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Co-conspirators

Some of this talk is based on joint work with
Noura Alshammari.

Another small part is based on joint work with
Robert Brignall and Nik Ruškuc.



Monotone grid classes

Monotone grid classes:
• Grid(M) is defined by a gridding matrix M.
• Entries of M are drawn from { , , }.
• Entries corresponds to cells in M-griddings of permutations.

Any points in the cell must increase.
Any points in the cell must decrease.
Blank cells must be empty.

Four permutations in Grid
( )
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, each witnessed by a -gridding



Limit shapes and enumeration

Some questions

? Limit shape
What does a typical large permutation in a given monotone grid
class look like?

? Enumeration (exact and asymptotic)
What is known?
⋆ Open questions: What is not known?

? How are these questions related?



Multiple griddings

A permutation in Grid(M) may have more than one M-gridding.
• Row/columns dividers may be positioned in more than one way.
• This is what makes the analysis of grid classes hard.

The five -griddings of 879614235

• These correspond to one element of Grid( ).



Classes of gridded permutations

It’s much easier to analyse gridded permutations.
• Grid#(M) is the gridded class, consisting of M-gridded

permutations.

The five members of Grid#( ) with underlying permutation 879614235

• These are five distinct elements of Grid#( ).



Cell graphs and connected classes

Cell graph of Grid(M):
• Vertices: non-blank cells of M.
• Edges join vertices sharing a row or column.
• Properties of the cell graph are transferred to the class.
• Mostly, we focus on connected classes.

Connected acyclic class

Two-component pseudoforest† class

†At most one cycle per component



Part I: Limit Shapes

Based on B. (2015), Albert & Vatter (2019), and Alshammari & B. (2025).



Counting points in cells

M-admissible matrix
• Nonnegative matrix A = (ai,j) such that ai,j = 0 if Mi,j is blank.

Integer M-admissible matrix: records number of points in each cell.

• If A = (ai,j), then Grid#
A (M) consists of M-gridded permutations

with ai,j points in cell (i, j).

∈ Grid#(
2 3 3
0 1 0

)( )



Counting points in cells

Enumerating Grid#
A (M) is easy.

Proposition
If M has dimensions r × s, then

∣∣Grid#
A (M)

∣∣ =

r∏
i=1

( ∑s
j=1 ai,j

ai,1, ai,2, . . . , ai,s

)
×

s∏
j=1

( ∑r
i=1 ai,j

a1,j, a2,j, . . . , ar,j

)
.

• Each multinomial coefficient counts the possibilities for one row
or column.

• The ordering of points (increasing or decreasing) within a
particular cell is fixed by the corresponding entry of M.

• The interleaving of points in distinct cells in the same row or
column can be chosen arbitrarily and independently.



The distribution of points between cells

M-distribution matrix
• M-admissible matrix whose entries sum to one.

M-distribution matrix: records proportion of points in each cell.

• If Γ = (γi,j) is an M-distribution matrix, then

Grid#
Γn(M) = Grid#

A (M) for some A = (ai,j)

such that
∑

ai,j = n and |ai,j − nγi,j| < 1.

▶ The existence of A is guaranteed by Baranyai’s Rounding Lemma.

▶ If σ# ∈ Grid#
Γn(M) the proportion of points of σ# in cell (i, j) differs

from γi,j by less than 1/n.



The distribution of points between cells

By Stirling’s approximation:

Proposition
If Γ = (γi,j) is an M-distribution matrix with row sums ρi =

∑
j γi,j and

column sums κj =
∑

i γi,j, then∣∣Grid#
Γn(M)

∣∣ ∼ Cnβ gn,

where

g = g(Γ) :=
∏

i

ρρi
i∏

j γ
γi,j
i,j

×
∏

j

κ
κj
j∏

i γ
γi,j
i,j

,

and C and β are constants that only depend on Γ.



Maximising the growth rate

Given Grid(M), we would like to find a maximal M-distribution matrix
Γ for which the growth rate g(Γ) is greatest.

Proposition
Suppose Γ = (γi,j) is a maximal M-distribution matrix. Then there exists a
constant λ such that, for each nonzero entry γi,j of Γ, we have

γ2
i,j

ρiκj
= λ,

where ρi =
∑

j
γi,j and κj =

∑
i
γi,j are the row and column sums of Γ.

• Proof uses Lagrange multipliers to solve the constrained
optimisation problem.



Unique maximal distribution for connected classes

For connected classes, there is only one maximal distribution.

Proposition
If Grid(M) is a connected grid class, then it has a unique maximal
M-distribution matrix ΓM.

• Proof uses linear algebra (singular value decomposition and
Perron–Frobenius).

The set of equations

∑
i,j

γi,j = 1,
γ2

i1,j1

ρi1 κj1
=

γ2
i2,j2

ρi2 κj2
=

γ2
i3,j3

ρi3 κj3
= . . . = λ

has a unique positive solution.



Unique maximal distribution for connected classes

Example

M = . ΓM =
(
α β γ
0 δ 0

)
.

Maximal M-distribution matrix satisfies α+ β + γ + δ = 1 and

α2

α(α+β+γ) = β2

(β+δ)(α+β+γ) = γ2

γ(α+β+γ) = δ2

δ(β+δ) .

Solution:

ΓM =

( 1
4

1
2
√

2
1
4

0 1
4 (2−

√
2) 0

)
.



The typical distribution of points

For connected classes, the distribution of points in almost all gridded
permutations in Grid#(M) is close to ΓM.

• σ#
(i,j): the number of points of σ# in cell (i, j).

Theorem
If Grid(M) is connected and ΓM = (γi,j), then for any ε > 0,

lim
n→∞

P
[
max

i,j

∣∣σ#
(i,j)/n − γi,j

∣∣ ⩽ ε
]
= 1,

where, for each n, we draw σ# uniformly at random from Grid#
n (M).

• Proved by showing that the set of gridded permutations with
distributions ε-far from ΓM have a smaller growth rate.



Permutons

Definition (permuton)
Probability measure µ on the unit square [0, 1]2 with uniform marginals:

µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b − a for every 0 ⩽ a ⩽ b ⩽ 1.

Permuton µπ corresponding to permutation π

π = µπ =

• Mass for each point: 1/n
• Small square area: 1/n2

• Density (“height”): n



Limit shapes

Definition (limit shape of a permutation class)
The permuton µ is the limit shape of C if the sequence of random
permutons (µσn)n⩾1 converges in distribution for the weak topology
to µ, where, for each n, we draw σn uniformly at random from Cn.

• Formalises what a typical large permutation looks like.

Example ( )

60 120 180 240 limit shape



Limit shapes

Two final steps:
• In almost all large gridded permutations, the points are close to

the diagonals across the cells.
• The limit shape of Grid(M) is the same as that for Grid#(M).

Example

M = =⇒ ΓM =

( 1
6

1
3

1
6

0 1
6 0

0 1
6 0

)
.



Limit shapes



Part II: Enumeration

+ =

L0 L1 L3 L4 L7 T2 T4 T5 X0 X4 X7



Growth rates

The exponential growth rate is known for any grid class.

Theorem (B.; Albert & Vatter)
Let B be the binary matrix with Bi,j = 0 if Mi,j = and Bi,j = 1 otherwise.

Then, gr
(
Grid(M)

)
exists and is equal to the largest eigenvalue of BT B.

M = =⇒ B =
(1 1 0 1

0 0 1 0
0 1 1 0

)
.

• If M is connected, then gr
(
Grid(M)

)
= g(ΓM), the growth rate of

gridded permutations with maximal distribution.



Bases (a brief digression)

Theorem (Albert, Atkinson, Bouvel, Ruškuc & Vatter)
Every acyclic monotone grid class is finitely based.

• Because acyclic classes are geometric classes.

Theorem (B., Brignall & Ruškuc)

Every unicyclic† monotone grid class is finitely based.

†Exactly one cycle

Theorem (B., Brignall & Ruškuc)
Some monotone grid classes with two cycles are not finitely based, such as

and .



Types of generating function

Theorem (Albert, Atkinson, Bouvel, Ruškuc & Vatter)
Every acyclic monotone grid class has a rational generating function.

• Because acyclic classes are geometric classes.

Theorem (Gridded classes, B.)
Every pseudoforest gridded class has an explicitly constructible algebraic
generating function.
Every gridded class has a D-finite generating function.

⋆ Conjectures (Grid classes, B.)
Every pseudoforest monotone grid class has an algebraic generating
function.
Every monotone grid class has a D-finite generating function.



Exact enumeration

Polynomial (Homberger & Vatter)
• At most one or in any column or row.
• Algorithm to give polynomial enumeration (growth rate equals 1).

Skinny (B.; Brignall & Sliačan)
• Procedure to give g.f. when M has dimensions 1 × k.
• Special case (Asinowski, Banderier & Hackl):

Grid( · · ·︸ ︷︷ ︸
k

) :

k∑
r=1

1
1 − rz

(
rz

rz − 1

)k−r

.

Small acyclic (Hušek & Opler, after Braunfeld)
• Using monadic second-order logic.



Exact enumeration

⋆ 2×2 classes
• Growth rate: 4.
• Asymptotics have the form c4n/

√
n.

g.f. basis

C0 ? conjecture (35 perms)

C1 ? conjecture (36 perms)

C2 ? conjecture (10 perms)

C3 conjecture (A163824) conjecture (14 perms)

C6 Atkinson A029759 Av(2143, 3412)

C9 ? conjecture (32 perms)

https://oeis.org/A163824
https://oeis.org/A029759


Double chevron class

⋆ Conjecture (“entanglement diagrams”)

Every permutation in Grid
( )

has a unique gridding in exactly one
of the following three diagrams:

⊎ ⊎ .

• There must be a point at each •.



Monotone curve classes

⋆ A new family of permutation classes (superset of grid classes) ⋆

Definition (monotone curve class)
Suppose S =

{
{p1, q1}, {p2, q2}, . . . , {pk, qk}

}
is a finite multiset of

pairs of lattice points {pi, qi} ∈ N2 sharing neither x or y coordinate.
Then Mono(S) consists of those permutations that can be drawn on k
monotone curves joining each pi to qi.

• Av(321) = Mono
(
{(0, 0), (1, 1)}, {(0, 0), (1, 1)}

)
.

▶ Two increasing sequences.

• What is the basis and enumeration of Mono
( )

?

• The relationship between grid and curve classes
is similar to that between geometric and picture classes.



Asymptotic enumeration

Connected acyclic and unicyclic (Alshammari & B.)
• Procedure to give asymptotics Grid(M) ∼ gnθ(n), where g is the

exponential growth rate, and θ(n) is subexponential.

Recipe
1. Typical distribution of points (ΓM, as above).

2. Gridded asymptotics
∣∣Grid#

n (M)
∣∣ ∼ gnθ#(n).

3. Structure of typical σ# if σ has exactly ℓ distinct M-griddings.

4. With σ#
n drawn uniformly from Grid#(M), let

Pℓ = lim
n→∞

P
[
σn has exactly ℓ distinct M-griddings

]
.

5. Then,
∣∣Gridn(M)

∣∣ ∼ κgnθ#(n), where κ =
∑

ℓ⩾1 Pℓ/ℓ.



Connected one-corner classes

A cell is a corner if it isn’t the only non-blank cell in its row or column.

Connected one-corner classes: L-shaped, T-shaped or cross-shaped:

• We assume r + 1 rows and c + 1 columns.



1. Asymptotic distribution in one-corner classes

Grid(M) connected with one-corner and dimensions (r + 1)× (c + 1):

ΓM =

(
0 γ 0 0 0
0 γ 0 0 0
β α β β β
0 γ 0 0 0

)
,

satisfying

α+ cβ + rγ = 1 and
α2

(α+ cβ)(α+ rγ)
=

β

α+ cβ
=

γ

α+ rγ
= λ.

Solution

α =
1
q
, β =

c − r + q − 1
2cq

, γ =
r − c + q − 1

2rq
, λ =

c + r + 1 − q
2cr

,

where
q =

√
(c + r + 1)2 − 4cr.



2. Enumerating acyclic and unicyclic gridded classes

We stitch together skinny classes at the corners.

Each gridded permutation in Grid#
( )

is uniquely defined by

• a -gridded permutation and

• a -gridded permutation

with the same number of points in the corner.

+ =



Enumerating acyclic and unicyclic gridded classes

Stitching corresponds to an operation on generating functions.

• 1
1 − xz − cz

Horizontal c + 1 cells; x counts corner points.

• 1
1 − yz − rz

Vertical r + 1 cells; y counts corner points.

Stitching yields:[
z0] 1

(1 − x
√

z − cz)(1 −
√

z/x − rz)
=

1
1 − (c + r + 1)z + crz2 .

• By diagonalization of rational Laurent series (Stanley Volume 2).
▶ Sum of residues at small poles.

• Repeat to give a rational g.f. for any acyclic class
or an algebraic g.f. for any unicyclic class.



Enumerating gridded classes

Connected one-corner classes
If M is connected with one corner and dimensions (r+ 1)× (c+ 1), then∑

n⩾0

∣∣Grid#
n (M)

∣∣ zn =
1

1 − (c + r + 1)z + crz2 .

Asymptotics
Hence (by standard analytic combinatorics),∣∣Grid#

n (M)
∣∣ ∼ θ#gn,

where
θ# =

c + r + q + 1
2q

and g =
c + r + q + 1

2
.



3. Dancing

A point Q of an M-gridded permutation σ# can dance if there is a
sequence of one-step moves of row and column dividers, such that

• after each step the result is a valid M-gridding of σ, and
• at the end of the sequence some divider is on the other side of Q.

The 3 circled points in these -gridded permutations can dance:
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3. Dancing
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Peak dancing

Peak
Two adjacent cells with opposite orientation:

A peak point (extremal point in a peak) can dance if it is adjacent to the
divider, giving two griddings:

-gridded permutations, with peak points circled:

At the right, the orange controller prevents dancing.
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Diagonal dancing

Diagonal

Diagonally adjacent cells with the same orientation:

An adjacent non-blank cell must have the same orientation:

The 3 circled points in these -gridded permutations can dance,
giving four griddings:
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Tee dancing

Tee
Three adjacent cells forming a T shape:

The 3 circled points in these -gridded permutations can dance,
giving 6 griddings:

• Depending on the controllers,
k dancers may give 2k − 1 or 2k or 2k + 1 griddings.
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Tee dancing

Tee
Three adjacent cells forming a T shape:

The 3 circled points in these -gridded permutations can dance,
giving 6 griddings:

• Depending on the controllers,
k dancers may give 2k − 1 or 2k or 2k + 1 griddings.



Constrained gridded permutations

Definition (constrained)
An M-gridded permutation σ# is constrained if every M-gridding of σ
is the result of zero or more points of σ# dancing.

In general, some M-griddings may not result from dancing.

Example

The three (unconstrained) -griddings of 1234:



Constrained gridded permutations

For connected M, almost all M-gridded permutations are constrained:

Theorem

If M is connected and σ#
n is drawn uniformly from Grid#

n (M), then

lim
n→∞

P
[
σ#

n is M-constrained
]
= 1.

• Only unusually structured large permutations have griddings
that aren’t a result of dancing.



4 & 5. Counting griddings

If M is connected, for almost all M-gridded permutations:
• The distribution of points is close to ΓM.
• The gridded permutation is constrained.

With σ#
n drawn uniformly from Grid#(M), for each ℓ ⩾ 1, let

Pℓ = lim
n→∞

P
[
σn has exactly ℓ distinct M-griddings

]
be the asymptotic probability of having exactly ℓ griddings, and let

κM =
∑
ℓ⩾1

Pℓ/ℓ = lim
n→∞

∣∣Gridn(M)|∣∣Grid#
n (M)|

be the correction factor.

Then,
∣∣Gridn(M)

∣∣ ∼ κM gnθ#(n).



Non-corner peaks

A peak is a corner peak if one of its two cells is a corner.

Dancing is always possible at every non-corner peak.
• Each non-corner peak doubles the number of griddings.
• If M has p non-corner peaks, then κM = 2−pκM′ ,

where M′ is formed from M by removing the non-corner peaks.
▶ The only dancing in Grid(M′) is at the corners.

Example

has 3 non-corner peaks, so

∣∣∣∣Gridn

( )∣∣∣∣ ∼ 1
8 ×

∣∣∣∣Gridn

( )∣∣∣∣.



Corner types

There are 11 inequivalent corner types in connected one-corner classes:

L0 L1 L3 L4 L7 T2 T4 T5 X0 X4 X7

Correction factors for corner types

τ κ(τ) κ(τ R)

L0 1

L1
1
2

(
1 + cαλ

α+γ

) 1
2

(
1 + rαλ

α+β

)
L3

λ (1−λ)
(1−(c−1)λ) (1−(r−1)λ)

L7 1 − λ

• Multiply together to give correction factors for other corner types.



Summary of recipe

If M is connected and either acyclic or unicyclic:

• Grid#
n (M) can be enumerated (g.f. and asymptotics).

• Consider the uniform distribution over Grid#
n (M).

• Almost all gridded permutations have a close-to-optimal
distribution of points between the cells, which can be calculated.
▶ Gives limit shape.

• For almost all permutations, griddings are constrained to those
that result from dancing.

• Analysis of possible dancing yields the asymptotic probability Pℓ

of an underlying permutation having exactly ℓ distinct griddings.

•
∣∣Gridn(M)

∣∣ ∼ κ
∣∣Grid#

n (M)
∣∣, where κ =

∑
ℓ⩾1 Pℓ/ℓ.
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