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Let S o
n denote the set of permutations in Sn all of whose cycles have odd length. Let

S e
n be the set of permutations all of whose cycles have even length, except possibly

for one cycle of length one (i.e., a fixed point). It is known that |So
n| = |S e

n| for all n,
as one can show using exponential generating functions. When n is even, a bijective
proof appears in Bóna’s book [2, Lem. 6.20], and it is not hard to extend it to odd n.

In a recent preprint [1], Adin, Hegedűs and Roichman proved that that the identity
|So

n| = |S e
n| has a surprising refinement. For π ∈ Sn, denote its ascent and descent

sets by Asc(π) = {i ∈ [n − 1] : πi < πi+1} and Des(π) = {i ∈ [n − 1] : πi > πi+1}.

Theorem 1 ([1]). For any n and any subset J ⊆ [n − 1],

|{π ∈ S o
n : Asc(π) = J}| = |{π ∈ S e

n : Des(π) = J}|.

The proof in [1] relies on a new generating function identity on higher Lie characters,
so a natural question is whether Theorem 1 has a bijective proof. Unfortunately,
Bóna’s bijection between S o

n and S e
n does not behave well with respect to descent sets.

Our main result is a bijective proof of Theorem 1. More specifically, we prove the
following, from where Theorem 1 follows by the principle of inclusion-exclusion.

Theorem 2. For any n and any subset S ⊆ [n − 1], there exists an explicit bijection

f : {π ∈ S o
n : Asc(π) ⊆ S} → {π ∈ S e

n : Des(π) ⊆ S}. (1)

Our proof combines two known bijections between permutations and multisets of
necklaces, together with a new bijection for Lyndon factorizations of words. We sum-
marize the main ideas below. For more details and examples, we refer the reader
to [3].

Let S = {s1, s2, . . . , sk−1}< ⊆ [n − 1]. Denote its associated composition by α = α(S) =
(s1, s2 − s1, . . . , sk−1 − sk−2, n − sk−1), and define the monomial xα = ∏k

i=1 xαi
i . Fix a

totally ordered alphabet A = {a1, a2, . . . , ak}. Denote by W = A∗ the set of finite
words over A, and by Wn the set of those of length n. Two words u, v ∈ W are
conjugate if they are cyclic rotations of each other. A necklace is a conjugacy class of
words in W . A word u is primitive if it is not the power of another word. A necklace
is primitive if it is the conjugacy class of a primitive word.

Let Mn be the set consisting of all multisets of primitive necklaces of total length n.
The cycle structure of M ∈ Mn is the partition of n whose parts are the lengths of the
necklaces in the multiset, and its weight is the monomial wt(M) = xα1

1 xα2
2 . . . xαk

k , where
αi is the number of times that ai appears in M. Define the weight of a word w ∈ W
similarly. Let Mo

n be the set of elements in Mn which consist of distinct necklaces of
odd length, and let Me

n be the set of those which consist of necklaces of even length,
except possibly for one necklace of length one.
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We start by applying a bijection due to Gessel and Reutenauer [5, Lem. 3.4] to the
right-hand side of equation (1). Even though the original bijection is defined on
words, we interpret it as a map from permutations to multisets of necklaces that
preserves the cycle structure. When applied to S e

n, we get the following.

Proposition 3. There exists a bijection

ΦS : {π ∈ S e
n : Des(π) ⊆ S} → {M ∈ Me

n : wt(M) = xα(S)}.

The bijection ΦS does not work well with permutations whose ascent set is contained
in S. Instead, to deal with the left-hand side of equation (1), we use a different
bijection that, in a slightly different form, has appeared in work of Gessel, Restivo and
Reutenauer [4, Sec. 3], and is also a special case of a bijection due to Steinhardt [7]. In
general, the necklaces in the image of this bijection may not be primitive or distinct,
but they are when we restrict to S o

n.

Proposition 4. There exists a bijection

ΞS : {π ∈ S o
n : Asc(π) ⊆ S} → {M ∈ Mo

n : wt(M) = xα(S)}.

Consider the lexicographic order on W , which we denote by <. A primitive word
in W is called a Lyndon word if it is strictly smaller than all the other words in its
conjugacy class; equivalently, if it is strictly smaller than all of its proper suffixes [6,
Prop. 5.1.2]. Lyndon words are in one-to-one correspondence with primitive neck-
laces, since each conjugacy class of primitive words has a unique lexicographically
smallest element. Denote by L the set of Lyndon words in W . The following is a
well-known result of Lyndon.

Theorem 5 ([6, Thm. 5.1.5]). Every w ∈ W has a unique Lyndon factorization, that is,
an expression w = ℓ1ℓ2 . . . ℓm where ℓi ∈ L for all i, and ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm.

Identifying primitive necklaces with Lyndon words allows us to view multisets of
primitive necklaces as Lyndon factorizations of words: each necklace in M ∈ Mn
becomes a Lyndon factor of the associated word w ∈ Wn.

Let W o
n be the set of words in Wn all of whose Lyndon factors have odd length and

are distinct. Let W e
n be the set of words in Wn all of whose Lyndon factors have even

length, except possibly for one factor which has length one. The above identification
gives straightforward bijections between Mo

n and W o
n, and between Me

n and W e
n.

Using Propositions 3 and 4, Theorem 2 is now equivalent to the following.

Theorem 6. There exists a weight-preserving bijection Ψ : W o
n → W e

n.

To describe the map Ψ, we need the one more definition. The standard factorization of a
Lyndon word w ∈ L \ A is the expression w = rs where s is the longest proper suffix
of w that belongs to L, or equivalently, the lexicographically smallest proper suffix of
w. It is known [6, Prop. 5.1.3] that, in this case, r ∈ L and r < rs < s.

2



Given w ∈ W o
n, we build Ψ(w) by repeatedly applying certain updates to a pair of

words (O, E). Initially, (O, E) = (w,−), where − denotes the empty word. Each step
moves some subword from O to the beginning of E. At any time, all the Lyndon
factors of O are odd and distinct, and all the Lyndon factors of E are even. At the end
of the algorithm, we have (O, E) = (−, Ψ(w)).

Definition 7 (The bijection Ψ). On input w ∈ W o
n, initially set (O, E) = (w,−), and

iterate the following step as long as |O| ≥ 2:

• Let O = o1o2 . . . om be the Lyndon factorization of O. Say that om is splittable if
|om| ≥ 2 and its standard factorization om = rs satisfies s < om−1 (if m = 1, then
om is splittable by convention). Update (O, E) to

(O′, E′) =


(o1o2 . . . om−1r, sE) if om is splittable and r has odd length,
(o1o2 . . . om−1s, rE) if om is splittable and r has even length,
(o1o2 . . . om−2, omom−1E) if om is not splittable.

If we reach |O| = 1 (this case only occurs when n is odd), move this letter to the
Lyndon factorization of E by inserting it as a new factor, in the unique location that
keeps the factors weakly decreasing from left to right.

Once O is empty, let Ψ(w) = E.

With some work, we can show that Ψ is a weight-preserving bijection Ψ : W o
n → W e

n,
and therefore the composition f = Φ−1

S ◦ Ψ ◦ ΞS proves Theorem 2.
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