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Statement of the Problem. At the heart of classical algebraic combinatorics is the
representation theory of the symmetric group Sn. In turn, much of this theory can
be expressed in terms of integer partitions. In this work, we describe the subtle rela-
tionship between two partitions closely associated with each element σ ∈ Sn: the cycle
type of σ, on one hand, and the shape of σ via the Robinson–Schensted correspondence
on the other hand. Although separately each of these partitions is fundamental to the
general theory, the two had not yet been studied together until a very recent paper [1]
treating the special case where σ is a cyclic (or almost cyclic) permutation. (The most
closely related works study cycle types and descents [2], or shapes and inversions [3].)
A natural question is the following: which shapes arise from the elements of a given
cycle type?

It is well known that the conjugacy classes of Sn (and also its irreducible complex
representations) can be naturally labeled by the integer partitions α of n, written
as α ⊢ n. In particular, the conjugacy class of σ ∈ Sn is labeled by the partition
α = (α1, . . . , αr) giving the cycle type of σ, which is easily read off from the expression
of σ in disjoint cycle notation: σ = (α1-cycle)(α2-cycle) · · · (αr-cycle). Throughout the
paper, we write Cα to denote the conjugacy class of Sn consisting of elements with
cycle type α.

Another key concept in the representation theory of Sn and in algebraic combinatorics
in general is the Robinson–Schensted (RS) correspondence. The RS correspondence is
a bijection

Sn
RS−→ ⨿

λ⊢n
SYT(λ)× SYT(λ),

where SYT(λ) denotes the set of standard Young tableaux with shape λ, meaning that
the partition λ gives the row lengths of the tableaux. If the RS correspondence takes
σ to a pair (P, Q) ∈ SYT(λ)× SYT(λ), then we say that λ is the RS shape of σ, which
we denote by writing sh(σ) = λ. Thus in the example

σ = (3, 5, 4, 7)(1, 2, 6) RS−→

 1 3 7
2 4
5
6

,
1 2 4
3 7
5
6

 , (1)

we have σ ∈ C(4,3), and sh(σ) = (3, 2, 1, 1). The main problem of our work is to
describe the elements of

Sα := {sh(σ) : σ ∈ Cα}.

Main Result. As a preliminary result, for all α = (α1, . . . , αr) ⊢ n, we prove that the
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partitions in Sα have Young diagrams fitting inside a certain bounding box:

Sα ⊆ Bα, (2)

where

Bα :=

λ ⊢ n :
λ has at most(
n − r + #{i : αi = 2}+ δ1,αr

)
many rows and(

n − r + #{i : αi = 1}
)

many columns

 . (3)

For example, if α = (4, 2), then Bα consists of all partitions of n = 6 whose Young
diagram fits inside the box of dimensions (6 − 2 + 1 + 0)× (6 − 2 + 0) = 5 × 4. Con-
cretely, we have

B(4,2) =

 , , , , , , ,

 .

For certain cycle types α, the containment in (2) is, in fact, an equality. We can thus
reframe our main problem as follows: classify the cycle types α such that Sα = Bα,
and for the remaining cycle types α, determine the complement Bα \ Sα. The following
theorem is the main result of our paper, where we solve the problem in the case r = 2,
that is, where α = (α1, α2).

Theorem 1. Let n be a positive integer, and let α = (α1, α2) ⊢ n.

1. If n is odd, then Sα = Bα.

2. If n is even, then Sα = Bα unless α occurs in the following table:

α Bα \ Sα

(n − 1, 1) {
( n

2 , n
2

)
}( n

2 , n
2

)
, where 4 | n {(n − 2, 1, 1), (3, 1, . . . , 1)}( n

2 , n
2

)
, where 4 ∤ n {(n − 2, 1, 1)}

(4, 2) {(2, 2, 2)}

(5, 3) {(2, 2, 2, 2)}

Our Theorem 1 generalizes the main result of [1], which can be restated as follows,
using the language of the present paper:

1. If n is odd, then S(n) = B(n) and S(n−1,1) = B(n−1,1).

2. If n is even, then S(n) = B(n) and B(n−1,1) \ S(n−1,1) =
{( n

2 , n
2

)}
.
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We emphasize that by introducing the bounding box Bα, we are able to state these re-
sults in a uniform manner, thus avoiding the need to designate certain “trivial shapes”
and to make exceptions for small values of n.

Admissible Tableaux and α-colorings. In order to prove Theorem 1, we introduce
two key combinatorial objects, which we call admissible tableaux and α-colorings. We
say a standard tableau is admissible if it remains standard when justified along the bot-
tom (i.e., when acted on by “gravity”). It turns out that the admissibility of a tableau
Q is equivalent to the following: for any tableau P of the same shape, the permutation
RS−1(P, Q) can be read off from P by following the order of the entries in the vertical
reflection of Q, which we denote by Q↑. In turn, for an admissible Q ∈ SYT(λ), an
α-coloring of Q↑ is a coloring of its entries which, via a certain canonical spiral con-
struction, produces a permutation σ ∈ Cα with sh(σ) = λ. This σ cyclically permutes
the entries of each color in Q↑ to obtain a standard P such that σ = RS−1(P, Q). The
crux of the paper is therefore where we construct α-colorings for all shapes λ, with
the exception of the pairs (α, λ) given above in the table in Theorem 1. (There is also
one family (α, λ) such that λ ∈ Sα but no α-coloring exists; in this case we exhibit the
requisite σ directly.)

Open Problems and Conjectures. As a first step toward extending the results in this
paper to generic cycle types (α1, . . . , αr) where r > 2, we point out a special case,
following from a result of Schützenberger relating to involutions, in which we can
describe Sα explicitly, namely when α1 ≤ 2:

S(2r−k , 1k) = {λ ⊢ n : λ has exactly k many columns of odd length} .

Outside of this special case described above, however, for r > 2, an explicit and
comprehensive description of Sα quickly becomes quite complicated. Somewhat sur-
prisingly, the source of these complications lies entirely in the presence of repeated
values among the αi’s. In fact, we conjecture that for r > 2, we have Sα = Bα whenever
α1 > · · · > αr > 1. (It would then follow that for a fixed r, as n → ∞, the proportion
of cycle types satisfying Sα = Bα approaches 100%.) See the last section of our paper
for additional details, along with further conjectures and open problems concerning
cycle types and α-colorings.
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