Finitely based classes below 2.618 are rational

Robert Brignall Joint work with Michal Opler

7th July 2025

The two cell class

This is Av(321, 3142, 2143), but that's not important right now!

The two cell class

This is Av(321, 3142, 2143), but that's not important right now!

The two cell class

Encode to binary sequence. Gives us gr = 2.

Alternation: points alternate cells. Encodes as $1010\cdots$.

Every permutation in the two-cell class of length n

Every permutation in the two-cell class of length n

Every permutation in the two-cell class of length n

Every permutation in the two-cell class of length n

If a permutation class C contains long alternations, then $gr(C) \ge 2$.

If a permutation class ${\mathcal C}$ contains long alternations, then $gr({\mathcal C}) \geqslant 2.$ *conversely*...

If $gr(\mathcal{C}) < 2$, then \mathcal{C} contains only bounded length alternations.

The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):

The only possible growth rates of permutation classes up to 2 are:

The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):

The only possible growth rates of permutation classes up to 2 are:

The Fibonacci dichotomy

Kaiser & Klazar (2002), Huczynska & Vatter (2006):

The only possible growth rates of permutation classes up to 2 are:

Isolated cells at growth rate = 2 can equal the cell class G_2 .

Theorem (B., Opler (2025+))

Let C *be a permutation class such that* $\overline{gr}(C) < \Phi$ *. Then there exists K such that every* $\pi \in C$ *is contained in a grid class of the form*

except for at most K points.

 \mathcal{G}_{Φ} is the cell class at growth rate Φ (defined properly later!).

Key features

- 1. Components have size 2.
- 2. Only three types of cell: \mathcal{G}_{Φ} , monotone, or empty.
- 3. At most one nonmonotone entry per component.

Three-cell classes I

Three-cell classes I

Encode using $\{0, 1, 2\}$. Gives us gr = 3.

Three-cell classes I

Encode using $\{0, 1, 2\}$. Gives us gr = 3.

So if gr(C) < 3, only bounded length 'triple alternations'.

Three-cell classes II

Three-cell classes II

Encode using $\{0, 1, 2\}$: gr = 1 + ϕ .

Three-cell classes II

Encode using $\{0, 1, 2\}$: gr = 1 + ϕ . So no 'L-alternations' below 2.618.

Key features

- ✓ Components have size 2.
- 2. Only three types of cell: \mathcal{G}_{Φ} , monotone, or empty.
- 3. At most one nonmonotone entry per component.

Cell classes

Following Vatter (2019): For real $\gamma > 0$, the cell class at γ is

$$\mathcal{G}_{\gamma} = \left\{\pi \ : \ \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \text{ or } \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \right\}.$$

Example (2413 $\notin \mathcal{G}_2$)

gr(

\oplus -indecomposables in 2413:

So Sub \oplus 2413 has generating function

$$\frac{1}{1 - (z + z^2 + 2z^3 + z^4)}.$$

Sub $\bigoplus 2413) = \frac{1}{\text{smallest real zero of denominator}} \approx 2.066$

Cell classes

Following Vatter (2019): For real $\gamma > 0$, the cell class at γ is

$$\mathcal{G}_{\gamma} = \left\{ \pi \ : \ \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \text{ or } \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \right\}.$$

Theorem (Vatter (2019))

If $gr(C) < \gamma$ *then, for some* $m \times n$ *array,*

Cell classes

Following Vatter (2019): For real $\gamma > 0$, the cell class at γ is

$$\mathcal{G}_{\gamma} = \left\{ \pi \ : \ \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \text{ or } \operatorname{gr}(\operatorname{Sub} \bigoplus \pi) < \gamma \right\}.$$

Theorem (Vatter (2019))

If $gr(C) < \gamma$ *then, for some* $m \times n$ *array,*

$$\mathcal{C} \subseteq rac{egin{array}{c|c} \mathcal{G}_\gamma & \mathcal{G}_\gamma & \mathcal{G}_\gamma \ \hline \mathcal{G}_\gamma & \mathcal{G}_\gamma & \mathcal{G}_\gamma \ \hline \hline \mathcal{G}_\gamma & \mathcal{G}_\gamma & \mathcal{G}_\gamma \ \hline dots & \ddots & dots \ \hline \mathcal{G}_\gamma & \mathcal{G}_\gamma & \cdots & \mathcal{G}_\gamma \end{array}$$

So when $\gamma = \Phi$, certainly each cell is a subclass of \mathcal{G}_{Φ} .

Key features

- ✓ Components have size 2.
- \checkmark Only three types of cell: \mathcal{G}_{Φ} , monotone, or empty.
- 3. At most one nonmonotone entry per component.

Nonmonotone interactions

It turns out, the smallest class with two nonmonotone cells looks like:

Denominator of the enumeration is $1 - 2z - 2z^2$, giving

$$\mathrm{gr}=1+\sqrt{3}\approx 2.732.$$

Key features

- ✓ Components have size 2.
- \checkmark Only three types of cell: \mathcal{G}_{Φ} , monotone, or empty.
- \checkmark At most one nonmonotone entry per component.

We have to show:

- Largely, proof follows Vatter (2019), with complications.
- For each $\pi \in C$, systematically 'slice' rows and columns to eliminate structures that can't exist.

What happens when we slice a cell? For $\pi \in \mathcal{G}_{\Phi}$:

What happens when we slice a cell? For $\pi \in \mathcal{G}_{\Phi}$:

What happens when we slice a cell? For $\pi \in \mathcal{G}_{\Phi}$:

Draw (in this case) four noninteracting boxes.

What happens when we slice a cell? For $\pi \in \mathcal{G}_{\Phi}$:

Draw (in this case) four noninteracting boxes. Three points not in boxes.

What happens when we slice a cell? For $\pi \in \mathcal{G}_{\Phi}$:

Draw (in this case) four noninteracting boxes. Three points not in boxes. This π is (4,3)-concentrated.

Conjecture (Vatter (2019))

The cell class \mathcal{G}_{γ} *is concentrated if and only if* $\gamma < \Phi$ *.*

Conjecture (Vatter (2019))

The cell class \mathcal{G}_{γ} *is concentrated if and only if* $\gamma < \Phi$ *.*

Theorem (B., Opler (2025+))

Yup. The cell class \mathcal{G}_{γ} *is concentrated if and only if* $\gamma < \Phi$ *.*

An obvious barrier to concentration are long alternations:

These and other (worse) barriers do not appear in \mathcal{G}_{γ} unless $\gamma \ge \Phi$.

Theorem (B., Opler (2025+))

Let C *be a permutation class such that* $\overline{gr}(C) < \Phi$ *. Then there exists K such that every* $\pi \in C$ *is contained in a grid class of the form*

except for at most K points.

Now we use this to count the permutations in C...

If a class does not contain long alternations, it has a finite insertion encoding, and hence a rational generating function.

If a class does not contain long alternations, it has a finite insertion encoding, and hence a rational generating function.

Each component of our grid class has bounded length (horizontal or vertical) alternations:

So each is individually amenable to the insertion encoding. We just need to stick it all together.

If a class does not contain long alternations, it has a finite insertion encoding, and hence a rational generating function.

Each component of our grid class has bounded length (horizontal or vertical) alternations:

So each is individually amenable to the insertion encoding. We just need to stick it all together.

If a class does not contain long alternations, it has a finite insertion encoding, and hence a rational generating function.

Each component of our grid class has bounded length (horizontal or vertical) alternations:

So each is individually amenable to the insertion encoding. We just need to stick it all together.

The Büchi—Elgot—Trakhtenbrot Theorem: A language is regular if and only if it is MSO definable.

"MSO may be seen as a high-level language that [...] 'compiles' into an automaton, making it easier to describe complicated regular languages."

Braunfeld (2024)

w: 0110010110110111001

Each letter corresponds to a point in the permutation. How do two points relate?

- *x* is left of *y* because they are both 1, and *x* precedes *y* in *w*.
- *x* is below *y* in π because *x* precedes *y* in *w*.

- *x* is right of *y* because they are both 0, and *y* precedes *x* in *w*.
- *x* is above *y* in π because *y* precedes *x* in *w*.

- *x* is left of *y* because *x* is 0, and *y* is 1.
- *x* is below *y* in π because *x* precedes *y* in *w*.

Pull it all together

- Each component is insertion encodable ⇒ regular language
 ⇒ MSO encodable.
- If every component is MSO encodable, so is the whole class of *gridded* permutations.
- If the gridded permutations are MSO encodable, so are the ungridded permutations. [See, e.g., Braunfeld (2024)]
- If a class \mathcal{D} is MSO encodable, so is \mathcal{D}^{+K} for any fixed *K*.

Theorem (B., Opler (2025+))

Any MSO-definable subclass of

has a rational generating function.

Since 'is finite based' is MSO definable...

Corollary

Every finitely based permutation class of growth rate $< \Phi$ has a rational generating function.

Thanks!

M. H. Albert, S. Linton, and N. Ruškuc. The insertion encoding of permutations. *Electron. J. Combin.*, 12(1):Research paper 47, 31 pp., 2005

S. Braunfeld. Decidability in geometric grid classes of permutations. *Proc. Amer. Math. Soc.*, 153(3):987–1000, 2025

S. Huczynska and V. Vatter. Grid classes and the Fibonacci dichotomy for restricted permutations. *Electron. J. Combin.*, 13:Research paper 54, 14 pp. (electronic), 2006

T. Kaiser and M. Klazar. On growth rates of closed permutation classes. *Electron. J. Combin.*, 9(2):Research paper 10, 20 pp. (electronic), 2003

V. Vatter. Growth rates of permutation classes: from countable to uncountable. *Proc. Lond. Math. Soc.* (3), 119(4):960–997, 2019