank k boolean intervals [u, v] of Sn under the
right weak order with inv(u) = j.

To conclude, we discuss a number of different statistics that we would like to know
more about for ℓ-interval parking functions.
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