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We introduce a simple approach to generating Gray codes of pattern-avoiding s-words
(i.e., multiset permutations) and corresponding combinatorial objects. It generalizes
plain changes and the recent Combinatorial Generation via Permutation Language series.

Introduction Plain changes is a swap Gray code for Sn the permutations of [n] = {1,. . . ,n}:
e.g., 123, 132, 312, 321, 231, 213 where a swap moves a large digit past a small digit. It
was discovered in the 1600s and is also known as the Steinhaus-Johnson-Trotter algorithm.
More recently, it has been viewed as a greedy algorithm: “swap the largest value” [5].

A permutation language L is a subset of Sn. A jump moves a larger digit past one or
more smaller digits. It is minimal for w ∈ L if its distance d (i.e., the number of smaller
digits) is minimized to create w′ ∈ L. Algorithm J was introduced at Permutation
Patterns 2019: “minimal jump the largest value” [2]. It generates zig-zag languages e.g.,
123, 132, 312, 321, 213 for Av3(231). But jumps are limited when working with s-words
(or s-permutations) which have si copies of i for i ∈ [m]. For example, w = 123331 is a
Stirling s-word for s = (2,1,3) (i.e., w ∈ Avs(212)) and every jump applied to w is invalid
(i.e., the jump creates a 212 pattern) so the associated flip graph is disconnected. Each
v ∈ [m] is a value and each copy of a value in w is a digit. The set of all s-words is Ss.

We consider “bumps” which move a run of a larger digit. Algorithm B generates many
s-word languages (i.e., subsets of Ss). Some applications are below and in Figures 1–2.

(a) Gray codes for Ss (e.g., 1122,1221,1212,2112,2121,2211 for s = (2,2)) using transpositions.
(b) Stirling changes generalizes plain changes to Stirling s-words Avs(212) using transpositions.
(c) Bump Gray code for regular words counted by k-Catalan numbers Avk−1

m (132,121) [3, 6].

Our Gray codes lead to efficient algorithms. For example, we generate (b) looplessly (i.e.,
worst-case O(1)-time per word) in Algorithm 1. Like the Permutation Languages series
they also have many applications. For example, (b) leads to a Gray code for s-increasing
trees that proves Theorem 1, while (c) gives Gray codes for various k-Catalan objects.

Theorem 1. Every s-permutohedron has a Hamilton path. (See [1] but with inverted values.)
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Figure 1: Stirling changes for Stirling s-words with s = (2,1,3) (i.e., permutations of {1,1,2,3,3,3}
avoiding 212) as generated by Algorithm B with its corresponding s-increasing tree Gray code.
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Figure 2: Pattern-avoiding s-words Avs(132,121) for s = (2,2,2) with Gray codes for 3-Catalan
objects. The ternary trees differ by edge moves preserving inorder (visit self before last child).
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Figure 3: Algorithm B’s Gray code for L = Av3,3(12121) and its ancestor languages. Successive
children jump the rightmost largest value while a bump changes the last child of one parent to
the first child of the next parent. Note that the rightmost largest value may join these bumps.
For example, the jump 22111 = 21211 in p(L) widens to the bump 222111 = 212211 in L.

Algorithm B for Bumps Let w = w1w2 · · ·wn be an s-word with s = (s1, s2, . . . , sm).
The right-run at index i is wiwi+1 · · ·wj with wi = · · · = wj and j = n or wj ̸= wj+1. (i.e.,
a right-maximal run). A right-bump moves a right-run to the right past some smaller
digits. Left-run and left-bump are similar. A bump’s value v, width w, distance d, and
index i are its larger digit, # of larger digits, # of smaller digits, and run index. For
example, 1121133322331 creates 1331211333221 by a left-bump of v = 3, w = 2, d = 4,
i = 7. Bumps can be jumps (w = 1), transpositions (d = 1), or swaps (w = d = 1).

Let L be an s-word language. Suppose a bump at index i changes w ∈ L to w′. The
bump is minimal for its index and direction if it has the shortest distance with w′ ∈ L.
Minimal bumps on w ∈ L are uniquely determined by their index and direction. Our
generalization of Algorithm J [2] carefully prioritizes values, indices, and directions.

Algorithm B (Greedy Bumps). This algorithm attempts to generate an s-word lan-
guage L with s = (s1, s2, . . . , sm) starting from a given or default initial word w ∈ L.
B1. [Initialize] Visit the given initial word w (or by default visit w = 1s12s2 · · ·msm ).
B2. [Greedy] Let w be the most recent word visited. Visit a new word by applying

to w a minimal bump prioritized by largest value, then largest index, then
rightward over leftward. Halt if no such bump exists. Otherwise, repeat B2.

A bump is maximum if it uses the longest distance from an index in a direction. A
zig-zag language is an s-word language closed under maximum bumps (c.f., [2]). This
includes Avs(α) when α is tame: its largest values are internal (i.e., not first or last) and
isolated (i.e., not consecutive). Zig-zag languages are closed under intersection (and
union) so the peakless s-words Avs(132,231,121) are a zig-zag language.

Theorem 2.1 If L is zig-zag language of s-words for s = (s1,s2, . . . ,sm), then Algorithm B gen-
erates a bump Gray code for L starting from the non-decreasing word w = 1s12s2 · · ·msm ∈ L.
Sketch. Consider the end of an inductive argument on n = ∑ s. The parent p(s) of s is
(s1,s2, . . . ,sm − 1) if sm > 1 or (s1,s2, . . . ,sm−1) if sm = 1. Similarly, p(w) removes the
rightmost m from w ∈ L, and p(L) = {p(w) | w ∈ L}. The children of w′ ∈ p(L) are
c(w′) = {w ∈ L | p(w) = w′}. Since L is a zig-zag language, c(w′) has s-words where
the rightmost m is at (a) index n, and (b) index 1 if sm = 1 or beside the rightmost m
in w′ if sm > 1; these extremes are equal when w′ ends in m. Let −→c (w′) list c(w′) in
lexicographic order (i.e., the rightmost m jumps left-to-right) and←−c (w′) in reverse; use
←→c (w′) when w′ has one child. Note that p(L) is a zig-zag language so at some point
Algorithm B generates w′. We claim that Algorithm B generates −→c (w′) or←−c (w′) (or
←→c (w′)) when run on L. It also applies a bump from the last child of one parent to the
first child of the next parent. In other words, it uses local recursion. See Figure 3.

1This is not a full characterization as Algorithm B generates some non-zig-zag language e.g., Avs(212).
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Algorithm 1 Loopless generation of Stirling s-words Avs(212) in Stirling changes order.
def Stirling(s1, s2, . . . , sm) ▷ 1-based indexing
1: t1, t2, t3, ..., tm ← 0, s1, s1+s2, ..., s1+···+sm−1
2: perm← 1s12s2 · · · msm ▷ s-word (s-perm)
3: left← [t1+1, ..., tm−1+1] ▷ left indices 1,...,m
4: inv← 0m ▷ # of smaller digits right of 1, 2, ...,m
5: fs← 12···m ▷ focus pointers for 1,...,m (see [4])
6: dirs← −1m ▷ bump directions for 1,...,m
7: v← fs[m] ▷ larger value in next bump
8: while v > 1 do ▷ 1 is never the larger value
9: d← dirs[v] ▷ direction of v

10: if d = 1 then ▷ right-bump v’s run?
11: i← left[v] ▷ first index of v
12: j← left[v] + s[v] ▷ index after v’s run
13: else ▷ left-bump v’s run
14: i← left[v] + s[v]− 1 ▷ last index of v
15: j← left[v]− 1 ▷ index before v’s run
16: u← perm[j] ▷ smaller digit to bump
17: visit perm ▷ next s-word in Gray code
18: perm[i]← u ▷ apply bump to the s-word
19: perm[j]← v ▷ (as a transposition)
20: left[v]← left[v]+d ▷ leftmost v moved
21: if left[u] = j then ▷ leftmost u moved?
22: left[u]← left[u]−d·sv ▷ u passed all v
23: inv[v]← inv[v]−d ▷ v’s run passed one u

24: if inv[v] = 0 or inv[v] = tv then ▷ v limit?
25: dirs[v]← −d ▷ change v’s direction
26: fs[v]← fs[v−1] ▷ inherit focus of v−1
27: fs[v−1]← v−1 ▷ reset focus of v−1
28: v← fs[m] ▷ larger value in next bump
29: fs[m]← m ▷ reset focus of m
30: visit perm ▷ last s-word in Gray code

perm v u i j left inv fs dirs
112333 3 2 6 3 134 000 123 ---
113332 3 1 5 2 163 001 123 ---
133312 3 1 4 1 162 002 123 ---
333112 2 1 6 5 461 003 123 --+
333121 3 1 1 4 451 013 123 --+
133321 3 2 2 5 152 012 123 --+
123331 3 1 3 6 123 011 123 --+
121333 2 1 2 1 124 010 123 ---
211333 3 1 6 3 214 020 113 -+-
213331 3 1 5 2 213 021 113 -+-
233311 3 2 4 1 512 022 113 -+-
333211 1 541 023 123 -++
Variable trace at visit for s = (2,1,3).
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Hamilton path (2,1,3)-permutohedron
(or s = (3,1,2) for decreasing trees [1]).
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