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We consider one-way bounds on a permutation p1 p2 · · · pn for a fixed parameter r ≥ 0.
For example, the low descent bound is pi > pi+1 implies pi+1 ≤ r (i.e., the small value in
a descent is at most r). The short right bound is p−1

i − i ≤ r (i.e., values move at most r
positions to the right relative to 12 · · · n). No bounds are given in the opposite direction
(i.e., on ascents or leftward moves). We show that eight types of permutations are
counted by the flatorial number ⟨n,r⟩! which is n! for n < r and r!(r + 1)n−r for n ≥ r.

Introduction

Let Sn be the set of all permutations of [n] = {1,2, . . . ,n} in one-line notation. Consider
the following two subsets of Sn for n = 4 and a fixed parameter r = 1 explained below.

rgt(4, 1) = {1234, 2134, 2314, 3214, 2341, 2431, 3241, 4231} (1)

inv(4, 1) = {1234, 1243, 1324, 1342, 2134, 2143, 2314, 2341} (2)
0000 0001 0010 0011 0100 0101 0110 0111

The first set contains permutations p1 p2 · · · pn in which p−1
i > i implies i ≤ r. In other

words, if a value i appears further to the right than it does in the identity, then i ≤ r.
Since r = 1 in (1), only value 1 (underlined) can appear to the right of its position
in id. The second set contains permutations whose inversion vector1 (shown below)
v1v2 · · · vn has vi ≤ r for all i. In other words, every value is inverted with at most r
smaller values. Since r = 1 in (2), each value is inverted with at most one smaller value.

The two sets have the same cardinality; we will prove that this is true for all n and r.
More broadly, we show that eight different types of permutations are counted by the
flatorial number ⟨n,r⟩!. These numbers are like factorial numbers except that terms in
the product are at most r + 1. In particular, ⟨n,0⟩! = 1 and ⟨n,1⟩! = 2n−1 counts (1)–(2).

⟨n,r⟩! = 1 · 2 · · · r · (r + 1)n−r =
n!

(n)n−r
=

{
n! if n < r
r! · (r + 1)n−r if n ≥ r

. (3)

None of our equivalences are obtained by reversing indices pn · · · p2 p1 and/or inverting
values (n − p1 + 1)(n − p2 + 1) · · · (n − pn + 1). These trivial modifications known as
the symmetries of the square extend our results to 8 · 4 = 32 equinumerous types. For
example, the “low rights” in (1) become “high lefts” (i.e., p−1

i < i implies i ≥ n − r + 1)
by reversing and inverting. Our results are summarized in Table 1. While each type
is fairly elementary, we were unable to find many references in the literature. Table
2 shows that only three of the types are listed in corresponding Oeis entries. Short
descents with r = 2 arise using classic pattern avoidance [1]: dsc(n, 2) = Avn(312, 231)).
Some non-classical avoidance results also appear in the Oeis sequences [2, 3].

1The inversion vector counts the smaller inverted values. That is, vi = |{j | j < i and p−1
j > p−1

i }|.
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low descents short descents low rights short rights large inverts small inverts early lefts short lefts
insert value insert value swap value swap value insert index insert index swap index swap index
small labels large labels small labels large labels small labels large labels small labels large labels

61584327 18564732 78516243 53814276 1783642 13584726 75483216 15768243
dsc(n, r) dsc(n, r) rgt(n, r) rgt(n, r) inv(n, r) inv(n, r) lft(n, r) lft(n, r)

Table 1: Eight types of one-way bounded permutations (see Definition 2). Each is counted by
the flatorial ⟨n,r⟩! via a family subtree with large (ℓ−r to ℓ) or small (ℓ and 1 to r) branch labels.
The sample permutations satisfy their bound for r = 4 (or larger) but not r = 3. For example,
p = 61584327 ∈ dsc(8, 4) \ dsc(8, 3) as the smaller value in each descent is ≤ 4 but not ≤ 3.

r Formula (n ≥ r) n = 1,2,3, . . . Oeis short rights short ascent short lefts
1 1! · 2n−1 1, 2, 4, 8, 16, 32, 64, . . . A000079 Arndt (2009)
2 2! · 3n−2 1, 2, 6, 18, 54, 162, 486, . . . A025192 Lewis (2006)
3 3! · 4n−3 1, 2, 6, 24, 96, 384, 1536, . . . A084509 Knuth (2022)
4 4! · 5n−4 1, 2, 6, 24, 120, 600, 3000, . . . A179364† Hardin (2010)
5 5! · 6n−5 1, 2, 6, 24, 120, 720, 4320, . . . A179365† Hardin (2010)

Table 2: Flatorial numbers for small r. Three of our permutation types appear in the Oeis

entries. †Several sequences match the initial terms and have another constraint (e.g., A179357).

Family Trees of Permutations & One-Way Bounded Permutations

We consider four family trees of permutations. Each tree has root 1 and Sℓ appears at
level ℓ. At level ℓ, the branches are labeled with values b ∈ [ℓ]. The branch ℓ always
inserts ℓ as the rightmost symbol, and identity permutations are on rightmost paths.
The remaining children are obtained as follows, where b ∈ [ℓ− 1] is the branch label.

• Insert value tree: insert ℓ to the left of value b.
• Swap value tree: insert ℓ as the rightmost symbol, then swap it with the value b.
• Insert index tree: insert ℓ to the left of the index b.
• Swap index tree: insert ℓ as the rightmost symbol, then swap it with index b.

For each family tree we consider two subtrees parameterized by a given value of r ≥ 0.
• The large label subtree includes branches with labels ℓ− r to ℓ at level ℓ.
• The small label subtree includes branches with labels ℓ and 1 to r at level ℓ.

So at level ℓ the subtrees include branches with label ℓ and (at most) the r smallest or
largest remaining labels. Thus, the number of nodes at each successive level increases
from 1 up to r+1 giving Remark 1. Family trees and subtrees appear in Figures 1–2.

Remark 1. A family subtree with large (or small) labels has ⟨ℓ,r⟩! nodes at level ℓ.
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Figure 1: Four family trees up to level ℓ = 3 with one node at level ℓ = 4. A branch with label
b < ℓ inserts ℓ (a) before value b or (c) at index b, or inserts ℓ in the last position and then swaps
it with (b) value b or (d) index b. A branch with label b = ℓ inserts ℓ into the last position.
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Figure 2: The insert index family subtree with large (left) and small (right) labels for r = 1.
Note that the ℓ branches are included in both subtrees.

2

https://oeis.org/A000079
https://oeis.org/A025192
https://oeis.org/A084509
https://oeis.org/A179364
https://oeis.org/A179365
https://oeis.org/A179357


Definition 2. We define eight types of one-way bounded permutations for a fixed
r ≥ 1. We use the notation that p = p1 p2 · · · pn is a permutation, p−1

1 p−1
2 · · · p−1

n is its
inverse permutation, and v1v2 · · · vn is its inversion vector. We call a value i ∈ [n] in a
permutation an invert if it is inverted with at least one smaller value (i.e., vi > 0).

1. p has low descents, denoted p ∈ dsc(n, r), if pi+1 < pi implies pi+1 ≤ r.
That is, the smaller value in a descent is at most r.

2. p has short descents, denoted p ∈ dsc(n, r), if pi − pi+1 ≤ r.
That is, each descent has height at most r.

3. p has low rights, denoted p ∈ rgt(n, r), if p−1
i > i implies i ≤ r.

That is, only small values can move to the right.
4. p has short rights, denoted p ∈ rgt(n, r), if p−1

i − i ≤ r, or equivalently, pi ≥ i − r.
That is, values can move at most r spaces to the right.

5. p has large inverts, denoted p ∈ inv(n, r), if vi > 0 implies vi ≥ i − r.
That is, any invert is inverted with at least i − r smaller values.

6. p has small inverts, denoted p ∈ inv(n, r), if vi ≤ r for all i.
That is, each value is inverted with at most r smaller values.

7. p has early lefts, denoted p ∈ lft(n, r), if p−1
i < i implies p−1

i ≤ r.
That is, if a value is moved to the left, it must be in the first r positions of p.

8. p has short lefts, denoted p ∈ lft(n, r), if p−1
i ≥ i − r, or equivalently, pi ≤ i + r.

That is, values can move at most r spaces to the left.

Theorem 3. For all n ≥ 1 and r ≥ 1, each of the sets of one-way bounded permutations in
Definition 2 are counted by flatorial numbers, ⟨n,r⟩!.

Proof. By Remark 1, for each set of one-way bounded permutations, we need only
show that the permutations in the set are exactly the nodes in the associated subtree
with large labels or small labels. We illustrate this for low rights using the swap value
tree with small labels; the other proofs are similar. A right is a value v with p−1

v > v.

Consider the swap value tree, in which each child of p1 p2...pℓ−1 at branch b is obtained
by appending ℓ, and then swapping ℓ with b for b < ℓ. Each branch b < ℓ creates a
right: b is now in position ℓ > b. Suppose p = p1 p2...pℓ−1 ∈ rgt(ℓ− 1, r). The children
of p in rgt(ℓ− 1, r) are exactly those with branches b ≤ r (in which rights with values
at most r are created), and branch ℓ (in which no right is created). On the other hand,
if v is a right in permutation p, then v will be a right in all descendants of p, since v
either remains in its same position for branches b ̸= v, or moves further to the right at
any branch b = v. Therefore, if p /∈ rgt(n, k), then none of its descendants can be.
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