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Encode to binary sequence. Gives us gr “ 2.
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Alternation: points alternate cells. Encodes as 1010 ¨ ¨ ¨ .
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Permutation classes with gr ă 2

If a permutation class C contains long alternations, then grpCq ě 2.

conversely. . .

If grpCq ă 2, then C contains only bounded length alternations.
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The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):
The only possible growth rates of permutation classes up to 2 are:

0 1 1.618 1.839 2
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Isolated cells at growth rate “ 2 can equal the cell class G2.
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Up to Φ “ 1 ` ϕ « 2.618

Theorem (B., Opler (2025+))

Let C be a permutation class such that grpCq ă Φ. Then there exists K such
that every π P C is contained in a grid class of the form

GΦ

GΦ

GΦ

GΦ

except for at most K points.

GΦ is the cell class at growth rate Φ (defined properly later!).



Key features

GΦ

GΦ

GΦ

GΦ

1. Components have size 2.

2. Only three types of cell: GΦ, monotone, or empty.

3. At most one nonmonotone entry per component.
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Encode using t0, 1, 2u. Gives us gr “ 3.

So if grpCq ă 3, only bounded length ‘triple alternations’.
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Encode using t0, 1, 2u: gr “ 1 ` ϕ.

So no ‘L-alternations’ below 2.618.
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✓ Components have size 2.

2. Only three types of cell: GΦ, monotone, or empty.

3. At most one nonmonotone entry per component.



Cell classes

Following Vatter (2019): For real γ ą 0, the cell class at γ is

Gγ “
␣

π : grpSub
à

πq ă γ or grpSub
á

πq ă γ
(

.

Example (2413 R G2)

‘-indecomposables in 2413:

1, 21, 231, 312, 2413.

So Sub
À

2413 has generating function

1
1 ´ pz ` z2 ` 2z3 ` z4q

.

grpSub
À

2413q “ 1
smallest real zero of denominator « 2.066.
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Theorem (Vatter (2019))

If grpCq ă γ then, for some m ˆ n array,
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So when γ “ Φ, certainly each cell is a subclass of GΦ.
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✓ Components have size 2.

✓ Only three types of cell: GΦ, monotone, or empty.

3. At most one nonmonotone entry per component.



Nonmonotone interactions

It turns out, the smallest class with two nonmonotone cells looks like:

Denominator of the enumeration is 1 ´ 2z ´ 2z2, giving

gr “ 1 `
?

3 « 2.732.



Key features
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✓ Components have size 2.

✓ Only three types of cell: GΦ, monotone, or empty.

✓ At most one nonmonotone entry per component.



Actually proving it

We have to show:

C Ď

GΦ

GΦ

GΦ

GΦ

GΦ

GΦ

GΦ

GΦ

GΦ

...
...

¨ ¨ ¨

¨ ¨ ¨

. . . ùñ C Ď

GΦ

GΦ

GΦ

GΦ

`K

‚ Largely, proof follows Vatter (2019), with complications.
‚ For each π P C, systematically ‘slice’ rows and columns to

eliminate structures that can’t exist.
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Concentration I

What happens when we slice a cell? For π P GΦ:

Draw (in this case) four noninteracting boxes.
Three points not in boxes.
This π is p4, 3q-concentrated.



Concentration II

Conjecture (Vatter (2019))

The cell class Gγ is concentrated if and only if γ ă Φ.

Theorem (B., Opler (2025+))

Yup. The cell class Gγ is concentrated if and only if γ ă Φ.

An obvious barrier to concentration are long alternations:

These and other (worse) barriers do not appear in Gγ unless γ ě Φ.
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Theorem (B., Opler (2025+))

Let C be a permutation class such that grpCq ă Φ. Then there exists K such
that every π P C is contained in a grid class of the form

GΦ

GΦ

GΦ

GΦ

except for at most K points.

Now we use this to count the permutations in C. . .



The insertion encoding

Theorem (Albert, Linton, Ruškuc (2005))

If a class does not contain long alternations, it has a finite insertion encoding,
and hence a rational generating function.

Each component of our grid class has bounded length (horizontal or
vertical) alternations:

GΦ

GΦ

GΦ

GΦ

So each is individually amenable to the insertion encoding. We just
need to stick it all together.
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MSO framework

The Büchi—Elgot—Trakhtenbrot Theorem:
A language is regular if and only if it is MSO definable.

“MSO may be seen as a high-level language that [. . . ] ‘compiles’
into an automaton, making it easier to describe complicated regular
languages.”

Braunfeld (2024)



An MSO teaser
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w: 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1

Each letter corresponds to a point in the permutation. How do two
points relate?
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‚ x is left of y because they are both 1, and x precedes y in w.
‚ x is below y in π because x precedes y in w.
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π :
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x
y

w: 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1

x y

‚ x is left of y because x is 0, and y is 1.
‚ x is below y in π because x precedes y in w.



Pull it all together

GΦ

GΦ

GΦ

GΦ

`K

‚ Each component is insertion encodable ñ regular language
ñ MSO encodable.

‚ If every component is MSO encodable, so is the whole class of
gridded permutations.

‚ If the gridded permutations are MSO encodable, so are the
ungridded permutations. [See, e.g., Braunfeld (2024)]

‚ If a class D is MSO encodable, so is D`K for any fixed K.



Theorem (B., Opler (2025+))

Any MSO-definable subclass of

GΦ

GΦ

GΦ

GΦ

`K

has a rational generating function.

Since ‘is finite based’ is MSO definable. . .

Corollary

Every finitely based permutation class of growth rate ă Φ has a rational
generating function.



Thanks!
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