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Goals of the talk:

Define the middle order on Sn

Give meaning to the property that “it sits between weak and Bruhat”

Describe some of its properties

Popularize this new order, hoping you raise new questions about it
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Our 3 orders through “mesh patterns”



Reminder: notation and terminology

Permutations are drawn as follows: 1 8 3 6 4 2 5 7 is represented by

i

σ(i)

An inversion is a subsequence · · · j · · · i · · · in a permutation, with
j > i .

Equivalently, it is an occurrence of the pattern 21 =
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Mesh patterns

A mesh pattern (π,M) is the data of a pattern π (say, of size k) drawn in
the central k × k square of the grid [0, k + 1]2, together with a set M of
shaded unit cells in this grid. (M is called the mesh.)

An occurrence of (π,M) in σ is an occurrence of π in σ such that the
regions of [0, n + 1]2 corresponding to the mesh M contain no points of σ

Example: Consider the mesh pattern µ = . The permutation 1423

contains four occurrences of 12, but only three of µ.
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Weak order, seen through mesh patterns
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Covering relations are described by

· · · i j · · ·⇝ · · · j i · · ·

i.e., transforming an ascent(a) into a descent(d)

using the same two values.

(a) occurrence of 12 at consecutive positions

(d) occurrence of 21 at consecutive positions
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Bruhat order, seen through mesh patterns
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Relations are described by the swaps

· · · i · · · j · · ·⇝ · · · j · · · i · · ·

i.e., transforming a non-inversion (=occurrence of
12) into an inversion using the same two values.

Covering relations are the relations that do not
create additional inversions.
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Middle order, defined through mesh patterns

For the weak order, the covering relations are described by

⇝

For the middle order, the covering relations are described by
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⇝

Mathilde Bouvel (Loria, CNRS) Middle Order 8 / 22



Middle order, defined through mesh patterns

For the weak order, the covering relations are described by

⇝

For the middle order, the covering relations are described by

⇝

For the Bruhat order, the covering relations are described by

⇝

Mathilde Bouvel (Loria, CNRS) Middle Order 8 / 22



Summary so far, and what’s ahead

The middle order in size 3:
321

231 312

213 132

123

Covering relations described by

⇝

This interpolates between the weak order and the Bruhat order

What comes next:

Another combinatorial interpretation of the middle order

Some of its properties as a poset (in particular: distributive lattice)

Enumeration of its intervals, and of its boolean intervals

Implication on its Möbius function

Combinatorial description of its Euler characteristic

Restriction to the subset of involutions
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The middle order and inversion sequences



Inversion sequences, and bijection with permutations

Reminder: Inversions are occurrences · · · j · · · i · · · of the pattern 21.

j is called inversion top.

Given σ ∈ Sn, let xj = number of inversions of σ such that j is the
inversion top. Observe that 0 ≤ xj < j .

Let φ(σ) = (x1, x2, · · · , xn) be the inversion sequence of σ.

• Sometimes called Lehmer code. Several (symmetric) variant exist.

Example: For σ = 41 5 6 2 3, we have φ(σ) = (0, 0, 0, 3, 2, 2)

Remark: xj = j − 1 if and only if j is a LtoR-minimum.

This is a bijection between Sn and the set In of inversion sequences of
size n:

In = [0, 0]× [0, 1]× [0, 2]× · · · × [0, n − 1]

Mathilde Bouvel (Loria, CNRS) Middle Order 11 / 22



Middle order through inversion sequences

For inversion sequences x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn),
define the partial order

x ≤ y when xi ≤ yi for all i

In particular, covering relations correspond to adding 1 to one component
(provided we stay among inversion sequences).

Theorem: The middle order is the image of the above by the bijection φ−1.

(0, 1, 2)

(0, 1, 1) (0, 0, 2)

(0, 1, 0) (0, 0, 1)

(0, 0, 0)

φ−1

−−→

321

231 312

213 132

123
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Proving this characterization of the middle order

Let φ(σ) = (x1, . . . , xn) and φ(τ) = (x1, . . . , xj−1, xj + 1, xj+1, . . . , xn).

In particular, xj < j − 1.

So j is not a LtoR-minimum.

So, we can define i as the rightmost entry to the left of j in σ such
that i < j , and (i , j) is an occurrence of .

We check that τ is the permutation obtained swapping i and j , so
that τ covers σ in the middle order.

Let τ be obtained from σ by transforming one into .

Let j be the largest of the two elements involved in

φ(σ) and φ(τ) differ only at their j-th coordinate

and the difference is +1

meaning that φ(τ) covers φ(σ) in the defined order on inversion
sequences
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Some properties of the middle order



A product of chains

We have seen that the middle order Pn is isomorphic (with explicit
bijection φ) to the product of chains

[0, 0]× [0, 1]× [0, 2]× · · · × [0, n − 1]

Consequences:

Pn is a lattice: any σ and τ have a least upper bound σ ∨ τ (called
join) and a greatest lower bound, denoted σ ∧ τ (called meet).
The join (resp. meet) is obtained taking component-wise maximum
(resp. minimum) on corresponding inversion sequences.

In addition, Pn is a distributive lattice.
(meaning that ∨ is distributive over ∧ and vice-versa).

Pn is graded, i.e. has a rank function r , meaning that, for any σ, we
can define r(σ) as the length of any maximal chain from 12 · · · n to σ.
In Pn, we have r(σ) = number of inversions of σ.
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Characterizing and counting all intervals in Pn

Intervals of the j-element chain [0, j − 1]:
Such intervals are

of the form {a} for 0 ≤ a ≤ j − 1,
or of the form [a, b] for 0 ≤ a < b ≤ j − 1.

Therefore, there are j +
(j
2

)
=

(j+1
2

)
such intervals.

Intervals of Pn (up to isomorphism φ):

Such intervals correspond to intervals [(x1, . . . , xn), (y1, . . . , yn)]
where each [xj , yj ] is an interval of [0, j − 1].

Therefore, there are
∏n

j=1

(j+1
2

)
= n!(n+1)!

2n intervals in Pn.

Refined counting of intervals by rank, with a recursive formula for the
number f (n, k) of intervals of rank k in Pn:

f (n, k) =
n−1∑
h=0

(n − h) · f (n − 1, k − h)
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Characterizing and counting boolean intervals in Pn

Dfn: An interval is boolean if it is isomorphic to a boolean algebra.

Characterization and enumeration:

Boolean intervals of Pn correspond to pairs (x1, . . . , xn), (y1, . . . , yn)
of inversion sequences with yj ∈ {xj , xj + 1} for all j .

The number of boolean intervals in Pn is (2n − 1)!!.

Indeed, each pair (xj , yj) has j possibilities if yj = xj ,
and j − 1 possibilities if yj = xj + 1, hence 2j − 1 possibilities.

The number of boolean intervals of rank k (nec., k < n) in Pn is

b(n, k) =
n∑

i=0

(
i

k

)
c(n, n − i)

where c(n, j) are the signless Stirling numbers of the first kind.
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Möbius function

Dfn: The Möbius function µ on any poset P is defined recursively by

µ(s, u) =


0 if s ̸≤ u,

1 if s = u, and

−
∑

s≤t<u
µ(s, t) for all s < u.

It is typically hard to compute on an ordinary (even combinatorial) poset.
But. . .

Prop: In finite distributive lattices, for any v ,w , it holds that

µ(v ,w) is equal to 0 if the interval [v ,w ] is not boolean

and otherwise µ(v ,w) = (−1)t , where t is the rank of [v ,w ].
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Euler characteristic

Let P be a finite distributive lattice. (Recall that Pn has this property.)

Dfn: An element of P is join-irreducible if it covers exactly one
element of P.

Dfn: A valuation on P is a function ν that satisfies ν(min(P)) = 0
and for all x , y , ν(x) + ν(y) = ν(x ∧ y) + ν(x ∨ y).

Prop.: A valuation is determined by its values on the join-irreducibles.

Dfn: The Euler characteristic is the unique valuation χ such that
χ(a) = 1 for every join-irreducible a.

We can characterize the join-irreducible elements of Pn, and subsequently
prove that the Euler characteristic χ on Pn is given by

χ(σ) = number of RtoL-non-minima of σ.
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Finding something not-so-nice in something too-beautiful

Pn is extremely well behaved. What about its restriction to involutions?

0000

0100 0010 0001

0120 0101 0012

0113 0022

0123

1234

2134 1324 1243

3214 2143 1432

4231 3412

4321

The subsequent poset In is not a lattice, not graded, and not an
interval-closed subposet of Pn.

But . . . we can still compute the Möbius function in In.
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Möbius function on In

We can characterize inversion sequences of involutions, using the classical
decomposition that proves the relation i(n) = i(n − 1) + (n − 1) · i(n − 2)
for n ≥ 2.

We say that (x1, . . . , xn) is slow-climbing when it does not contain
large ascents, defined as factors (xi , xi+1) with xi+1 > xi + 1.

Lemma: The inversion sequence of an involution is slow-climbing if
and only if it is the concatenation of factors (0, 1, · · · , h) for some
(possibly different) h ≥ 0.

Theorem: For any involution σ ∈ In, let α be the number of non-zero
entries in φ(σ). The Möbius function in In is given by

µ(12 . . . n, σ) =

{
(−1)α if σ is slow-climbing, and

0 otherwise.
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