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The two cell class

This is Av(321,3142,2143), but that’s not important right now!



The two cell class

This is Av(321,3142,2143), but that’s not important right now!



The two cell class

Encode to binary sequence. Gives us gr = 2.



Alternations
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Alternation: points alternate cells. Encodes as 1010 - - .



Alternations

mFORORORORORORORORORO

Every permutation in the

two-cell class of length n < an alternation of length 2n



Alternations

mFORORORORORORORORORO

o e Point 1 |

Every permutation in the

two-cell class of length n < an alternation of length 2n



Alternations

[/{/ // Point 2 )

mFORORORORORORORORORO

Every permutation in the

two-cell class of length n < an alternation of length 2n



Alternations

. / p Point 3

/

mFORORORORORORORORORO

Every permutation in the

two-cell class of length n < an alternation of length 2n



Permutation classes with gr < 2

If a permutation class C contains long alternations, then gr(C) > 2.



Permutation classes with gr < 2

If a permutation class C contains long alternations, then gr(C) > 2.
conversely. ..

If gr(C) < 2, then C contains only bounded length alternations.



The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):

The only possible growth rates of permutation classes up to 2 are:
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The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):

The only possible growth rates of permutation classes up to 2 are:
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Isolated cells at growth rate = 2 can equal the cell class G,.



Upto® =1+¢ ~ 2618

Theorem (B., Opler (2025+))

Let C be a permutation class such that gr(C) < ®. Then there exists K such
that every 7t € C is contained in a grid class of the form

o

N\

Go '\

o

/

except for at most K points.

Go is the cell class at growth rate ® (defined properly later!).



Key features
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1. Components have size 2.
2. Only three types of cell: Go, monotone, or empty.

3. At most one nonmonotone entry per component.
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Three-cell classes 1

Encode using {0, 1,2}. Gives us gr = 3.



Three-cell classes 1

Encode using {0, 1,2}. Gives us gr = 3.

So if gr(C) < 3, only bounded length ‘triple alternations’.
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Three-cell classes 11

Encode using {0,1,2}: gr = 1 + ¢.



Three-cell classes 11

Encode using {0,1,2}: gr = 1 4+ ¢. So no ‘L-alternations’ below 2.618.
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v/ Components have size 2.
2. Only three types of cell: Gg, monotone, or empty.

3. At most one nonmonotone entry per component.



Cell classes

Following Vatter (2019): For real y > 0, the cell class at -y is

G, ={m : gr(Sub@@P ) < yorgr(SubO m) < v}.

Example (2413 ¢ Gy)
@-indecomposables in 2413:

1, 21, 231, 312, 2413.

So Sub @ 2413 has generating function

1
1—(z+2%+223+24)°

gr(Sub @ 2413) = ~ 2.066.

smallest real zero of denominator
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Cell classes

Following Vatter (2019): For real y > 0, the cell class at -y is

G, ={m : gr(Sub@@P ) < yorgr(SubO m) < v}.

Theorem (Vatter (2019))
If gr(C) < vy then, for some m x n array,

g'y g'y' g'y
Do Qv 9y | Gy
G, 6,1,

So when v = @, certainly each cell is a subclass of Go.



Key features

Go

N\

Go |\

o

v/ Components have size 2.
V" Only three types of cell: Go, monotone, or empty.

3. At most one nonmonotone entry per component.



Nonmonotone interactions

It turns out, the smallest class with two nonmonotone cells looks like:

Denominator of the enumeration is 1 — 2z — 222, giving

gr=1 +4/3 ~ 2.732.
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v/ Components have size 2.
V" Only three types of cell: Go, monotone, or empty.

\/ At most one nonmonotone entry per component.



Actually proving it

We have to show:

G0 G Go
0o G Go
Cc . U
0o 0o |Go

Go
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* Largely, proof follows Vatter (2019), with complications.

* For each 7 € C, systematically ‘slice’ rows and columns to
eliminate structures that can’t exist.



Concentration I

What happens when we slice a cell? For 7 € Go:
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Concentration I

What happens when we slice a cell? For 7 € Go:

Draw (in this case) four noninteracting boxes.
Three points not in boxes.
This 7t is (4, 3)-concentrated.



Concentration II

Conjecture (Vatter (2019))
The cell class G., is concentrated if and only if y < P.



Concentration II

Conjecture (Vatter (2019))
The cell class G., is concentrated if and only if y < P.

Theorem (B., Opler (2025+))
Yup. The cell class G., is concentrated if and only if v < ®.

An obvious barrier to concentration are long alternations:

These and other (worse) barriers do not appear in G, unless v > ®.



Theorem (B., Opler (2025+))

Let C be a permutation class such that gr(C) < ®. Then there exists K such
that every 7t € C is contained in a grid class of the form

Go

N

Go '\
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except for at most K points.

Now we use this to count the permutations in C...



The insertion encoding

Theorem (Albert, Linton, Ruskuc (2005))

If a class does not contain long alternations, it has a finite insertion encoding,
and hence a rational generating function.
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need to stick it all together.
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The insertion encoding

Theorem (Albert, Linton, Ruskuc (2005))

If a class does not contain long alternations, it has a finite insertion encoding,
and hence a rational generating function.

Each component of our grid class has bounded length (horizontal or
vertical) alternations:
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So each is individually amenable to the insertion encoding. We just
need to stick it all together.



MSO framework

The Biichi—FElgot—Trakhtenbrot Theorem:
A language is regular if and only if it is MSO definable.

“MSO may be seen as a high-level language that [...] ‘compiles’
into an automaton, making it easier to describe complicated reqular
languages.”

Braunfeld (2024)



An MSO teaser
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w: 0110010110110111001

Each letter corresponds to a point in the permutation. How do two
points relate?




An MSO teaser
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w: 0110010110110111001
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* xis left of y because they are both 1, and x precedes y in w.

* xis below y in 7T because x precedes y in w.




An MSO teaser
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* xis right of y because they are both 0, and y precedes x in w.

* xis above y in 7T because y precedes x in w.




An MSO teaser

OR R OORORRPORRLROREEOOR

w: 0110010110110111001

11
Xy

* xisleft of y because xis 0, and y is 1.

* xis below y in 7T because x precedes y in w.




Pull it all together

Go

+K

N

Go

Go

o

/

* Each component is insertion encodable = regular language

= MSO encodable.

* If every component is MSO encodable, so is the whole class of

gridded permutations.

* If the gridded permutations are MSO encodable, so are the
ungridded permutations. [See, e.g., Braunfeld (2024)]

* If a class D is MSO encodable, so is DX for any fixed K.



Theorem (B., Opler (2025+))

Any MSO-definable subclass of
Gl +K

N

o |\

o

7
has a rational generating function.

Since ‘is finite based’ is MSO definable. ..
Corollary

Every finitely based permutation class of growth rate < ® has a rational
generating function.



Thanks!
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